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Abstract
Tahir et al. (J Stat Comput Simul 88(14):2775–2798, 2018) introduced the inverse
Nadarajah–Haghighi distribution (INHD) and demonstrated its ability to model posi-
tive real data sets with decreasing and upside-down bathtub hazard rate shapes. This
article focuses on the inference of unknown parameters using a generalized Type-II
hybrid censoring scheme (GT-II HCS) for the INHD in the presence of competing
risks. The maximum likelihood (ML) and Bayes approaches are used to estimate the
model parameters. Based on the squared error loss function, we compute Bayes esti-
mates using Markov Chain Monte Carlo (MCMC) by applying Metropolis-Hasting
(M-H) algorithm. Furthermore, the asymptotic confidence intervals, bootstrap confi-
dence intervals (BCIs) and the highest posterior density (HPD) credible intervals are
constructed. Using real data sets and simulation studies, we examined the introduced
methods of inference with different sample sizes.
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1 Introduction

In literature, censoring has arousedgreat concern, andmany researchers have discussed
newcensoring strategies and constructed inferences from several reliability studies and
life tests. Type-I (T-I) and type-II (T-II) censoring are the two widely and commonly
schemes. The combination of T-I andT-II censoring is introduced as a hybrid censoring
scheme (HCS), see Childs et al. [1]. The HCS can be characterized statistically by:
let Xm:n denote the mth failure time in which n items are employed in a lifetime and
the prescribed test termination time presented by T . Under T-I HCS, the experiment
is completed at a random time T ∗ = min{Xm:n, T }: T ∈ (0,∞) and 1 ≤ m ≤ n.
However, a fixed number of failures was satisfied by T-II HCS. Thus, in T-II HCS, the
random completed time of the test is T ∗ = max{Xm:n, T }, to satisfy that at least m
failures are observed.

There ismore information about the T-I HCS presented byGupta andKundu [2] and
Kundu and Pradhan [3]. Also, Banerjee and Kundu [4] have some considerable litera-
ture based on T-II HCS. However, T-I HCS and T-II HCS both have some drawbacks.
The absence of an elasticity test in a small period of time and to get a large number
of failures are the foremost disadvantages of them. For more details, one may refer to
Abushal et al. [5], Abushal et al. [6], Abushal et al. [7], Tolba et al. [8], Ramadan et
al. [9], Sarhan et al. [10] and Sarhan et al. [11].

Thus, we are driven straightforward to the range of generalized HCS (GHCS), see
Chandrasekar et al. [12]. Furthermore, due tomore observed failure samples, inference
works more efficiently with GHCS. T-I and T-II GHCSs are expressed as:
1-In Generalized Type-I HCS (GT-I HCS): Let n be the independent units in the
experiment, and � placed the object number that should be observed. The prior integers
(�, m), satisfy that 1 < � < m ≤ n. When the failure time X� < T , the test is
completed at min(Xm , T ). Also, if X� > T then X� is the completed test time. In this
case, (T ∗, R) is defined by

(T ∗, R) =
⎧
⎨

⎩

(X�, �), if X� > T ,

(T , R), � ≤ R < m, if X� < T < Xm,

(Xm,m), if X� < Xm < T .

where T is the ideal test time, T ∗ is the experiment completed time, and R is the
observed number failure times.
2-In Generalized Type-II HCS (GT-II HCS): Chandrasekar et al [12] introduced
the GT-II HCS as a modification of the T-II HCS. Consider n independent units are
put in the test where the fixed integer m ∈ {1, 2, ..., n}, and the two prior times
0 < T1 < T2 < ∞. The time to failure Xi is recorded until the time T1 is appears.
Here we are faced with one of three possibilities:

When, the time to failure Xm < T1, the experiment is terminated at T1. But if
T1 < Xm < T2, the experiment is terminated at Xm . Covered by this scheme, if
T1 < T2 < Xm hence, the experiment is terminated at T2. Accordingly, (T ∗, R) is
given by
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(T ∗, R) =
⎧
⎨

⎩

(T2, R), 1 < R ≤ m if T1 < T2 < Xm,

(Xm,m), if T1 < Xm < T2,
(T1, R), m ≤ R ≤ n, if Xm < T1.

