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Abstract
The application of Fourier analysis in combinationwith the ProperOrthogonalDecom-
position (POD) is investigated. In this approach to turbulence decomposition, which
has recently been termed Spectral POD (SPOD), Fourier modes are considered as
solutions to the corresponding Fredholm integral equation of the second kind along
homogeneous-periodic or homogeneous coordinates. In the present work, the notion
that the POD modes formally converge to Fourier modes for increasing domain
length is challenged. A family of analytical correlation functions parametrized by
the Taylor macro/micro scale ratio (MMSR) is investigated numerically. The results
of the analysis indicate that the discrepancy between POD and Fourier modes along
locally translationally invariant coordinates is coupled to the MMSR of the flow.
Increasing discrepancies are observed for smaller MMSRs, which are characteristic
of lowReynolds number flows. The asymptotic convergence rate of the eigenspectrum
matches the corresponding convergence rate of the exact analytical Fourier spectrumof
the kernel in question, even for extremely small domains and small MMSRs where the
corresponding DFT spectra suffer heavily from windowing effects. The Taylor micro
scales are consistently underestimated when reconstructed using Fourier modes—
failing to converge to the correct value even if all Fourier modes are used—while
these are accurately reconstructed using POD modes.
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1 Introduction

The proper orthogonal decomposition (POD) has been applied extensively by the
turbulence community since its introduction in [1]. The method was introduced with
the aim of decomposing turbulent signals into a set of orthogonal basis functions in
an energy-optimized way. In the same work a particular set of eigenfunctions was
identified in the case of translationally invariant kernels, namely the trigonometric
polynomials. The work concluded that any kernel that exhibits translational invariance
(such as in the cases of stationarity and homogeneity) could be decomposed using a
Fourier transform along those directions and combined with the POD along any other
coordinate direction along which the flow is inhomogeneous.

The role of homogeneous and/or stationary flows has been central in the construc-
tion of fundamental arguments behind the application of the Fourier-based POD on
finite aperiodic domains. The assumption and utilization of translational invariance
has been advocated in numerous works since its introduction by [1]. The Fourier-
based implementation of the POD was spearheaded by the work of [2], and popularly
advocated by [3]. The seminal work of [4] implemented the Fourier-based decompo-
sition on experimental jet data acquired using a rake consisting of 138 hot-wires. This
work was extended by [5, 6] to other regions of the jet using the same hot-wire rake. A
multi-component implementation of the Fourier-based PODwas performed by [7] and
later by [8] using stereoscopic PIV measurements. The Fourier-based POD became
popularly known as spectral POD (SPOD)—to be distinguished from the method of
[9] (see also [10] in this relation) that bears the same name—as a result of the works
of [11] and [12], in which a four-dimensional space-frequency implementation of the
method was applied to the analysis of a Large Eddy Simulation (LES) jet. Its appli-
cation was followed by [13] in their analysis of a turbulent channel flow, where a
Fourier-based decomposition was applied in the lateral coordinate as well as in time.
The Fourier decomposition along locally translation invariant directions (that is, for
kernels that are locally stationary/homogeneous, defined on a finite domain without
the periodic boundary condition) combined with a numerical POD has proved to serve
a multitude of purposes. Firstly, it has provided enhanced insight into the dynamics of
turbulent flows, due to their semi-analytical form. Secondly, the fact that the decom-
position is frequency-based provides additional insight into the modal structure of the
turbulent flow at hand. Thirdly, the use of an analytical set of orthogonal basis func-
tions along a given coordinate direction allows for a reduction of the memory load
of the problem when a numerical implementation of the POD is performed, since a
separate POD analysis is performed on a set of cross-correlation matrices for each of
the corresponding Fourier coefficients.

The use of Fourier modes in combination with the POD along aperiodic coordi-
nates is traditionally justified in literature by refering to the works [1] and [14]. A
much overlooked warning, however, appears in the latter work directed towards the
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use of Fourier modes on non-stationary1 flows, herein those characterized by locally
translation invariant kernels2:

AlthoughFourier transformsmay, of course, be usedwherever they exist, this the-
orem serves as a justification for their use in connectionwith stationary functions,
and as a warning against their use in connection with nonstationary ensembles
(in the sense that they have no special appropriateness for such ensembles).

In addition, the work of [14] does not explicitly elaborate on the direct use of Fourier
modes in combination with the POD for stationary flows, beyond providing analo-
gies between general characteristics of the POD and the Fourier transform of kernels
defined on the real line. A somewhat rare re-addressal of this subject is found in [15],
where the consequences of equating homogeneous fields with periodic ones in relation
to the POD were emphasized by noting that periodicity fixes the phase relations of
all scales affecting mostly the representation of the largest scales. In [16], a related
problemwas only briefly discussed where it was stated that difficulties may arise when
the POD was applied to time dependent problems on infinite temporal domains.3 This
comment was, however, not put into context with the use of say SPOD. Important
and impactful works have been published on the relationships between the established
methods of the POD, Dynamic Mode Decomposition (DMD), SPOD, and Resolvent
Analysis, [11, 17] where clear connections between these methods can be established
in the case of periodic domains. Literature on the impact of kernel characteristics on the
relations between the POD and Fourier modes along locally translationally invariant
aperiodic coordinates is, however, significantlymore scarce. This is presumably due to
themore complex nature of relating the Fourier transform to the POD and the historical
use of Fourier analysis in relation to homogeneous/stationary turbulence, going back
to the works of [18] and [19] (see Appendix A.2). A limited study on this topic was
performed by [20] investigating Reynolds number similarity across POD solutions.
A comparison of the POD and Fourier spectra obtained from a quasihomogeneous
region of a solution to the Burgers’ equation resulted in similarities being identified
not only between Fourier and POD spectra for a subregion of the eigenvalue/power
spectra but also between the modes themselves.

Although complex exponentials may appear to be eigenfunctions to the POD inte-
gral equation in the case of translationally invariant kernels over the entire real line,
such functions do not satisfy the fundamental requirement of square integrability over
the real line, upon which the POD integral equation is conditioned. Complex expo-
nentials are only square integrable over finite domains, but homogeneity precludes the
area of integration being finite, [1]. Put in different terms, the inability of the POD
to deal with homogeneous fields is due to the fact that the respective kernels are not
nuclear, [11]. Although these paradoxes formally exclude the POD modes from being
Fourier modes in the case of translationally invariant kernels defined on the entire
real line, they are traditionally ignored and the use of a Fourier basis along finite

1 Stationarity here refers strictly to problems characterized by translation invariant kernels defined on the
entire real line representing infinite energy, [14]
2 Last paragraph of Section 3.12 in [14]
3 Third paragraph on p. 74 in [16]
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Fig. 1 Conceptual sketch of a flow quantity (green) defined on an aperiodic domain, and its reconstruction
(purple) using a Fourier basis, implicitly assuming periodicity of the domain

aperiodic locally translationally invariant coordinate directions is common. Never-
theless, incorporating domain finiteness without assuming periodicity would yield a
more parsimonious model for such kernels; this is one approach adopted in the present
work.

Using Fourier modes in place of POD eigenmodes in the case of finite aperiodic
domains is formally equivalent to implictly assuming periodicity of the domain.When
POD eigenmodes are used for reconstructing second order flow quantities, such as
energy or the Taylor micro scale, all cross terms in the reconstruction vanish. In the
case of Fourier modes, cross terms vanish only when periodic boundary conditions are
satisfied, and neglecting these terms is therefore equivalent to assuming periodicity.
A conceptual sketch of this situation is shown in Fig. 1; in the figure, we sketch the
reconstructing of a flow quantity in a non-periodic domain using a periodic basis.
Since the boundary conditions satisfied by the reconstruction are different from those
satisfied by the original quantity, it is generally not possible to achieve an accurate
reconstruction using this approach.

A specific aim of the current work is to characterize the spectral discrepancies
between POD and Fourier modes on locally translationally invariant kernels on finite
aperiodic domains as a function of kernel characteristics and domain size. We analyze
the relation beteen POD modes and Fourier modes for increasing domain sizes—
the latter being a commonly used strategy to reduce the effect of “windowing” and
“spectral leakage”, [21]. In this capacity, we examine some consequences that the
use of a Fourier-based decomposition on aperiodic domains may have on the spectral
analysis of POD kernels and relate these discrepancies to the macro/micro scale ratio
(MMSR). We use a set of analytical correlation functions as POD kernels. Basing the
analysis on analytical correlation functions rather than correlations computed from
numerical or experimental flow data offers several substantial advantages. Firstly,
we avoid complications that would arise due to noise effects and lack of statistical
convergence. Secondly, this allows us to parametrize the kernels in terms of theMMSR
which is tightly coupled to theReynolds number. Thirdly, for certain kernels used in the
analysis the asymptotic form of the Fourier spectrum is known analytically, allowing
direct comparisonwith the eigenspectrum and the spectrum obtained usingDFT; to the
authors’ best knowledge, no such comparison has been conducted prior to this work.
Fourthly, the computational effort needed for this approach is negligible compared to
what would be required for producing and handling numerical flow data directly. This
allows us to conduct a parametric study linking a range of domain sizes and MMSRs,
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as well as kernel compactness, to the extent of agreement between POD eigenmodes
and Fourier modes.

