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Abstract
Natural icicles have an overall conical shape modulated by surface ripples. It has been
noted frommany observations of icicles formed in nature and in the laboratory that the
wavelength of the ripples has a very narrow spectrum between about 8 and 12mm and
that, as time evolves, the phase of the ripples migrates upwards. In this pedagogical
review, I explore some of the physical mechanisms that can cause and mediate the
formation and migration of ripples on icicles using simple mathematical models. To
keep the mathematics more straightforward and transparent, I confine attention to two
dimensions. A key physical parameter is the surface tension between the film of water
that coats an icicle and the air that surrounds it, which causes a phase shift between the
film–air interface and the ice–film interface. I show that the wavelength of ripples is
dominantly proportional to the cube root of the square of the gravity-capillary length
times the thickness of the water film. At high film-flow rates, advection-dominated
heat transfer coupled with the interfacial phase shift becomes the dominant driver of
instability. Gibbs–Thomson undercooling provides an unexpectedly large stabilisa-
tion of small wavelengths at these large flow rates, sufficient to maintain wavelength
selection at millimetre scales.

Keywords Icicles · Morphological stability · Thin-film flow

1 Introduction

Steve Davis was a leader in fluid-mechanics research, making significant contribu-
tions to our understanding of hydrodynamic stability, interfacial thin-film flows and
solidification [1, 2]. This short, pedagogical review about the formation of ripples on
the surface of icicles touches on all those aspects of continuum mechanics, and I am
pleased to offer it in Steve’s memory.
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Two principles espoused by Steve made particular impact on me. The first was
the frozen-temperature approximation that Steve made and exploited in many of his
studies of morphological instability of solidifying binary alloys. It recognises that
instability is driven principally by constitutional supercooling and the enhancement of
solute diffusion of rejected impurities away from an advancing phase boundary, so that
perturbations to the temperature field can be ignored. This simplifying approximation
makes the driving mechanism for instability transparent and renders the calculation
of instability analytically tractable, which allows significant additional progress to be
made, as Steve exemplified with many studies of the nonlinear evolution of morpho-
logical instabilities.

The second principle was that, although non-dimensionalisation is a powerful way
to identify key physical interactions andmakemathematical solutionsmore applicable
given a wide range of different material and controlling parameters, presenting mathe-
matical answers in dimensional terms can be crucial to general understanding and for
conveying important ideas to applied scientists. The prime example, forme, came again
from the study of morphological instability during binary solidification. The compact,
universal, analytical result, obtained using the frozen-temperature approximation, is
that instabilities occur once the dimensionless Morphological number exceeds a cer-
tain function of the ratio of a diffusion length and a capillary length associated with
the surface energy of the solid–liquid phase boundary. The trouble with this state-
ment is that both sides of the inequality depend separately on the concentration of the
alloy and the rate of solidification. Only when one unpacks the statement in terms of
these controlling parameters does one appreciate that, although the phase boundary
becomes unstable as the rate of solidification exceeds a critical value (the well-known
result), it becomes stable again at larger solidification rates (compare Figs. 3.4 and
3.6 of Davis [2], for example). A single inequality in dimensionless variables hides a
double inequality in control variables.

My aim in this paper is to emulate these principles while reviewing and develop-
ing theories for the formation and evolution of ripples on icicles, illustrated in Fig.
1, using and justifying simplifying approximations that allow for transparent analyt-
ical solutions, introducing dimensionless variables and parameters only when their
use is unambiguous, and expressing results in dimensional form when they relate to
experimental observations.

Icicles are a common phenomenon in cold climates, formed particularly when
radiation from the sun or heat from the interior of a building melts the snow on a
roof while the air is sufficiently cold to refreeze the dripping meltwater. In addition
to their overall, carrot-like shape [4], scientists have been intrigued by the concentric
ripples that form along their sides (Fig. 1). In particular, it seems from observations
of natural icicles and those formed in controlled laboratory experiments [5–7] that the
wavelength of the ripples is quite insensitive to environmental conditions or the rate
of supply of water, varying only between about 8–12mm. Additionally, it has been
observed by time lapse that the phase of the ripples migrates slowly upwards as the
icicle grows. These are the two primary observations that this paper seeks to address.

It has also been shown in laboratory experiments that ripples do not form on icicles
grown from pure water but do form once some level of impurity is added to the water
[7, 8]. Demmenie et al. [8] suggest that, because of the associated contact angle of
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Fig. 1 Full view (a) and close up (b) of a natural icicle hanging from a roof in Toronto, showing centimetre-
scale ripples. (c) Image of a lab-grown icicle made from distilled water with 80 ppmNaCl impurity from the
Icicle Atlas Run 120206, Frame 417 [3]. (d) Image of a lab-grown icicle with 519 ppm sodium fluorescein
dye as the impurity. The dye glows green in the liquid phase but appears orange when trapped in inclusions
within the ice. The partial wetting of the surface is evident. (e) The lower region of a lab-grown icicle with
130 ppm sodium fluorescein dye. The tip region is completely wetted by a thin liquid film. (All images
courtesy of Stephen Morris.) (Color figure online)

water on ice, this may be related to their observation that pure water tends to form
rivulets along the icicle rather than a continuous, essentially uniform film. However,
extensive laboratory studies had already shown that rivulets are themost common form
of water flow on rippled icicles at any impurity concentration (see Fig. 1d), though
continuous films of water are more prevalent at higher impurity concentrations [9],
particularly coating the lower portions of icicles (see Fig. 1e), which may be where
ripples are born.

It is an open question how rivulets interact with the evolving morphology of icicles
and, to my knowledge, no one has considered them in any theoretical study of icicle
ripples. Given that this paper is, in large part, a review of existing theoretical studies
and a springboard for future studies, I will for the most part ignore the rivulets and
assume that the film of water is continuous and uniform, which may in any case be
appropriate for the lower portions of the icicle, as mentioned above. For simplicity, I
will also confinemy analysis to two dimensions, focusing on physical processes acting
across and along the film.The analyses in this paper are thereforemore directly relevant
to ice formed fromwater flowing down a vertical plane, and it is with such experiments
that quantitative comparisons will be made. However, the physical interactions that
form the main focus of my discussions apply equally to conical icicles.

Although Chen andMorris [7] have found significant influence of impurity concen-
tration on the growth andmigration of ripples, Ladan [10] found that the freezing-point
depression caused by impurities had very little influence on his linear-stability results.
The role of impurities is unclear, and they may have more influence on the nonlinear
development of ripples than on their genesis. I will discuss this a little in Sect. 7 but
will not consider impurities in any of the modelling presented here.
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Some authors have focused on the hydrodynamics of the water film (e.g. Campore-
ale et al. [11]), considering the effect of the phase boundary on the roll waves that can
form on the free surface of the film. Ogawa and Furukawa [12] and Ueno [13] start in a
similar way, invoking the Orr–Sommerfeld equations to describe perturbations of the
flow, but then effectively take the limit of small Reynolds number Re = Uh/ν (where
U is a characteristic speed of the longitudinal flow, h is the thickness of the film and
ν is its kinematic viscosity), at which such hydrodynamic instabilities do not occur.
Indeed, the relevant dimensionless parameter determining the influence of inertia in a
thin-film flow is the reduced Reynolds number (h/L)Re, where L is a characteristic
longitudinal length scale, such as the wavelength of the ripples. Typical estimates for
icicles are thatU ≈ 1 cm s−1, h ≈ 10−2 cm, ν ≈ 10−2 cm2 s−1 and L ≈ 1 cm, which
gives a Reynolds number of about unity but a reduced Reynolds number of only about
10−2. I shall therefore ignore inertia throughout and simply use lubrication theory to
describe the thin-film flow.

