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Abstract
The damping efficiency of vertical porous baffles is investigated for a dynamically
coupled fluid-vessel system. The system comprises of a two-dimensional vessel, with
a rectangular cross-section, partially filled with fluid, undergoing rectilinear motions
with porous baffles obstructing the fluid motion. The baffles pierce the surface of
the fluid, thus the problem can be considered as separate fluid filled regions of the
vessel, connected by infinitely thin porous baffles, at which transmission conditions
based on Darcy’s law are applied. The fluid is assumed to be inviscid, incompressible
and irrotational such that the flow in each region is governed by a velocity potential.
The application of Darcy’s law at the baffles is significant as it makes the system
non-conservative, and thus the resulting characteristic equation for the normal modes
leads to damped modes coupled to the moving vessel. Numerical evaluations of the
characteristic equation show that the lowest frequency mode typically has the smallest
decay rate, and hence will persist longest in an experimental setup. The maximum
decay rate of the lowest frequency mode occurs when the baffles split the vessel into
identically sized regions.

Keywords Sloshing · Porous · Baffle · Non-conservative · Damping

1 Introduction

When a vessel, partially filled with fluid, is constrained to move in some prescribed
motion, the fluidwithin can experience complexmotions. As the fluid sloshes back and
forth in the vessel it interacts with the vessel walls, generating forces and moments on
the vessel. If the vessel is free to move under the forces generated by the fluid motion
(perhaps in some constrained manner) then this coupled motion could be stabilizing
or destabilizing to the overall system. A simple everyday example of this instability is
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when we spill coffee while walking to our seat [1]. The destabilizing aspect of coupled
sloshing can have disastrous effects, such as capsizing King crab boats [2], so being
able to identify and mitigate against such effects is important. For example, the coffee
spilling problem could be mitigated against using a ‘carry cradle’ which reduces the
amplitude of the feedback response [3]. In the current paper we consider a simple
model which mitigates against destabilization via the use of porous baffles.

Rigid impermeable baffles were first used to minimise sloshing in fuel tanks within
the space industry [4, 5], mainly by simply blocking the fluid flow. They were also
investigated for use in TunedLiquidDampers (TLDs),which are vessels partially filled
with fluid, constrained to one-dimensional motions, with a spring acting as a restoring
force of the system. Such dampers are typically used as stabilizers in highrise buildings
to damp out oscillations induced by earthquakes or strong winds [6]. As well as just
blocking the flow, baffles can also stabilize the system by altering the natural frequency
of the system, such that forcing terms potentially act out of phase with the forcing
frequency, causing flow velocities and accelerations to be less severe. Turner et al. [7]
investigated such a scenario for multiple surface piercing impermeable baffles, which
essentially split the vessel intomultiple compartments. They found the frequency of the
modes in the system were altered by the baffles and that potential internal resonances
existed. Alemi Ardakani & Turner [8] devised an effective and efficient numerical
scheme to model this system in the limit of shallow-water fluids, and investigated the
effect on the system when considering a nonlinear spring.

Porous baffles have beenwell studied in the context of TLDs and ship fuel tanks, for
example, because in these cases the baffles provide an important damping mechanism
to the fluid in the system [9, 10]. Even the simplest scenario of forced sloshing in a
rectangular vessel has been well studied via experimental and numerical simulations,
using submerged or surface piercing baffles, set in various configurations such as
vertical, horizontal or slanted baffles [11–20]. Whilst there are a varying array of
results on such systems, the key messages are that the width of the baffles are not
hugely significant, but the position and composition of the baffles are key to the
amount of damping observed in the system [21, 22]. The construction of the porous
baffle (e.g. randomly drilled porous metal blocks or regular perforated plates etc.) also
has a significant effect on how best to model the transmission of the fluid through
the baffle. Differing approaches to modelling the transmission conditions [23] include
using Darcy’s law [24–27] or using a pressure drop condition [28, 29], which has also
been applied to other water wave problems [30, 31].

The originality of the current paper is, we examine the effect of porous, surface
piercing, baffles in a dynamically coupled rectangular TLD systemwith a linear restor-
ing force. The novel difference here compared to the forced problems considered
above, is that the motion of the vessel, which we assume is able to move in a single
space dimension, is not known a priori and needs to be solved for. In order to gain
a physical understanding of the significance of the baffle, we consider an idealised
system consisting of an inviscid, incompressible, irrotational fluid in a rectangular
vessel, where the vessel motion is modelled by a forced pendulum equation. Such an
approximation is suitable over relatively short time periods, where viscosity doesn’t
have time to act significantly. The current formulation could be amended to incor-
porate viscosity by including artificial dissipation [32, 33] or by adding additional
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Fig. 1 Schematic diagram of a two-dimensional fluid-filled vessel with rectangular cross-section, and a
porous baffle at x = x1. The vessel is restricted to move in x-direction and is connected to X = 0 via
a linear spring of stiffness ν. The function q(t) denotes the extension of the spring from its equilibrium
position

terms to the free-surface boundary conditions [34]. The fluid transmission across the
baffle is modelled using Darcy’s law, such that the velocity of the fluid at the baffle is
directly proportional to the pressure difference across the baffle itself. Unlike for the
zero baffle and impermeable baffle dynamical problems considered previously [7, 35],
the porous baffle makes the system non-conservative and hence energy is extracted
from the system. The main goal of this paper is to show that for a single baffle sys-
tem an analytic characteristic equation can be derived for the natural frequencies of
the system, to identify the parameters for which the system decays the fastest and to
quantify how this maximum decay rate varies in terms of these parameters.

The current paper is laid out as follows. In §2 we formulate the governing nonlinear
equations, and seek normal mode solutions after linearising about a quiescent state.
For the single baffle problem an explicit analytical characteristic equation is derived,
which is solved numerically. Results of the characteristic equation for a single baffle
are presented in §3.1 including both complex frequency values, and free-surface ele-
vations, while multiple baffle cases are considered in §3.2. Concluding remarks are
given in §4.

2 Formulation

We consider the two-dimensional coupled sloshing system as detailed in Fig. 1. Here
(X ,Y ) is a fixed coordinate system, while (x, y) are Cartesian coordinates fixed to
the moving vessel. The coordinate systems are related via,

X = x + q(t), Y = y + y0,

where q(t) is the time dependent extension of the spring attached to the vessel and the
wall at X = 0, and y0 is a constant.

We derive the system of equations for a single baffle for simplicity, but the approach
can be extended to incorporate any number of baffles. We consider the vessel divided
into two regions by a porous baffle at x = x1, labeled region 1 and region 2 from left
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to right, with x ∈ [0, x1] for region 1 and x ∈ [x1, x2] in region 2. The lengths of each
region are L1 and L2 respectively, hence x1 = L1 and x2 = L1 + L2, and the fluid
occupies the region

x j−1 ≤ x ≤ x j and 0 ≤ y ≤ h j (x, t),

for j = 1, 2, with x0 = 0. Our ultimate goal in this work is to linearise about a
quiescent state, hence the fluid velocities in the system are assumed to be low enough
such that the fluid can bemodelled as inviscid, incompressible and irrotational, without
any wave breaking episodes. In this scenario the velocity components relative to the
moving frame in each region (̂u j , v̂ j ) can be derived in terms of a velocity potential
φ j (x, y) such that

û j = ∂φ j

∂x
− q̇(t), v̂ j = ∂φ j

∂ y
. (2.1)

Mass continuity then states that the velocity potentials satisfy Laplace’s equation

∂2φ j

∂x2
+ ∂2φ j

∂ y2
= 0, (2.2)

in each region.
The fluid pressure in each region is found via the unsteadyBernoulli equationwhich

states

p j

ρ
+ ∂φ j

∂t
+ 1

2

[

(

∂φ j

∂x

)2

+
(

∂φ j

∂ y

)2
]

− q̇
∂φ j

∂x
+ gy + 1

2
q̇2 = 0,

whereρ is the constant density of the fluid, the dot indicates differentiationwith respect
to t and the Bernoulli constant has been absorbed into a linear time-dependent term
of φ j . Evaluating this on the free-surface (y = h j (x, t)) gives the dynamic boundary
condition (p j = 0) as

∂φ j

∂t
+ 1

2

[

(

∂φ j

∂x

)2

+
(

∂φ j

∂ y

)2
]

− q̇
∂φ j

∂x
+ gh j + 1

2
q̇2 = 0, (2.3)

while the corresponding kinematic boundary condition is

∂h j

∂t
+

(

∂φ j

∂x
− q̇

)

∂h j

∂x
= ∂φ j

∂ y
, (2.4)

for j = 1, 2. Zero penetration boundary conditions are applied on the bottom and side
walls of the vessel, thus

∂φ j

∂ y

∣

∣

∣

∣

y=0
= 0, and

∂φ1

∂x

∣

∣

∣

∣

x=0
= ∂φ2

∂x

∣

∣

∣

∣

x=x2

= q̇, (2.5)
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in the moving frame. We assume that the effects of the front and back walls of the
vessel are negligible, such that our two-dimensional assumption is valid. Such an
assumption has been proved to be valid such as in the work of [36] who showed the
two-dimensional approximation agreed very well with experimental results.