The results presented in this work may be relevant not only to spectral convergence
considerations, but also to the search for analytical solutions to the POD integral
where kernels exhibit symmetries other than translational invariance.4 Subtleties in the
choice of domain which may disqualify an analytical candidate solution are therefore
discussed. The origins of the extension of SPOD to flowswith a symmetryweaker than
homogeneity are exemplified by the work of [23] where similarity analysis is used to
argue for Fourier-based POD solutions to the jet far-field. This was later implemented
by [24–26], in which SPOD was applied along the streamwise direction of the flow,
despite the fact that the flow was not homogeneous along that coordinate. The current
investigation is therefore a step in evaluating how far one can extend the SPOD, by
considering the most fundamental example first, namely one with one-dimensional
translationally invariant kernels.

The paper is structured as follows: in Sect. 2 the fundamentals of the POD are
defined on the space L2

w(�,Cn). In Sect. 3, a relation between the Fourier and eigen-
spectra is provided by a Fourier expansion of the POD modes which will be used
for a numerical analysis of the coupling between the Fourier and eigenspectrum. The
numerical analysis of the spectral properties of two sets of correlation functions is
presented in Sect. 4 where the discrepancies between the POD and Fourier spectra are
analyzed.

2 Proper orthogonal decomposition

It is imperative to properly define the vector space in which the candidate basis func-
tions obtained by the POD integral reside. This step is crucial since this vector space
defines both the domain and range of the integral operator in the POD integral eigen-
value problem. For the sake of generality we consider here the weighted vector space
of complex-valued integrable functions defined as

L2
w

(
�,Cn) :=

{
ϕ : � → C

n
∣∣∣
∣

∫

�

|ϕ(x)|2w(x)dx < ∞ , w(x) > 0

}
, (1)

and the weighted inner product

(·, ·)w : L2
w

(
�,Cn) × L2

w

(
�,Cn) → C, (2)

which is antilinear in the second argument

(ϕ, ψ)w =
∫

�

ϕ(x)ψ∗(x)w(x)dx . (3)

4 A recent demonstration of an analytical solution to the POD integral in the case of a Gaussian kernel
is found on p. 22 in [22]. The eigenfunction, in this case, was shown to be Gaussian as well. Although
purely theoretical, this result is highly significant as it not only demonstrates the existence of an additional
analytical solution to the POD integral, but also exemplifies that POD eigenfunctions do not necessarily
need to have compact support.
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Equipped with the inner product induced norm

‖ϕ‖w = √
(ϕ, ϕ)w, (4)

L2
w(�,Cn) is aHilbert space. The followingmaximization problem is then considered

argmax
ϕ∈L2

w(�,Cn)

〈{∣∣∣∣ (un, ϕ)w

∣∣∣∣

2
}N

n=1

〉

‖ϕ‖2w
, (5)

where the angled brackets designate ensemble averaging (see definition in (7) below).
This reduces to the following integral eigenvalue problem by means of the calculus of
variations

∫

�

H(x, y)ϕ(y)w(y)dy = λϕ(x), x ∈ �, (6)

where the following estimator for the autocorrelation function used

H(x, y) =
〈
{un(x)un(y)}Nn=1

〉
= 1

N

N∑

n=1

un(x)un(y), (7)

and N designates the total number of samples. The formulation (6) can be considered
as the eigenvalue problem of the operator R : L2

w (�,Cn) → L2
w (�,Cn)

Rϕ = λϕ. (8)

In the following, the relation between Fourier and eigenspectra is formulated. The
coupling between the aforementioned spectra is formulated directly as a function of the
POD operator, without the requirement of explicit information about the instantaneous
realizations underlying the generation of the POD kernel.

3 Coupling of Fourier and eigenspectra

The general arguments behind the use of SPOD on aperiodic domains, e.g. in its
application to truncated aperiodic stationary turbulent signals, are structured around
a reduction of windowing effects. One proxy typically used for identifying whether
a sufficiently long measurement domain has been achieved is the convergence of the
Fourier energy spectrum—the underlying idea being that the Fourier spectrum would
converge (by some measure) as the window is continually increased. Given that the
Fourier modes defined on the real line do not constitute a basis for a L2(R,C), we
ask the obvious question: to what extent, if any, do we see a convergence between
the POD and Fourier modes on a finite domain as the domain is increased? The
effects of integration intervals on the spectral properties of operators are central to
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consider (see Appendix A). Trigonometric polynomials satisfy the POD eigenvalue
problem only in the case of translationally invariant kernels on periodic domains.
Since the eigenfunctions are required to be elements in a Hilbert space they cannot
be solutions to the POD eigenvalue problem if their domain is chosen to be the entire
real line. However, filtering the kernel by introducing a weight/window function into
the inner product definition breaks the translational invariance of the kernel as well
as the orthogonality of the Fourier modes with respect to that inner product weight,
disqualifying the latter from being a complete basis for the pre-filtered field. Aspects
of this problem have been discussed in the past by [22, 27, 28] and others who analyzed
the windowing effects on eigenspectra in the case of homogeneous turbulence. The
windowing effect is related to the so-called spectral leakage where spectral energy is
redistributed from lower wavenumbers to higher ones as a result of a reduction of the
domain.

In the following, the deviations between the PODeigenfunctions and Fouriermodes
are investigated by expanding the eigenfunctionswith a Fourier basis, and then expand-
ing the eigenspectrum using the latter. The analysis will be performed for several POD
eigenvalue problems across various combinations of kernels and domain lengthswhere
the aim is to quantify the windowing effects, and to analyze the nature of the conver-
gence between the two sets of basis functions. In the numerical study that follows,
analytic kernels will be used for the generation of the correlation matrix, allowing us
to inspect the effects of kernel characteristics and domain length in the comparison of
the two sets of modes.

3.1 Fourier expansion of POD eigenfunctions and eigenvalues

The numerical analysis is performed in the Hilbert space CN , with the inner product,
(·, ·) : CN × C

N → C, defined as the complex canonical inner product

(ϕ, ψ) =
N∑

i=1

ϕiψ
∗
i , (9)

and norm

‖ϕ‖ = √
(ϕ, ϕ). (10)

Here the short notation, ϕi = ϕ(xi ) and ψi = ψ(xi ) is implied. The choice of vector
space, CN , is not arbitrary. For the numerical analysis one might consider imposing a
vector space that would result in an integral-based POD,where a quadrature rulewould
need to be imposed in the definition of the inner product. Any such choice of vector
space, however, would imply that the span of the POD modes would be larger than
the Fourier modes when the Discrete Fourier Transform (DFT) is implemented, due
to the implied condition of periodicity of the domain when using the DFT. To enable a
one-to-one comparison of Fourier and POD modes, we restrict the numerical analysis
to the vector space CN where the number of discrete wavenumbers/frequencies is the
same as the number of spatial/temporal grid points and POD modes. This allows us
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to consider an expansion of the POD modes using Fourier modes, which is useful in
determining deviation between the two sets.

Let {ψn}Nn=1 be a Fourier orthonormal basis for CN . If {ϕα}Nα=1 is a POD basis
related to the operator R ∈ C

N×N , then span {ϕα}Nα=1 ⊆ C
N . It is therefore possible

to expand each member of the POD eigenvectors with the Fourier series basis so each
ϕα can be written as

ϕα =
N∑

n=1

cα,nψn, (11)

where

cα,n = (ϕα, ψn), α, n ∈ [1 : N ], (12)

and |cα,n|2 represents the Fourier spectrum of the POD mode ϕα . Note the difference
between the formulation in (11) and the implied stament in SPOD along the locally
translationally invariant coordinate is that ϕn = ψm for some m. In (11), we are
allowing each POD mode to consists of multiple Fourier mode components, unlike
the case in SPODwhere it is implied from the outset that each PODmode corresponds
exactly to a single Fourier mode.