Without hydrodynamic instability, it is widely anticipated and featured in theoret-
ical models that the primary driving mechanism for ripple-forming instabilities on
icicles is the point effect of diffusion: heat is diffused more efficiently from protru-
sions of the icicle into the ambient environment, which promotes their growth (see
[14], for example). This is the driving mechanism for the Mullins–Sekerka, mor-
phological instability of a solid growing into a supercooled melt and, with impurity
concentration playing the role of heat, for morphological instability of an alloy solidi-
fying from a binary melt [15]. The growth rate of instabilities resulting from the point
effect of diffusion grows linearly with wavenumber, which leads to an ultra-violet
catastrophe: the shorter the wavelength of an incipient ripple, the faster it grows. This
catastrophe is averted during solidification from melts by the Gibbs–Thomson effect
resulting from surface energy of the solid–liquid phase boundary, in consequence
of which the melting temperature of protrusions is less than that of planar interfaces.
This stabilises short-wavelength perturbations and results in the fastest growing wave-
lengths being of the order of microns given typical conditions, which is much smaller
than the wavelengths of ripples seen on icicles. Morphological instabilities in binary
systems caused by constitutional supercooling following rejection of impurities have
wavelengths that are typically ten times smaller even than those caused thermally
during solidification of a supercooled melt. This has led previous authors to neglect
Gibbs–Thomson undercooling entirely. We shall see here, however, that it can play a
significant role in wavelength selection for a variety of reasons.

From their analytical studies, Ogawa and Furukawa [12] and Ueno [13] both con-
cluded that the heat advected by the film of water surrounding icicles would stabilise
short wavelengths and result in wavelengths of the fastest growing ripples of around
a centimetre, as observed. However, I find instead that the advection of heat by the
flowing film is destabilising, as shown in Sect. 4. A significant new finding is that
the phase shift between corrugations to the ice–film interface and the film–air inter-
face, which Ueno [13] identifies but subsequently ignores in part, reduces the growth
rate of short-wavelength perturbations sufficiently to explain wavelength selection at
millimetric length scales that are independent of environmental conditions and quite
insensitive to the flow rate of the film, as well as the observed upwards migration of
ripples. However, in Sect. 4, I find that wavelength selection by this mechanism is lost
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at high flow rates once the point effect of diffusion ceases to influence the phase bound-
ary and morphological instability is driven instead by perturbations to the advected
heat flux caused by the surface-tension-driven Laplace pressure. I begin in Sect. 2 by
developing a simple, heuristic model of ripple formation on icicles, involving just the
point effect of diffusion and surface tension of the interface between the liquid film
coating an icicle and the surrounding air. This proves sufficient to predict ripples of
finite wavelength, of millimetric scale, that migrate upwards. In Sect. 3, I show that
Gibbs–Thomson undercooling has little influence on the predicted wavelengths but
does serve to stabilise completely ripples with wavelengths shorter than about 2mm.
In Sects. 4 and 5, I consider the role of advective heat transport in the film using
detailed, thin-film analyses of the flow and associated heat transfer. The results of
Sect. 4, in which I develop an asymptotic solution in the limit of small reduced Péclet
number p are shown to reduce to the results of the heuristic model in the limit p → 0.
For larger values of p, I show in Sect. 5 that the point effect of diffusion becomes
ineffective at large flow rates but a new balance involving advective heat transport and
Gibbs–Thomson undercooling serves to select a finite wavelength of instability that
is still of order millimetres. In Sect. 6, I compare and contrast previous linear stabil-
ity analyses of ripple formation in the light of the new calculations presented in this
paper. While these results reproduce key qualitative observations, with appropriate
magnitudes, they slightly under-predict the observed wavelengths and leave several
questions unanswered, some of which are discussed in Sect. 7.

2 A heuristic model

There are several physical processes involved in the formation and evolution of the
morphology of icicles, and very many dimensionless physical parameters to consider.
Analytical progress is often made by exploiting the fact that some dimensionless
parameters are small but care must be taken not to discard consideration of important
physical processes, and we shall see that numerical factors (of 2π for example) can be
significant when deciding whether certain parameters are large or small. One approach
is to start from what might be considered as a full system of equations and to reduce
those asymptotically by taking particular limits of the governing parameters. In this
paper, I take a more synthetic approach, starting in this section with what seems to
be the minimal model capable of describing the main observations: the formation of
ripples with millimetric length scales that migrate upwards.

2.1 Fluid flow

Consider a vertical, two-dimensional icicle covered with a continuous film of water
that flows under gravity, as shown in Fig. 2. Let the positions of the ice–film and film–
air interfaces be at y = η1eiαx+σ t and y = h + η2eiαx+σ t respectively, where x is
vertically downwards and y is horizontal, measured from the undisturbed location of
the ice–water interface. These represent normal-mode perturbations to a uniform film
of thickness h with wavenumber α and growth rate σ . The perturbation amplitudes η1
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Fig. 2 Schematic diagram of the surface of an icicle coated by a film of water. The dashed lines show
the unperturbed positions of the ice–film and film–air interfaces. a At long wavelengths, the film is almost
uniform in thickness and the air interface is almost in phase with the ice interface. bAt shorter wavelengths,
the air interface is flatter and its phase is shifted upwards with respect to the ice interface. The flow is
illustrated in (a), while the undisturbed temperature field is shown in (b)

andη2 may be complex and therefore allow for a phase shift between the two interfaces.
To avoid clutter, I will often write perturbation quantities such as η1eiαx+σ t simply
as η1, with the exponential structure of the normal mode left implicit. Given that the
film is very thin, we use the lubrication approximation that αh � 1. A well known
result in fluid mechanics, found in many introductory texts (e.g. Worster [16]), is that
the volume flux per unit width q in a two-dimensional, free-surface film on a rigid
boundary is proportional to the cube of its thickness H , given by

q = 1

3μ

(
ρg − ∂ p

∂x

)
H3, (1)

where p is the dynamic pressure in the film, ρ is its density, μ its dynamic viscosity
and g the acceleration due to gravity. A detailed analysis leading to this result is given
in Sect. 4.

For the film coating an icicle, the dynamic pressure is given solely by the
Laplace pressure resulting from surface tension γ of the film–air interface, with
p = γ × curvature ≈ −γ η2xx relative to the ambient pressure of the air, where
the approximation is made by linearising for small displacements η2. Therefore,

q = 1

3μ
(ρg − iγα3η2)(h + η2 − η1)

3, (2)

which can be linearised to give

q ∼ g

3ν
h3 + g

ν
h2(η2 − η1) − i

γα3h3

3μ
η2, (3)

where ν = μ/ρ is the kinematic viscosity of water.
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The flow rate (about 1cm s−1) is much faster than the lateral growth rate (about
10−4 cm s−1), so on the time scales of interest, relating to the growth of ripples, the
flow can be considered steady. In addition, for common, dripping icicles, the water
supply rate is much greater than the rate at which water is converted to ice, so the
volumetric dripping flux is very close to the supply rate and q can be taken to be
independent of x . In accordance with most experiments, we also take q to be constant
in time. Therefore, at leading order, Eq. (3) shows that

h =
(
3νq

g

)1/3

, (4)

while the first-order contributions to the flux must be zero, which gives

η2 = η1

1 − i
α3h
, (5)

where 
 is the square of the gravity-capillary length lgc = (γ /3ρg)1/2.
This result, determined by Ueno [13] after working through the Orr–Sommerfeld

equation, is illustrated in Fig. 2. We see from the expression for η2 and in Fig. 2 that at
small wave numbers (long wavelengths) the film–air interface is almost in phase with
the ice–film interface and has a similar amplitude, while at large wave numbers (short
wavelengths) the film–air interface is shifted upstream and its amplitude is smaller.
The phase shift tends to π/2 as α → ∞. This primary result is sufficient to explain
the main qualitative experimental observations, as described below.

2.2 Thermodynamics

We can estimate the film thickness h from expression (4). The kinematic viscosity of
water ν ≈ 2×10−2 cm2 s−1, and the acceleration due to gravity g ≈ 980 cm s−2, while
the maximum fluid flux per unit width reported by Ueno [13] is about 100ml/h/cm
≈ 3 × 10−2 cm2 s−1. These parameter estimates give h ≈ 10−2 cm=100μm. In the
unperturbed state, we assume that the ice–film interface is at the freezing temperature
Tm and that the temperature decays to T∞ across a boundary layer in the air. For
the sake of estimation, we assume that the decay is exponential, with a characteristic
decay length δ, and that the temperature varies linearly across the water film. The
unperturbed temperature field is shown schematically in Fig. 2b. Note that the liquid
film is supercooled.