The baffle at x = x1 is porous and as such, fluid is able to transmit between the
regions. We do not physically model the fluid flow through the baffle, and instead
use a transition condition to link the fluid velocities in the bulk fluid at the baffle to
the pressure drop across the baffle. In this paper our main goal is to consider linear
solutions to the governing equations in §2.1 about a fluid at rest. Hence our interest is
in small magnitude fluid motions. Given this assumption, and the fact that the baffle is
coherent, we apply a transmission condition based upon Darcy’s law [24, 37], namely
that the velocity is continuous across the baffle with

∂φ1

∂x

∣

∣

∣

∣

x=x1

= ∂φ2

∂x

∣

∣

∣

∣

x=x1

= q̇ − β

ρ
(p2(x1, y, t) − p1(x1, y, t)) . (2.6)

At larger fluid velocities where nonlinear effects are more important the transmis-
sion condition can modelled via a Darcy-Forchheimer model [38] which includes a
quadratic velocity term. At very large velocities this quadratic term dominates the
transmission condition and a model as in [29] becomes applicable to leading order.

In (2.6) β is a complex coefficient which describes the porosity of the baffle, and
has the dimensions of sm−1. The complex form of β = βr + iβi (βr , βi > 0) is
such that the real part represents the resistance effect of the baffle against the flow,
while the imaginary part represents the inertial effect of the fluid in the baffle [25,
27, 39, 40]. Experimental results for perforated plates show that βi ≈ 0.1βr [41]
and hence is typically small, so we will mostly consider βi = 0, but we do consider
cases with βi �= 0 to show the effect of this quantity. The case |β| = 0 indicates that
the baffle is impermeable (as considered in [7]), while |β| → ∞ indicates the baffle
has no effect on the fluid motion, hence its presence can be neglected, and the vessel
reduces to a single region vessel (as considered in [35]). In this work we consider our
porosity parameter β to be a constant and we do not consider how its value relates to
the physical construction of the baffle. In more complex scenarios such as in [29], the
transmission rate of the baffle can be related to more physical parameters such as the
solidity ratio. However, as we are not quantitatively fitting our results to experiments
we do not go to this extent here.

The equation for the vessel motion, which couples to the fluid motion, is given via
the forced linear pendulum equation

mvq̈ + νq = − d

dt

[∫ L1

0

∫ h1

0
ρ

∂φ1

∂x
dydx +

∫ L1+L2

L1

∫ h2

0
ρ

∂φ2

∂x
dydx

]

, (2.7)

where ν is the linear stiffness of the spring connected to the vessel. Here we assume
a linear spring only, for simplicity, as we will be seeking modal solutions in §2.2.

Equations (2.2)–(2.7) denote the nonlinear system of equations which govern the
coupled sloshing problem for the fluid and vessel motions.
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2.1 Linearised equations

We wish to determine the modal solutions of the linearised system about a quiescent
state. These would be the natural frequencies that the system would want to oscillate
at if initialized appropriately. In a quiescent state we assume the fluid has equilibrated
such that h1 = h2 = H , and that the pressure in each region is hydrostatic p j =
ρg(H − y). Therefore we introduce the perturbed quantities, denoted with a bar, such
that

q(t) = εq(t),

h j (x, t) = H + εh j (x, t),

φ j (x, y, t) = εφ j (x, y, t),

p j (x, y, t) = ρg(H − y) + ε p j (x, y, t),

where 0 < ε � 1 indicates the size of the perturbation and is small enough for
linearisation. Substituting these expressions into (2.2)-(2.7) and retaining terms of
O(ε) only, leads to the following set of linear equations

φ j xx + φ j yy = 0, 0 < y < H , x j−1 < x < x j , (2.8)

φ j y(x, 0, t) = 0, (2.9)

φ1x (0, y, t) = φ2x (x2, y, t) = q̇, (2.10)

φ1x (x1, y, t) = φ2x (x1, y, t) = q̇ − β

ρ
(p2(x1, y, t) − p1(x1, y, t)), (2.11)

φ j t + gh j = 0 on y = H , (2.12)

h jt = φ j y on y = H , (2.13)

with the pressure perturbation given by

p j

ρ
+ φ j t = 0, (2.14)

and the vessel equation becoming

mv q̈ + νq = − d

dt

[

∫ L1

0

∫ H

0
ρ

∂φ1

∂x
dydx +

∫ L1+L2

L1

∫ H

0
ρ

∂φ2

∂x
dydx

]

. (2.15)

Here, and in the remainder of the paper, the subscripts x, y, t denote partial derivatives.
The governing set of linear equations can be manipulated into a problem dependent

solely on the velocity potential φ j and the spring extension q by combining the free-
surface conditions (2.12) and (2.13) to eliminate h j

φ j t t + gφ j y = 0 on y = H , (2.16)
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and by using the pressure perturbation (2.14) to write the boundary conditions on the
porous baffle as

φ1x (x1, y, t) = φ2x (x1, y, t) = q̇ + β
[

φ2t (x1, y, t) − φ1t (x1, y, t)
]

. (2.17)

The resulting linear equations can be solved by seeking normal mode solutions.

2.2 Normal modes

We seek modal solutions of the linear system of equations (2.8)-(2.10) and (2.15)-
(2.17) so as to identify the natural frequencies of the system, which in a physical
system, comprise the components of all solutions via superposition. To identify the
modal solutions we write

φ j (x, y, t) = ̂φ j (x, y)e
iωt , q(t) = q̂eiωt . (2.18)

Unlike for the impermeable baffle problem considered in [7], the form of the solution
in (2.18) consists of a superposition of both sinωt and cosωt terms, and also allows
for the consideration of ω being complex.

Substituting (2.18) into the governing linear equations leads to the following bound-
ary value problem for the hatted variables

̂φ j xx + ̂φ j yy = 0, 0 < y < H , x j−1 < x < x j , (2.19)
̂φ j y(x, 0) = 0, (2.20)

̂φ1x (0, y) = ̂φ2x (x2, y) = iωq̂, (2.21)
̂φ1x (x1, y) = ̂φ2x (x1, y) = iωq̂ + iβω

(

̂φ2(x1, y) − ̂φ1(x1, y)
)

, (2.22)

ω2
̂φ j (x, H) = ĝφ j y(x, H), (2.23)

with vessel equation

[

ν − mvω
2
]

q̂ = iω

[∫ L1

0

∫ H

0
ρ

∂̂φ1

∂x
dydx +

∫ L1+L2

L1

∫ H

0
ρ

∂̂φ2

∂x
dydx

]

. (2.24)

The homogeneous nature of the free-surface and bottomboundary conditionsmeans
the problem lends itself to seeking a solution for ̂φ j in each region as a superposition
of vertical eigenmodes. Properties of these vertical eigenmodes have been explored
in [42], and for the coupled, single region, sloshing problem in [35]. Hence we quote
here the relevant results for this paper, and refer the reader to these works for full
details. Therefore the separable solution to (2.19) which satisfies (2.20) and (2.23) can
be written as

̂φ j (x, y) =
∞
∑

n=0

A jn(x)ψn(y), (2.25)
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where the vertical eigenmodes ψn(y) have the form

ψ0(y) = 1

N0
cosh k0y, and ψn(y) = 1

Nn
cos kn y for n ≥ 1.