Substituting (11) into the corresponding POD eigenvalue problem, the following
expansion of the eigenvalues using the Fourier basis is obtained

λα =
N∑

n=1

N∑

m=1

cα,mcα,n∗ (Rψm, ψn) , α ∈ [1 : N ], (13)

where we designate

Hαmn = cα,mcα,n∗ (Rψm, ψn) . (14)

The relative contributions to the terms in (13) are evaluated and analyzed in section 4.3.
SinceR is Hermitian, Hαmn = Hαnm∗. From (13) we see that ifψm = ϕα for α = m,
the right-hand side of (13) would produce a single non-zero term corresponding to
the eigenvalue λα . If, on the other hand, ψm �= ϕα for α = m, multiple terms on the
right-hand side of (13) would in general be needed to reconstruct each λα . In this way,
the convergence rate of each λα with respect to an increasing N is a measure of the
efficiency of the Fourier modes in reconstructing the eigenspectrum and is therefore
a proxy for the energy optimality of the Fourier basis compared to the POD basis.

From (13) it is seen that the contributions to the reconstruction of λα consists of
products of the factors cα,mcα,n∗ and (Rψm, ψn). For n = m the first factor reduces
to |cα,m |2, corresponding to the Fourier energy spectrum for the mode ϕα . For n �= m
the first factor contributes only if a given ϕα is non-orthogonal to both the m-th and
n-th harmonic.
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Given that each eigenvalue can be formulated as

λα = (
Rϕα, ϕα

)
, α ∈ [1 : N ], (15)

the relation between the eigenspectrum and the Fourier spectrum obtained from the
locally translationally invariant kernel can be obtained from (15) by replacing the
eigenfunctions by the Fourier basis subject to the assumption of periodicity of the
domain. This naturally means that the right hand-side in (15) no longer represents the
eigenspectrum, but yields the Fourier energy spectrum, σm , and takes the form

σm = (
Rψm, ψm) , m ∈ [1 : N ]. (16)

This formulation allows a comparison of the Fourier spectrum of the translationally
invariant kernel on a periodic domain and the eigenspectrum of the corresponding
locally translationally invariant kernel in (13). It is seen that (16) appears in (13) as a
factor in the terms where m = n. Using (16) we can rewrite (13) as

λα =
N∑

m=1

|cα,m |2σm +
∑

n �=m

cα,mcα,n∗ (Rψm, ψn) , α ∈ [1 : N ]. (17)

The components of the second sum in (17) correspond to Hαmn for m �= n, which are
the contributions related to the Fourier cross terms. Since

N∑

α=1

λα =
N∑

m=1

σm, (18)

the relation between the Fourier spectrum and eigenvalues in (17) represents a redis-
tribution of the same energy related to the kernel in question.

From (17), we see that the mapping of the Fourier spectrum to the eigenspectrum is
non-linear. Secondly, in order for this mapping to be invertible, the determinant of the
matrix corresponding to |cα,m |2 must be non-zero. Due to the symmetry of the Fourier
spectrum of the eigenfunctions represented by |cα,m |2, the corresponding matrix can
in fact be shown to be singular—which means that the mapping is not invertible. This
implies that the Fourier spectrum cannot be obtained from the eigenspectrum due to
the assumption of periodicity implicit in the former.

Element (i, j) of R may be reconstructed using the POD basis by

Ri, j =
N∑

α=1

λαϕα
i ϕα∗

j , i, j ∈ [1 : N ], (19)

and combining the above results the reconstructionmay be performed using the Fourier
basis by

Ri, j =
∑

α,m,n,p,q

Hαmncα,pcα,q∗ψ p
i ψ

q∗
j , i, j ∈ [1 : N ]. (20)
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For translationally invariant correlation functions on periodic domains we naturally
have that ϕα = ψα , for all α. The resulting correlation function is given by the
expression analogous to (19)

Rσ,i, j =
N∑

α=1

σαψα
i ψα∗

j , i, j ∈ [1 : N ]. (21)

where Rσ,i, j = Ri, j . For locally translationally invariant correlation functions, how-
ever, we have that Rσ,i, j �= Ri, j . The assertion, Rσ,i, j = Ri, j , in these cases enforces
a periodificiation of the original correlation function generating a kernel for which the
discrete Fourier series are the exact eigenvectors. In the current work, the subscripted
symbolσ following a second order statistic indicates that the latterwas generated using
Fouriermodes by the suppresion of cross terms for locally translationally invariant cor-
relation functions—analogous to the step from (20) to (21). The comparison between
Ri, j and Rσ,i, j as a function of MMSR for locally translationally invariant correlation
functions is treated in Sect. 4.4. In the following, the deviation between the Fourier
and eigenspectra spectra will be analysed for two sets of correlation functions.

4 Numerical analysis

In the comparison between POD and SPOD results, the following numerical analyses
are limited to spectral analyses of discretized versions of two sets of analytical correla-
tion functions. The correlation functions are chosen in order to investigate the spectral
responses to modifications of specific correlation function characteristics often used to
characterize turbulent flows, namely the Taylor macro and micro scales. More specif-
ically, we investigate the relation between the MMSR and the observed differences
in spectral convergence rates between the Fourier and eigenspectra, where a large
MMSR is generally expected for high Reynolds number flows.

In Sect. 4.1 the spectral responses to variations of the MMSR are investigated for a
family of correlation functions constructed from an inverse Fourier transform of a set
of analytical Fourier spectra, characterized by asymptotic power law decay rates. The
numerical analysis is then extended to a new set of arbitrarily chosen correlation func-
tions in Sect. 4.2, in order to investigate whether the correlation between the MMSR
and the spectral discrepancies between Fourier and eigenspectra can be expected to
hold more generally. The contributions of the Fourier modes in the reconstruction of
the eigenspectrum are then analyzed in Sect. 4.3, in order to map the effects of win-
dow size on the relation between the discrete Fourier and eigenspectra. Finally, the
impact of assuming the POD basis to be a Fourier basis on the estimation of the Taylor
micro scale is analyzed in Sect. 4.4. We demonstrate how this assumption impacts
the representation of the smallest turbulent scales, compared to the corresponding
characteristics of the POD modes, and also serves as a quantification of the spectral
discrepancies observed in sections 4.1 and 4.2.
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4.1 Spectral responses to Taylor micro scale

In the present analysis, we examine the Fourier and eigenspectral responses to the
change in the Taylormacro/micro scale obtained from a specific parametrizable family
of correlation functions. Here the micro scale is varied independently from the macro
scale in order to systematize the spectral response analysis. The analytical kernels
chosen for this purpose are given by [29]

R(ν)(s) = 2

	(ν)

(
1

2
s

)ν

Kν (sβ) , (22a)

β =
√

π

	 (ν)
	

(
ν + 1

2

)
, (22b)

where s = |x− y|.	 and Kν are the gamma function and the modified Bessel function
of the second kind, respectively, defined as [30]

	 (ν) =
∫ ∞

0
xν−1e−xdx, (23a)

Kν(sβ) = π

2

I−ν(sβ) − Iν(sβ)

sin (νπ)
, (23b)

where

Iν (s) =
⎧
⎨

⎩

e− 1
2 νπ i Jν

(
se

1
2π i

)
, −π < arg s ≤ π

2 ,

e
3
2 νπ i Jν

(
se− 3

2π i
)

, π
2 < arg s ≤ π ,

(24)

and Jν is the Bessel function of the first kind. In the current case, we are considering
the functions characterized by ν = p/6, p ∈ [1 : 12]. The analytical Fourier transform
of (22a) possesses the property, [29]

Eν ∼ ω−(1+2ν), (25)

for large values of ω. A characteristic trait of (22a) is that the Taylor macro (integral)
scale evaluates to unity for all ν, i.e.

 f =
∫ ∞

0
R(ν)(s)ds = 1. (26)

The discretization of (22a) is performed using an equidistant grid spacing given by
�s = �x = �y = 1/50 and the grid points are defined by xn − x0 = yn − y0 =
n�x , n ∈ [0 : N − 1]. The results of the analysis using two domains are included in
the analysis that follows: one for which x, y ∈ [−20 f : 20 f ], and a second where
x, y ∈ [−5 f : 5 f ]. These results were chosen from a more comprehensive set
of analyses, which were performed for domains ranging from 5 f to 80 f . These
showed similar tendencies, and were therefore not included in what is to follow. The
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Taylor micro scale can generally be defined for some correlation function, R(x, y),
as

� f =
√√√
√

−2
∂2R(x,y)

∂x2
|y=x

. (27)

Fig. 2a illustrates the family of correlation functions in (22a) for ν = p/6, p ∈ [1 : 12],
the Taylor micro scales of which are denoted by

� f ,ν =
√√√√

−2
d2R(ν)(s)

ds2
|s=0

, (28)

and are estimated numerically from a parabolic fit to three points around the discretized
version of R(ν)(0). The evaluations of � f ,ν are shown in Table 1, where a monotonic
increase of � f ,ν is seen to follow from an increase in ν. Since the integral scale
evaluates to unity for all ν, it means that the ratio of the Taylor macro scale to the
micro scale is simply the reciprocal value of the micro scale, which is seen to range
from 22.3 to 1.2 (see Table 1 and Fig. 2b) over the range of ν-values considered here.