The experiment in GT-II HCS has ensured that it will be ended by time T2. As a
result, time T2 represents the amount of time that the experimenter is interested to
devote to completing the experiment. If the researcher needs to remove the units from
the experiment at any point, excluding the terminal point, we are driven straight away
to the range of progressive censoring schemes (PCSs). For a detailed description of
PCSs, see Balakrishnan and Cramer [13].

In their pioneering paper, Nadarajah andHaghighi [14] introduced one of thewidely
used statistical distributions that can be used as an extension of the usual exponential
distribution, which was lately named Nadarajah and Haghighi distribution (NHD) as
an abbreviation of the authors’ names. Nadarajah and Haghighi [14] demonstrated
that NHD’s density can be decreasing and that unimodal shapes, in addition to its
hazard rate function (HRF) have a decreasing, increasing, or constant shape similar
to Weibull, gamma, and generalized exponential distributions. Recently, Tahir et al.
[15] proposed the inverse Nadarajah–Haghighi distribution (INHD) and demonstrated
that the suggested model is extremely flexible for modeling real data sets that exhibit.
Elshahhat and Rastogi [16] compared INHD with 10 inverted distributions. INHD
is the best in the literature. Numerous authors have studied the INHD estimation
problems, For example, Abo-Kasem et al. [17] investigated the reliability analysis of
the INHD with an adaptive T-I PHCS. Elshahhat et al. [18], considered the estimation
problems of INHD parameters under T-II PCS.
Suppose there is a random variable X following INHD where β and θ are the scale
and the shape parameters the cumulative distribution function cdf expressed by

F(x |β, θ) = e1−(1+ β
x )θ , x > 0; θ, β > 0, (1)

This paper addresses an important issue in life testing known as the competing
risks problem. The problem of modeling competing risks model under GT-II HCS
when the failure time of units distributed by INHD is our objective in this research.
Building the model and analyzing a set of real data under the suggested model are
developed. TheMLmethod and Bayesmethod are used to compute the point estimates
of model parameters. The ACIs, bootstrap interval and HPD credible interval are also
constructed. All findings are discussed and contrasted using a Monte Carlo study.
The paper is structured as follows: The model and its assumptions are presented in
Sect. 2. In Sect. 2, we obtained theMLE and the Bayesian analysis with SEL function,
also, covers the interval estimation: ACIs based on the MLEs, bootstrap interval and
HPD credible interval are shown. In Sect. 3, we examine real data life, Simulate data
set and conduct a simulation study to demonstrate the estimating methods presented
in this research. Section 4 represents the concluding remarks.
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2 Methodology

Here, the model and its assumptions are formulated under consideration unit lifetime
has INHD. The point estimations of model parameters are formulated by theMLE and
Bayesian approaches. Also, interval estimators are formulated under the asymptotic
property of MLEs, bootstrap techniques and HPD credible intervals.

2.1 Modeling

Let n be identical independent distributed (i.i.d.) units have the lifetimes X1, X2, ...,

Xn . Under GT-II HCS, we consider number m (number of failure time needing for
statistical inference) and two times T1 and T2 (minimum and maximum test time)
are prior proposed. Further, during the experiment, recorded the failure times and the
corresponding cause of failure can be expresses as (Xi;m,n, ηi ), 1 < i ≤ n. The
experiment is continual until test terminate time T ∗ is reached. The time T ∗ = T1
if Xm < T1 and T ∗ = T2 if T2 < Xm . But, T ∗ = Xm if T1 < Xm < T2. Suppose
that, a random sample reached to T ∗ is denoted byX ={(X1;m,n, η1), (X2;m,n, η2),...,
(XR;m,n, ηR)}, where R > m if T ∗ = T1, R < m if T ∗ = T2 and R = m if T ∗ =
Xm . The joint likelihood function for given GT-II HCS X ={(X1;m,n, η1), (X2;m,n,

η2),..., (XR;m,n, ηR)} is represented by

L(X|�) = Q
(
S1(T

∗)S2(T ∗)
)n−R

R∏

i=1

[ f1(xi )S2(xi )]
I (ηi=1)[ f2(xi )S1(xi )]

I (ηi=2),

(2)

where Q = n!
(n−d)! , S(.) = 1− F(.), for simplisty xi= xi;m,n and I (ηi = j) is defined

by

I (ηi = j) =
{

1, ηi = j,
0, else.