The constants N0 and Nn are normalization constants given by

N0 =
√

1

2

(

1 + sinh 2k0H

2k0H

)

, Nn =
√

1

2

(

1 + sin 2knH

2knH

)

,

while the eigenvalues k0 and kn satisfy

k0H tanh k0H − ω2H

g
= 0, (2.26)

knH tan knH + ω2H

g
= 0 for n ≥ 1, (2.27)

which derive from the characteristic equation

ω2H

g
cos

(

H
√

λ
)

+
(

H
√

λ
)

sin
(

H
√

λ
)

= 0,

where λ is the eigenvalue.
In [42] and [35], where these eigenmodes are discussed, the frequency ω is real.

Hence the first eigenvalue of the system is negative, λ0 = −k20 (
√

λ0 being purely
imaginary), and is associatedwith the ‘wavemode’,while the rest are positive,λn = k2n
n ≥ 1, and are associated with the ‘evanescent modes’. In the case whenω is complex,
all the eigenvalues λn move off the real axis and become complex, and hence it may
seem that the distinction between the wave mode and the evanescent modes becomes
less obvious. However, in this case there is a single mode with Re(λ0 = −k20) < 0,
while the other modes have Re(λn = k2n) > 0 and so we still find a wave mode plus
evanescent modes structure even when ω is complex. Hence we still use these terms
when describing the modes of the system.

The formsof the functions A jn(x) are foundby satisfyingLaplace’s equation,which
after satisfying the rigid wall boundary conditions (2.21) in the respective region, can
be written as

A10(x) = B10 cos k0x + iωq̂c0
k0

sin k0x, (2.28)

A1n(x) = B1n cosh knx + iωq̂cn
kn

sinh knx for n ≥ 1, (2.29)

A20(x) = B20 cos k0(x − x2) + iωq̂c0
k0

sin k0(x − x2), (2.30)

A2n(x) = B2n cosh kn(x − x2) + iωq̂cn
kn

sinh kn(x − x2) for n ≥ 1, (2.31)
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where Bjn for j = 1, 2 and n ≥ 0 are constants to be determined. The constants c0
and cn come from expanding the unit function in terms of the vertical eigenfunctions,
and are given by

c0 = 1

N0

sinh k0H

k0H
, cn = 1

Nn

sin knH

knH
. (2.32)

Satisfying the conditions (2.22) at the porous baffle x = x1 = L1 reduces to the 4
equations

k0 sin k0L1B10 + k0 sin k0L2B20 = −iωc0(cos k0L2 − cos k0L1 )̂q, (2.33)
(k0 sin k0L1 − iωβ cos k0L1) B10 + iβω cos k0L2B20

= ωc0

[

i(cos k0L1 − 1) − βω

k0
(sin k0L1 + sin k0L2)

]

q̂, (2.34)

kn sinh kn L1B1n + kn sinh kn L2B2n = iωcn(cosh kn L2 − cosh kn L1 )̂q, (2.35)
(kn sinh kn L1 + iωβ cosh kn L1) B1n − iβω cosh kn L2B2n

= ωcn

[

i(1 − cosh kn L1) + βω

kn
(sinh kn L1 + sinh kn L2)

]

q̂, (2.36)

for n ≥ 1. The second pair of equations (2.35) and (2.36) for b = (B1n, B2n)
T can be

written in matrix form Ab = q, where

q = ωcn

[

i(cosh knL2 − cosh knL1)

i(1 − cosh knL1) + βω
kn

(sinh knL1 + sinh knL2)

]

q̂,

A =
[

kn sinh knL1 kn sinh knL2
kn sinh knL1 + iωβ cosh knL1 −iωβ cosh knL2

]

.

This system of equations has a unique solution if det(A) �= 0 where

det(A) = −k2n sinh knL1 sinh knL2�n, �n = 1 + iωβ

kn
[coth knL1 + coth knL2] .

This expression is zero if kn = 0, which we can discard as a translation of the system,
or sinh knL1 = sinh knL2 = 0, or if �n = 0. The sinh knL1 = sinh knL2 = 0 case
corresponds to kn being purely imaginary, which in fact corresponds to this mode
being associated with the wave mode for ω real, and hence is just a reordering of
the eigenvalues. The third case leads to the trivial solution for Bjn . Therefore we
can consider the case det(A) �= 0 and deal with the above cases later. Assuming
det(A) �= 0, inverting the coefficient matrix A, and solving gives

Bjn = (−1) j

k2n |�n |2
[

−ω2βcn
tanh 1

2 kn L1 + tanh 1
2 kn L2

sinh kn L j

+i

(

ωcnkn tanh
1

2
kn L j + ω3β2cn

kn
tanh

1

2
kn(L1 + L2) (coth kn L1 + coth kn L2)

2
)]

q̂,

(2.37)

for j = 1, 2 and n ≥ 1.
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Next we consider the first pair of equations (2.33) and (2.34), which too can be
written in matrix form ̂Âb = q̂, for the parameterŝb = (B10, B20)

T with

q̂ = ωc0

[ −i(cos k0L2 − cos k0L1)

i(cos k0L1 − 1) − βω
k0

(sin k0L1 + sin k0L2)

]

q̂,

̂A =
[

k0 sin k0L1 k0 sin k0L2
k0 sin k0L1 − iωβ cos k0L1 iβω cos k0L2

]

. (2.38)

Again we have a unique solution if det(̂A) �= 0 where

det(̂A) = −k20 sin k0L1 sin k0L2�0, �0 = 1 − iωβ

k0
[cot k0L1 + cot k0L2] .

In this case det(̂A) = 0 if sin k0L1 = sin k0L2 = 0 simultaneously (again neglecting
k0 = 0), which occurs if

k0L1 = mπ and k0L2 = m′π,

for m,m′ ∈ N, and thus means the lengths of the two compartments must satisfy
mL2 = m′L1. These solutions correspond to symmetric free-sloshing modes with
k0 ∈ R. Also det(̂A) could be zero if�0 = 0, i.e.ω = −ik0/(β(cot k0L1+cot k0L2)),
but this again leads to the trivial solution. See Appendix A for more on these solutions.

Making the observation that det(̂A) could be zero, then (2.33) and (2.34) essentially
become two equations which couple the three unknowns B10, B20 and q̂ . A third
equation linking these constants comes from the vessel equation (2.24). Substituting
in the normal mode forms (2.18) and evaluating the integrals by using the fact that the
vertical eigenmodes satisfy

∫ H

0
ψ0(y) dy = Hc0 and

∫ H

0
ψn(y) dy = Hcn,

leads to the vessel equation

iωρHc0(cos k0L1 − 1)B10 + iωρHc0(1 − cos k0L2)B20 + q̂ = 0, (2.39)

where

 = −ω2ρHc20
k0

(sin k0L1 + sin k0L2) + ̂0 + β2
̂1 − βî2, (2.40)

and

̂0 = ν − mvω
2 − 2ω2ρH

∞
∑

n=1

c2n
kn|̂�n|2

(

tanh
1

2
knL1 + tanh

1

2
knL2

)

,
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̂1 = −2ω4ρH
∞
∑

n=1

c2n
k3n |̂�n|2 tanh

1

2
kn(L1 + L2) (coth knL1 + coth knL2)

2 ,

̂2 = −ω3ρH
∞
∑

n=1

c2n
k2n |̂�n|2

[

tanh
1

2
knL1 + tanh

1

2
knL2

]2

.

The three equations (2.33), (2.34) and (2.39) define 3 equations for the 3 unknowns
B10, B20 and q̂ , which by seeking a non-trivial solution, yields an eigenvalue problem
for ω.

2.3 The characteristic equation

The characteristic equation for the unknown frequency ω is found by identifying non-
trivial solutions to (2.33), (2.34) and (2.39). The equations can be written as the matrix
problem

Tz = 0, (2.41)

where,

T =
⎡

⎣

k0 sin k0L1 k0 sin k0L2 iωc0(cos k0L2 − cos k0L1)
k0 sin k0L1 − iωβ cos k0L1 iωβ cos k0L2 −ωc0ζ
iωρHc0(cos k0L1 − 1) iωρHc0(1 − cos k0L2) 

⎤

⎦ ,

z = [

B10 B20 q̂
]T

,

and

ζ = i(cos k0L1 − 1) − ωβ

k0
(sin k0L1 + sin k0L2).