The corresponding matrix eigenvalue problem related to (22a) is formulated dis-
cretely by the eigenvalue problem related to the correlation matrix operator R(ν) :
C

N → C
N given by

R(ν)ϕα
ν = λα

ν ϕα
ν , α ∈ [1 : N ]. (29)

This is solved numerically using the MATLAB function eig, where the kernels are
the discretized correlation functions expresed in matrix form as Toeplitz matrices in
order to represent locally translationally invariant kernels. The normalized discrete
m-th Fourier modes, ψm ∈ C

N , are defined as

ψm = N− 1
2

N∑

n=1

e2π i(m−1)(n−1)/N ên, m ∈ [1 : N ], (30)

where ên represents the n-th Cartesian basis vector. The corresponding Fourier spectra
can be computed from (16) by

σm
ν =

(
R(ν)ψm, ψm

)
, m ∈ [1 : N ], (31)

enabling a comparison of the Fourier and POD decomposition of a given kernel. The
Fourier spectrum of a POD kernel is defined by (16) and given that (18) holds, the
total energy represented in each spectrum is the same. For practical purposes, however,
only normalized versions of the spectra are considered which are denoted by a tilde
above the respective variables
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Table 1 Taylor micro and macro scales related to R(ν) as a function of ν

ν 1
6

1
3

1
2

2
3

5
6 1 7

6
4
3

3
2

5
3

11
6 2

 f 1 1 1 1 1 1 1 1 1 1 1 1

� f ,ν 0.04 0.08 0.14 0.23 0.33 0.45 0.55 0.64 0.72 0.77 0.82 0.85

 f /� f ,ν 22.27 12.03 7.04 4.43 3.01 2.24 1.81 1.55 1.40 1.29 1.23 1.18

Fig. 2 (a): Illustration of R(ν)(s), (22a), for ν = p/6, p ∈ [1 : 12]. An increase in ν corresponds to an
increase in theTaylormicro scalewhile the integral scale remains constant (Table 1), (b): Taylormacro/micro
scale ratio as a function of ν

λ̃α
ν = λα

ν∑N
α=1 λα

ν

, (32a)

σ̃m
ν = σm

ν∑N
m=1 σm

ν

. (32b)

Unlike the POD eigenspectrum, the Fourier spectrum of a POD kernel, defined by
(32b), is symmetric. For a meaningful comparison of the two sets of spectra, the usual
Fourier spectrum representation of only the half-spectrum cannot be used directly, as
the number of spectral points related to the two sets of bases would not be the same.
In the numerical evaluation of the assumption of Fourier modes being POD modes
along locally translationally invariant coordinates, a consistent method of comparison
between the two types of spectra is based on their respective convergence rates thereby
requiring us to make use of both sides of the symmetric Fourier spectrum.
In order to achieve this, the Fourier spectral values are sorted in descending order,
such that σα+1

ν ≤ σα
ν , for α ∈ [1 : N − 1] and all ν—as is generally done for the

POD eigenspectrum. Due to the symmetry of the Fourier spectrum, this then implies
that σα+1

ν = σα
ν , for α = 2, 4, . . . , N − 1, since all Fourier spectral values have an

equal spectral value generated by the corresponding complex conjugate mode (with
the exception to the spectral value related to the zeroth harmonic).

Amore detailed analysis of the collapse betweenFourier and eigenspectra follows in
Sect. 4.2, where the coupling between the Fourier and eigenspectrum is investigated
for the second set of correlation functions. Currently, however, the focus is on the
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Fig. 3 a–f : normalized eigenvalues, λ̃α
ν , and sorted Fourier spectra, σ̃ α

ν , related to R(ν) corresponding to
 f /� f = [22.27, 7.04, 3.01, 1.81, 1.40, 1.18] for a domain length of 40 integral length scales. Eν depicts

the asymptotic behaviour of the exact Fourier transform of R(ν)

general tendencies of Fourier and eigenspectra related to R(ν) in order to investigate
more general spectral responses to the variations of the MMSR of the kernels (22a)
and how the spectra are related to the asymptotic behaviour defined by (25).
The Fourier and eigenspectra shown in Fig. 3 are related to R(ν) for ν-values corre-
sponding to f /� f = [22.27, 7.04, 3.01, 1.81, 1.40, 1.18], respectively. The spectra
are numerically evaluated over a domain length of L/ f = 40. As the MMSR-ratio
is decreased (by increasing ν), a noticeable difference in the low-energetic regions
of the Fourier and eigenspectra is observed. As the convergence rate of the eigen-
spectrum must be at least as fast as the Fourier spectrum due to the optimality of the
POD eigenfunctions, a gradually increasing tail is observed for the Fourier spectra
with decreasing MMSR (increasing ν). However, and more interestingly, the eigen-
spectrum exhibits the same asymptotic power-law behaviour as is expected by the
analytical Fourier spectrum, (25).

This behaviour is tested for the extreme case in Fig. 4, which shows the spectral
comparison for the very small window size L/ f = 5 for MMSR corresponding to
the extremes 22.27 and 1.18. Even for this very narrow window, which still captures
the main correlation signature, the eigenspectrum exhibits the asymptotic spectral
behaviour characterizing the exact Fourier spectrum, and down to the very small value
of  f /� f = 1.18. These results suggest that the optimality criterion underlying the
POD correlates with a reduced windowing effect on the corresponding spectra (see
Sect. 4.4 for further consequences of using the DFT as opposed to the POD modes).
If so, the fact that the POD modes deviate from Fourier modes is a central ingredient
to achieving asymptotic spectral behaviours of the exact Fourier spectra, (25). The
underlying reason for this is not entirely clear, but seems to reflect that the asymptotic
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Fig. 4 (a), (b):Normalized eigenvalues and sorted Fourier spectra related to R(ν) corresponding to
 f /� f = [22.27, 1.18], respectively, for a domain length of 5 integral length scales. Eν depicts the

asymptotic behaviour of the exact Fourier transform of R(ν)

spectral behaviour of the POD eigenvalues is closer to the asymptotic behaviour of
the exact Fourier spectrum than the spectrum resulting from a DFT. As the tail of DFT
spectra is a central focus point in the diagnosis of windowing effects and underlying
the choice of window functions used to correct for the finiteness of the signal, the
current results demonstrate the advantages of using a POD decomposition in place
of a the DFT, even for locally translationally invariant kernels as it may reduce the
requirements for the window size in order to achieve the same spectral behaviour
as expected using a Fourier transform on a fully translationally invariant kernel on
an infinite domain. Secondly, if window functions are considered as inner product
weights, it is easily demonstrated that the set of discrete Fourier modes, (30) is not
orthogonal with respect to these weighted inner products (see also Appendix A.4).
This point is related to the analysis of the spectra, as it implies that although the
inner product weight reduces the windowing effect by reducing the tail end of the
corresponding Fourier spectrum (see [31, 32])), it complicates the interpretation of
the same Fourier spectrum, since the Fourier modes are not orthogonal with respect
to the underlying weighted inner product. A consequence of this non-orthogonality is
that the energy related to each wavenumber fails to decouple from the energy related
to other wavenumbers. This adds a degree of abstractness to the interpretation of the
resulting Fourier spectrum.

It is worth recalling that the POD does not suffer from this issue, as the POD
eigenfuntions are guaranteed to be mutually orthogonal as long as the corresponding
operator is Hermitian. Although one could argue that the efficiency of the FFT algo-
rithm is enough to motivate the use of the Fourier decomposition, the corresponding
windowing effects may require a much longer measurement/simulation window. This
may introduce significant costs in terms of experimental equipment and/or computa-
tional costs, both related to the generation of data (in case of a simulation) and to data
analysis, compared to the alternative of chosing a smaller domain and applying a POD
decomposition to this data set.

A comparison of the results in Fig. 3 furthermore indicates that the differences
between the Fourier and POD eigenspectra may be directly affected by the Reynolds
number of the turbulent flow, given that the MMSR-ratio increases for increasing
Reynolds numbers. The spectral analysis of R(ν) indicates that for low Reynolds
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Table 2 Domain specifications
where L� j is the domain length,


re f
f is the integral length scale

of K1, j , N j is the number of
grid points, and L designates the
support of the functions K2 j and
K4 j , j ∈ [1 : 6]

j 1 2 3 4 5 6

L� j /
re f
f 5 10 15 20 40 80

N j 250 500 750 1000 2000 4000

L/
re f
f 5 5 5 5 5 5

number flows the difference between the POD and Fourier modes is more profound,
given that their spectra are different. In order to determine whether this tendency is
exclusively related to the discretized versions of the specific family of functions defined
by (22a) or if there is support for this hypothesis for arbitrary correlation functions,
the spectral dependence on the MMSR-ratio will be extended to other types of POD
kernels in the following Section.