In a quiescent environment, the thermal boundary layer in the air is quasi-steady,
determined by a balance between conduction and advection and between thermal
buoyancy and viscous dissipation. Its width can be estimated as δ ∼ Ra−1/4z, where
z is the vertical distance from the tip and Ra = αT g�T z3/κaνa is a local Rayleigh
number, where αT , κa and νa are the thermal expansion coefficient, thermal diffusivity
and kinematic viscosity of air, respectively. Given the parameter values in Table 1 and
taking z ≈ 10 cm, this gives an estimate of δ ≈ 3 mm. We shall see, however, that the
main results of this paper are insensitive to the value of δ.
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While the interfaces are unperturbed, the balance of heat flux across the film–air
interface requires that

kw
Tm − Ta

h
= ka

Ta − T∞
δ

, (6)

where Ta is the temperature of the film–air interface, while kw and ka are the thermal
conductivities of water and air respectively. This relationship can be rearranged to
show that

Tm − Ta = ε

1 + ε
(Tm − T∞), (7)

where

ε = ka
kw

h

δ
. (8)

The ratio of conductivities is about 1/25, while h/δ ≈ 1/30. Therefore, ε is about
10−3 � 1 and Ta ≈ Tm to a very good approximation. For now, we simply assume
that this remains true once the film is perturbed: the film–air interface is essentially at
the freezing temperature, and the film simply carries the heat flux from the air to the
freezing front. Formally, in what follows, we let ε → 0.

Therefore, the Stefan condition governing the growth of the icicle is well approxi-
mated by

ρsL(V + ση1) = −ka
∂T

∂ y

∣∣∣∣
h+η2+

, (9)

where ρs is the density of ice, L is the latent heat of fusion, and V is the unperturbed
freezing rate normal to the surface of the icicle. We shall see that it is the phase shift
in this equation (the growth of the phase boundary at η1 is determined by the heat flux
at h + η2) that gives rise to the main observations.

The effective Stefan number for this problem ρsL/ρacpa�T , where ρa and cpa are
the density and specific heat capacity of air respectively, is very large (approximately
104). Therefore diffusive transport relaxes to a steady state much faster than the time
scale on which solidification proceeds, and we can consider the system depicted in
Fig. 2 to be stationary when calculating the thermal field and associated heat fluxes.
For simplicity, we also ignore advective heat transport of temperature perturbations in
the air, which therefore satisfy Laplace’s equation in y > h + η2, giving

T = T∞ + (Tm − T∞)e−(y−h)/δ + θae
−α(y−h)eiαx+σ t , (10)

where θa is a constant to be determined.
At leading order, the Stefan condition (9) gives

ρsLV = ka
�T

δ
, (11)
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where �T = Tm − T∞. This expression determines the lateral growth rate V of the
icicle.

At first order, the Stefan condition gives

ρsLση1 = −ka

(
�T

δ2
η2 − αθa

)
, (12)

while the temperature at the film–air interface is supposed for now to be fixed at Tm,
which requires the perturbation fields to satisfy

0 = −�T

δ
η2 + θa. (13)

We can eliminate θa between these two equations and use the expression for η2 in terms
of η1 given in Eq. (5) above to derive, finally, that the growth rate of disturbances of
wave number α is given by

δ

V
σ = −1 + αδ

1 − i
α3h
= (−1 + αδ)(1 + i
α3h)

1 + 
2α6h2
. (14)

The amplification rate of perturbations is given by the real part, σR, of σ given by

δ

V
σR = (−1 + αδ)

[
1 + 
2α6h2

]−1
. (15)

This dispersion relation is plotted as the dashed curve in Fig. 3a using parameters from
Table 1. These parameters are used for all the examples presented in this paper unless
otherwise stated. The small, negative growth rates near α = 0 arise in consequence
of the neglect of advection of the perturbation temperature field in the air: the entrain-
ment velocity that confines the thermal boundary layer in the air and determines the
boundary-layer thickness δ will also act on the perturbation field. Its effect would be
a small modification to the growth rate near α = 0 to bring the growth rate equal to
zero there. In practical terms, both the wavelength of ripples 2π/α and the width δ of
the thermal boundary layer in the air are about a centimetre, which gives αδ ≈ 2π . It
is, therefore, a reasonable approximation to take αδ to be large compared with unity,
in which case Eq. (15) can be approximated by

h

V
σR = αh

1 + 
2α6h2
. (16)

This approximation, shown as the solid curve in Fig. 3a, is equivalent to taking a linear
approximation for the unperturbed temperature field in the air (cf Ueno [13]), and is
used for the remainder of this paper.

Thewave numberαm corresponding to the largest growth rate can be found straight-
forwardly by setting the derivative of Eq. (16) with respect to α equal to zero to find


α3
mh =

(
1

5

)1/2

, (17)
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q (cm2 s−1)

λ
(cm)

(b)

Fig. 3 (a) The dispersion relation calculated using the heuristic model with water supply rate q = 3 ×
10−2 cm2 s−1. The dashed curve (Eq. (15)) includes the nonlinearity of the base-state temperature field in
the air, while the solid curve (Eq. (16)) represents the approximation used throughout this paper that the
base-state temperature field in the air is linear. (b) The wavelength of ripples predicted from linear stability
theory (18) (solid curve) and data from Ueno et al. [6]

Table 1 Physical parameter values used for illustration in this paper

Water–air surface tension γ 76 × 10−3 N m−1

Ice–water surface energy per unit area γsl 33 × 10−3 N m−1

Latent heat of fusion L 3.34 × 105 J kg−1

Density of ice ρs 980 kg m−3

Density of water ρ 1000 kg m−3

Density of air ρa 1 kg m−3

Thermal expansion coefficient of air αT 3.7 × 10−3 ◦C−1

Kinematic viscosity of water ν 1.8 × 10−6 m2 s−1

Kinematic viscosity of air νa 1.5 × 10−5 m2 s−1

Thermal diffusivity of water κ 1.3 × 10−7 m2 s−1

Thermal diffusivity of air κa 2.1 × 10−5 m2 s−1

Thermal boundary layer width δ 3 × 10−3 m

Thermal conductivity of ice ki 2.2 W m−1 K−1

Thermal conductivity of air ka 2.1 × 10−2 W m−1 K−1

Specific heat capacity of air cpa 103 J kg−1 K−1

which corresponds to a wavelength

λm = 2π

αm
= 2π(5)1/6(l2gch)1/3 = 2π

(
125

81

)1/18 (
γ 3νq

ρ3g4

)1/9

, (18)

havingmade use of Eq. (4) for h and the definition of
 in terms of physical parameters.
This is the primary result of this paper.We have foundwavelength selection without

Gibbs–Thomsom and without the advective heat transport focused on by previous
authors. We have also found that the wavelength increases only very slowly with
volume flux per unit width (proportional to q1/9) and that it decreases with the strength
of gravity. For flows down a plane inclined at an angle φ to the horizontal, the effective
gravity is g sin φ and we see that the wavelength decreases with φ (cf. experimental
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results shown in Ueno et al. [6]), in proportion to (sin φ)−4/9. It is interesting to
note that, while the growth rate depends on the thermodynamic parameters, such as
the degree of supercooling �T and the width of the thermal boundary layer δ, the
wavelength of the most unstable ripples in this leading-order theory depends only on
the flow parameters, including the surface tension of the water–air interface, as shown
in (18), and not at all on the thermal boundary layer in the air.

This result is shown in Fig. 3b, where it is comparedwith the data presented in Ueno
et al. [6] for solidification from a thin film flowing down a planar, vertical surface.
We see that, although it reproduces the observation that the wavelength increases only
very little with volume flux, the prediction of this heuristic model under predicts the
observations by a factor of almost 2.

