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Abstract
An analytical model for droplet impact onto a porous substrate is presented, based on
Wagner theory. An idealised substrate boundary condition is introduced, mimicking
the effect of fluid entry into a genuinely porous substrate. The asymptotic analysis
yields a solution for a small porous correction with free-surfaces and pressures com-
pared with the impermeable case. On a global scale, it is found that the impact region
on the substrate grows more slowly with porosity included due to loss of mass into
the substrate. The spatial distribution of liquid volume flux into the substrate is also
described. Locally near the turn-over regions, the expected jetting along the surface
is calculated with the same volume flux but the jet is found to be slower and thicker
than for an impermeable substrate.

Keywords Asymptotics · Droplet impact · Porous substrate · Splashing ·
Splashing/jetting · Wagner theory

1 Introduction

Droplet impacts onto porous surfaces form a key part of many processes, ranging from
the control of accurate ink-jet printing [1–3], to the erosion of porous soils [4, 5], the
penetration or removal of liquid contaminent ingress into concrete [6] and spreading on
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natural porous stone [7]. Experimental droplet impact studies have shown that porous
substrates can significantly reduce splashingduring impact [8–10].Complex substrates
designed with micro-pillars have been engineered, recreating the repellant properties
of lotus leaves [11, 12], and shown to have hydrophobic properties potentially suitable
for preventing icing on aircraft during flight through clouds [13, 14]. Micro-structured
surfaces are increasingly used to control liquid behaviour by introducing hydrophobic
or hydrophillic properties [15–17], and while such surface effects can be retained with
low-speed impacts, the behaviour for higher-speed impacts when water can penetrate
significantly into the substrate is still not fully understood. Across these applications,
it is evident that violent impacts onto both saturated and unsaturated porous media
are important. A fuller insight into impacts onto porous surfaces will allow further
design progress towards controlling impacts, either supressing splashing completely
or enhancing ejection of material from the surface, depending on the application.

Droplet impacts onto solids and subsequent splashing have been widely studied
experimentally, analytically and numerically; thorough reviews of the area have been
provided by [18–20]. Themain theoretical approach tomodelling liquid–solid impacts
is the standardWagnermodel of post impact dynamicswhichwas originally developed
to predict pressures on landing aircraft [21]. It uses inviscid potential flow to study the
entry of a solid body into a water layer, coupled with the Wagner condition that the
liquid free-surfacemeets the solid body at turnover points at the edgeof awetted region.
This approachwas subsequently applied to ship slamming [22, 23], and the asymptotic
structure was shown to formally hold by Oliver [24]. On the largest outer scale, a
boundary value problem is obtained subject to mixed boundary conditions where the
transition points between the wetted and dry parts of the solid are unknown in advance.
Singular pressures are found at these turnover points, and each of these is resolved by
a local jet-root region which predicts the formation of a fast moving splash jet. The
same theoretical framework extends to modelling droplet impacts. Past investigations
have included droplet impacts onto thin liquid layers [25], onto flat substrates with
isolated roughness [26], onto non-flat surfaces [27], onto elastic substrates [28, 29] and
freezing during supercooled droplet impacts onto ice [30]. However, little investigation
has been reported for Wagner impact onto porous substrates, although there has been
study of the penetration into a porous surface by impacting fluid [31–33] in other
regimes.

This current work looks to extendWagner theory to include the presence of a porous
substrate (see also [34]). As a first step towards a fully-coupled description combining
the inertial Wagner approach with (for example) a Darcy flow in a porous substrate,
the current work adopts an imposed boundary condition on the substrate intended
to closely mimic a full porous model. In particular, our desire is to both understand
how flow into the substrate affects the overall splashing behaviour, and understand if
the asymptotic structure of the Wagner solution is maintained for porous substrates.
Section2 below outlines our approach in detail, before the full resulting analytical
problem is derived and solved. Results and a detailed discussion of the influence of
porosity on the splash jets are provided.
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2 Modelling approach and overview

In this section we describe the strategy for the rest of the paper. Our aim here is
to describe the physical setting from which we derive our mathematical model. To
establish our theory, we first carry out scalings to identify dimensionless small-valued
parameters in the problem. The first small parameter, ε, underlies Wagner theory of
liquid impact [24]. Its small value comes from the brief time of impact being small
compared with the longer time R/V , where R is the size of the droplet and V is the
closing speed just before impact. Secondly, the principal parameter of our analysis
for flow into a porous substrate is k. If k = 0, then this corresponds to impermeable
substrate—a special case which we solve first in Sect. 3.2. The results of Sect. 3.2 are
used to inform the subsequent asymptotic analysis for small positive k, in Sect. 3.1.
(In the course of the asymptotic analysis at first order in k, we neglect terms of size
O(k2) because they are relatively small compared with retained terms of size O(k).)

At the start of this study the authors wanted to answer the following questions
about how porosity influences the flow: How much of the droplet fluid can enter the
substrate under the brief and high-pressure conditions of a sudden impact? Does the
substrate slow down or speed up the spreading of the impact region? In the impact
region, is the pressure reduced or increased by porosity? What happens to the splash
jet: is it thicker or thinner? In this work these qualitative questions are answered
quantitatively, and we hope our theoretical results will bear comparison with future
experimental measurements.

We neglect surface tension because impact pressures greatly exceed the magnitude
of the capillary-pressure jump across a droplet’s free surface.Weneglect air effect here,
further discussion of pre-impact air-cushioning effects including porosity can be found
in [34, 35]. We justify setting p = 0 on the free-surface here as the inertia of the air is
small comparedwith that of thewater [36].We can justify an inviscid fluidmodel as the
Reynolds number, Re, is large. For awater drop of kinematic viscosity ν = 10−6 m2/s,
an impact speed V = 10m/s, and a droplet radius R = 10−3 m, we have the Reynolds
number Re = V R/ν ∼ 104, the Weber number We = ρV 2R/σ ∼ 103 and the
Froude number Fr = U/

√
gR ∼ 102. The large values of We and Fr allow us to

neglect capillarity and gravity, respectively.
We treat the flow as a two-dimensional, left-right symmetric, incompressible fluid

in irrotational flow. The y∗ axis points vertically up, where starred variables are at
physical scale in Sect. 3. Figure 1 shows the curved surface of the drop meeting the
horizontal top of the substrate in a contact region which is a finite interval of the x∗
axis. The contact interval, −d∗(t∗) ≤ x∗ ≤ d∗(t∗), lies between the two turnover
points, at x∗ = ±d∗(t). A turnover point is so called because on the right side of the
drop the free surface turns around a tight bend, or turnover, to join a thin jet that flows
along the positive x∗ axis. In Wagner theory the jet has negligible O(ε2) thickness, so
that at O(ε) the drop’s free surface is supposed to meet the solid surface at y∗ = 0,
with negligible error in position.We return tomodel the consequent flow in the jet-root
region and the changes to it due to porosity, in Sect. 5.