(3)

Model assumptions

1. The latent failure time Xi = min(Xi1, Xi2), i = 1, 2, ..., R.
2. The latent failure times obtained under the causes of failure ηi = j, j = 1, 2 are

given by, X1 ={(X11, 1), (X12, 1 ),..., (X1m1, 1)} and X2 ={(X21, 2), (X22, 2 ),...,

(X2m2 , 2)}, where m1 =
R∑

i=1
I (ηi = 1) and m2 =

R∑

i=1
I (ηi = 2).

3. The latent failure time respected to cause j, j = 1, 2 has INHD with scale param-
eters β j , j = 1, 2 and shape parameter θ . Therefore, the cdf of INHD can be
computed as

Fj (t |β j , θ) = e1−(1+ β j
x )θ , x > 0, β1, β2, θ > 0, (4)

f j (t |β j , θ)=β jθ

x2
(1 + β j

x
)θ−1e1−(1+ β j

x )θ , x > 0, β1, β2, θ > 0. (5)
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2.2 Point estimation

2.2.1 MLE

In specific, by subject the experiment to GT-II HCS explained by subsection 2.1. The
likelihood function (2) for a givenGT-II HCS competing risks sample and INHDgiven
by (4) and (5) is reduced to

L(�|X) = Qβ
m1
1 β

m2
2 θ R

(
1 − e1−(1+ β1

T∗ )θ
)n−R(

1 − e1−(1+ β2
T∗ )θ

)n−R R∏

i=1

1

x2i

×
m1∏

i=1

(1 + β1

x1i
)θ−1e

1−(1+ β1
x1i

)θ
(

1 − e
1−(1+ β2

x1i
)θ

)

×
m2∏

i=1

(1 + β2

x2i
)θ−1e

1−(1+ β2
x2i

)θ
(

1 − e
1−(1+ β1

x2i
)θ

)

. (6)

The log-likelihood function (6) without normalized constant is expressed as

�(�|X) = log L(�|X) = m1 logβ1 + m2 logβ2 + R log θ

+(n − R)
{
log

[
1 − e1−(1+ β1

T∗ )θ
]

+ log
[
1 − e1−(1+ β2

T∗ )θ
]}

+ (θ − 1)
m1∑

i=1

log

[

1 + β1

x1i

]

+
m1∑

i=1

(

1 − (1 + β1

x1i
)θ

)

+
m1∑

i=1

log

[

1 − e
1−(1+ β2

x1i
)θ

]

+ (θ − 1)
m2∑

i=1

log

[

1 + β2

x2i

]

+
m2∑

i=1

(

1 − (1 + β2

x2i
)θ

)

+
m2∑

i=1

log

[

1 − e
1−(1+ β1

x2i
)θ

]

. (7)

Taking derivatives with respect to � = {β1, β2, θ} of (7)

∂�(�|X)

∂β1
= m1

β1
+ θ(n − R)

(1 + β1
T ∗ )θ−1e1−(1+ β1

T∗ )θ

T ∗
(
1 − e1−(1+ β1

T∗ )θ
) + (θ − 1)

m1∑

i=1

1

x1i
(
1 + β1

x1i

)
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−θ

m1∑

i=1

1

x1i
(1 + β1

x1i
)θ−1 + θ

m2∑

i=1

(1 + β1
x2i

)θ−1e
1−(1+ β1

x2i
)θ

x2i

(

1 − e
1−(1+ β1

x2i
)θ

) , (8)

∂�(�|X)

∂β2
= m2

β2
+ θ(n − R)

(1 + β2
T ∗ )θ−1e1−(1+ β2

T∗ )θ

T ∗
(
1 − e1−(1+ β2

T∗ )θ
) + (θ − 1)

m2∑

i=1

1

x2i
(
1 + β2

x2i

)