4.2 Fourier and eigenspectrum discrepancy dependence onmacro/micro scale
ratio

The analysis of the relation between the MMSR and the discrepancies observed
between Fourier and eigenspectra is now extended to a new set of arbitrarily cho-
sen correlation functions, in order to investigate whether the MMSR in more general
terms can be expected to play a role in the deviations between the aformentioned spec-
tra. These analyses are performed for six domain sizes (using the same grid resolution),
in order to evaluate the effects of spectral leakage.

Discretized versions of the following five analytical kernel forms are now consid-
ered

K1 j (x, y) = e−|x−y|, (33a)

K2 j (x, y) =
{
K4 j (x, y) − 0.1 sin (2π |x − y|/L) , if |x − y| ≤ L

0, if |x − y| > L
, (33b)

K3 j (x, y) = (4(x − y)2 + 1)−1, (33c)

K4 j (x, y) =
{

(1 − |x − y|/L)4 (1 + 4|x − y|/L) , if |x − y| ≤ L

0, if |x − y| > L
, (33d)

K5 j (x, y) = e−a(x−y)2 , (33e)

where x, y ∈ � j , j ∈ [1 : 6], where j indicates the domain. Note that (33a) corre-
sponds to R(1/2) in (22a). a = 1/8 in (33e) was included as this correlation function
models self-preserving decaying homogeneous isotropic low Reynolds number turbu-
lent fields appearing as the solution to the fundamental equation for the propagation
of the correlation function, [33].

The lengths of the domains � j are denoted by L� j such that L ≤ L� j and given
in table 2 along
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Fig. 5 a–f illustration of the correlation functions, Ki j , evaluated for x = 0 on domains with lengths L� j ,
j ∈ [1 : 6], respectively

with the number of discretization intervals, N j , used for the discretization

�x = �y = L� j

N j
= 1

50
, j ∈ [1 : 6], (34)

with the grid points for each domain defined as

xn, j − x0 = yn, j − y0 = n�x, n ∈ [0 : N j − 1], j ∈ [1 : 6]. (35)

The kernels can be categorized into two distinct groups: those characterized by their
support (for a fixed y) equalling the domain, and thosewhose support is strictly smaller
than the domain. The former group consists of the kernels K1 j , K3 j , and K5 j and the
latter consists of K2 j and K4 j for j > 1. Table 3 shows the Taylor macro/micro
scale values related to each correlation function, Ki j . The five kernels (33a)–(33e)
are expressed in matrix form as Toeplitz matrices, denoted as Ki j ∈ R

N j×N j , where
the kernel type is denoted by the subscript i (corresponding to (33a)–(33e)), in order
to represent discretized versions of locally translationally invariant kernels for all
domains � j , j ∈ [1 : 6]. The discretized kernels are seen in Fig. 5. As an operator, the
kernel matrices are defined as Ki j : CN j → C

N j , i ∈ [1 : 5], j ∈ [1 : 6] where the
corresponding eigenvalues, λα

i j ∈ R+, and eigenvectors, ϕα
i j ∈ R

N j , were obtained
numerically for every kernel-domain combination from the following set of equations

Ki jϕ
α
i j = λα

i jϕ
α
i j , α ∈ [1 : N j ], i ∈ [1 : 5], j ∈ [1 : 6], (36)
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Fig. 6 a–f normalized eigenvalues, λ̃α
i j , and sorted Fourier spectra, σ̃

α
i j , related to the kernels Ki j , i ∈ [1 : 5],

for domain lengths corresponding to j ∈ [1, 5, 6]
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Table 3 Taylor macro and micro
scales related to Ki6, i ∈ [1 : 5]
as a function of ν obtained from
numerical integrations

i 1 2 3 4 5

 f 1.00 1.66 0.78 1.66 2.51

� f 0.14 0.39 0.50 1.58 2.83

 f /� f 7.04 4.30 1.56 1.05 0.89

using the MATLAB function eig. The normalized discrete m-th Fourier mode related
to the j-th domain, ψm

j ∈ C
N j , is defined as

ψm
j = N

− 1
2

j

N∑

n=1

e2π i(m−1)(n−1)/N j ên, m ∈ [1 : N j ], j ∈ [1 : 6]. (37)

The Fourier spectra are then obtained from

σm
i j =

(
Ki jψ

m
j , ψm

j

)
, m ∈ [1 : N j ], j ∈ [1 : 6], (38)

and the normalized spectra are denoted by a tilde over the variable, i.e. λ̃α
i j and σ̃ α

i j ,
analogously to (32a)–(32b).

Table 3 shows that theMMSR decreases with increasing index, i . Based on the pre-
viously demonstrated strong correlation between MMSR and spectral discrepancies,
the closest match between the Fourier and eigenspectra are expected to occur for (33a)
and (33b), with (33d) and (33e) expected to exhibit the most significant discrepancies.
Figure6 shows the normalized Fourier and eigenvalue spectra of all kernels, (33a)–
(33e), and for the domains � j , j = [1, 4, 6]. For the kernel, (33a), with an MMSR of
7.04 the two sets of spectra in figures (a)–(c), appear to be in very good agreeement
for all domain sizes—even for the smallest domain corresponding to L = 5 f . It is
worth noting that the spectra are in fact not equal, despite the fact that they appear to
collapse for the case of the largest domain. This deviation will be analyzed in more
detail in Sect. 4.3. As the MMSR is decreased, the tail ends of the Fourier and eigen-
spectra are seen to deviate from each other, as was observed in Fig. 3 for the Bessel
function-generated kernels. In this context, it is interesting to compare the results for
kernels K2 j with  f /� f = 4.30 and K4 j where  f /� f = 1.05. Despite the sub-
stantial differences in the appearance of these two correlation functions (see Fig. 5) the
more complex looking ones characterized by a sinusoid-generated lobed shape, K2 j ,
exhibit the smallest spectral discrepancies - which may appear somewhat surprising.
However, the smaller spectral discrepancies of K2 j compared to K4 j are nevertheless
well predicted by the larger MMSR of the former.

The results for the similarity solution for the case of isotropic homogeneous decay-
ing turbulence, K5 j , from [33] are seen in Figs. 6 (m)–(o), showing themost significant
deviations at the low energy end of the spectrum. The fact that this case represents a
low Reynolds number turbulent flow solution for the correlation function is naturally
indicated by the small MMSR,  f /� f = 0.89. This case supports the notion that
the correlation between spectral descrepancies and the MMSR holds for correlation
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functions satisfying the Navier–Stokes equations, which the former correlation func-
tions are not guaranteed to do. Although the asymptotic trends of the eigenspectrum in
this case are seen to deviate significantly from the DFT spectra—even for the largest
domain—the asymptotic trends between the eigenspectrum and the analytical Fourier
spectrum of the corresponding Gaussian are still in very good agreement.

Given that the ratio between the compact support of the kernels and domain lengths,
L� j , j ∈ [1 : 6], varies for the kernels (33a)–(33e), it is observed that the discrepancy
variations between the spectra are consistently well predicted by the MMSR for all
kernels. This shows that the support of the various kernels is not, by itself, the decisive
factor for the deviation seen between the spectra and reveals that if the SPOD is viewed
as an approximation of the POD, the quality of the approximation may be reduced
significantly for low Reynolds number turbulent flows for which MMSR approaches
unity. For high Reynolds number flows, however, the spectral discrepancies can be
expected to be less profound.

In the following, a more detailed inspection of the relation between Fourier and
eigenspectra will be performed. This includes a convergence study of the spectral
discrepancies with respect to increasing domain and thereby an inspection of whether
we can expect POD modes to converge to Fourier modes for increasing domain sizes.

4.3 Divergence between POD and Fourier modes

Proceeding the analysis of discrepancies between POD and Fourier spectra, a com-
parison of POD and Fourier modes may be performed. The first PODmode of (33a) is
shown along with the zeroth Fourier harmonic in Figs. 7 as a function of domain size.
The modes are illustrated for visual comparison in Figures (a) and (b) for L�1 = 5 f ,
and L�6 = 80 f , respectively, where only the real part of the POD modes is shown
given that the imaginary part is negligible. These results illustrate that the first POD
mode fails to approach the zeroth harmonic as the domain length is increased. This
is quantified by the residual norm shown in Fig. 7c between the first POD mode and
the zeroth harmonic. This demonstrates diverging behaviour between the modes as a
function of domain size, and is part of a more general trend of divergence observed
for all of the kernels, (33a)–(33e). Based on these discrepancies, the coupling between
the Fourier and eigenspectra as a function of domain size cannot be expected converge
pointwise, as will be demonstrated in the following.