Non-trivial solutions occur when the determinant of the coefficient matrix is zero,
which leads to the characteristic equation

D(ω) = 2k0ω
2Hρc20 sin k0L1 sin k0L2

[

tan
1

2
k0L1 + tan

1

2
k0L2

]

−2iβω3Hρc20 [1 − cos k0(L1 + L2)]

−(̂0 + β2
̂1 − iβ̂2)

[

k20 sin k0L1 sin k0L2 − iωβk0 sin k0(L1 + L2)
]

,

which is solved for the unknown frequenciesω. There are an infinite number of natural
frequencies, and once each is calculated, the corresponding eigenvector (B10, B20, q̂)T

gives the ratios of the unknown amplitudes. In appendix Awe show that the symmetric
free-sloshing modes, when sin k0L1 = sin k0L2 = 0, occur when the vessel is at rest
(̂q ≡ 0). Here the constants satisfy B10 = B20 and are arbitrary, being fixed by the
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initial conditions. In the case of non-symmetric sloshing modes when det(̂A) �= 0
then we can solve for B10 and B20 as a function of q̂ as

B j0 = (−1) j

k20 |�0|2
[

ω2βc0
tan 1

2 k0L1 + tan 1
2 k0L2

sin k0L j

+i

(

ωc0k0 tan
1

2
k0L j + ω3β2c0

k0
tan

1

2
k0(L1 + L2) (cot k0L1 + cot k0L2)

2

)]

q̂,

(2.42)

where q̂ is dependent on the initial conditions. Hence, as in (2.37), the value of Bj0
couples to the vessel motion.

2.4 Non-dimensionalisation

The characteristic equation (2.42) contains many physical parameters, but the num-
ber of these parameters can be reduced by considering the non-dimensional form
of the system. We non-dimensionalise the system of equations based on the non-
dimensionalisation first set out by [43]. Here we define the non-dimensional quantities
as

R = mv

m f
, G = ν(L1 + L2)

2

4gHm f
, s = ω(L1 + L2)

2
√
gH

, γ = 2
√

gHβ,

αn = kn(L1 + L2), μ1 = L1

L1 + L2
= μ, μ2 = L2

L1 + L2
= 1 − μ,

C jk = Bjk

2
√
gH(L1 + L2)

, Q = q̂

L1 + L2
,

where we define the fluid mass as m f = ρH(L1 + L2). Then the characteristic
equation becomes

D(s) = 2α0s
2c20 sin α0μ sin α0(1 − μ)

[

tan
1

2
α0μ + tan

1

2
α0(1 − μ)

]

− 2iγ s3c20 [1 − cosα0]

−(0 + γ 21 − iγ2)
[

α2
0 sin α0μ sin α0(1 − μ) − isγα0 sin α0

]

, (2.43)

where we define

0 = G − Rs2 − 2s2
∞
∑

n=1

c2n
αn|�n|2

(

tanh
1

2
αnμ + tanh

1

2
αn(1 − μ)

)

,

1 = −2s4
∞
∑

n=1

c2n
α3|�n|2 tanh

1

2
αn (coth αnμ + coth αn(1 − μ))2 ,

2 = −s3
∞
∑

n=1

c2n
αn|�n|2

(

tanh
1

2
αnμ + tanh

1

2
αn(1 − μ)

)2

,

(2.44)
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and

|�n|2 = 1 + γ 2s2

α2
n

[coth αnμ + coth αn(1 − μ)]2 .

The eigenvalues αn for n ≥ 0 are found from (2.26) and (2.27) which in non-
dimensional form are

α0 tanh α0δ − 4δs2 = 0, and αn tan αnδ + 4δs2 = 0, (2.45)

where δ = H/(L1 + L2) is the non-dimensional fluid depth parameter.
For cases when det(̂A) �= 0 the non-dimensional forms of the amplitude parameters

(2.42) and (2.37) become

C j0 = (−1) j

α20 |�0|2
[

s2γ c0
tan 1

2α0μ + tan 1
2α0(1 − μ)

sin α0μ j

+i

(

sc0α0 tan
1

2
α0μ j + s3γ 2c0

α0
tan

1

2
α0 (cot α0μ + cot α0(1 − μ))2

)]

Q, (2.46)

C jn = (−1) j

α2n |�n |2
[

−s2γ cn
tanh 1

2αnμ + tanh 1
2αn(1 − μ)

sinh αnμ j

+i

(

scnαn tanh
1

2
αnμ j + s3γ 2cn

αn
tanh

1

2
αn (coth αnμ + coth αn(1 − μ))2

)]

Q, (2.47)

respectively, for j = 1, 2, where

|�0|2 = 1 + γ 2s2

α2
0

[cot α0μ + cot α0(1 − μ)]2 .

The characteristic equation (2.43) can be shown to reduce to the equation presented
in [35] when |γ | → ∞ and to the two compartment relation in [7] when |γ | = 0.
We show this explicitly in appendix B where we calculate the first two terms of the
asymptotic solutions for s in the limits γ → 0 and γ → ∞ with γ ∈ R.

2.5 Shallow-water limit

In the shallow-water limit the depth parameter δ � 1, with all other parameters held
fixed. The eigenvalues related to the vertical eigenfunctions satisfy (2.45), the first of
which describes the wave mode. In the limit δ → 0 then

4δ2s2 = α2
0δ

2 − 1

3
α4
0δ

4 + O(δ6),

which at leading order gives

s = 1

2
α0.
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For the evanescent modes, we observe that each solution must lie in the range (n −
1)π < Re(αnδ) < nπ , thus it can be shown that

αnδ = nπ − α2
0δ

2

nπ
+ O(δ4).

Substituting these approximations into the coefficients c0 and cn we find that the
leading order terms satisfy

c0 = 1 + O(δ4), and cn = O(δ2).

Hence in the shallow-water limit the evanescentmodes are O(δ2) smaller inmagnitude
to the wavemode, and at leading order the characteristic equation can be written solely
in terms of the frequency s as

DSW(s) = 4s2 sin 2μs sin 2(1 − μ)s
[

s tanμs + s tan(1 − μ)s − G + Rs2
]

−2iγ s2 sin 2s
[

s tan s − G + Rs2
]

. (2.48)

In this limit the form of the characteristic equation is the sum of the two compartment
shallow-water equation from [7] and the one compartment shallow-water equation
from the work of [35] with an iγ prefactor. Hence it is clear that this equation gives
the correct characteristic equations in the limits |γ | = 0 and |γ | → ∞, and there is a
linear transition between the two cases as γ varies.

3 Results

3.1 Single baffle system

In this section we consider numerical solutions to the non-dimensional form of the
characteristic equation for both finite, (2.43), and shallow depth, (2.48), fluids. In both
cases the unknown complex frequency s is found via Newton iterations with the mth

update for s given by

sm+1 = sm − D(sm)

D′(sm)
,

where the dash denotes differentiation with respect to s. For the initial guesses for s0

we use either results from the |γ | = 0 or |γ | → ∞ limits, as here s ∈ R and we can
identify s0 visually by plotting D(s) and manually looking for the roots. Iterations are
continues until |sm+1−sm | < 10−8. From these results we use parameter continuation
techniques on γ to find values of s at finite values of γ , both real and complex.
The complex eigenvalues αn are identified by solving (2.45) iteratively via Newton
iterations, and noting that (n−1)π < Re(αnδ) < nπ so as to make sure we capture all
the solutions. The infinite sums in (2.44) are truncated at 40 evanescent modes, which
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Fig. 2 Plots of sr (γ ) and si (γ ) from (2.43) for (G, R, δ) = (1, 0.5, 0.5) and (a,b) μ = 0.5 and (c,d)
μ = 0.3. The dashed lines represent modes which are symmetric modes in a stationary vessel (Q = 0) in
the limit γ → ∞. The circles at γ = 0 signify symmetric sloshing modes in this limit

give converged results for all parameter sets considered. The initial guesses for αn are
found by solving the vertical eigenvalue problem given in [35] directly by expanding
the solution as a series of Chebyshev polynomials. This is discussed in detail in [35].