In this heuristic model, ripples are formed from a morphological instability that
relies on the point effect of diffusion. This is the same mechanism that drives
the Mullins–Sekerka instability. However, whereas Gibbs–Thompson undercooling
caused by surface energy of the phase boundary stabilises short wavelengths of the
Mullins–Sekerka instability, here there is no stabilisation (the growth rates remain
positive) but the growth of perturbations is weakened at large wavenumber for two
reasons: surface tension in the film–air interface tends to flatten the interface more
strongly at large wave numbers, which reduces the point effect of diffusion; the pres-
sure gradients in the film caused by surface tension acting at the curved film–air
interface drive a phase shift between the phase boundary and the film–air interface
that tends to drive migration more than growth as the phase shift increases towards
π/2 as the wave number increases. This weakening is sufficient to provide amaximum
growth rate at millimetric wavelengths proportional to the cube root of the square of
the gravity-capillary length times the thickness of the water film that coats the icicle,
λm ∼ (l2gch)1/3. These length scales are verymuch longer than themicron-sized wave-
lengths characteristic of the Mullins–Sekerka instability but of similar magnitude to
those observed.

2.3 Migration of ripples

Afurther deduction can bemade fromour heuristicmodel,which is that ripplesmigrate
upwards in consequence of the physical interactions described above. The phase speed
of ripples in the x direction (downwards) is

c = −σI

α
,

where σI is the imaginary part of σ . To the same approximation used above (αδ � 1),
Eq. (14) gives the rate of translation for the fastest growing mode to be

cm = −σI (αm)

αm
= −

√
5

6
V ,

whichpredicts that ripplesmigrate upstreamwith an angle of propagation tan−1(
√
5/6)

≈ 20◦ to the horizontal. This is somewhat shallower than the values of roughly 30◦
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measured by Ueno et al. [6] on a planar, vertical ice sheet and much shallower than
the values of up to 60◦ measured by Ladan and Morris [17] on conical icicles.

3 The effect of surface energy

As has been noted above and by several previous authors, the competition between the
point effect of diffusion and Gibbs–Thompson undercooling inherent in the Mullins–
Sekerka instability predicts wavelengths of morphological instability that are far
shorter than observed. This has resulted in the near neglect of surface energy in previ-
ous studies. However, we have seen that the phase shift between the ice–film interface
and the film–air interface weakens the growth of ripples significantly at large wave
numbers, so even a weak undercooling related to surface energy might be significant.

We can include the Gibbs–Thompson undercooling straightforwardly in the heuris-
tic model of the previous section, noting that the equilibrium temperature at a phase
boundary of curvature K is given by

Te = Tm − γslTm
ρsL

K. (19)

The unperturbed ice has uniform temperature Tm, while the perturbed temperature
field in the ice is

T = Tm − �T lcα
2η1e

αyeiαx+σ t , (20)

where lc ≡ γslTm/ρsL�T is the capillary length for the solid–liquid phase boundary
(equal to half the critical nucleation radius at an undercooling of �T ). Equation (13)
for the temperature at the film–air interface is therefore modified to

θa = �T

δ
η2 − �T lcα

2η1, (21)

while the Stefan condition (9) becomes

ρsL(V + ση1) = −ka
∂T

∂ y

∣∣∣∣
h+η2+

+ ki
∂T

∂ y

∣∣∣∣
η1−

, (22)

where ki is the thermal conductivity of ice. Putting this together, we find that the
growth rate is given by

h

V
σR = αh

1 + 
2α6h2
− lcδhα3

(
1 + ki

ka

)
, (23)

using the same approximation αδ � 1 used above. This reproduces the earlier result
(15) if lc = 0. If instead we set 
 = 0, we obtain the balance between the point
effect of diffusion and Gibbs–Thomson undercooling of the ice–water phase boundary
represented in the classical Mullins–Sekerka instability, shown by the dashed curve in
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Fig. 4 The dashed curve shows the dispersion relation resulting from a simple competition between the
point effect of diffusion into surrounding air and Gibbs–Thomson undercooling of the ice–water phase
boundary with water supply rate q = 3 × 10−2 cm2 s−1. It is obtained by setting 
 = 0 in Eq. (23). The
solid curve (Eq. (23)) includes additionally the phase shift induced by the water–air surface tension. These
curves are calculated with �T = 10◦C

Fig. 4. However, given that ki/ka ≈ 102, the wavelength of the most unstable mode
with 
 = 0 is λm = 2π

√
3lcδ ki/ka ≈ 600 μm. This is an order of magnitude larger

than typical wavelengths of the Mullins–Sekerka instability for ice growing into an
extended region of supercooled water.

The full expression (23) is plotted as the solid curve in Fig. 4. We see that the phase
shift induced by surface tension of the film–air interface decreases the most unstable
wavenumber (increases the most unstable wavelength) significantly. Gibbs–Thomson
undercooling does have a significant influence in the sense that we see a cutoff in
unstable wavenumber at about α/2π = 4 but it has negligible influence on the most
unstable wavelength shown in Fig. 3.

4 Advection of heat by the water film

Up till now, we have considered the film of water coating the icicle to be sufficiently
thin that the temperature field within it remains linear and the heat flux conducted
from the ice–film interface into the film is equal to the heat flux conducted out of
the film at the film–air interface. In this section, we will find that, although it is very
thin, the film carries a significant heat flux, which creates a mismatch between these
conductive fluxes. To do this, we need to determine the structure of the velocity and
temperature fields within the film.

Still using the thin-film, lubrication approximation, the vertical velocity u in the
film satisfies the parallel-flow equation

μ
∂2u

∂ y2
= −ρg + ∂ p

∂x
≡ −(ρg − iγα3η2), (24)

in which we have used the linearised curvature to determine the Laplace pressure due
to surface tension of the film–air interface. This equation is readily integrated, using
the no-slip condition at y = η1 and the no-stress condition at y = h + η2, to find
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u = g

2ν

(
1 − i

γ

ρg
α3η2

)
(y − η1) [2(h + η2 − η1) − (y − η1)] . (25)

The volume flux q per unit width of the flow is found by integrating this expression
from y = η1 to y = h + η2, which gives Eq. (2).

Writing u = u0 + u1, where u1 � u0, we can linearise Eq. (25) with respect to η

to find the leading-order, undisturbed flow

u0 = g

2ν
y(2h − y) (26)

and the first-order, linear perturbation

u1 = −g

ν
(h − y)η1 + g

ν
y(η2 − η1) − i

γ

2μ
α3y(2h − y)η2. (27)

We can then use relation (5) between η2 and η1 to show that

u1 = −g

ν
(h − y)η1 + i

γ

6μ
α3(3y2 − 4hy)η2, (28)

while the continuity equation ∇ · u = 0 shows that the cross-film velocity

v = −
∫

∂u

∂x
dy = −iα

∫
u1 dy ≡ v1 = iαu0(y)η1 − 
α4yu0(y)η2, (29)

given that v1 = 0 at the ice interface. The first term arises in consequence of the
deflection of the flow by the perturbed ice interface, giving a transverse flow that is
π
2 out of phase with the ice interface, while the second term represents the transverse
flow driven towards the ice interface by the Laplace pressure in phase with the air
interface. We will see shortly that the former drives a heat flux that is balanced by
advection of heat along the film by the mean flow, while the latter compresses the
isotherms, enhancing the heat flux away from the ice interface and thereby enhancing
instability.