−θ

m2∑

i=1

1

x2i
(1 + β2

x2i
)θ−1 + θ

m1∑

i=1

(1 + β2
x1i

)θ−1e
1−(1+ β2

x1i
)θ

x1i

(

1 − e
1−(1+ β2

x1i
)θ

) , (9)

and

∂�(�|X)

∂θ
= R

θ
+ (n − R)

(1 + β1
T ∗ )θ log

[
1 + β1

T ∗
]
e1−(1+ β1

T∗ )θ

1 − e1−(1+ β1
T∗ )θ

+
m1∑

i=1

log

[

1 + β1

x1i

]

−
m1∑

i=1

(

1 + β1

x1i

)θ

log

[

1 + β1

x1i

]

+
m2∑

i=1

(
1 + β1

x2i

)θ

log
[
1 + β1

x2i

]
e
1−(1+ β1

x2i
)θ

1 − e
1−(1+ β1

x2i
)θ

+(n − R)
(1 + β2

T ∗ )θ log
[
1 + β2

T ∗
]
e1−(1+ β2

T∗ )θ

1 − e1−(1+ β2
T∗ )θ

+
m2∑

i=1

log

[

1 + β2

x2i

]

−
m2∑

i=1

(

1 + β2

x2i

)θ

log

[

1 + β2

x2i

]

+
m1∑

i=1

(1 + β2
x1i

)θ log
[
1 + β2

x1i

]
e
1−(1+ β2

x1i
)θ

1 − e
1−(1+ β2

x1i
)θ

.

(10)

Consequently,wederived three nonlinear equations (8)–(10) in three unknownsparam-
eters and these equations are very hard to achieve the MLE in closed form. Hence,
a numerical approach is required to obtain the estimates β̂1, β̂2 and θ̂ of the model
parameters � = {β1, β2, θ}, and an iterative method called Newton–Raphson is
applied.

2.2.2 Bayesian estimation BE

Parameters estimation under Bayesian approach need to formulate the prior informa-
tion. Therefore, we proposed the prior distribution of � = {β1, β2, θ} as independent
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gamma given by

π∗(�i ) ∝ �
ai−1
i e−bi�i , �i > 0, ai , bi > 0, i = 1, 2, 3, (11)

where �1 = β1, �2 = β2 and �3 = θ , respectively. Also, the joint prior distribution
is

π∗(�) ∝ β
a1−1
1 β

a2−1
2 θa3−1e−b1β1−b2β2−b3θ , ai , bi > 0. (12)

The posterior distribution is defined by

π(�|X) = π∗(�)L(�|X)
∫∫∫

�

π∗(�)L(�|X)dβ1dβ2dθ
∝ π∗(�)L(�|X). (13)

Consequently, Eq. (13) presented as follows:

π(�|X) ∝ β
m1+a1−1
1 β

m2+a2−1
2 θ R+a3−1e−b1β1−b2β2−b3θ e

(θ−1)
m1∑

i=1
log

[
1+ β1

x1i

]
−

m1∑

i=1
(1+ β1

x1i
)θ

×e
(θ−1)

m2∑

i=1
log

[
1+ β2

x2i

]
−

m2∑

i=1
(1+ β2

x2i
)θ

(

1 − e1−(1+ β1
T∗ )θ

)n−R m1∏

i=1

(

1 − e
1−(1+ β2

x1i
)θ

)

×
(

1 − e1−(1+ β2
T∗ )θ

)n−R

×
m2∏

i=1

(

1 − e
1−(1+ β1

x2i
)θ

)

. (14)

Under symmetric squared error loss (SEL) function, L(g, g̃) = (g̃− g)2 the Bayes
estimate presented as

g̃ = Eπ(�|X)(g). (15)

In light of LINEX loss function, L(g, g̃) = ep(g̃−g) − p(g̃− g)−1, p �= 0 the Bayes
estimate presented as

g̃ = −1

p
log[Eπ(�|X)(e

−pg)]. (16)

The posterior distribution (14) need to normalization. Also, the expectations (15) and
(16) need to compute a high dimensional integrals. Some techniques can be employed
to solve this problem for instance, Lindely approximation, numerical integration and
MCMC. In this subsection, the MCMCmethod is proposed for the empirical posterior
distribution.
MCMC method
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Gibbs sampling, Metropolis under Gibbs samplers, and importance sampling tech-
nique have present MCMC sub-classes. Note that the full conditional posterior
distributions show a suitable scheme. Further, the important sample method is carried
out to approximate the BE and called importance technique. Using the joint posterior
distribution (14), we report the full conditional posterior using the following formula.