Initially we focus on two vessel configurations, a symmetric configuration with
μ = 0.5 and an asymmetric configuration with μ = 0.3, with γ ∈ R.

In Fig. 2 we consider the variation of the real and imaginary parts of s = sr + isi
as a function of γ for parameters (G, R, δ) = (1, 0.5, 0.5) and (a,b) μ = 0.5 and
(c,d) μ = 0.3. In this figure the solid lines represent modes which are anti-symmetric
sloshing modes (which couple to a moving vessel) in the γ → ∞ limit, while the
dashed lines represent symmetric modes (i.e. which exist in a stationary vessel), in the
γ → ∞ limit. The circles at γ = 0 show the frequencies of the symmetric sloshing
modes in the γ = 0 limit. For the μ = 0.5 configuration in panels (a,b), we observe
that the symmetric modes remain symmetric modes as the wall porosity parameter γ

is varied, with a fixed sr value and si = 0. This means that these modes remain neutral
modes, and the vessel remains stationary, i.e. Q = 0 as γ varies. In these cases the
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free-surface profile is similar to that given in Fig. 11 of Appendix A, where the fluid
generates an equal and opposite force on the vessel walls and the baffle, resulting in
no net force on the vessel.

The solid lines, representing the anti-symmetricmodes, couple to the vesselmotion,
hence Q �= 0. Here we see that for γ � 5 these modes appear to have a constant value
of sr equal to the γ → ∞ limit result, but in panel (b) we see these modes have
si > 0, meaning these modes are exponentially decaying modes. For γ ∈ [0, 5] the
frequency (real part of the complex frequency) of these modes rapidly varies from
the γ → ∞ result to the γ = 0 result. In this region the corresponding decay rate
si reaches its maximum value for each of these modes, hence the maximal damping
of the system occurs when sr varies the greatest. A similar conclusion was found for
the lowest sloshing mode only in the model of [44]. The ordering of the decay rates
is not directly related to the value of sr , i.e. larger sr values do not necessary decay
faster/slower thanmodes with smaller sr values. In particular in Fig. 2, we observe that
it is the mode labeled 2 which decays fastest in this system.When this mode intersects
with sr = 0 there is a bifurcation into two unstable modes with sr = 0 and si �= 0.
The reason for this is due to two modes with sr = S(γ ) and sr = −S(γ ) interacting at
sr = 0.When sr = 0 for these twomodes, they become unstable modes in a stationary
vessel, and hence are not of significance in this study, as our main interest is in modes
which are coupled to the vessel motion. One thing we do observe in this figure is that
the lowest frequency mode as γ → ∞ remains the lowest frequency mode as γ → 0
(except for a tiny range of γ values where the mode labeled 2 goes to zero).

When we consider the μ = 0.3 non-symmetric vessel configuration in panels (c,d)
we observe that the symmetric sloshing modes (in either the γ = 0 or γ → ∞ limits)
are no longer neutral for all values of γ , and now decay except in these two limits. Also
the value of sr now varies as γ varies, i.e. they no longer have constant frequency. The
overall behaviour of the mode frequencies, sr , is similar to the μ = 0.5 case, with the
variations in both the real and imaginary parts of s occurring mainly for 0 ≤ γ ≤ 5,
and with similar magnitude decay rates. We again observe a mode (labeled 2) which
as γ → 0 we find sr = 0 for small γ . The difference in this case is this mode is a
symmetric mode, in a stationary vessel, in the γ → ∞ limit, not an anti-symmetric
mode. We now also observe modes which switch type in the two extremes of γ , such
as that labeled 3 in panel (c). This mode is an anti-symmetric mode as γ → ∞, but
as γ is reduced it becomes a symmetric mode at γ = 0.

As δ is reduced to δ = 0.1 (again with (G, R) = (1, 0.5)) in Fig. 3, i.e. as we move
closer to the shallow-water limit, we find that the higher frequency modes, sr , become
more distinct, i.e. more spread out, as do the decay rates, si , of the modes. As a general
observation, it appears that the maximum decay rates increase in magnitude as δ is
increased. This is particularly apparent in the μ = 0.3 configuration. It is however,
still the case that the majority of the variation in s is restricted to the region γ � 5.

In appendix B we calculate the asymptotic form of s in the limits γ → 0 and
γ → ∞ with γ ∈ R. In Fig. 4 these approximations (dashed lines) are compared
to the full numerical result (solid lines), and we observe excellent agreement in both
these limits, despite both sr and si each containing only one term in their expansions.
However, this level of approximation is not able to capture the maximum decay rate
of the modes accurately, although it does allow for predictions of the system’s decay
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Fig. 3 Plots of sr (γ ) and si (γ ) from (2.43) for (G, R, δ) = (1, 0.5, 0.1) and (a,b) μ = 0.5 and (c,d)
μ = 0.3. The dashed lines represent modes which are symmetric modes in a stationary vessel (Q = 0) in
the limit γ → ∞. The circles at γ = 0 signify symmetric sloshing modes in this limit

in the two extreme limits, along with an approximate maximum growth rate where the
two approximations intersect. This would be of particular interest if the baffle porosity
were time dependent, with sloshing waves generated with γ = 0 and then the baffle
porosity was varied. The initial rate of decay of the system could then be accurately
predicted by the asymptotic results, especially if the variation was slow.

In Fig. 5 we consider the form of s = sr + isi when μ = 0.5 (with (G, R, δ) =
(1, 0.5, 0.5)) when γ = γr (1 + 0.1i). Here the imaginary part of γ represents the
inertial effect of the fluid in the baffle, and is typically smaller than the real part [41].
The results with γ ∈ C, given by the solid lines, are compared to the equivalent results
with γ = γr ∈ R from Fig. 2(a,b). What this figure shows is the inclusion of inertial
effects typically increases the decay rate, si , of the system for the higher frequency
modes, but makes a relatively modest modification to the lowest frequency mode. The
larger peaks in si in Fig. 5(b) are accompanied by sharper changes in the corresponding
sr value in Fig. 5(a). The other obvious change in this case compared to Fig. 2 is that
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Fig. 4 Plot of sr (γ ) and si (γ ) for two modes from Fig. 3 with (G, R, δ, μ) = (1, 0.5, 0.1, 0.3). The solid
lines give the numerical solutions of (2.43) while the dashed lines give the asymptotic results calculated in
Appendix B

Fig. 5 Plots of sr (γr ) and si (γr ) from (2.43) for (G, R, δ) = (1, 0.5, 0.5) and μ = 0.5. Here γ =
γr (1 + 0.1i). The solid lines are the values of sr and si for the complex value of γ , while the dashed lines
are the corresponding result with γ = γr , as given in Fig. 2(a,b)

the sr value for mode 2 now does not go to zero, where it interacted with a second
mode, and instead sr → ∞ as γr → 0.

In the shallow-water limit, the characteristic equation simplifies to (2.48) and the
solutions to this equation, plotted in Fig. 6, are found to agree well with those in Fig. 3,
at least for the smaller frequency results. Themain benefit of the shallow-water approx-
imation is that the values of s can be calculated more easily (i.e. without calculating
the intermediary eigenvalues αn). Also, in systems where the lower frequency modes
dominate, and the higher frequency modes can be neglected, then the shallow-water
approximation is beneficial due to the speed of computation.

A typical initial condition for an experimental setup for the system in Fig. 1, such as
extending the spring and releasing the vessel from a stationary position, would consist
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Fig. 6 Plots of sr (γ ) and si (γ ) in the shallow-water limit from (2.48) for (G, R) = (1, 0.5) and (a,b)
μ = 0.5 and (c,d) μ = 0.3. The dashed lines represent modes which are symmetric modes in a stationary
vessel (Q = 0) in the limit γ → ∞. The circles at γ = 0 signify symmetric sloshing modes in this limit

of a superposition of these individual modes. However, unlike for the impermeable
baffle problem, where all modes are undamped and so persist for all times, the higher
frequency modes are typically damped out fastest, and so in this experimental setup
we would expect the lowest frequency mode (as it is the least damped) to be the most
significant. Also, following [36] the coefficient of the lowest frequency mode tends
to have the largest amplitude in the eigenmode expansion for most initial conditions.
Thus we focus our attention in the remainder of the paper on the lowest frequency
mode in the shallow-water limit.