The advection–diffusion equation describing conservation of heat in a thin film is

κ
∂2T

∂ y2
= u

∂T

∂x
+ v

∂T

∂ y
, (30)

where κ is the thermal diffusivity of the liquid film. Ignoring Gibbs–Thomson under-
cooling for the moment, the temperature field in the film satisfies

T = Tm at y = η1, (31)

given that the temperature of the phase boundary is equal to the freezing temperature,
while

[T ]+− = 0 at y = h + η2, and kw
∂T

∂ y

∣∣∣∣
h+η2−

= ka
∂T

∂ y

∣∣∣∣
h+η2+

, (32)
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representing continuity of temperature and heat flux at the film–air interface.
The undisturbed state is linear in the film with

T = T0(y) ≡ Tm − ε

1 + ε
�T

y

h
, (33)

while we take the undisturbed temperature field in the air to be

T = T∞ + �T

1 + ε
e−(y−h)/δ (34)

as before. We now take ε � 1, being careful only to neglect ε when it is added to
order-unity constants, such as in the denominator of the second terms in (33) and (34),
and write

T = Tm − ε�T
y

h
+ θ(y)eiαx+σ t (35)

in the film and

T = T∞ + �T e−(y−h)/δ + θae
−α(y−h)eiαx+σ t (36)

in the air, where we have again assumed that the temperature perturbation in the air
simply satisfies Laplace’s equation.

The boundary conditions on the perturbed temperature field in the film can be
determined from Eq. (31), which gives

θ(0) = ε�T
η1

h
, (37)

and Eqs. (32), which give

θ(h) − ε�T
η2

h
= θa − �T

η2

δ
,

hθ ′(h) = ε�T
η2

δ
− εαδθa.

(38)

We can eliminate θa between these last two equations to give the mixed boundary
condition

hθ ′(h) = −εαδθ(h) − ε�Tαη2, (39)

having used the approximations εδ/h = ka/kw � 1 and αδ � 1 as before.

4.1 Scaled equations

From the advection–diffusion equation (30), we can deduce the perturbation equation

κθ ′′ = iαu0θ + v1T
′
0(y). (40)
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We now scale θ with ε�T and scale y, η1 and η2 with h to obtain the dimensionless
equation

θ ′′ = i p f (y)(θ − η1 − iGyη2), (41)

in which the dimensionless unperturbed flow f (y) = 3
2 y(2− y) has a mean of unity,

the reduced Péclet number p = αhP , where P = q/κ is the Péclet number, and
G = 
α3 h is the significant dimensionless grouping that arose in the heuristic model.
This equation is subject to the dimensionless boundary conditions

θ(0) = η1 (42)

from (37) and

θ ′(1) = −αhη2 (43)

from (39), having used again the approximation that εδ/h = ka/kw � 1.

4.2 Solutions for small reduced Péclet number

We can start to understand the role of advective heat transport in the water film by
considering the limit p � 1. This is the same limit explored by Ueno [13]. Ueno
developed a formal solution to an equation similar to (41) in terms of convolutions
of hypergeometric functions and then used a low-order Taylor expansion to evaluate
the integrals approximately for p � 1. Here, we develop a series solution in p � 1
iteratively, directly from the differential equation. At leading order as p → 0, the
solution to (41) with boundary conditions (42) and (43) is linear, given by

θ = η1 − αhη2y. (44)

At the next iteration, we use this leading-order solution in the right-hand side of (41)
and integrate the equation across the layer to find that

θ ′(1) − θ ′(0) = −5i

8
p [αh + iG] η2, (45)

Note that the factor 5
8 comes from the integral of y f (y) across the film. Note also that

we haven’t needed to find the perturbed temperature field within the film explicitly,
which we will explore further in the next section.

The Stefan equation

ρsLση1 = −kw
∂θ

∂ y

∣∣∣∣
η1+

(46)
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can be expressed in terms of scaled variables as

hσ

V
η1 = −θ ′(0) = −θ ′(1) − 5i

8
p [αh + iG] η2, (47)

using (45), which gives the dispersion relation

h

V
σ = αh + 5

8 pG − 5i
8 pαh

1 − iG , (48)

with real part

h

V
σR = αh + 5

8 pG(1 + αh)

1 + G2 . (49)

This has terms of similar structure to those obtained by Ueno [13] (his equation 48).
However, Ueno used different boundary conditions, allowing an arbitrary temperature
of the ice–film interface while fixing the temperature of the film–air interface, and
determined that advection of heat is stabilising. In contrast, Eq. (49), derived using
boundary conditions that the ice–film temperature is equal to the freezing temperature
and allowing continuity of temperature at the ice–film interfacewithout fixing it, shows
advection to be destabilising. This is a significant point of departure and so requires
scrutiny. We will do this in the next section and further in Sect. 6 but for now simply
explore the predictions of the dispersion relation (49).

4.3 Effect of advection on themost unstable wavelength

We can approximate (49) by

h

V
σR = αh + 5

8 pG
1 + G2 (50)

in the thin-film limit αh � 1. We can then set its derivative with respect to α to zero,
recalling that G = 
α3 h and p = αhP are functions of α, to find that the maximum
growth rate occurs at wavenumber αm determined from

5PG3 + 20G2 − 10PG − 4 = 0. (51)

It is cumbersome to find the root Gm(P) of this equation analytically but it is straight-
forward to show that Gm → 1/

√
5 as P → 0, while Gm → √

2 as P → ∞. Given
also that the wavelength corresponding to the maximum growth rate

λm = 2π
[
Gm

(q
κ

)] −1/3
(

γ 3νq

9ρ3g4

)1/9

, (52)

which is equivalent to (18) when Gm = 1/
√
5, only depends on G1/3

m , we see that flow
with small reduced Péclet number has little influence on the wavelength of ripples,

123



15 Page 18 of 30 M. G. Worster

Fig. 5 The wavelength λ of the most unstable ripples determined to first order in p plotted as a function of
volume flux q per unit span. The dashed curves show asymptotic results for λ at small and large values of
q, both of which are proportional to q1/9

multiplying the key result obtained from the heuristic model by at most a factor of
(10)1/6 ≈ 1.47 as the Péclet number varies. This contrasts strongly with the result
given byUeno, using different boundary conditions, who finds an expression similar to
(50) but with a minus sign in front of the second term in the numerator, which leads to
Gm(P) ∝ P−1 as P → ∞. We see from Fig. 5 that, according to the result presented
in Eq. (52), the variation of the wavelength with the input flux is even weaker than
predicted by the heuristic model, but with values about 30% smaller, putting these
predictions even further away from the experimental results.

5 Advection-dominated heat transfer

The results of the previous section give an indication of the effects of advective trans-
port of heat in the film. However, they are only relevant when the reduced Péclet
number p is small, when the thermal field across the film is quasi-linear. To get a
better understanding of the role of advection, it is helpful to determine how the ther-
mal field is modified at higher flow rates, when the reduced Péclet number is not
small. Equation (41) is linear and was solved formally by Ueno [13] as convolu-
tions of hypergeometric functions. It could also be solved in closed form using similar
hypergeometric functions, expressed as parabolic cylinder functions. However, a more
transparent, approximate solution can be obtained by replacing the base-state velocity
field u0 with its mean value, which is equivalent to putting f (y) ≡ 1, to yield

θ ′′ − i pθ = −i pη1 + pGη2y. (53)

This is a reasonable approximation to make given that u0(y) is one-signed. The result-
ing hyperbolic functions have a similar mathematical structure to the corresponding
parabolic cylinder functions but are more familiar and so are more readily interpreted
physically. This second-order, linear differential equation is subject to boundary con-
ditions
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θ(0) = η1, θ ′(1) = −αhη2. (54)

Equations (53) and (54) are readily solved to find

θ(y) = η1 + iGyη2 − (αh + iG)√
i p

sinh
(√

i py
)

cosh
√
i p

η2. (55)

The dimensionless Stefan condition (47) then gives

h

V
ση1 = −θ ′(0) =

[
(αh + iG)sech

√
i p − iG

]
η2, (56)

which gives the dispersion relation

h

V
σ = (αh + iG)sech

√
i p − iG

1 − iG . (57)

When p � 1, sech
√
i p ∼ 1 − 1

2 i p and

h

V
σ ∼ αh + 1

2 pG − i
2 pαh

1 − iG , (58)

so the real part of the growth rate σR is given by

h

V
σR ∼ αh + 1

2 pG(1 + αh)

1 + G2 . (59)

These are essentially the same results as those obtained in the previous section, simply
with the factor of 5

8 replaced by
1
2 ,which gives confidence to themathematical structure

of these expressions and the physics they describe at small, non-zero, reduced Péclet
number. The former result is the more accurate as it arises from an iterated expansion
of the full equations rather than a series expansion of the solution to the approximated
equations.