Returning to the impact region, the important function d∗(t∗) increases monoton-
ically from zero at the instant of initial contact, t∗ = 0, as the fluid spreads over the
substrate. Since the curved droplet is locally of parabolic initial shape, Wagner theory
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tells us that d∗ increases proportional to
√
t∗. The impact region spreads fast at early

times and later slows down. Understanding the dependences of d∗ on time and on
porosity k are important for all our analysis. The free-boundary problem that we solve
depends sensitively on a precise description of d∗, as it defines the central region of
contact and the innermost points of the drop’s free surface. The fact that d∗ depends
on k means that the O(k) problem is posed with a different impact region from the
k = 0 impermeable case. We find that every part of the solution depends on d∗ via
integral expressions, with±d∗ the limits of integration, and where the integrands have
singularities at these end points. It has been a job of work for the authors to show how
the results depend on d∗, and to find the correct form of expansion of d∗ as a function
of k, in order to reach mathematically consistent results. This is not a classical asymp-
totic analysis. One of our strategies has been to retain d∗ as a general quantity until
as late as possible in the analysis, delaying expressing it until we show it must have a
particular form to keep the model equations consistent.

Wagner theory allows us to linearise the equations and throw the boundary con-
ditions onto the x∗ axis (even in the presence of porosity). The fluid domain is then
approximated by the upper half-plane, in which Laplace’s equation is the governing
relation for the drop’s fluid in irrotational flow. See Fig.2. The importance of d∗ is
central because we must impose different types of boundary condition in the impact
zone [−d∗, d∗] from that on the sections of free surface (−∞,−d∗] and [d∗,∞).
Mathematically, the model is a mixed boundary value problem. Physically, the bound-
ary conditions come from distinct constraints on the flow: the liquid must have zero
pressure on the segments of free surface, whereas in the impact region the normal
velocity component is either zero (k = 0, impermeable) or modified by the porous
substrate (k > 0, permeable) at the solid–liquid boundary. In Sect. 3.2 we derive a
condition on the normal derivative of the velocity potential which accommodates the
idea of fluid being forced into the substrate by the high-pressure impacting liquid.

In the next section we lay out our model equations for a theory up to O(k). In Sect.
3.2 we solve the special impermeable case (k = 0), following classicalWagner theory.
In Sect. 3.1 we address the O(k) problem, with help from the results of Sect. 3.2. The
results are presented in Sect. 4.

3 Wagner problem for impact onto a porous substrate

3.1 Governing equations

We now consider a droplet impact with a flat-topped substrate in two dimensions.
The starred variables are physical and have S.I. units, and we rescale them below. We
choose for simplicity a stationary droplet, with radius R, and the substrate rising at
velocity V ; the substrate’s top is at y∗ = 0 at the time of initial impact t∗ = 0. After
impact starts at t∗ = 0+, Wagner Theory is used to describe the impact behaviour;
see Fig. 1 for details and a schematic of the flow structure. The y∗ axis increases
vertically up into the fluid with x∗ = 0 being a line of symmetry for the problem.
The liquid free-surface is given by y∗ = η∗(x∗, t∗), but we are only interested in the
impact region, the lowest part of the droplet. The free surface deforms from the start
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Fig. 1 Diagrams showing a the initial situation, and b a schematic of the different asymptotic regions. In
b the outer region has horizontal and vertical length scales of ε by ε. The asymptotically smaller jet root
inner region has length scales of ε2 by ε2, and the long and thin jet retains the ε2 vertical length scale

of impact onwards in time, and the substrate has a wetted region and a dry region
as the droplet spreads after impact. On y∗ = V t , the interval −d∗(t) ≤ x ≤ d∗(t)
describes the region of impact of the liquid and the substrate. On the right half of the
symmetric domain x∗ = d∗(t) is a turnover point at the root of a splash jet. Within
the O (ε) Wagner asymptotics the turnover point is so close to the substrate that it is
placed on the surface of the substrate, and the small height of the splash (O

(
ε2

)
)is

neglected (see also [24, 36]). The turnover points are symmetrically arranged on the
plate at x∗ = ±d∗(t) on y∗ = t∗V (due to the plate moving vertically) where d∗(t)
increases from d∗ = 0 at t∗ = 0, as time progresses. We expect if the drop is initially
stationary then the disturbance of the free surface tends to zero as we pass into the far
field.

Figure1 shows the basic scales and geometry of the problem, and provides a
schematic for the different local regions. The Wagner analysis that follows splits into
three-distinct parts. Firstly, we consider the outer problem which considers the shape
of the free surface. In this region the horizontal and vertical length scales are both
O(ε), the lower droplet free-surface linearises onto y = 0, and the thin splash jets and
turn-over regions are negligible on this scale. Secondly, at a more local view, we have
the jet-root region (which is of size O(ε2) by O(ε2)) and is where the free-surface
turns over and forms the base of the jet which resolves the singularities found in the
outer solution. Thirdly, this then ejects fluid into a long jet region, where we have a
very thin jet running along the surface of the substrate.
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Our governing equations for the outer problem are:

∇2φ∗(x∗, y∗, t∗) = 0 in fluid domainy∗ > η∗, (1)

D

Dt∗
(y∗ − η∗) = 0 on y∗ = η∗(x∗, t∗) from the kinematic condition, (2)

p∗(x∗, y∗, t∗) = 0 on y∗ = η∗ from zero stress on the free-surface, (3)

∂φ∗

∂ y∗ = v∗ on the plate y∗ = V t∗ when |x∗| < d(t∗), (4)

where D/Dt is thematerial derivative. In (4), we introduce a general substrate velocity
v∗(x∗, y∗, t∗, k∗, p∗

l , p
∗
s ) to enable inclusion of porous effects into theWagner model,

where k∗ is a measure of the permeability of the substrate and where p∗
l and p∗

s
correspond to pressures in the liquid and substrate, respectively. For the standard
Wagner impact of a droplet with an impermeable substrate, we have simply a zero
penetration condition v∗ = V (see below).

For initial conditions, we have an undisturbed lower portion of the circular droplet
given by

η∗(x∗, 0) = R −
(
R2 − x∗2)

1
2

(5)

or

η∗(x∗, 0) = x∗2

2R
+ O

(
x∗4

2R3

)
, (6)

which is a form we use later for matching the initial conditions in the far-field.
We non-dimensionalise by scaling spatial coordinates with R, taking our velocity

scale to be V , and hence a time scale of R
V . The free-surface shape is scaled in the

same way as our spatial coordinates, ρV 2 gives the appropriate inviscid pressure scale
(where ρ is the constant density of the fluid) and we scale velocity potential as RV .
Thus we define new barred variables in terms of the physical variables by

[x∗, y∗, t∗, φ∗, η∗, p∗, v∗] =
[
Rx̄, Rȳ,

R

V
t̄, RV φ̄, Rη̄, ρV 2 p̄, V v̄

]
. (7)

Hence our problem becomes in nondimensional terms

∇2φ̄(x̄, ȳ, t̄) = 0 in fluid domain ȳ > η̄, (8)

D

Dt̄
(ȳ − η̄) = 0 on ȳ = η̄(x̄, t̄), (9)

p̄ = 0 on ȳ = η̄(x̄, t̄) (10)

∂φ̄

∂ ȳ
= v̄ on plate, ȳ = t̄ and |x̄ | < d(t̄). (11)
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We make further simplifications by considering only small times after impact, and
focussing on the outer region sketched in Fig. 1. In particular, and in keeping with
Wagner theory, we rescale and define new (undecorated) variables by

[x̄, ȳ, t̄, φ̄, η̄, p̄] =
[
εx, εy, ε2t, εφ, ε2η, ε−1 p

]
, (12)

where ε is a small parameter, associated with the small slope of the liquid free surface
near the turnover points in this outer solution. With the plate rising into the droplet the
displacement of each turnover point is proportional to

√
t̄ ∼ O(ε) (originally observed

by Wagner [21], and formalised mathematically by [24]), therefore the horizontal
length scale is O(εR), and is comparable via the continuity equation to the vertical
scale of the region of influence of impact. The pressure scale follows from Bernoulli’s
equation.