In figure 7 we consider the time evolution of the non-dimensional free-surface
profiles h j (x, t) and horizontal velocity u j (x, t) for the lowest frequency mode in the
shallow-water limit for (G, R, δ) = (1, 0.5, 0.05) with (a,b) γ = 0.8, (c,d) γ = 1.5
and (e,f) γ = 5. The form of the free-surface profile can be found from (2.12) which
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Fig. 7 Plot of the non-dimensional free-surface elevation h j (x, t) and horizontal velocity component
u j (x, t) = φx (x, t) for j = 1, 2 in the shallow-water limit for (G, R, δ, μ, ε) = (1, 0.5, 0.05, 0.3, 0.01)

at times t/(2sr ) = 0, π
4 , π

2 , 3π
4 , π numbered 1-5 respectively. In (a,b) γ = 0.8, (c,d) γ = 1.5, while in

(e,f) γ = 5
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Fig. 8 Plot of the non-dimensional free-surface elevation h j (x, t) and horizontal velocity component
u j (x, t) = φx (x, t) for j = 1, 2 in the shallow-water limit for (G, R, δ, μ, ε) = (1, 0.5, 0.05, 0.3, 0.01) at

times t/(2sr ) = 0, π
4 , π

2 , 3π
4 , π numbered 1-5 respectively. The solid lines are the results for the complex

value of γ = 0.8(1 + 0.2i), while the dashed lines are the corresponding result with γ = 0.8, as given in
Fig. 7(a,b)

when non-dimensionalised is given by

h j (x, t) = δ −
[

2iεs A j0(x)e
2ist + c.c

]

, (3.49)

while the non-dimensional horizontal velocity in the fixed reference frame is given by

u j (x, t) = ∂φ j

∂x
= ε

∂A j0

∂x
(x)e2ist + c.c, (3.50)

where c.c denotes the complex conjugate. Here j = 1, 2 denotes the two separate
regions of the vessel. The wave mode is the driving mode in the system, and hence
plotting h(x, t) and u(x, t)without the evanescent modes provides excellent notion for
the fluid motion. The evanescent modes provide a perturbation to this result, typically
reducing the fluid height, h(x, t), at the side walls and baffle, and increasing it in the
interior of the fluid. This was demonstrated for the zero-baffle problem in [35].

In panels (a,b) the baffle has a low porosity value and so there is a delay in the fluid
flowing between each region, resulting in the average fluid depth in each region being
significantly different at each time value, e.g. result 3 at t = πsr . There is also a very
clear reduction in the horizontal fluid velocity at the baffle, where the fluid motion is
restricted as it passes through it. In panels (c,d) the baffle porosity is larger, and the
difference in the fluid heights at the baffle is reduced, while in panels (e,f) the baffle
is even more porous and the difference in the fluid levels in each region is reduced
further. In fact, in this case the free-surface elevations are almost continuous across
the baffle. The horizontal velocity value at the baffle is also much less reduced in this
final case, meaning the speed of the fluid is altered less by the presence of the baffle,
and hence the lower decay rate of the coupled system.
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Fig. 9 Plots of the decay rate si (γ, μ) for (a) (R,G) = (0.5, 1), (b) (R,G) = (0.5, 7), (c) (R,G) = (5, 1)
and (d) (R,G) = (5, 7). The black contours signify the values 1

4 s
max
i , 12 s

max
i and 3

4 s
max
i in each case

In Fig. 8 wemake a comparison of plots of h(x, t) and u(x, t) for γ = 0.8(1+0.2i)
(solid lines) and γ = 0.8 (dashed lines). Here we have increased the size of γi
compared to the real part to 20%, in order to exaggerate the changes to h(x, t) and
u(x, t), but as we saw in Fig. 5, the effect on the lowest frequency mode when si �= 0
is small. In fact, it is hard to make any meaningful observation in Fig. 8, because as γ

changes, both sr and si change, hence the results in this figure include a small phase
change as well as a change in decay rate. Discerning the difference between these two
features is difficult in this figure.

Thus far we have fixed the non-dimensional parameters R and G, but in Fig. 9 we
examine how the decay rate of the system, si , varies for different (G, R) combinations
for γ ∈ R. The results show that the maximum decay rate always occurs for μ = 0.5
(i.e. for equally sized regions), with the value of γ ∈ [0, 1.5], i.e. close to the rigid
baffle limit. For (G, R) = (7, 0.5) in panel (b) the rate of damping is significantly
increased, which is due to the spring being stiff in this case but with a heavy fluid
mass in the vessel. In this case the horizontal velocities in the fluid are larger than
in (a) (weak spring, heavy fluid), and hence the fluid is slowed more dramatically by
the baffle. In panel (c) we have a light fluid (heavy vessel) and a weak spring, hence
damping rates are low (due to low fluid velocities in the system). Also, the largest
decay rates for this configuration are concentrated in a narrow band of small porosity
values. While in panel (d) where we have a light fluid and a strong spring, we have a
much larger region of the (γ, μ)-plane where the decay rate of this mode is ≥ 1

4 s
max
i .

Hence in a physical system with these parameters there is a larger margin for error
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in the construction of the baffle to have a porosity value needed to achieve a quick
decay of the system. This could be useful if a rapid decay of any forced oscillations
is required, and the porosity of the wall is not able to be altered via some mechanical
means.

3.2 Multiple baffle system

Thus far we have focused on the single baffle problem, but the theory presented in §2
can easily be extended to multiple baffles, potentially each with a different porosity
value. In the final part of this paper we consider the case of multiple, identical baffles,
which are equally spaced in the vessel. Hencewe only introduce one further parameter,
M , which is the number of baffles. The case M = 1 we have extensively covered.

The challenge in this case is, despite the simple characteristic equation for the
M = 1 case in (2.48), this expression very easily becomes complex and unwieldy
as M increases. Hence we consider two simplifications, we only consider the limit
of shallow-water fluids, and we consider direct numerical solutions to the governing
boundary condition equations, rather than forming the characteristic equation analyti-
cally and then solving this numerically. To this end, we can write the non-dimensional
shallow-water velocity potential in each vessel region from (2.25) as

φ j (x) = ̂A j (x) = ̂Bj cos(2s(x − x j−1)) + ̂C j sin(2s(x − x j−1)),

where

x j = j

M + 1
for j = 0, ...., M + 1,

are the dimensionless positions of the vessel side walls and baffles. Here there is no
longer a dependence on y as we are in the shallow-water limit, and the hats denote
these constants are dimensionless. This solution satisfies all required equations except
for the side-wall, and baffle boundary conditions, which fix the constants ̂Bj and ̂C j .
For the M baffle problem the boundary conditions to be satisfied are

̂A1x (x0) = isQ,

̂A1x (x1) = ̂A2x (x1) = isQ + iγ s(̂A2(x1) − ̂A1(x1)),
̂A2x (x2) = ̂A3x (x2) = isQ + iγ s(̂A3(x2) − ̂A2(x2)),

... = ...

̂A(M+1)x (xM+1) = isQ,

which leads to 2M + 2 equations for the 2M + 3 unknowns (̂Bj , ̂C j and Q). These
equations together with the vessel equation (2.24), which in this notation becomes

is
M+1
∑

j=1

[

̂A j (x j ) − ̂A j (x j−1)
] +

[

G − Rs2
]

Q = 0,
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Fig. 10 Plot of (a) sr (γ ) and (b) si (γ ) in the shallow-water limit with (G, R) = (1, 0.5), for multiple,
equally spaced porous baffles. The arrows indicate an increase in the value of M with M = 1, 2, 4, 9, 14
and 19 presented

can be written as the 2M + 3 matrix system Bz = 0 where z = (̂B1, ̂C1, ...., ̂BM+1,
̂CM+1, Q)T .

The characteristic equation would then be found from solving det(B)(s) = 0, such
that there is a non-trivial solution to the above system. Here, rather than formulate
this determinant analytically, we calculate s directly via Newton iterations, using the
Jacobi formula to determine the derivative of the determinant with respect to s.