The asymptotic results (49) and (59) are valid in the limit of small reduced Péclet
number, p = αhPe � 1. However, using the parameters from Fig. 3 at the critical
wavenumber, p is greater than unity once q is greater than about 10−2 cm2s−1, so we
should consider the full dispersion relation (57). The analytical expression for the real
part of (57) is cumbersome and not particularly illuminating but the expression can be
used in Mathematica™(for example) to produce the plots of the growth rate shown in
Fig. 6 for different film fluxes, expressed in terms of the Péclet number Pe. We see that
the asymptotic result (59) is very close to the full solution when Pe = 0.25 (the solid
and dashed curves are almost indistinguishable), and the local maximum is reasonably
well captured up to Pe = 4, when the reduced Péclet number p at the wavenumber
corresponding to the maximum growth rate is approximately 0.5. We also see the near
independence of the wavenumber corresponding to maximum growth rate illustrated
in Fig. 5.
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Fig. 6 The solid curves show the dispersion relations calculated using the approximate model leading to
the real part of (57) for three values of the Péclet number Pe = 0.25, 1, 4, while the dashed curves show the
corresponding asymptotic results (59) valid for small reduced Péclet number p = αhPe. The corresponding
values of p at the local maxima are approximately 0.01, 0.08 and 0.5

At higher values of the Péclet number, there is no local maximum of the dispersion
relation and so no wavelength selection. Given that sech z → 0 as |z| → ∞, it is
straightforward to see from (57) that at large Péclet number

h

V
σ ∼ −iG

1 − iG , (60)

which tends to unity as G = 
α3h → ∞, so as α → ∞. Stabilisation of small
wavelengths is, however, still provided byGibbs–Thomson undercooling. Its dominant
effect is to provide a stabilising heat flux into the ice, which modifies the dispersion
relation (60) to give

h

V
σR ∼ G2

1 + G2 − lcδ

l2gc

ki
ka
G, (61)

as shown in the Appendix. Note that this gives the same additional term relating to
Gibbs–Thomson undercooling as was given by Eq. (23) in the limit ki/ka � 1. This
modified dispersion relation gives a maximum growth rate when

2Gm = lcδ

l2gc

ki
ka

(
1 + G2

m

)2
, (62)

which has the approximate solution

Gm ≈
(
2
l2gc
lcδ

ka
ki

)1/3

, (63)

with corresponding wavelength
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λm ≈ 2π

(
1

2

ki
ka

δ lcl
4
gch

3
)1/9

. (64)

We see from this expression that the predicted wavelength corresponding to maximum
growth rate is still proportional to q1/9 and also that the role of the capillary length
associated with the solid–liquid phase boundary is much diminished relative to the
classical Mullins–Sekerka result, the wavelength being proportional to l1/9c rather than
l1/2c . The wavelength predicted by (64) is about 2mm at q = 3× 10−2 cm2 s−1. This
prediction, made for very large Péclet number, is smaller than that at modest Péclet
number (about 4mm, see Fig. 5), which is itself smaller than that made by the heuristic
model of Sect. 2, equivalent to zero Péclet number, (about 5.5 mm, see Fig. 3b). The
point is that Gibbs–Thomson undercooling is required to stabilise short wavelengths
when there is strong, destabilising advection and that it results in wavelengths on
millimetre scales rather than the micron scales anticipated by previous authors.

5.1 Structure of the thermal field

The effects of advection of heat by the film flow can be understood by examining the
eigenfunctions of the temperature field, shown in Fig. 7. These are contour plots of
the real part of (θ(y)−η1)eiαx/η2 (top row) and of (θ(y)−η1)eiαx/η1 (bottom row).
Thus the temperature contour at y = 0 corresponds to the freezing temperature in
each panel. The top row is centred on protrusions of the film–air interface, while the
bottom row is centred on protrusions of the ice–film interface.

In the top, left panel, at small reduced Péclet number p ≈ 0.08, we see that the
temperature perturbation is in phase with the film–air interface and is colder where
there are protrusions into the air (x = 0). This is the point effect of diffusion, which is
the primary drivingmechanism for morphological instability. In the bottom, left panel,
we see that the phase shift upstream of the film–air interface relative to the ice–film
interface weakens the thermal flux away from the ice–film interface, which tends to
stabilise the perturbation. We also see that the magnitude of the temperature gradient
is larger slightly upstream of the protrusion of the ice-film interface, which causes the
growth rate to be larger there and results in upstream migration of the ensuing ripples.

In the top, middle panel, at intermediate reduced Péclet number p ≈ 2, we see
that advection carries the temperature perturbation downstream and gives a maximum
growth rate just downstream of protrusions of the film-air interface, which would
tend to make ripples migrate downstream. However, the phase shift of the film–air
interface relative to the ice–film interface more than compensates for this and the
migration remains upstream, as shown by the bottom, middle panel.

The top, right panel shows that at very high flow rates corresponding to a high
reduced Péclet number p ≈ 40, the temperature perturbation is almost everywhere
π/2 out of phase with the perturbation of the film–air interface, which would cause
downstream migration with essentially no growth. However, as shown in the bottom,
right panel, the phase shift of the film–air interface relative to the ice–film interface
converts that migration into almost pure growth, with only very weak downstream
migration remaining.
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Fig. 7 Eigenfunctions of the temperature perturbation relative to the temperature of the ice–film interface
Re[(θ(y) − η1)eiαx at flow rates with Péclet numbers 1, 10, 100, which correspond to reduced Péclet
numbers p approximately equal to 0.078, 1.7, 36 respectively, given the parameter values in Table 1 and
wavenumber α/2π = 3 cm−1, which corresponds approximately to the maxima shown in Fig. 6. The top
row shows the eigenfunctions relative to the film–air interface, while the bottom row shows them relative
to the ice–film interface. The contour values given for the lowermost, non-zero contour in each of the lower
panels show that the strength of the negative temperature gradient and hence the growth rate of instability
increase as the flow rate increases

At very large reduced Péclet number, Eq. (55) shows that the temperature pertur-
bation has a linear contribution plus a complementary function

θc(y) = − (αh + iG)√
i p

sinh
(√

i py
)

cosh
√
i p

η2. (65)

whose character is illustrated in Fig. 8. We see that it is an exponentially decay-
ing oscillation, characteristic of oscillatorally forced solutions of diffusion equations,
such as Stokes layers, in consequence of temperature perturbations advected from
upstream protrusions of the film–air interface. This complementary function has neg-
ligible influence on the phase boundary, contributing little to the heat flux there, which
is dominated by the particular integral

θp(y) = η1 + iGyη2. (66)

The first term of this expression simply keeps the ice–film interface at the freezing
temperature to first order in the perturbations. The second term is a consequence of the
Laplace pressure associatedwith surface tension of the film–air interface. This tends to
weaken the flow from trough to crest of the film–air interface. Therefore, conservation
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Fig. 8 The real part of the complementary function θc(y) for the perturbation to the temperature field at
reduced Péclet number p = 100, showing oscillatory character decaying away exponentially from the
film–air interface y = 1

of heat in this advection-dominated flow requires that the temperature perturbation
is strongest between trough and crest (travelling downstream) and weakest between
crest as trough, as shown in the top, right panel of Fig. 7. It is this advection-dominated
heat transfer that leads to the dispersion relation (60).

6 Discussion

The analysis of the preceding sections sheds light on some previous, related studies
[10, 12, 18], which I compare and contrast here. Ueno’s analysis [18] is essentially
repeated in Ueno [13] and Ueno et al. [6], the latter making some direct comparisons
between the modelling assumptions of Ogawa and Furukawa [12] and those of Ueno
[18].