For convenience we define a function h(x, t) which is the perturbation from the
initial shape of the droplet, so the position of the free surface is

η(x, t) = x2

2
− h(x, t). (13)

Since η ∼ x2/2 from (6) as x → ∞, this gives desirable behaviour as h(x, t) → 0 as
|x | → ∞.

Applying the scales (12) to the boundary conditions, the free-surface conditions
linearise to be evaluated on y = 0, and our problem reduces to the following mixed
boundary value problem in the upper half plane:

∇2φ(x, y, t) = 0 in the droplet y > 0, (14)

∂φ(x, 0, t)

∂ y
= v(x, t) on |x | < d, (15)

φ(x, 0, t) = 0 on |x | > d. (16)

We note that from the linearised Bernouilli equation, the liquid pressure in the impact
zone can be found from

p(x, 0, t) = −φt (x, 0, t) for |x | < d(t).

The time integral of this relation on the free surfacewhere p = 0 supplies the boundary
condition (16).We also require this for the boundary condition in the impact zonewhen
the substrate is porous. The free-surface and far-field conditions are

∂φ(x, 0, t)

∂ y
= ∂η(x, t)

∂t
on |x | > d, (17)

η(x, t) → x2

2
as |x | → ∞, (18)

φ → 0 as y → ∞, (19)
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Fig. 2 Summary of the boundary conditions for the dimensionless problem

φ(x, 0, t) = 0 on |x | > d, (20)

where φ(x, y, t), η(x, t) and d(t) are all unknown functions with v(x, t) in (15)
changing depending on the substrate. For the standard Wagner impact problem with
an impermeable substrate v = 1 here; we present an alternative relation for v(x, t)
below to model the case when the substrate is porous.

On the scales of the outer problem described here, Wagner theory determines the
position of the unknown turnover points d(t) by ensuring that the free-surface height
at the turnover points matches the vertical position of the plate. At O(ε) this is

η(d(t), t) − t = d(t)2

2
− h(d(t), t) − t = 0, (21)

where y = η(d(t), t) is the free-surface position and y = εt is the position of the
plate.

As discussed above, our focus in the current paper is to investigate how porosity
of the substrate can be incorporated into Wagner theory. As a first step towards a
full coupling of (for example) Darcy flow in a porous substrate with potential flow
in the droplet, we introduce here a simplified model for the contribution to φy on the
boundary between the droplet and the supposed porous substrate. The impermeable
case forces us to include the condition that the normal velocity component (in the
droplet’s frame of reference) is φy = 1. When the boundary is permeable (k > 0), we
expect a change directly proportional to both k and the pressure driving the fluid into
the substrate. In view of Darcy’s law we do not know the normal component of the
gradient in pressure but we do expect it to be proportional to the pressure at the top
boundary of the substrate. Another consideration is that the liquid pressure p(x, 0, t)
is mildly singular at x = ±d and singular in time at t = 0. In order to keep the forcing
finite within the impact interval, we include another factor d. We recognise that the
product of d(t) and pl is the substrate’s upward force on the drop that brings about a
change in momentum in the droplet. Putting these factors together we have

φy = 1 − kd(t)p(x, 0, t). (22)

The minus sign is chosen to ensure that a positive liquid pressure corresponds to fluid
penetrating the substrate. From the linearised version of Bernoulli’s equation we also
have p = −φt . Hence we impose

φy = 1 + kd(t)φt (x, 0, t). (23)
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Note that in (22) and (23) we are not specifying any details of the flow inside
the porous layer, including pre-saturation or the subsequent flow in the substrate.
We assume the substrate is essentially passive and just admits droplet fluid without
reference to the local flowwithin the porous medium. If saturated, we’d expect either a
substrate-bed infuence or displacement of fluid from the substrate up into the drop. If
unsaturated, we’d expect the droplet fluid to just penetrate a short distance (compared
with d(t)) into the substrate. In that sense, our model likely more closely resembles
an unsaturated substrate.

We also need to relate k to physical constants. Rescaling back to the physical
variables the dimensionless constant k = CV /R, where the porosity, C , is a material
constant with dimensions of time. (Constant C is the same as that present in Darcy’s
law when expressing the fluid velocity in the substrate as: v = −Cρ−1∇ p.) We
are interested in a regime in which k = CV /R is small. For example, a depth of
fluid penetration, CV , much less than the droplet radius R. (The previous scaling
by powers of ε affects neither the definition of k nor the discussion of k as a ratio
of distinct physical times, or physical fluid speeds.) We are extending the substrate
condition used in Hicks et al. [6] where a constant penetration velocity was assumed
across a wetted region based on a centreline pressure at x = 0.

Although strictly we could impose (23) as an approximation for any k, we restrict
ourselves here to the case of small porosity and assume that k 	 1. Of course,
a full realistic condition would require resolving a fully coupled Darcy problem in
the substrate. The current work looks to investigate how such porous effects might
be incorporated into the framework of the Wagner solution as a first step towards
understanding the full problem. Given our assumption of small k, we look to develop
an asymptotic solution. Hence, assuming a regular asymptotic expansion in powers of
the small parameter k exists, we expand the unknown functions as

φ(x, y, t) = φI (x, y, t) + kφp(x, y, t) + O(k2), (24)

h(x, t) = hI (x, t) + kh p(x, t) + O(k2), (25)

d(t) = dI (t) + kdp(t) + O(k2), (26)

where subscripts I and p mark inpermeable and porous, respectively. Note that, in the
analysis that follows, we find that for mathematical balance the correct expansion for
the contact points is in the form

dI (t) = 2t
1
2 and d(t) = dI (t) + kat

1
2 , (27)

for some constant a. Our problem now decouples into a leading order problem that
excludes porosity (and is the standard Wagner problem for droplet impact onto an
impermeable base), and a correction at O(k) that will provide the initial changes to
the flow due to flow into the substrate. A difficulty is that the size of the contact
region defines the limits on integral expressions for the unknowns. We persist with
our analysis using the general form of d(t) until as late as possible before expanding
it as (27), otherwise the integrals become unmanageable.
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3.2 Leading orderWagner solution

For completeness, and as we need these results later in the porous correction Sect. 3.3,
we present here the k = 0 solution for φI , hI and the unknown turnover points dI . We
look to solve the system (14)–(21), with v = 1. The mixed boundary value problem
we have for φI (x, y, t) is harmonic and together with the stream function ψI (x, y, t)
this pair of functions satisfy the Cauchy–Riemann equations. Letting z = x + iy, and
defining on the real axis and in the upper half plane D, the characteristic function