We now consider the Fourier building blocks of the eigenspectrum according to
(13). The main focus of the analysis is the reconstruction of eigenspectra related to
the kernels K1 j and K4 j as an extension of the analysis in the previous Section.
These kernels are chosen as they exhibited significant variations of convergence rates
in terms of their spectra (see Fig. 6), and in terms of the collapse of their Fourier
and eigenspectra. The contributions of various Fourier modes to the reconstruction of
eigenvalues can be quantified by the measure

	αmn
i j = �

⎧
⎨

⎩

cα,n
i j cα,m∗

i j

(
Ki jψ

n
j , ψ

m
j

)

λα
i j

⎫
⎬

⎭
, (39)
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Fig. 7 Comparisons between the first POD mode and the zeroth harmonic for K1 j (a) : as a function of
domain size. (a): real part of first POD mode and zeroth harmonic for L�1 = 5 f , (b): real part of first
POD mode and zeroth harmonic for L�1 = 80 f , (c): residual norm between the first POD modes of all

kernels, ϕ1i j , i ∈ [1 : 5], j ∈ [1 : 6], and the corresponding zeroth harmonics as a function of domains
lengths L� j , j ∈ [1 : 6]

since the corresponding imaginary part to the above is negligible in the current cases. In
the special case thatψn

j = ϕn
i j for some i in (39), wemust have that	αmn

i j = δmn . If the
PODandFouriermodes are not the same, however,	αmn

i j can potentially have non-zero
values for all index combinations. This would mean that all Fourier modes spanning
the Hilbert space in question contribute to the reconstruction of all the eigenvalues. In
the following, 	αmn

i j will be investigated for certain α-values as a function of m and n
in order to illustrate some general tendencies that generally arise for all kernels, given
the relatively high dimensionality of 	αmn

i j .

Figure 8 shows as an example 	6mn
11 and 	6mn

41 and thereby the relative Fourier
contributions to the reconstructions of λ611 and λ641. We note that the evaluation of (39)
is shown in a double logarithmic representation along m and n. Given the symmetries
of the Fourier spectrum, there is also a corresponding symmetry along the diagonal
of 	αmn

i j defined by m = n, which is not evident in the figures, exhibited for all
m, n �= 1. This means that each value of 	αmn

i j for m, n �= 1, which is shown in Fig. 8,
represents approximately half the reconstructed relative energy of the eigenvalue α

of the corresponding complex conjugate Fourier pair. Deviations from a single peak
in Fig. 8 are obvious and may be expected for a domain length corresponding to
merely five integral length scales. Nevertheless, this deviation reveals spectrally the
deviation between the Fourier and POD basis given that for both kernels, multiple
Fourier modes are needed to reconstruct the given eigenvalue. Appendix B includes
the evaluation of (39) for all the kernels (33a)–(33e) across domain sizes, illustrating
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Fig. 8 Relative contributions, 	6mn
i1 , to the reconstruction of λ̃6i1 for the domain with length L�1 =

5 f . (a): Results for i = 1, (b): results for i = 4. Multiple Fourier modes are seen to contribute to the
reconstruction of the eigenvalue in question

Fig. 9 Relative contributions, 	5mn
i6 , to the reconstruction of λ̃5i6 for the domain with length L�6 = 80 f .

(a): Results for i = 1, (b): results for i = 4. Multiple modes are seen to contribute to the reconstruction of
the eigenvalue in question

that these tendencies do not constitute a special case, but a more general feature
for small domain sizes. In figures 16a-16f, an alternating pattern between even and
odd α-values is noted where for even α, the reconstruction is dominated by a single
Fourier complex conjugate pair. For odd α the reconstruction of these modes is less
efficient using the Fourier basis, where approximately 60% of the energy of the given
eigenvalue is reconstructed by a single conjugate pair. It is worth noting that since∑

m,n 	αmn
i j = 1 for all α, the existence of 	αmn

i j > 0.5, m, n �= 1, is compensated for
by negative contributions to the reconstruction of eigenvalues from the set of remaining
Fourier modes.
This leads to negative values of 	αmn

i j which are evident in Fig. 8. It is also seen that
the deviation from a single dominant peak increases for increasing α in the range
α ∈ [1 : 8] for both kernels.

The reconstruction components of λ516 and λ546 are shown in Fig. 9 for the largest
domain of length 80 f . Here, the significant contributions to the reconstruction of
the most energetic eigenvalues is dominated by fewer Fourier modes than for the case
of L�1 , but nevertheless, still only 60% of the energy is reconstructed by a single
Fourier mode pair in the case of both the K16 and K46 kernels for α ∈ [1 : 8].
This behaviour characterized by multiple Fourier modes being needed to reconstruct
a given eigenvalue is consistent despite the appearance of high degree of collapse of
the spectra related to the K1 j kernel seen in Fig. 6. This, similarly to the results in
Fig. 7c, shows that the convergence between the two sets of basis functions does not
necessarily follow from a domain length increase. This behaviour is illustrated by
Fig. 10 where it is seen that the fraction of λ31 j reconstructed by m = n = 2 decreases
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Fig. 10 a–f : relative contributions, 	3mn
1 j , to the reconstruction of λ̃31 j for the domains with length L� j ,

j ∈ [1 : 6], respectively. The figures illustrate a divergence from a single dominant mode contributing to
the reconstruction of λ̃31 j as the domain is increased, as the contribution of m = n = 2 is decreasing as the
domain is increased

Fig. 11 Relative contributions, 	38mn
i3 , to the reconstruction of λ̃38i3 for the domain with length L�3 =

15 f . (a):Results for i = 1, (b): results for i = 4.Multiplemodes are seen to contribute to the reconstruction
of the eigenvalue in question

as the domain size is increased. Note that this does not mean that the number of Fourier
modes needed for the reconstruction of a given eigenvalue is not converging in general.
The current results could indicate (for this particular case) that there is a convergence
towards the effective reconstruction of λ31 j by the triplet of conjugate Fourier pairs
corresponding to m = n ∈ [1 : 3].
The results, therefore suggest that the convergence is simply not towards a single
Fourier mode (or Fourier conjugate pair), meaning that we cannot assume that POD
eigenfunctions converge to Fourier modes for locally translationally invariant kernels
as the domain size is increased—something that is commonly presumed in literature,
[3, 11, 25, 28, 34]. A more conservative hypothesis is that Fourier modes should be
considered as approximations to POD eigenfunctions on aperiodic domains, espe-
cially given the discussions in Sect. 3 and the fact that Fourier modes do not reside in
L2(R,C) in relation to the homogeneous/stationary turbulence case.

Generally, there appears to be a coupling between the deviation of the Fourier and
eigenspectra at similar mode numbers and the number of Fourier modes needed to
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Fig. 12 Comparison between the Fourier reconstructed correlation functions K21 and K24, evaluated for
x = 0 on domain with lengths L�2 = 10 f

reconstruct a corresponding eigenvalue. Figure11 shows 	38mn
13 and 	38mn

43 for the
domain length corresponding to 15 f . Given the larger deviation between the corre-
sponding Fourier and eigenspectra seen in figure 6 at α = 38 for the domain length of
15 f , a larger deviation from a full eigenvalue reconstruction using a single Fourier
pair may be expected. This tendency is reflected in Fig. 11 by the significantly larger
deviations from peak values of 0.5 in the case of 	38mn

43 than for 	38mn
13 . A significant

contribution to the reconstruction of these low-energy eigenvalues arises from the
cross terms, m �= n in (17), indicative of more complex relations between the Fourier
and eigenspectra.

4.4 Impact on reconstruction of the Taylor micro scale

Assuming that PODmodes are Fourier modes results in enforcing a periodicity on the
correlation function when the DFT is applied. In addition to the periodification of the
correlation function, the correlation function is altered in more subtle ways, including
its Taylor macro/micro scales.