All of these studies formally consider hydrodynamic perturbations to the film flow
via the perturbedNavier–Stokes equations leading to theOrr–Sommerfeld equation for
the stream function. Ueno [13]makes explicit that the reducedReynolds numberαhRe
is small and neglects inertial contributions to the Orr–Sommerfeld equation. Ogawa
and Furukawa [12] make series expansions in powers of αh of all their perturbed
quantities, and make an approximation for the stream function by keeping only its
leading-order (zeroth-order) terms. So, without stating it as such, they also neglect
inertia. Ladan [10] retains the inertial contributions to the Orr–Sommerfeld equation
but it can be noted that he takes a Reynolds number of 0.36 and wavenumbers up
to αh = 0.2, so considers reduced Reynolds numbers only up to αhRe = 0.072.
Numerically speaking, therefore, inertia is negligible in his study too. In this paper, I
have ignored inertia from the outset by using the thin-film equations rather than the
Navier–Stokes equations to describe the film flow.

That all these studies are similar with respect to their modelling of the film flow is
evidenced by the similarity between Fig. 5c (curve labelled ‘α �= 0’) of Ueno et al. [6],
in which they compute solutions using their hydrodynamic boundary conditions but
the thermodynamic boundary conditions used by Ogawa and Furukawa [12], which
are the same as those used in this paper, Fig. 2.2 of Ladan [10], and Fig. 6 of this paper
(curve labelled ‘Pe = 4’), which are computed for similar parameter values.
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Although Ogawa and Furukawa [12] initially include surface tension between the
water film and the surrounding air in their general set of equations and determine an
associated phase shift between the film–air interface and the ice–film interface in their
appendix (Eq. A28), they subsequently ignore it on the grounds that the product of the
film thickness and the amplitude of perturbations to the interfaces is second-order in
small quantities. This sounds physically reasonable but is formally incorrect because,
though small by somemeasure, the film thickness is a finite quantity, whereas in linear
stability theory perturbations are infinitesimal. The linearisation should be just in the
infinitesimal perturbation quantities. The finite-amplitude perturbations that are wit-
nessed experimentally and in nature are significantly larger than the film thickness but
such consideration falls well outside the linear theory considered in all these works.
Ueno [18] appropriately highlights the phase shift between the interfaces, and we have
seen in this paper (Sect. 2) that it is sufficient to provide wavelength selection with-
out advection of the thermal field by the film. Unfortunately, Ueno missed this point
by ignoring G2 in the denominator of his equivalent of Eq. (49). The most signifi-
cant difference between these various studies lies in the thermal boundary conditions
employed. Ogawa and Furukawa [12], Ladan [10] and the analysis presented here
take the ice–film interface to be at the freezing temperature Tm and impose continuity
of temperature and of heat flux across the film–air interface. These physical bound-
ary conditions are used consistently for the base state and the perturbations. Given
the very slow lateral growth rates of icicles, any kinetic undercooling of the phase
boundary will be truly negligible, so imposing T = Tm is extremely robust, as are
the conditions that temperature and heat flux are continuous at the film–air interface.
Contrasting these studies, while Ueno uses these same physical boundary conditions
for the base state, he arbitrarily keeps the temperature of the film–air interface fixed
even as that interface is perturbed. In consequence, he finds that the temperature of
the phase boundary must be allowed to deviate from Tm and is left arbitrary. To be
clear, the temperature offset �Tsl included in Ueno et al. [6, Eq. 12, for example)], is
not prescribed or determined by any physical process but is an allowance necessitated
by imposing the unphysical, mathematical boundary condition that the temperature of
the disturbed water–air surface is held fixed.

The previous studies solved the thermal advection–diffusion equation either by
series expansion (Ogawa and Furukawa [12] and Ueno [18] to second order in αh;
Ladan [10] to 100 terms) or by numerical integration [6]. The low-order series expan-
sions cannot capture behaviour at large Péclet numbers,while the high-order expansion
(calculated numerically) and the numerical integrations were done at particular, mod-
est Péclet numbers, typical of the laboratory experiments that have been done. An
advantage of finding closed-form solutions to the thermal advection–diffusion equa-
tion, albeit approximated by assuming a uniform flow in place of the actual parabolic
flow (Sect. 5), is that asymptotic solutions for large flow rates and large wave num-
bers can easily be discerned, which gives further insight into the physical interactions
involved.

The system solved by Ogawa and Furukawa [12] is approximated by the solution
found in this paper but with G = 0, given that they ultimately ignore the role of surface
tension. From Eq. (57), we see that their approximate dispersion relation would be

123



On icicle ripples Page 25 of 30 15

h

V
σ = αh sech

√
i p. (67)

This has the asymptotic approximation for p � 1

h

V
σ ∼ αh

(
1 − 1

2
i p − 5

24
p2

)
, (68)

from which Ogawa and Furukawa [12] concluded that ripples would migrate down-
stream (the imaginary part of σ is negative) and ripples are stabilzed by advection at
O(p2). These results are represented physically by the top row of Fig. 7 given that
Ogawa and Furukawa [12] do not include the phase shift between the interfaces.

We can see further from Eq. (67) that the model of Ogawa and Furukawa [12]
would predict that the growth rate tends to zero at large Péclet numbers, though it
oscillates between stability and instability as α increases. That ultimate stabilisation
can be understood from the top, right panel of Fig. 7, which shows that, at large
values of the Péclet number, the temperature perturbation is π/2 out of phase with the
perturbation of the film–air interface, which causes downward migration of the ripples
and no growth. Ogawa and Furukawa [12] conclude that ‘the water flow makes the
temperature distribution more uniform, which inhibits the Laplace instability [point
effect of diffusion]’. This is a reasonable conclusion reflected by the complementary
function shown in Fig. 8 but misses the contribution of the Laplace pressure arising
from surface tension that provides an advection-driven instability mechanism.

Though it cannot be interpreted physically, the mathematical boundary conditions
imposed by Ueno [18] applied to the approximate Eq. (53) leads to the solution

θ(y) = η1 + iGη2y − (αh + iG)√
i p

η2 sinh
[√

i p(1 − y)
]

(69)

and the dispersion relation

h

V
σ = (αh + iG)cosh

√
i p − iG

1 − iG . (70)

It is readily shown that this has a similar low-order expansion in powers of p as the
solution given by Ueno, in particular suggesting stabilisation at O(p). However, we
also see that, when G is large, the growth rate is proportional to 1− cosh

√
i p, whose

real part oscillates with exponentially growing amplitude as either the Péclet number
or the wavenumber increases. Such exponential growth, which cannot be overcome
by the Gibbs–Thomson effect, is perhaps further indicative of the unphysical nature
of this solution.

7 Conclusions

In this paper, we have revisited the interactions between heat transfer, fluid flow,
liquid–vapour surface tension and solid–liquid surface energy during the formation of
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an icicle in cold, ambient air from awater film flowing over its surface. Themain focus
of this study was the formation of ripples seen on the surfaces of most icicles, using
two-dimensional, linear stability analyses to gain understanding of what processes
determine the wavelength of the ripples, which are observed to be about a centimetre.

There are four length scales associated with this system: a diffusion length δ of a
few millimetres, characterising the thermal boundary layer in the air surrounding the
icicle; the capillary length lc of about a nanometre, associated with Gibbs–Thompson
undercooling of a curved ice–water phase boundary, which is characteristic of the
critical nucleation radius for an ice crystal to grow in a supercooled melt; the thickness
of the liquid film h coating the icicle, which is about 100μm; and the gravity-capillary
length lgc of about a millimetre, which is proportional to the height to which water
will rise in a capillary tube of similar diameter.

Focusingon the ice–water interface, analogyhas oftenbeendrawnwith theMullins–
Sekerka morphological instability for a solid growing into an supercooled melt. This
instability has a characteristic wavelength proportional to the geometric mean of the
diffusion length and the capillary length, which is a few microns, though it should be
noted that the constant of proportionality is 2π

√
3 ≈ 10, which gives a wavelength of

a few tens of microns. In Sect. 3, we noted that, although the icicle grows from a film
of water, the controlling thermal gradient is in the air, so the classicalMullins–Sekerka
result is modified by a factor of the square root of the ratio of thermal conductivities√
ki/ka ≈ 10, where ki and ka are the conductivities of ice and air respectively, giving

characteristic wavelengths of a few hundred microns, which is in range to influence
the other mechanisms explored in this paper.