In Fig. 10 we consider results for s = sr + isi for (G, R) = (1, 0.5) and values of
M = 1, 2, 4, 9, 14 and 19 with γ ∈ R. The case M = 1 corresponds to the μ = 0.5
case presented in Fig. 6 and shows a peak decay rate of the system located close to
γ = 0. As the number of baffles is increased what we find is that the maximum decay
rate, smax

i , increases to amaximumvalue at smax
i ≈ 0.031 forM = 19, which is similar

to the maximum decay rate when M = 9, i.e. the increase in decay rate slows for large
M . The reason for this slow down in increasing smax

i is due to what can be seen in panel
(a), where asM increases, themaximum frequency of themulti-baffled vessel at γ = 0
changes only by a small amount, hence the difference sr (∞) − sr (0) becomes almost
constant, which in turn drives the maximum value of si . The significant conclusion of
the result in Fig. 10 is that placing more equally spaced, porous baffles into a system
initially increases the decay rate, but only up to about M = 9 baffles in this example,
after which the increased decay rate return is minimal. However, what is notable is that
the range of γ values over which there is significant decay is greatly increased. This
means that rapid decay can be achieved in a system with baffles with larger γ (which
might be easier and cheaper to manufacture) rather than having to acquire baffles with
small γ , which might be more expensive to manufacture.

4 Conclusions

In this paper we studied the coupled vessel plus contained fluid, motion for rectilinear
vessel motions and two-dimensional fluid motions, in the presence of porous, surface
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piercing baffles. The fluid was assumed to be inviscid, incompressible and irrotational,
such that it can be written in terms of a velocity potential in each connected region.
By linking each region together via a porous wall transmission condition given by
Darcy’s law, and seeking normal mode solutions about a quiescent state, we derived
an explicit characteristic equation in the single baffle case. The characteristic equation
correctly reduced to the two compartment impermeable baffle case of [7] and the single
compartment case of [35] in the limits |γ | → 0 and |γ | → ∞ respectively, where γ

is the non-dimensional baffle porosity parameter.
The presented results for both finite-depth and shallow-water fluids showed that

the modes which couple to the vessel motion (i.e. not symmetric free-modes in a sta-
tionary vessel) decay exponentially in time, i.e. they have a complex non-dimensional
frequency s = sr + isi with si ≥ 0. There was no obvious connection between the
mode’s decay rate, si , and its frequency, sr , but the maximum decay rate for each
mode occurred in a region of γ values where sr sharply varied from its |γ | = 0 value
to its |γ | = ∞ value. The lowest frequency mode typically had the smallest maxi-
mum decay rate (except in the special vessel configurations with neutral modes), and
hence this mode is expected to be most significant in real systems which contain a
superposition of these modes, at moderate times.

For a vessel configuration with M equally spaced identical baffles we were able to
show that the maximum decay rate for the lowest frequency mode increased as M was
increased towards some limiting value for large M . It was also found that the range
of baffle porosity values γ over which the decay rate was, say, ≥ 3

4 s
max
i increased

with M . This means that in a physical system in order to achieve rapid damping, a
large number of baffles should be installed. This could however, be expensive, and so
a smaller number of baffles could be used if the wall porosity is tuned such that the
mode frequency generated by some external mechanism lies close to a value where
the lowest frequency mode decays fastest.

Future work of potential interest is to incorporate baffles which have a time depen-
dent porosity, such as a wall with movable slats. If the time-scale of the wall porosity
change is faster than the period of the fluid oscillations, then modes could be manipu-
lated to some maximal decay rate, meaning any induced oscillations could be quickly
removed. This could be particularly significant in Tuned Liquid Dampers in highrise
buildings [45]. This is considered in future work.
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A Free sloshingmodes

In this appendix we examine the form of the eigenvector (B10, B20, q̂)T of (2.41) for
the case when det(̂A) = 0 for ̂A in (2.38). We show that these modes are either trivial
solutions to the system or free-sloshing modes in a stationary vessel, q̂ ≡ 0. We now
consider two distinct cases.

A.1 Case 1: sin k0L1 = sin k0L2 = 0

One solution of det(̂A) = 0 is when both sin k0L2 = 0 and sin k0L1 = 0 simulta-
neously. As noted in the main text, this amounts to the compartment lengths being
related by mL2 = m′L1 for m,m′ ∈ N. In this case the governing equations of (2.41)
reduce to

−iωc0(cos k0L1 − cos k0L2)q̂ = 0,

iωβ(− cos k0L1B10 + cos k0L2B20) = iωc0(cos k0L1 − 1)q̂,

iωρHc0(cos k0L1 − 1)B10 − iωρHc0(1 − cos k0L1)B20 + q̂ = 0,

with  given in (2.40). We now consider three separate sub-cases of this case.

A.1.1 Sub-case A: cos k0L1 = cos k0L2 = 1

Here both m and m′ are even, and under these conditions the three equations above
reduce to

B10 = B20, and q̂ = 0.

Hence, this results in free-sloshing in a stationary vessel with symmetric free-surface
profiles in each region, as shown for an example in Fig. 11(a).

A.1.2 Sub-case B: cos k0L1 = cos k0L2 = −1

Here both m and m′ are odd and under these conditions the three equations above
reduce to

β(B10 − B20) = −2c0q̂, and 2iωρHc0(−B10 + B20) + q̂ = 0.

These equations can be combined together into

[

4iωρHc20
β

+ 

]

q̂ = 0.

The bracketed quantity is not zero for all parameter values, hence again q̂ = 0 and
B10 = B20 is arbitrary. These are again free-sloshing modes in a stationary vessel, but
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Fig. 11 Plot of the free-surface elevation h(x, 0) for the three sub-cases (a) sub-case A with (L1, L2) =
(0.4, 0.6), (b) sub-case B with (L1, L2) = (0.375, 0.625) and (c) sub-case C with (L1, L2) = (0.4, 0.6).
In each case H = 0.1 and ε = 0.01 and the vertical dotted line represents the baffle. Here each mode is a
neutral mode with s ∈ R, i.e. a zero decay rate. The fluid frequencies in each section are the same, such
that the fluid waves meet at the baffle so no fluid passes through the baffle. Hence the fluid heights are
continuous across the baffle in (a) and (b)

this time the modes are anti-symmetric in each region. Hence each region generates an
equal and opposite force on the vessel walls during its motion, which keeps the vessel
stationary. An example of these anti-symmetric modes are plotted in Fig. 11(b).

A.1.3 Sub-case cos k0L1 = 1 and cos k0L2 = −1 (or vice versa)

In this case either m or m′ is even, while the other is odd, and under these conditions
the three equations above reduce to

−2iωc0q̂ = 0,

−iωβ(B10 + B20) = 0,

2iωρHc0B20 + q̂ = 0.

Thus q̂ = 0 from the first equation, and so the third equation gives B20 = 0, and
finally B10 = 0 from the second equation. Hence the result is the trivial case. This
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is consistent with the previous results, because in this case the mode in one region is
symmetric, i.e. produces no lateral force on the vessel, while in the second region the
free-surface is ant-symmetric and is producing a lateral force on the vessel. Hence this
scenario cannot occur. An example of this case is plotted in Fig. 11(c).

A.2 Case 2:! = − ik0
ˇ(cot k0L1+cot k0L2)

In this case we introduce the new constants

Dj0 = Bj0

cot k0L1 + cot k0L2
, P = q̂

(cot k0L1 + cot k0L2)2
,

and then the governing equations can be written as

k0 sin k0L1D10 + k0 sin k0L2D20 = − k0c0
β

(cos k0L2 − cos k0L1)P,

k0 sin k0L1D10 + k0 sin k0L2D20 = k0c0 sin k0L2
β sin k0L1

[(cos k0L1 − 1)(cot k0L1 + cot k0L2)

+ sin k0L1 + sin k0L2] P,

k0ρHc0 [(cos k0L1 − 1)D10 + (1 − cos k0L2)D20] + (cot k0L1 + cot k0L2)
2P = 0.

Eliminating the Dj0 constants from the first 2 equations leads to

[

sin k0L2

sin k0L1
[(cos k0L1 − 1)(cot k0L1 + cot k0L2) + sin k0L1 + sin k0L2]

+ cos k0L2 − cos k0L1

]

P = 0,

which implies that P = 0, as the square bracket is not zero for all parameter values.
The resulting equations then lead to D10 = D20 = 0, i.e. the trivial solution for this
value of ω.