(z) =
√
z2 − d2I ,

we introduce a complex-valued function which is analytic on the real axis and in the
upper half plane D,

w(z, t) = 
(z)(φI (x, y, t) + iψI (x, y, t)). (28)

The presence of the factor
(z) regularizes singular behaviour in the complex velocity
potential. Using Cauchy’s integral formula in principal value form for w, for z inside
D, we obtain

φI ,x − iφI ,y = 1

2iπ
(z)

∮

�


(γ )(φI ,α(α, β, t) − iφI ,β(α, β, t))

γ − z
dγ, (29)

with γ = α + iβ, and where the Cauchy–Riemann equations have been used to
eliminate ψI . Taking real and imaginary parts, and evaluating over a simple closed
contour� in the upper half plane running along y = 0 and then returning anticlockwise
through a semicircular arc through the droplet, and allowing for the singular behaviour
on β = 0 at α = x , (29) becomes the pair of relations:

φI ,x (x, 0, t) = 1

π

√
d2I − x2

⎡

⎣
∫ ∞

dI

√
α2 − d2I φI ,α

α − x
dα

+ P.V .

∫ dI

−dI

√
d2I − α2φI ,β

α − x
dα +

∫ −dI

−∞

√
α2 − d2I φI ,α

α − x
dα

⎤

⎦ (30)

for |x | < dI (t), and

−φI ,y(x, 0, t) = 1

π

√
x2 − d2I

⎡

⎣P.V .

∫ ∞

dI

√
α2 − d2I φI ,α

α − x
dα

+
∫ dI

−dI

√
d2I − α2v

α − x
dα + P.V .

∫ −dI

−∞

√
α2 − d2I φI ,α

α − x
dα

⎤

⎦ (31)
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for |x | > dI (t). The letter P.V . denote the principal-value. These relations simplify
by imposing boundary conditions (15)–(17) becoming

φI ,x (x, 0, t) = 1

π

√
d2I − x2

P.V .

∫ dI

−dI

√
d2I − α2

α − x
dα for |x | < dI (t) (32)

and

− φI ,y(x, 0, t) = −ηt = hI ,t = 1

π

√
x2 − d2I

∫ dI

−dI

√
d2I − α2

α − x
dα for |x | > dI (t)

(33)
where we are imposing v = 1, for the moment. Evaluating the integral in (33) yields

hI ,t = −1 + x
√
x2 − d2I

, (34)

agreeing with the results in Oliver [24]. Integrating (34) with respect to time, and
assuming the initial droplet is undisturbed in the far-field (18), we find

hI (x, t) = −t +
∫ t

0

x
√
x2 − dI (τ )2

dτ, (35)

and from the Wagner condition (21) we then have

dI (t)2

2
=

∫ t

0

dI (t)√
dI (t)2 − dI (τ )2

dτ. (36)

This is an integral equation for dI (t) and has unique positive solution dI (t) = 2t
1
2

(again in line with [24]). Hence from (35) we now know

hI (x, t) = −t + x2

2
− |x |

2

(
x2 − 4t

) 1
2
. (37)

Consequently from (13) the unknown free-surface shape is now found to be

ηI (x, t) = x2

2
− hI (x, t) = t + |x |

2

√
x2 − 4t, |x | ≥ dI (t). (38)

As |x | → ∞, ηI ∼ x2
2 − t2

x2
, and the velocity potential follows from (32)

φI ,x (x, 0, t) = x
√
dI (t)2 − x2

. (39)
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Integrating from x = dI to x (where |x | < dI ), we have

φI (x, 0, t) = −
√
dI (t)2 − x2. (40)

From (37), hI ∼ t2

x2
as |x | → ∞. From (38), we conclude that the liquid surface bulges

out owing to the substrate striking it upwards from below. The partial t-derivative of
(40) gives an expression for pl I = −φI ,t , the pressure on the substrate surface. The
pressure

pl I (x, 0, t) = dI ḋI
(
d2I − x2

) 1
2

|x | < dI , (41)

which is singular at x = ±dI , and where ḋI denotes the time derivative. Note that
dI ḋI = 2 is independent of t so that pl I is singular at x = 0, at t = 0, but that
the product of dI and pl I is non-singular in boundary condition (23) used in the next
section.

3.3 Porous contribution

We now look for the first order (O (k)) correction to the leading orderWagner solution
(k = 0) for the model described in Sect. 3.1. We now allow the liquid in the droplet
to penetrate into the substrate such that the velocity on the wetted boundary of the
substrate is subject to condition (23) as discussed in §3.1. Under the assumption that
k 	 1, we introduce the asymptotic expansions (24)–(26). The expansion for d(t)

is not trivial. If we keep a general expansion of the form d(t) = 2t
1
2 + kdp(t) +

O(k2), in keeping with the other unknowns, then the proposed balance is found to be

mathematically consistent only when the power is one-half in dp(t) = at
1
2 for some

constant a. Finding the value of a and the functions h p and φp remains our challenge.
Following the same complex analysis approach from above, governing equation

(33) becomes

(
hI + kh p

)
t = 1

π
√
x2 − d2

∫ d

−d

√
d2 − α2(1 + kdφ(α, t)t )

α − x
dα (42)

= 1

π
√
x2 − d2

∫ d

−d

√
d2 − α2(1 + kdφI (α, t)t )

α − x
dα (43)

= 1

π
√
x2 − d2

(∫ d

−d

√
d2 − α2

α − x
dα + k

∫ d

−d

d
√
d2 − α2φI (α, t)t

α − x
dα

)

,

(44)

where d = d(t) and we neglect higher order terms in k.
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The first integral is similar to the impermeable case, except that d is no longer dI .
Using the t-derivative of the known φI from (40) the second integral becomes

kd2ḋ

π
√
x2 − d2

∫ d

−d

√
d2 − α2

√
d2 − α2(α − x)

dα = kd2ḋ

π
√
x2 − d2

∫ d

−d

1

α − x
dα, (45)

= kd2ḋ

π
√
x2 − d2

log

∣∣∣
∣
d − x

d + x

∣∣∣
∣ , (46)

which is valid for |x | > d. Thus (44) can bewritten as an expression for the free-surface
displacement, as

hI ,t + kh p,t = −1 + x√
x2 − d2

+ kd2ḋ

π
√
x2 − d2

log

∣∣∣∣
d − x

d + x

∣∣∣∣ , (47)

for x > d and neglecting higher order terms.
Thus far we have kept the form of the asymptotic expansion of d as general as

possible. It is possible to continue the analysis further with arbitrary d, however the
required application of theWagner condition (21) at some stage then enforces dI (t) ∼
t
1
2 and thusd(t) = (2+ka)t

1
2 formathematical consistency.Weadopt this requirement

from this point onwards to simplify the workings below.
To obtain h(x, t) we integrate (47) with respect to t ′ from 0 to t . For convenience,

we use a change of integration variable on the log term by writing

t ′ = d ′2

(2 + ka)2
, (48)

obtaining

h(x, t) = h(x, 0) − t + 2x2

(2 + ka)2
− 2|x |√x2 − d2

(2 + ka)2

+ k

π

∫ d

0

d ′2
√
x2 − d ′2 log

∣∣
∣∣
d ′ − x

d ′ + x

∣∣
∣∣ dd ′, (49)

where h(x, 0) = 0. We rewrite the final term in the integral in a compact form:

hI + kh p = −t + 2x2

(2 + ka)2
− 2|x |√x2 − d2

(2 + ka)2
+ k

π
x2F

(
d

x

)
, (50)

where the final term is a function of d/x only.