π(�|X) = π1(β1|X)π2(β2|X)π3(θ |β1, β2,X)h(β1, β2, θ |X), (17)

where

π1(β1|X) ∝ β
m1+a1−1
1 e

−b1β1−
m1∑

i=1
log

[
1+ β1

x1i

]

, (18)

π2(β2|X) ∝ β
m2+a2−1
2 e

−b2β2−
m2∑

i=1
log

[
1+ β2

x2i

]

, (19)

π3(θ |β1, β2,X) ∝ θ R+a3−1e
−θ

(

b3−
m1∑

i=1
log

[
1+ β1

x1i

]
−

m2∑

i=1
log

[
1+ β2

x2i

])

, (20)

h(β1, β2, θ |X) ∝
[(

1 − e1−(1+ β1
T∗ )θ

)(
1 − e1−(1+ β2

T∗ )θ
)]n−R m1∏

i=1

(

1 − e
1−(1+ β2

x1i
)θ

)

×
m2∏

i=1

(

1 − e
1−(1+ β1

x2i
)θ

)

e
−

m1∑

i=1

(
1+ β1

x1i

)θ−
m2∑

i=1

(
1+ β2

x2i

)θ

. (21)

It follows that the joint posterior distribution is reduced to two proper functions of β1
and β2 as well as a conditional gamma function of θ given β1 and β2.

The plots of (18) and (19) show that they are similar to the Gaussian distribution.
Hence, to generate a sample from these two distributions, theMetropolis-Hastings (M-
H) method is applied using Gaussian proposal distribution. Based on the following
techniques, we generate MCMC samples.

1. Begin with initial values �(0) = {β(0)
1 , β

(0)
2 , θ(0)}={β̂1, β̂2, θ̂} and put τ = 1.

2. Generate β
(τ)
1 from (18) with MH algorithms under normal proposal distributions.

3. Generate β
(τ)
2 from (19) with MH algorithms under normal proposal distributions.

4. Generate θ(τ) for given β
(τ)
1 and β

(τ)
2 from gamma distribution given by (20).

5. Compute the value of h(β
(τ)
1 , β

(τ)
2 , θ(τ)|X).

6. Set τ = τ + 1.
7. Repeat steps (2–5) desired N number of times.
8. Here, theBEbased onSEL function for any function g(β1, β2, θ) can be expressed

as follows:

g̃B(β1, β2, θ) =
1

N−M

∑N
i=M+1 g

(
β

(i)
1 , β

(i)
2 , θ(i)

)
h(β

(i)
1 , β

(i)
2 , θ(i)|X)

1
N−M

∑N
i=M+1 h(β

(i)
1 , β

(i)
2 , θ(i)|X)

, (22)

where M is the number of iterations needed to reach stationary distribution.
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9. Consequently, the posterior variance of g(β1, β2, θ) is calculated by

V (g(β1, β2, θ))

=
1

N−M

∑N
i=M+1

(
g
(
β

(i)
1 , β

(i)
2 , θ(i)

)
− g̃B

)2
h(β

(i)
1 , β

(i)
2 , θ(i)|X)

1
N−M

∑N
i=M+1 h(β

(i)
1 , β

(i)
2 , θ(i)|X)

. (23)

2.3 Interval estimation

2.3.1 Asymptotic confidence intervals

We now use the concept of asymptotic confidence intervals (ACIs) to construct the
CIs for the unknown parameters. The asymptotic assume that the MLEs (β̂1, β̂2, θ̂ )

are approximately bivariate normal distribution and, φ̂ ∼ N (φ, I−1(φ̂)), see Lawless
[19] where