In Sect. 2, we developed a very simple, heuristic model of the flow and thermody-
namics of thewater film, relating the latent heat associatedwith freezing at the ice–film
interface directly to heat transfer into the air. We saw that the phase shift between the
film–air interface and the ice–film interface, which increases with the wavenumber of
the ripples, stabilises the morphological instability driven by the point effect of dif-
fusion into the air and results in a wavelength of maximum growth rate proportional
to (l2c h)1/3, with typical values being a few millimetres. Given that the film thickness
h ∝ q1/3, where q is the volume flux per unit width of the film, this prediction is that
the wavelength, proportional to q1/9, is quite insensitive to the water supply rate, in
accordance with experimental observations. In contrast with Mullins–Sekerka insta-
bilities, in which wavelengths are selected by the competition between diffusion and
surface energy of the solid, here they are selected by a competition between diffusion
and a phase shift caused by the surface tension of water in air.

In contrast with the conclusions drawn by Ogawa and Furukawa [12] and by Ueno
[13], we found in Sect. 4 and confirmed with a separate analysis in Sect. 5 that advec-
tion of heat by the film of water is destabilising. But to first order in small reduced
Péclet number p = αhPe, where α is the wavenumber of the ripples, the Péclet num-
ber Pe = q/κ , and κ is the thermal diffusivity of water, advection of heat modifies
the result that wavelengths are proportional to (l2c h)1/3 ∝ q1/9 only by a factor of
order unity. This can be contrasted with the results of Ueno’s analysis using arbi-
trary boundary conditions that, at small reduced Péclet number, the wavelength is
predicted to be proportional to (Pe l2c h)1/3 ∝ q4/9 and with the predictions of Ogawa
and Furukawa [12], who neglect the influence of surface tension and predict that the
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wavelength is proportional to q4/3. The results of this paper suggest that, at small
reduced Péclet number, wavelength selection remains dominated by the competition
between diffusion and the phase shift.

We saw further in Sect. 5 that at higher water-supply rates, when the reduced Péclet
number p is of order unity, the point effect of diffusion ceases to have significant influ-
ence on the phase boundary, leading only to a decaying oscillation of the temperature
field from the air interface into the film that is concentrated near the interface with the
air. Heat transfer controlling the evolution of perturbations to the ice surface becomes
dominated by advection, and we saw that the phase shift becomes insufficient to sup-
press the growth of short wavelengths. A completely new balance was found involving
three mechanisms: advective heat transfer; the phase shift caused by surface tension;
and Gibbs–Thomson undercooling caused by surface energy of the phase boundary.
This led to the selection of wavelengths proportional to [(ki/ka)δ lcl4gch3]1/9, involving
all four of the length scales identified above. This scale is still proportional to q1/9

and has typical values of a few millimetres but a little less than those predicted at low
flow rates.

Linear stability analyses can shed significant light on the interactions between com-
peting physicalmechanisms, as described above.However, they do not necessarily give
an accurate indication of observed wavelengths, which are necessarily of finite ampli-
tude. Perhaps a particular concern with regard to icicles is that linear stability analyses,
such as described in this paper, consider infinitesimal disturbances with amplitudes
therefore much less than the thickness of the coating film of water, whereas observed
ripples have amplitudes significantly larger than the water film. An additional concern
is that this study, in common with many others, has focused on flow and heat trans-
fer associated with the water film, even though lateral growth of icicles is ultimately
determined by heat transfer to the cold, surrounding air. This is acknowledged only
by setting a scale for the thermal boundary layer in the air adjacent to the icicle, while
no perturbations to that boundary layer have been considered. In their analysis of the
melting of an inverted ice cylinder, Neufeld et al. [19] found that convection by the
thermal boundary layer accounted for only a third of the heat transfer causing melting,
a further third each being supplied by long-wave radiation from the surroundings and
the latent heat of condensation of water vapour from the surroundings onto the cold
ice surface. These processes may also be significant for the growth of icicles and the
formation and scale of ripples on their surfaces.

Some final thoughts return to the observation that ripples do not form on icicles
grown from pure water. A possible reason for this is that if the water forms rivulets
rather than a continuous film then heat transfer from dry patches of the ice surface
to the air would allow the icicle to cool below the freezing temperature, and the
extraction of latent heat from the freezing front to the cold ice would be stabilising.
A possible further role of impurities could be to cause constitutional supercooling,
which would enhance morphological instability. While such constitutionally driven
instabilities seem unlikely themselves to explain the observed ripples, it may be that
the consequent surface roughness or perhaps even the formation of a mushy zone
within the water film would decrease its effective Péclet number and thereby influence
the wavelength of ripples.

123



15 Page 28 of 30 M. G. Worster

The evidence to date [10] is that depression of the freezing point caused by impuri-
ties has little influence on the predictions of linear stability theory, though impurities
do have have significant effects on the formation and evolution of ripples that have
been found experimentally. It is hard to speculate but a possible nonlinear amplify-
ing mechanism is the alteration of the thermal conductivity of the icicle caused by
inclusions of concentrated impurity (liquid brine) seen in experiments [17], though it
seems likely that the volume fraction of inclusions is too small to affect conductivity
significantly. Perhaps an important goal in trying to understand the role of impurities
theoretically is to model how, when and why inclusions form.

Another, completely different speculation is that perhaps the icicle grows laterally
from a wetting film (note the glistening of the icicle in Fig. 1d) rather than a draining
film, whose thickness is determined by intermolecular interactions rather than by a
gravity–viscous balance, with excess water forming the rivulets that are seen experi-
mentally. Changing the water supply rate might then simply add to the rivulets, leaving
the dynamics and thermodynamics of the film insensitive to it. Conversely, the thick-
ness of pre-melted or surface-melted films on ice are known to be strongly dependent
on impurity concentration [20], which might relate to the significant dependence on
impurity concentration of the growth rates and migration rates of ripples [10].

In this article, I have aimed toprovide a simple, transparentmathematical framework
that makes clear the interactions between certain physical mechanisms implicated
in the development of ripples on the surface of icicles. There are many questions
unanswered and pertinent mechanisms still to explore, and I hope that the analysis
presented here will provide a suitable framework for future developments.
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Appendix

The role of Gibbs–Thompson undercooling resulting from the surface energy of the
ice–water interface can be explored using the approximate model of Sect. 5. The
dimensionless differential equation

θ ′′ − i pθ = −i pη1 + pGη2y (71)
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is subject to the boundary conditions

θ(0) =
(
1 − lch

ε
α2

)
η1, θ ′(1) = −αhη2, (72)

the first of which is modified from (54) by the inclusion of the dimensionless under-
cooling given in Eq. (20). The Stefan condition (56) is also modified by the heat flux
into the solid to become

h

V
ση1 = −θ ′(0) − ki

kw

lch2

ε
α3η1. (73)

This system is readily solved to find

θ(y) = η1 + iGyη2 + A sinh
(√

i py
)

+ B cosh
(√

i py
)

, (74)

where

A = − (αh + iG) η2
sech

√
i p√

i p
+ lch

ε
α2η1tanh

√
i p, B = − lch

ε
α2η1, (75)

from which the Stefan condition determines

h

V
σ = (αh + iG)sech

√
i p − iG

1 − iG − lcδhα3
(
ki
ka

+ kw
ka

√
i p tanh

√
i p

αh

)
. (76)

This reproduces the result of the simple model given in Eq. (23) when p → 0, with the
approximation that ka/ki � 1.Note that the final term in the brackets on the right-hand
side is zero at leading order in small p and is pure imaginary at O(p), contributing to
migration but not modifying growth or decay. It also decays to zero as α → ∞ and so
does not contribute much to the stabilisation of very short wavelengths. It makes but
a modest stabilising contribution at moderate wavenumbers and so has been omitted
from Eq. (61) and the discussions that follow.
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