By making the substitution d = Sx , and defining f (S) = (1 − S2)
1
2 log

(
1−S
1+S

)

and integrating by parts, some algebra (see Appendix A for the details) leads to

F

(
d

x

)
= − d

|x |
(
1 − d2

x2

) 1
2

log

(
x − d

x + d

)
+

(
1 − d2

x2

) 1
2

− 2+
∫ d

x

0
f (S)dS. (51)
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We can now apply the Wagner condition (21), namely

d2

2
− t = h(d, t). (52)

Evaluating (51) and (49) at x = d, condition (52) becomes

d2

2
− t = −t + 2d2

(2 + ka)2
− d2k

π

(
2 −

∫ 1

0
f (S)ds

)
. (53)

Evaluation of the integral is a numerical task, and we find that c = ∫ 1
0 f (S)ds =

−0.832 to three significant digits using the trapezium rule. The expressions give us

d2

2
= 2d2

(2 + ka)2
− d2k

π
(2 − c) + O(k2) (54)

in which by design of d, every term is directly proportional to t . After cancelling factor
d2, we have

(2 + ka)2

2
= 2 − k

π
(2 − c)(2 + ka)2 + O(k2). (55)

Hence

a = − 2

π
(2 − c) + O(k). (56)

Neglecting the O(k) contribution leaves a = −1.803, an O(1) coefficient. In sum-
mary, we have shown that

d(t) = (2 − 1.803 k) t
1
2 . (57)

Since a is negative, the porous contact region is smaller and spreads more slowly than
for the impermeable substrate. This is intuitive since the incompressible fluid can enter
the substrate leaving less liquid to spread across the surface.

Returning to (13), the free-surface position is

η(x, t) = x2

2
+ t − 2x2

(2 + ka)2
+ 2|x |√x2 − d2

(2 + ka)2
− k

π
x2F

(
d

x

)
, (58)

valid at first order in k, for |x | ≥ d. Setting k = 0 returns this to the impermeable

result (38) with d = 2t
1
2 . Here F(d/x) is defined by (51) The velocity potential in the

wetted region |x | ≤ d follows in a similar manner yielding

−φI (x, 0, t) − kφp =
√
d2 − x2 − kd(2 + ka)2

2π

∫ d

x
(d2 − x ′2)−

1
2 log

∣∣∣∣
d − x ′

d + x ′

∣∣∣∣ dx
′,

(59)
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where φI (x, 0, t) is given by (40), and d(t) is given by (57). The integral can be
simplified and approximated numerically (see Appendix B for details). In appendices
A and B the integral is re-expressed with an approximation which can be diffentiated
with respect to x or t . The t derivative of (59) gives us the liquid pressure present
in the boundary condition (23) from which we determine the fluid velocity into the
substrate-again see Appendix B for the complete expression (B8).

4 Results

We present and discuss our results for the free surface and the turnover position, the
velocity potential, pressure distribution and liquid injection into the porous substrate.
In each case we show the quantity as a function of position, x ∈ [0, d], and selected
times t > 0. The results are symmetric in x so we only report the right half of the
domain. Our aim is to compare and contrast the results for a porous substratewith those
for an impermeable surface. In each case we highlight the influences of porosity on
the flow, compared with the impermeable case. Throughout, every porous-substrate
calculation is done with the same value for the porosity parameter, k = 0.1, and
impermeable results correspond to k = 0.

4.1 Free surfacemotion, turnover position and pressure

Figure3 shows the free-surface shape and pressure distribution for x ∈ [0, d) at
selected times for k = 0.1. The model is symmetric in x , so we show the right-half
alone. In Fig. 3a, as y → ∞ the surface is at rest. As t increases the surface moves
towards the right. The droplet bulges out. On the horizontal substrate, the turnover
point accelerates to the right along the boundary, with position x = d(t), y = 0, on
the substrate.

In Fig. 3b, there is a mild square-root singularity at x = dI in the pressure (along
with an even milder, logarithmic singularity at x = d for the porous-substrate results,
not shown). At x = 0 the pressure, p(0, 0, t) is singular at the instant of first contact,
t = 0. Thereafter the pressure at x = 0, p(0, 0, t), decreases monotonically in time
towards zero. Elsewhere, at any fixed station x , there is a time-delay before the fluid
arrives, at time t∗, where d(t∗) = x . At any fixed time, the spatial distribution of
impermeable-substrate pressure, pI (x, 0, t), has a global minimum at the origin, and
pI increasesmonotonically towards a positive singularity at x = d. Nearer the turnover
point, for the region x ∈ (0.7d, d), the pressure tends to plus infinity, due to the square-
root factor in the leading order term for pressure, dḋ/

√
d2 − x2, as x increases to d.

See Appendix B. What we do not see in Fig. 3 is the milder logarithmic singularity at
x = d, present in the O(k) porous-contribution term. This term describes a marked
lowering in pressure near the edge of the domain.

Figure4 compares the standard impermeable Wagner solution, with the porous
model developed here. For the times shown, the porous-case free surface moves
more slowly than the impermeable case. Note that at any instant, 0 < d < dI and
0 < ḋ < ḋI , where subscript I denotes the impermeable case. Comparing results
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Fig. 3 Figures showing the
solution to the Wagner problem
with the porous boundary
conditions with k = 0.1 with a
the free-surface η and b the
pressure p for 0 ≤ x ≤ dI (t)

for impermeable and porous cases is awkward owing to the difference between the
turnover positions x = dI (t) and x = d(t). For k = 0.1, we find dI exceeds d by
about 9%, at all times plotted in Fig. 4.

There are visible differences in the shape of the free surface too, especially near
the turnover point. For impermeable substrate the droplet’s surface meets the solid
orthogonally—the contact angle, evaluated inside the fluid, is exactly 900. For the
porous-substrate, the droplet’s surface meets the plate with an obtuse contact angle,
more than 90o. By the last time plotted, the angle has increased to about 96± 20. This
increase in angle is related to a loss of fluid from the drop into the substrate.
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Fig. 4 A free-surface comparison of η between the impermeable solution (dashed) and the porous solution
(solid) for k = 0.1. Selected times are t = 0, 0.2, 0.4.0.6, 0.8, 1

4.2 Velocity potential

Focussing on the substrate surface y = 0, Fig. 5 shows minus velocity potential,
−φ(x, 0, t), as a distribution in space at selected times, and for shared values of d =
0.4, 1.2, 2 (corresponding to differing times). Every curve has one global maximum,
at x = 0. Also, in keeping with a boundary condition, −φ is zero at x = d. At the
edge of the impact region, x = d, the curve always has a vertical tangent, indicating
the high velocity associated with the outer region matched to the inner jet-root region
in Wagner theory.