The objective is here to relate the spectral discrepancies between the Fourier and
eigenspectrum for the low-energetic modes to the periodification of the correlation
function. The metric used for these high mode number discrepancies is the Taylor
micro scale, which is traditionally used as an estimate for the largest dissipative scale
sizes in turbulent flows, [35–37], or simply the estimate of velocity gradients. The
Taylor micro scale, (27), is expanded using POD and Fourier bases by first expanding
the second derivative of the correlation functions using (19) and (20)

∂2R(x, y)

∂x2

∣∣∣∣
y=x

=
N∑

α=1

λα d
2ϕα(x)

dx2
ϕα∗ (x) , (40)

=
∑

α,m,n,p,q

Hαmncα,pcα,q∗ d2ψ p(x)

dx2
ψq∗(x), (41)

where the second order derivatives were estimated numerically using a three-point
parabolic fit around the diagonal elements of the partially reconstructed autocorrelation
matrix. Then, assuming that ϕα = ψα , for all α ∈ [1 : N ] implies that all cross terms
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Fig. 13 Relative error of the Taylor micro scale estimate using the DFT for various correlation functions
as a function of domain size. (a): Results for (22a), (b): Results for (33a)–(33e)

in (41) vanish (analogous to the step from (20) to (21)). This leads to the following
approximation of the second derivative of the correlation function

∂2Rσ (x, y)

∂x2

∣∣∣∣
y=x

=
N∑

α=1

σα d
2ψα(x)

dx2
ψα∗(x), (42)

which in form resembles (40). However, using (42) in the case of aperiodic domains
evaluates to a different estimate of the Taylor micro scale than using (40). While (40)
completely recovers the second derivative of the correlation functions used for the
micro scale estimate, (42) yields a filtered estimate of the microscale, denoted by

� f ,σ =
√√√√

−2
d2Rσ (x,y)

dx2
|y=x

. (43)

Fig. 12 illustrates the correlation functions K2,1(x, y) and K2,4(x, y) (correspond-
ing to (33a) and (33d), respectively) along with the Fourier reconstructed correlation
functions, Kσ,21(x, y) and Kσ,24(x, y), obtained from (21). In addition to the period-
ification of the correlation function resulting from neglecting all cross terms in (41),
a deformation of the correlation function occurs corresponding to the functions being
“compressed” towards the ends of the domain. The result is an overestimation of the
second derivative at the correlation peak(s) and a thereby an underestimation of the
Taylor micro scale. This is demonstrated by the differences in the parabolic fits, p and
pσ , of the original correlation functions and the periodified ones, respectively (see
also Appendix C). Figure13 shows the relative error between (43) and (27) for the
two sets of correlation functions as a function of domain size. Note that these figures
represent the deviations between the original Taylor micro scale, (27), and the micro
scale obtained after the reconstruction of (43) using the complete Fourier basis. The
results indicate a dependence on the micro scale size where the relative error is seen to
increase for decreasing MMSRs. In all of the cases, the DFT modes underestimate the
micro scale as a result of the implicit periodificiation and squeezing of the correlation
function inherent to the use of DFT modes.
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Fig. 14 Cumulative modal reconstruction of the Taylor micro scale using POD modes related to the corre-
lation functions (33a)–(33e) for various domain sizes

The full reconstruction of the micro scale is, however, possible using POD modes
with much fewer terms facilitated by the exact reconstruction of the second derivative
of the correlation function, (40). Figure14 shows the real part of the cumulative modal
reconstruction of the micro scale related to (33a)–(33e) as functions of domain size.
The dominant contributions to the cumulative reconstructions of the micro scale lead-
ing up tomaximumvalue at higher N are in fact imaginary. Given that the Taylormicro
scale is defined as the positive root of a second order polynomial fit, imaginary roots
indicate that the partially reconstructed kernel has an off-diagonal peak—meaning
that the partially reconstructed correlation function attains its maximum at x �= y. The
polynomial roots become real as an increasing number of modes is used in the recon-
struction of the correlation function. A region of monotonic convergence is observed
in all cases after the maxima in Fig. 14, due to sign change of the second derivative of
the polynomial fit.

The general monotonic relations exhibit similar behaviours across all correlation
functions and domains in Fig. 14, where certain micro scale estimates are converging
faster than others. For small MMSRs, where the Fourier modes performworst in terms
of the reconstruction of � f , the POD modes are seen to perform best—as seen in
Fig. 14. An extreme case is seen for the Gaussian kernel, K5 j , in Fig. 14, representing
the self-similar Karman-Howarth solution, [33], where a very small fraction of the
POD modes reconstruct the micro scale down to an negligible error for all domain
sizes. For the same kernel in Fig. 13b the relative error estimate is in the order of
100% for all domain sizes after using all of the Fourier modes in the reconstruction.
In addition, the error may be potentially even more substantial if the Fourier basis
was used in a reduced-order model, where only a subset of these were used in the
reconstruction.
The analysis presented above demonstrates that several different kernels exhibit con-
sistent trends in the relationship between, on one hand, the convergence of microscale
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reconstruction using Fourier modes, and on the other hand,MMSR and domain length.
Further studies would be needed to address the extent to which these trends can be
generalized, and whether the effect of the MMSR from sampled analytical kernels
translates to a Reynolds number dependency in the case of kernels derived from empir-
ical flows.

5 Conclusions

The currentwork presented a theoretical and numerical analysis of the relation between
Fourier and POD modes for locally translationally invariant kernels on aperiodic
domains. The work asserted formally that trigonometric polynomials could not be
considered solutions to the POD optimization problem on infinite spatial/temporal
domains as they are not elements of L2(R,C), excluding them from spanning the same
space. This fact leads to the numerical analysis of discrepancies between Fourier and
eigenspectra on finite aperiodic domains as a function of kernel characteristics and
domain size. A set of correlation functions was generated using modified Bessel func-
tions of the second kind, enabling the variation of the Taylor macro/micro scale ratio.
These correlation functions, characterized by their analytical Fourier transforms, were
used to compare the spectral properties of the DFT and eigenspectra. The eigenspectra
(unlike the DFT spectra) were shown to replicate the analytical spectral asymptotic
behaviour to a very high degree, even for extremely small window sizes down to five
integral length scales. The results indicated that themacro/micro scale ratiowas of cen-
tral importance for the observed spectral discrepancies betweenDFT and eigenspectra,
and the spectral differences were increased for small macro/micro scale-ratios. These
results were confirmed by the analysis of a second set of correlation functions—
which included the Karman-Howarth solution of the fundamental equation for the
propagation of the correlation function—confirming that for macro/micro scale-ratios
approaching unity the deviation between the DFT and eigenspectra increased. The
divergence between the first POD mode and the zeroth harmonic was analyzed, fol-
lowed by the analysis of the Fourier expansion of the eigenspectrum, in order to
couple the two spectral energy representations. Here a divergence between the POD
and Fourier spectra was observed, measured in terms of the number of Fourier modes
needed to reconstruct a given eigenvalue, as domain sizes were increased. This result
challenges the implied notion of POD modes approaching Fourier modes for increas-
ing domain sizes. Finally, it was demonstrated that the implicit periodification of the
correlation function imposed by the use ofDFTmodes for aperiodic domains decreases
the Taylor micro scale estimate obtained from the modified correlation function. The
effect was largest for POD kernels characterized by small Taylor macro/micro scale-
ratios and falls in line with the discrepancies observed in the corresponding spectral
analyses performed earlier. While the Fourier basis was unable to fully reconstruct
the micro scale for any combination of correlation function and domain size, the
POD modes demonstrated the ability to reconstruct the aforementioned to a very high
degree using only a subset of modes in the case of a small macro/micro scale-ratio.
This ability demonstrates the advantageous properties of the POD modes compared
to Fourier modes in the case of correlation functions with small macro/micro scale-
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ratios. A truncated Fourier basis on a non-periodic flow field would therefore lead
to an incorrect representation of small-scale turbulent quantities, such as the Taylor
micro scale which estimates the scales at which viscous/dissipative effects dominate.
This can impact the accuracy and stability of an SPOD based reduced-order model.

Future work should include an analysis based on correlation functions obtained
fromsimulatedor experimentallymeasuredflowdata, linking experimental parameters
like Reynolds number and flow geometry directly to the extent of agreement between
Fourier modes and POD eigenmodes. Further, effects of using Fourier modes in place
of POD eigenmodes on flow modeling should be investigated to elucidate the impact
of the discrepancies demonstrated in this work.
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Appendix A: Domain dependence on solutions

A detailed analysis of the domain dependence of the POD operator on the relation
between POD and Fourier modes is performed. The cases covered consist of transla-
tionally invariant kernels on infinite domains, locally translationally invariant kernels
on finite aperiodic domains and translationally invariant kernels on weighted inner
product spaces are discussed. Initially, however, the case of the one-dimensional POD
integral eigenvalue problemwith translationally invariant kernels on periodic domains
is covered.
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A.1 Translationally invariant kernels on periodic domains

Define thePODintegral operator as themapping R : L2
w([− a

2 , a
2 ],C) → L2

w([− a
2 , a

2 ],
C), 0 < a < ∞ where K : R × R → R is a translationally invariant kernel

K (x, y) = K̃ (x − y), x, y ∈ R, (A1)

which is periodic, with period a, i.e.