B Asymptotic solutions for the non-dimensional frequency, s

In this appendix we calculate the asymptotic form of the non-dimensional frequency
s for the case γ ∈ R in the limits γ � 1 and γ  1.
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B.1 Asymptotic frequencies in � � 1 limit

We can identify the form of the complex sloshing frequency s in the limit as γ → 0
by forming an asymptotic expansion of all variables which depend on s, in the form

s = s0 + γ s1 + O(γ 2),

α0 = α00 + γα01 + O(γ 2),

αn = αn0 + γαn1 + O(γ 2),

c20 = c200 + γ c201 + O(γ 2),

c2n = c2n0 + γ c2n1 + O(γ 2),

0 = 00 + γ01 + O(γ 2),

1 = 10 + γ11 + O(γ 2),

2 = 20 + γ21 + O(γ 2).

(2.51)

The process documented below could be extended to achieve higher order accuracy
by computing more terms in the asymptotic series for s. However, for the purposes of
this paper there are no clear benefits to computing past the first two terms, and hence
we stop our expansions at this point.

By considering the eigenvalue problems for α0 and αn in (2.45), we can deduce
expressions which link α00 to s0 and α01 to s1 etc. Inserting the expansions (2.51) into
the first equation of (2.45) gives

O(1) : α00 tanh α00δ − 4δs20 = 0,

O(γ ) : α01 tanh α00δ + α00α01 sech
2 α00δ − 8δs0s1 = 0.

(2.52)

Hence at leading order this is just the usual eigenvalue problem which needs to be
solved given an s0 value, while the second equation shows that α01 and s1 are linked
via the linear expression,

α01 = 8δα00s0
(α2

00 + 4δs20 − 16δ2s40)
s1.

Similarly for the evanescent modes, the second equation of (2.45) becomes

O(1) : αn0 tan αn0δ + 4δs20 = 0,

O(γ ) : αn1 tan αn0δ + αn0αn1 sec
2 α00δ + 8δs0s1 = 0,

(2.53)

and so at O(γ )

αn1 = − 8δαn0s0
(α2

n0 − 4δs20 + 16δ2s40)
s1.
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By the same process the coefficients in (2.32) gives

O(1) : c200 = 4 sinh2(α00δ)

α00δ(2α00δ + sinh 2α00δ)
,

O(γ ) : c201 = −c200α01

α00

(

1 − 2δα00 coth α00δ + δ2α2
00c

2
00 coth

2 α00δ
)

,

O(1) : c2n0 = 4 sin2 αn0δ

αn0δ(2αn0δ + sin 2αn0δ)
,

O(γ ) : c2n1 = −c2n0αn1

αn0

(

1 − 2δαn0 cot αn0δ + δ2α2
n0c

2
n0 cot

2 αn0δ
)

.

(2.54)

Therefore, substituting these expansions into the characteristic equation gives,

α00 sin α00μ sin α00(1 − μ)

[

2s20c
2
00

(

tan
1

2
α00μ + tan

1

2
α00(1 − μ)

)

− α0000

]

= 0.

This characteristic equation is exactly that given in [7] for the case of two separate com-
partments with equal mean fluid depths. Solving this characteristic equation gives the
leading order value of the frequency s0 which is purely real. The next order correction
term comes from the O(γ ) part of the characteristic equation which states,

4α00s0c
2
00 sin α00μ sin α00(1 − μ)

(

tan
1

2
α00μ + tan

1

2
α00(1 − μ)

)

s1

+
[

2α00s
2
0 sin α00μ sin α00(1 − μ)

(

μ

2
sec2

1

2
α00μ + (1 − μ)

2
sec2

1

2
α00(1 − μ)

)

+2
(

α00s
2
0 (1 − μ) sin α00μ cosα00(1 − μ)

+(α00s
2
0μ cosα00μ + s20 sin α00μ) sin α00(1 − μ)

)

(

tan
1

2
α00μ + tan

1

2
α00(1 − μ)

)]

c200α01

−(α2
00(1 − μ) sin α00μ cosα00(1 − μ) + (α2

00μ cosα00μ + 2α00 sin α00μ) sin α00(1 − μ))00α01

+2α00s
2
0c

2
01 sin α00μ sin α00(1 − μ)

(

tan
1

2
α00μ + tan

1

2
α00(1 − μ)

)

−2is30c
2
00(1 − cosα00) + iα00s000 sin α00 − (01 − i20)α

2
00 sin α00μ sin α00(1 − μ) = 0,

where

00 = G − Rs20 − 2s20

∞
∑

n=1

c2n0
αn0

(

tanh
1

2
αn0μ + tanh

1

2
αn0(1 − μ)

)

,

01 = −2Rs0s1

−
∞
∑

n=1

[

2

α2n0

(

s20αn0c
2
n1 + 2s0s1αn0c

2
n0 − s20c

2
n0αn0

)

(

tanh
1

2
αn0μ + tanh

1

2
αn0(1 − μ)

)

+ 2s20c
2
n0αn1

αn0

(

μ

2
sech2

1

2
αn0μ + (1 − μ)

2
sech2

1

2
αn0(1 − μ)

)

]

,

20 = −s30

∞
∑

n=1

c2n0
αn0

(

tanh
1

2
αn0μ + tanh

1

2
αn0(1 − μ)

)2
.
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This equation is solved to give s1, using (2.52)-(2.54) to eliminate these variables in
favour of s1. The value for s1 is purely imaginary. Results of this approximation are
given in Fig. 4.

B.2 Asymptotic frequencies in � � 1 limit

Themechanism for calculating the asymptotic frequencies for γ  1 follows a similar
calculation as for γ � 1 in §B.1. The difference being that we introduce the small
parameter ν = γ −1 and expand as before. Therefore, this time we write

s = s0 + νs1 + O(ν2),

α0 = α00 + να01 + O(ν2),

αn = αn0 + ναn1 + O(ν2),

c20 = c200 + νc201 + O(ν2),

c2n = c2n0 + νc2n1 + O(ν2),

and the values of α00, α01, αn0 and αn1, along with c200, c
2
01, c

2
n0 and c2n1, are again

linked to s0 and s1 via equations (2.52)-(2.54). The significant difference in this deriva-
tion of the asymptotic frequencies, is here we find that

0 = ˜00 + ν˜01 + O(ν2),

1 = ν2˜10 + ν3˜11 + O(ν4),

2 = ν2˜20 + O(ν3).

Thus the leading order characteristic equation is

s0 sin α00

[

α00(˜00 + ˜10) − 2s20c
2
00 tan α00

]

= 0,

which is simply the one compartment form of the characteristic equation given by
[35] and again is purely real. At O(ν) the correction term s1, which again is purely
imaginary, is found by solving

[

−6is20c
2
00(1 − cosα00) + iα00 sin α00(˜00 + ˜10)

]

s1

+
[

−2is30c
2
00 sin α00 + is0(sin α00 + α00 cosα00)(˜00 + ˜10)

]

α01

+2α00s
2
0c

2
00 sin α00μ sin α00(1 − μ)

(

tan
1

2
α00μ + tan

1

2
α00(1 − μ)

)

−2is30c
2
01(1 − cosα00)

−α2
00 sin α00μ sin α00(1 − μ)(˜00 + ˜10) + is0α00 sin α00(˜01 + ˜11 − i˜20) = 0,
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where

˜00 = G − Rs20 ,
˜01 = −2Rs0s1,

˜20 = −s0

∞
∑

n=1

c2n0αn0

(

tanh 1
2αn0μ + tanh 1

2αn0(1 − μ)
)2

(coth αn0μ + coth αn0(1 − μ))2
,

˜10 = −2s20

∞
∑

n=1

c2n0
αn0

tanh
1

2
αn0,

˜11 = −
∞
∑

n=1

[

2s0
α2
n0

(s0c
2
n1αn0 + 2s1c

2
n0αn0 − s0c

2
n0αn1) tanh

1

2
αn0

+ s20c
2
n0αn1

αn0
sech2

1

2
αn1

]

.

Results of this approximation are given in Fig. 4.
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