The dashed curves in Fig. 5 are the impermeable results, and the solid curves mark
the corresponding porous results. The figure shows that porosity acts to reduce the
value of −φ; the liquid impact is less violent. This is to be expected on physical
grounds, because the liquid pressure is relieved by its work of injecting fluid into the
substrate. For k = 0.1, the reduction in −φ is about 27%. The reduction in −φ is
proportional to k, but in a complicated way, as shown in equation (B5).

The velocity potential is central to any discussion of the fluid mechanics of our
results because its partial x− and t−derivatives give the horizontal velocity component
and the pressure at the substrate’s surface, respectively. Incidentally, −φ(x, 0, t) is
directly proportional to the pressure-impulse for the droplet impact over the time
interval [0, t], and can be read as a local measure of impulsive force per unit length of
substrate (see Sect. II of [37]).
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Fig. 5 Comparisson of the
velocity potential φ between
porous (solid) and impermeable
(dashed). For each curve, φ = 0
coincides with the turnover point
x = d(t)

4.3 Liquid penetration of the substrate

At y = 0 the porous boundary condition (23) models the upward vertical veloc-
ity component, relative to the substrate. So the downward velocity is v(x, 0, t) =
k d(t)φt (x, 0, t). This positive quantity is shown in Fig. 6. Panel (a) shows the dis-
tribution of v in space, at five instants in time. A singularity at x = d highlights
the transient influence of high-pressure liquid being injected into the substrate dur-
ing impact. Figure6(b) shows v as a function of time at two fixed stations x . Each
plotted curve includes a waiting-time interval, [0, tw], until the fluid arrives, where
tw is defined by d(tw) = x . First, the singularity (in pressure and hence v) arrives
and quickly sweeps past the x-station. Afterwards the penetration velocity decreases
rapidly towards zero, but over the theory’s limited O(1) time, the plot shows only a
modest decline.
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Fig. 6 Plot showing the fluid velocity into the substrate at a as a function of x at 5 fixed times (left) and b
as a function of time at 2 fixed x locations (right)

We are interested in the accumulated effect of the highly transient behaviour of v.
We represent this by a flux q(x, t) of fluid that passes through the boundary up to
current time t . Here we define q as

q(x, t) =
∫ t

tw
−v(x, 0, t ′) dt ′ = −k

∫ d

x
d ′ p 1

ḋ ′ dd
′. (60)

The integral’s lower limit in (60) marks the end of the waiting-time tw before the
arrival of fluid. To O(k), the pressure has only one term and the factor ḋ in the integral
cancels with the same factor in p—see Appendix B expression (B8). So this leaves us
with

q(x, t) = k
∫ d

x

d ′2

(d ′2 − x2)1/2
dd ′ + O(k2). (61)

A substitutiond ′ = x cosh(s) enables conversion to a straightforward s-integral,which
we evaluate in terms of variable ξ = x/d. Hence

q(x, t) = 1

2
k d2

(
ξ2arccosh(|ξ |−1) + [1 − ξ2]1/2

)
− 1 ≤ ξ ≤ 1, (62)

where ξ = x/d. The time dependence comprises a compound of two increasing parts
in (62). First, the factor d2 = (2 + ka)2t increases linearly. Secondly, for each fixed
x , the value of ξ = x/d decreases in time, and we find the factor in round brackets in
(62) increases monotonically towards one. The net effect is a monotonic increase in
q with time.

In terms of spatial distribution of q(x, t) in (62), the term in large round brackets
defines the following function

E(ξ) = ξ2arccosh(|ξ |−1) + (1 − ξ2)1/2 − 1 ≤ ξ ≤ 1. (63)

Note that E → 1 as ξ → 0. Also E(ξ) is universal and independent of k.
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Fig. 7 Spatial distribution of liquid injected into the substrate up to current time t . Plotted is E(ξ) =
q(x, t)/( 12 k d2) from (63), where ξ = x/d(t)

A plot of E(ξ) = q/( 12 k d
2) is shown in Fig. 7. The net flux q has a single

maximum at x = 0, and declines in space towards the edge of the domain. This
kind of behaviour accords with our expectations on physical grounds: the penetration
of fluid is most intense, and endures longest, at the centre of the impact zone. An
important observation is an absence of singularities in the plot or expression (62). The
time-integration carried out above, annuls the singularity in pressure at x = d.

Indeed q is zero at x = d. The flux tails off towards the edge of the impact zone
in Fig. 7. The physical consequence of our theory, on what might be measured, is
significant. Near the edge of the impact zone, and despite a passing singular pressure,
there has been too little time yet to force into the substrate a significant amount of
liquid. We have shown that, at all times, q = 0 at x = d.

We take this analysis one stage further and (numerically) integrate q(x, t) with
respect to x from −d to d, to obtain the total area Q(t) of fluid injected into the whole
substrate, by the impact up to time t . This is

Q(t) =
∫ d

−d
q(x, t) dx = 2

1

2
k d3

∫ 1

0
E(ξ) dξ = 0.5236 k d3, (64)

where the dimensionless coefficient is evaluated to high precision, and quoted to 4
significant digits.

The area (volume per unit width in third dimension) of fluid, Q, increases directly
proportional to k t3/2. If we set an O(1) upper limit on time, then (64) supplies an
expected total area of fluid, that can end up inside the substrate after the impact has
finished. From our expression d(t) = (2+ ka)t1/2, and for a range of small values of
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k ∈ [0, 0.1], we expect Q(t) to lie in the interval [0, 0.3155 t3/2]. Consistent with our
asymptotic analysis, the coefficient is O(1); it is evaluated to 4 significant digits.

Having presented our main results, the next section models a consequence of our
solution in the main outer region, for the flow in the inner region at the edge of the
impact zone, consisting of the splash jet and its root.

5 Jet-root and jet regions

The solution for the porous model exhibits the same singular behaviour in the pressure
at the turnover points as the impermeable case. This singularity is resolved by rescaling,
considering an O(ε2) region in the neighbourhood of the turnover point, usually
referred to as the jet-root region. In Wagner theory this reveals a fast-moving thin
jet that flows horizontally across the surface of the substrate far quicker than the
spreading turnover point. The neighbourhood of x = d is examined using variables
with subscript j (for “jet”). The rescaling is as follows:

x = d(t) + ε2x j , (65)

y = ε2y j , (66)

t = t j , (67)

φ = ε
(
φ j + ḋx j

)
, (68)

where the subscript j refers to jet variables, and ḋ denotes the time derivative. The
free surface position y j = η j is O(1) in this rescaled region and so our boundary
conditions are no longer linearised onto y = 0. We consider the solution for the
velocity potential (59) and we substitute our new scaled variables into this equation to
obtain a far-field matching condition for the local jet solution. With some effort, it can
be demonstrated that the contributions of the integral in the expression for φ in (59)
will never appear at leading order even without our additional restriction of k being
small. In fact, we require

φ j (x j , 0, t) → √−2dx j − ḋx j , (69)

in the far-field to match with φ. See Appendix C for details.
We also have our substrate boundary condition (23) which, after substituting in our

new scaled variables, leaves simply

φ j y j
= 0 + O(ε), (70)

meaning the substrate condition has zero direct influence on the problem on this
smaller length scale, and it collapses back to being unchanged from impact onto an
impermeable substrate.