K̃ (x − y + a) = K̃ (x − y), x, y ∈ R. (A2)

The integral operator can then be evaluated for ϕ(y) = eiky with the substitution
z = x − y

(Rϕ) (x) =
∫ a/2

−a/2
K̃ (x − y)ϕ(y)dy (A3)

=
∫ x+a/2

x−a/2
K̃ (z)e−ikzdz

︸ ︷︷ ︸
λ(k)

eikx , (A4)

= λ(k)ϕ(x), (A5)

where λ(k) is found to be invariant with respect to x due to the condition (A2). Of
the cases covered in the current work, condition (A2) in combination with the finite
domain, � = [− a

2 , a
2 ], is the only case where the Fourier basis can be deduced as the

solution to the POD eigenvalue problem, given the restriction ϕ ∈ L2
w([− a

2 , a
2 ],C).

A.2 Translationally invariant kernels on infinite domains

It is often assumed, in cases of statistically stationary (aperiodic) turbulence, that the
temporal eigenfunctions on a finite temporal domain are Fourier bases. For the case
of the POD, this idea originated from [1] who advocated the use of Fourier analysis in
combination with the POD for homogenous fields of infinite extent. In this capacity
it is necessary to distinguish between Fourier transforms over the real line and basis
expansions over the real line.

Having restricted the eigenfunctions of (6) to reside in L2
w(�,C), we now focus

on the strict limitations imposed on the functions a Fourier transform can be applied
to. The Fourier transform can be defined as the mappingF : L2 (R,C) → L2 (R,C).
Even in the case when a translationally invariant kernel resides in L2 (R,C) for a
homogeneous field of infinite extent, it is clear that the eigenfunction, ϕ �= eikx ,
x ∈ R, since ϕ /∈ L2 (R,C). This leads to the conclusion that for homogeneous
aperiodic fields the eigenfunction in (6) cannot be of the harmonic type, as the criterion
of boundedness stated in (1) (in the case of w(x) = 1, x ∈ R) is not upheld. The
homogeneous case is often referenced in literature when arguing that solutions to (6)
are of the type ϕ = eikx for aperiodic finite fields, but we see that this argument is
flawed, since the functions ϕ(x) = eikx , x, k ∈ R, do not even reside in the vector
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space necessary for these to be eigenfunction candidates for R. More fundamentally,
a basis spanning a normed vector space necessarily consists of vectors that are within
the normed vector space, cf. p. 41 in [38].

A.3 Locally translationally invariant kernels

We consider integral transforms R : L2(�,C) → L2(�,C) given by

(Rϕ)(x) =
∫

�

K (x, y)ϕ(y)dy, (A6)

where K : � × � → C is the kernel function. Let the kernel K be transla-
tionally invariant within the subdomain S ⊂ R

2 given by S = Lx × Ly , where
Lx = {

x | − a
2 ≤ x ≤ a

2

}
, 0 < a < ∞; and zero outside S. This means that

K (x, y) = K̃ (x − y) for (x, y) ∈ S, where K̃ : [−a, a] → R.

Defining the window function χ(x) by

χ(x) =
{
1 , x ∈ Lx ,

0 , x /∈ Lx ,
(A7)

we may write the kernel as K (x, y) = K̃ (x − y)χ(x)χ(y). We apply the oper-
ator R defined by this kernel via (A6) to a candidate solution ϕ(y) = eiκ y with
κ = 2πn/a, n ∈ Z, yielding

(Rϕ)(y) =
∫ a

2

− a
2

K (x, y)eiκ ydy (A8)

=
∫ a

2

− a
2

K̃ (x − y)χ(x)χ(y)eiκ ydy (A9)

=
∫ x+ a

2

x− a
2

K̃ (z)χ(x)χ(x − z)eiκ(x−z)dz (A10)

= χ(x)
∫ x+ a

2

x− a
2

K̃ (z)χ(x − z)e−iκzdz eiκx (A11)

= ζ(x, κ)ϕ(x), (A12)

where z = x − y and

ζ(x, κ) = χ(x)
∫ x+ a

2

x− a
2

K̃ (z)χ(x − z)e−iκz dz. (A13)

The candidate function ϕ is an eigenfunction if ζ(x, κ) does not depend on x . Since
ϕ ∈ L2(Lx ,C) we need only consider x ∈ Lx , for which the first window function
χ(x) = 1. The limits on the integral correspond to Lz−x , which is exactly the interval
where the integrand’s window function χ(x − z) = 1. We need therefore not include
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any of the window functions in the expression for ζ , leaving us with

ζ(x, κ) =
∫ x+ a

2

x− a
2

K̃ (z)e−iκz dz . (A14)

The extent to which this expression depends on x is determined by the properties of
K̃ (z). If K̃ (z) satisifies K̃ (z ± a) = K̃ (z) for z ∈ Lz we find that ζ(x, κ) is indeed
independent of x ; for example, for − a

2 ≤ x ≤ 0 we have, with z′ = z + a,

ζ(x, κ) =
∫ x+ a

2

x− a
2

K̃ (z)eiκzdz (A15)

=
∫ − a

2

x− a
2

K̃ (z)eiκz dz +
∫ x+ a

2

− a
2

K̃ (z)eiκzdz (A16)

=
∫ a

2

x+ a
2

K̃ (z + a)eiκ(z+a) d(z + a) +
∫ x+ a

2

− a
2

K̃ (z)eiκzdz (A17)

=
∫ a

2

x+ a
2

K̃ (z)eiκz dz +
∫ x+ a

2

− a
2

K̃ (z)eiκzdz (A18)

=
∫ a

2

− a
2

K̃ (z)eiκzdz = λ(κ), (A19)

which does not depend on x . The same relation can be shown to hold for 0 ≤ x ≤ a
2 .

As expected, a periodic kernel produces harmonic eigenmodes (see Appendix A.1).
A general kernel, however, does not. Note that if the domain of integration would be
set to the entire real line the x-dependency of the integral would vanish. In this case,
however, the operator would be characterized by R : L2(R,C) → L2(R,C), but
then ϕ(x) = eikx , x ∈ R would not qualify as a solution since eikx /∈ L2(R,C), as
discussed earlier

A.4 Weighted translationally invariant kernels

An attempt to circumvent the above issues may be to apply a filter/window on the
signal in order to ensure compactness of the kernel or in some way argue the attain-
ment of periodicity. Common examples of windows used are Hamming, Hanning, and
Bartlett windows to mention a few. In this approach we must introduce a new opera-
tor F : L2

w(R,C) → L2
w(R,C)with a kernel,G : R×R → R. This filter/window can

be represented by the inner product weight function, w. Note that w : R → R>0 can
be chosen such that eikx ∈ L2

w(R,C). However, the introduction of w means that ϕ is
now required to satisfy the POD integral eigenvalue problemwith the filtered/weighted
kernel. For a non-constant w, the effective kernel is given by

G(x, y) = G̃(x − y)w(y), (A20)
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Fig. 15 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K11

from which it is clear that the resulting kernel, G(x, y), is not translationally invariant
despite the fact that G̃ is. Because of this, ϕ(x) = eikx , x ∈ R, is again disqualified
from being a solution to the corresponding POD eigenvalue problem.

The preceding theoretical considerations have led us to conclude that aperiodic
domains do not admit to POD integral eigenfunctions of the form eikx , either due to
the failure to attain true translational invariance in the kernel on finite domains, or
in the case of infinite domains due to the fact that eikx does not reside in L2(R,C).
The introduction of a filter is also shown to modify the effective kernel such that it is
not translationally invariant—disqualifying the use of filters as a strategy to conclude
that eikx are the eigenfunctions. These theoretical insights have therefore led us to
the conclusion that we cannot expect that any numerical solutions to kernels on finite
domains are Fourier bases.

Appendix B: Reconstruction of Eigenspectra

Figures 15–24 show the reconstruction of the first six eigenvalues for the smallest and
largest domain sizes.
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Fig. 16 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K16

Fig. 17 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K21
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Fig. 18 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K26

Fig. 19 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K31

123



Discrepancies between POD and Fourier modes on aperiodic domains Page 35 of 40 10

Fig. 20 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K36

Fig. 21 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K41
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Fig. 22 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K46

Fig. 23 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K51
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Fig. 24 Contributions to the eigenvalue reconstruction of modes α = 1 : 6 using Fourier modes. a–f
contributions for K56

Appendix C: Periodification of the correlation function

Figure 25 demonstrates the periodification of of the correlation functions Kσ,2 j , j ∈
[1 : 5] as a result of of assuming POD modes to be Fourier modes.
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Fig. 25 a–f illustration of the Fourier reconstructed correlation functions as a result of assuming that

ψα = ϕα , for all α evaluated for x = 0 on domains with lengths L�2 = 10re f
f , respectively. p and pσ

denote the parabolic fits of K2 j , j ∈ [1 : 5] and Kσ,2 j , j ∈ [1 : 5], respectively
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