The influence of porosity is still felt through the far-field matching condition on
the velocity potential φ j to ensure it matches with the outer solution, where the global
influence of porosity is recovered via changes in d. A similar effect is seen in this jet
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Fig. 8 a Local jet root region, and b mapped domain in the hodograph plane. Upper case letters mark
corresponding points

root region during impact onto elastic substrates, where the influence of the flexible
substrate behaviour is again only passively felt via the far-field matching (see [28]).

On the free surface the boundary condition becomes

φ j n = εη j t = 0 + O(ε), (71)

where n is the coordinate normal to the free-surface.
The jet model governing equations in x j , y j coordinates are

∇2φ j = 0 in the droplet, (72)

φ j,y j = 0 on flow boundaries, (73)
∣∣∇φ j

∣∣ = ḋ on the free surface. (74)

See also Fig. 8a. To solve this system we use a hodograph plane method in which
the coordinates are the velocity components, and the fluid domain is the semicircular
region shown in Fig. 8b.We define a complex potentialW = φ j+iψ j and the complex
velocity U = dW

dζ = φ j,x j − iφ j,y j with ζ = x j + iy j . The complex velocity plane

corresponds to the semi-circle φ j,x j
2 + φ j,y j

2 = ḋ2 with −φ j,y j > 0. In the far
field as x2j + y2j → ∞, we require U = −ḋ as, since we are in a frame of reference
moving with the turnover point, the far-field is steady. We assume the jet approaches a
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uniform thickness in space, Hj as x j → ∞, which grows in time. From the dynamic
boundary condition (74) we have φ j,y j → 0 and φ j,x j → ḋ as x j → ∞. The
kinematic condition (73) requires that the stream function is independent of x j and y j
on the fluid interface. We take ψ j (x j , y j , t) = 0 on the substrate-liquid interface and
ψ j (x j , y j , t) = fl(t) on the free surface, where fl(t) is unknown.

In this quasi-steady flow, velocity is tangent to the jet free-surface and of magnitude
ḋ. Since the jet free surface is horizontal in the far field, this requires,

φ j,x = ψ j,y = ḋ, (75)

valid in the far-field. Integrating with respect to y yields the value of ψ j on the free
surface:

fl(t) = ḋ Hj , (76)

where Hj = Hj (t) only.
From the matching condition (69), and replacing x j by the complex variable ζ we

have as x j → −∞:

W (ζ ) ∼ √−2dζ − ḋζ, (77)

and, the complex velocity is therefore

U (ζ ) = dW

dζ
∼ −ḋ − d(−2dζ )−

1
2 . (78)

Rearranging, we have

ζ ∼ −1

2d

(
ḋ +U

d

)−2

. (79)

Substituting this into (77) to eliminate ζ we have

W = ḋd

2

(
ḋ +U

)−2 + d

ḋ +U
∼ ḋd

2

(
ḋ +U

)−2
, (80)

as U → −ḋ . This is a condition on W = W (U ), still to be found.
Next we construct W . Consider

U = dW

dζ
= dW

dU

dU

dζ
. (81)

At the stagnation pointU = 0, (81) tells us that dW/DU is zero there, because dU/dζ

cannot vanish for a conformal mapping from the physical ζ plane to the hodographU
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plane. We split W into a sum of two parts, let W (U ) = W1(U ) + W2(U ), with

W1 = −dU (U + ḋ)−2

2
, (82)

W2 = −2 fl(t)

π
log

(
ḋ −U

ḋ +U

)
, (83)

with W1 having a strong singularity in order to match with the correct behaviour in
(80) as U → −ḋ on the in-flowing part of the domain, and W2 describes a sink as
U → ḋ and a source as U → −ḋ . We have the condition at the stagnation point
dW
dU = 0, so we have

dW1

dU
+ dW2

dU
= 0. (84)

From (82) and (83), at U = 0, we find exactly that

fl(t) = πd

8ḋ
. (85)

From (76) we deduce that the jet thickness depends on d(t) as follows:

Hj (t) = πd(t)

8ḋ(t)
2 . (86)

With (57),we expand Hj (t) in powers of k:

Hj (t) = π t
3
2

2

1

2 − 1.803k
, (87)

Hj = π

4
t
3
2

(
1 + 1.803

2
k + O(k2)

)
. (88)

Note that in terms of the outer variables the top of the jet lies at y = ε2Hj (t). We have
shown that the effect of the porous substrate is to thicken the splash jet, and slow it
down.

Since the jet is thicker and slower, the question remains as to whether the porosity
changes the volume flux of fluid entering the jet? The volume flux of the jet can be
calculated by integrating the velocity of the jet over its thickness giving the value of
the stream function on the upper surface of the jet:

ψ j =
∫ Hj

0
ḋ(t)dy = ḋ Hj = π t

4
. (89)

Also ψ = 0 on y = 0. So the flux into the jet is independent of k, equal to the flux of
the jet on a impermeable substrate, and hence unchanged by the porosity.
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For completeness, we also mention that there is a further asymptotic jet region.
As the flow leaves the jet-root region described above, it enters a long thin jet with
thickness remaining O(ε2), but with a longer horizontal scale. A suitable scaling of
the coordinates leads to governing shallow water equations, with boundary conditions
given by

û(d, t) = 2ḋ(t) and ĥ(d, t) = Hj (t) (90)

for the horizontal jet velocity û(x, t), and thickness ĥ(x, t). Full details can be found
in [23]. It is found that this jet region is entirely passive, and is of infinite horizontal
extent for the impact of liquid and solid bodies bounded by a smooth surface before
impact where ḋ → ∞ as t → 0. Complications can occur for impact of non-smooth
bodies (for example a cone where the jet is found to be of finite extent, see [24]),
and also for impact onto flexible elastic substrates (where large oscillations in d(t)
can lead to unbounded growth in the thickness h(x, t) in the jet region and hence the
subsequent breakdown of the shallow water model, see [28]). Details for the current
porous model are omitted as the solution in this region remains largely unchanged
from the impermeable case, except for the correction to the thickness and speed at the
turnover point.

6 Conclusions

In this paper, we have introduced porosity to the standard Wagner model of droplet
impact onto an impermeable substrate, via a boundary condition designed to closely
mimic a full Darcy theory model of a porous substrate. An analytical solution to
the problem in the limit of small porosity has been derived and results have been
presented for the outer problem showing how the inclusion of porosity slows the
spreading of the droplet, changes the evolution of the free-surface shape, reduces the
maximum pressure, and drives fluid into the substrate. A local analysis of the jet-root
region reveals that, compared to impermeable impact, the fast moving jet travelling
along the substrate is thicker and slower while keeping the flux unchanged. This last
result is perhaps the most surprising finding from the study; to us there is no obvious
physical reason for this. While results have been presented for just one k value, and
the asymptotic approach in Sect. 3.3 restricts the solution to small k, the boundary
condition is applicable for arbitrary k. Solving for arbitrary k is likely a numerical
task, but it would be interesting to see how the small k features identified here persist
for larger k.

The current model has been restricted to two-dimensions for this initial study. It
is expected that extending our model into the more realistic scenario of axisymmetry
flow should be achievable with a generalised version of our boundary condition (23),
a similar small porosity expansion, and the axisymmetric Wagner analysis originally
presented by [24].

Experimental validation of our results is hard to find. Many published studies into
impact onto porous beds focus on erosion or powders [7, 10, 18–20]. Could our pre-
diction of a slower and thicker jet be tested by comparision with future experiments?
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Likewise, can the volume-flux distribution in Fig. 7 be investigated experimentally?
Numerical validation would also be of great use. Numerical solutions have validated
Wagner models in various configurations, including impact onto moving substrates
[38], and detailed numerical solutions for comparison with our results would be wel-
comed.

One main purpose of this study was a first step towards a fully coupled Wagner-
Darcy model for droplet impact onto a porous substrate. Looking ahead, such a model
is relatively easy to formulate within the flow structure described here. The porous
boundary condition (23) is replaced by a coupling condition for the fluid pressure with
a suitable porous flowmodel in the substrate. Various limiting cases exist for the Darcy
flow depending on whether or not the depth of the substrate is similar to the outer or
local length scales in the Wagner region. Solutions for saturated, unsaturated and par-
tially saturated substrates are all of interest with differing challenges and applications.
A more detailed discussion of the formulation, including these differing regimes, can
be found in the further work discussion of [34]. It is reassuring for potential progress
towards a solution in this more complicated actively coupled case that the standard
Wagner structure in two-dimensional and axisymmetric geometries appears to still
hold, in particular in the local jet root region.
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Appendix A: Re-expression of F(d/x)

Here we focus on the integral in (49). To transform this integral into something more

tractable, we let d = Sx , f (S) = (1− S2)
1
2 log

(
1−S
1+S

)
and G(S) = log

(
1−S
1+S

)
so we

have

x2F

(
d

x

)
=

∫ d

0

d ′2
√
x2 − d ′2 log

(
x − d ′

x + d ′

)
dd ′ for |x | > d

=
∫ d

x

0

x2S2√
1 − S2

G(S)dS (A1)
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Dividing both sides by x2 and integrating by parts gives

F

(
d

x

)
= x2

(

[−S f (S)]
d
x
0 −

∫ d
x

0
−(1 − S2)

1
2

(
G(S) − S

1 − S
− S

1 + S

)
dS

)

= −
(
1 − d2

x2

) 1
2 d

x
log

(
x − d

x + d

)
+

∫ d
x

0
f (S) − (1 − S2)

1
2

2S

1 − S2
dS

(A2)

= −d

x

(
1 − d2

x2

) 1
2

log

(
x − d

x + d

)
+

[
2(1 − S2)

1
2

] d
x

0
+

∫ d
x

0
f (S)dS

F = −d

x

(
1 − d2

x2

) 1
2

log

(
x − d

x + d

)
+ 2

(
1 − d2

x2

) 1
2

− 2 +
∫ d

x

0
f (S)dS.

(A3)

For all t , as x → ∞, it can be shown with care that F → 0 as expected, as x increases
the log term vanishes and the limits of the integration tend to zero.

Appendix B: Evaluation of the velocity potential and pressure

To approximate (59) we write

−φ(x, 0, t) =
√
d2 − x2 + kd(2 + ka)2

2π

∫ d

x
(d2 − x ′2)−

1
2 log

(
d − x ′

d + x ′

)
dx ′.

(B4)

Substitution of x ′ = d cos(θ) simplifies the integrand, and leaves:

−φ(x, t) =
√
d2 − x2 − kd(2 + ka)2

2π

∫ 0

arccos( x
d )

2 log

(
tan

(
θ

2

))
dθ. (B5)

The form of (B5) allows us to differentiate it with respect to x or t . We find an
approximation of the integral

I = 2
∫ 0

arccos( x
d )

log

(
tan

(
θ

2

))
dθ, (B6)

Writing tan(θ/2) as a rational approximation from Weierstrass’s infinite products for
sin(θ/2) and cos(θ/2) we have

log

(∣∣
∣∣tan

(
θ

2

)∣∣
∣∣

)
≈ log

(
π2

(
1 − C2θ2

))
+ log

(
θ

2

)
− log(π − θ) − log(π + θ),

(B7)
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with C = 0.1341187916 and the coefficient of the O(θ4) term being negligible. The
integral is best approximated near θ = 0, and near the closest singularities at θ = ±π .

We can now integrate (B6) by using standard methods. Comparison between the
approximation of the integral (B6) using the expansion (B7), and a direct numerical
integration method shows the difference is very small (less than 1%). Hence, (B7) is
used throughout the calculations presented in this paper.

The fluid pressure on the substrate, given by the time derivative of the velocity
potential, can be similarly expressed in the form

p = ḋ

(
1

(1 − ξ2)
1
2

{
1 − k

π
(2 + ka)2 ξ log

(
1 + ξ

1 − ξ

)}
− k

2π
(2 + ka)2 I (ξ)

)

(B8)
where ξ = x/d and I is defined by (B6).

Appendix C: Justification of thematching condition (69)

Here we detail the far-field contribution of the potential φ to the jet root region. The
lower limit in (B5) is arccos

( x
d

)
. Let x

d = 1+ ε2x j and s = −ε2x j , where x j < 0 in
the region of interest. We also have, for small s ≥ 0, arccos(1 − s) ≈ √

2s.
So we let S = √

2s be the limit in the integral:

∫ 0

arccos( x
d )

log

(
tan2

(
θ

2

))
dθ =

∫ 0

S
log

(
1 − cos θ

1 + cos θ

)
dθ. (C9)

Since S is small, θ is small over the integration range, and we can approximate using
the truncated Maclaurin series cos θ = 1 − θ2

2 , thus we have

∫ 0

S
log

(
1 − cos θ

1 + cos θ

)
dθ =

∫ 0

S
log

(
θ2

4 + θ2

)
dθ (C10)

We neglect θ2 in the denominator in (C10) as it is small compared to 4. Hence

∫ 0

S
log

(
1 − cos θ

1 + cos θ

)
dθ ≈

∫ 0

S
log

(
θ2

4

)
dθ = − (2S log(S) − 2S − 2S log(2)) .

(C11)

In (C11) 2S log(S) is non-singular, and is the dominant termas S → 0. Since S = O(ε)

the integral is O(ε log(ε)).
Taking the factor multiplying this integral into account in (59) the leading order

of this factor is O(k). So for small k this term will never be present at leading order,
leaving only the term corresponding to the impermeable solution.

The remaining part of this expression for φ in (59) is:

√
d2 − x2 =

√
d2 − (d + ε2x j )2 (C12)
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=ε
(√−2dx j + O(ε2)

)
, (C13)

valid for x j < 0, with d = O(1) we have the leading order to be O(ε). Thus our
matching condition for φ j at leading order is

ε
(
φ j + ḋx j

) = ε
√−2dx j , (C14)

φ j (x j , 0, t) = √−2dx j − ḋx j . (C15)

Hence (69).
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