I−1
0 (φ̂) =

⎛

⎜
⎜
⎝

− ∂2�

∂β1
2 − ∂2�

∂β1∂β2
− ∂2�

∂β1∂θ

− ∂2�
∂β2∂β1

− ∂2�

∂β2
2 − ∂2�

∂β2∂θ

− ∂2�
∂θ∂β1

− ∂2�
∂θ∂β2

− ∂2�
∂θ2

⎞

⎟
⎟
⎠

−1

(β̂1,β̂2,θ̂ )

=
⎛

⎝
var(β̂1) cov(β̂1, β̂2) cov(β̂1, θ̂ )

cov(β̂2, β̂1) var(β̂2) cov(β̂2, θ̂ )

cov(θ̂ , β̂1) cov(θ̂ , β̂2) var(θ̂)

⎞

⎠. (24)

Consequently, the pivotal quantities β̂1−β1√
Var(β̂1)

,
β̂2−β2√
Var(β̂2)

and θ̂−θ√
Var(θ̂)

are approx-

imately distributed as standard normal. Thus, the 100(1 − ϑ)% asymptotic CI for

θ , β1 and β2 are present by (θ̂ ± Zϑ/2

√

Var(θ̂)), (β̂1 ± Zϑ/2

√

Var(β̂1)) and

(β̂2 ± Zϑ/2

√

Var(β̂2)), where Zϑ/2 denotes the upper (ϑ/2)th percentile point of
the standard normal distribution.
The pivotal
 = log �̂i−log�i

Var( log �̂i )
has standard normal distribution. Then, we can calculate

the 100(1-ϑ)% ACIs of � = {β1, β2, θ} by the following expression

⎛

⎜
⎜
⎝

�̂i

exp

(

Zϑ/2

√

Var( log �̂i )

) , �̂i exp

(

Zϑ/2

√

Var( log �̂i )

)

⎞

⎟
⎟
⎠, i = 1, 2, 3, (25)

where Var( log �̂i )=
Var(�̂i )

�̂i
and i = 1, 2, 3. More information can be found in Chen

and Shao [20] and Wang et al [21].
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2.3.2 Bootstrap confidence intervals

Bootstrap technique is one of the most popular methods applied to estimate CIs.
Further, it can also be computed to estimate the bias and variance of an estimator or
calibrate hypothesis tests. Bootstrap techniques are described as resembling methods.
The bootstrap techniques are defined in both methods nonparametric and parametric,
see Davison and Hinkley [22] and Efron and Tibshirani [23]. In the problem at hand,
we utilize the parametric bootstrap technique to construct the parametric percentile
bootstrap technique. Here, the algorithm is employed to present a percentile bootstrap
technique for formulation bootstrap confidence intervals.

1. From the original T-II GHCS sample X ={(X1;m,n, η1), (X2;m,n, η2),..., (XR;m,n,

ηR)}, the MLEs � = {β̂1, β̂2, θ̂} are obtained.
2. Generate two samples from INHD(β̂1, θ̂ ) and INHD(β̂2, θ̂ ) with the same size n

and the latent failure time is observed as Xi = min(Xi1, Xi2).

3. For given m and (T1, T2) the bootstrap T-II GHCS sample X∗ ={(X∗
1;m,n, η∗

1),

(X∗
2;m,n, η∗

2),..., (X
∗
R;m,n, η∗

R)} and the corresponding MLEs �∗ = {β̂∗
1 , β̂∗

2 , θ̂∗}
are obtained.

4. Steps from (2) and (3) are repeated N times and each time compute bootstrap
estimate �∗ = {β̂∗

1 , β̂∗
2 , θ̂∗}.

5. The bootstrap sample estimate �∗(i) = {β̂∗(i)
1 , β̂

∗(i)
2 , θ̂∗(i)}, i = 1, 2, ..., N are

arranged in ascending order to obtain �∗
(i) = {β̂∗

1(i), β̂
∗
2(i), θ̂

∗
(i)}, i = 1, 2, ..., N.

Percentile bootstrap confidence interval (PBCI)
Let, the ordered sample is addressed by distribution F(x) = P(�̂∗

l ≤ x), l = 1, 2,
3, which be the CDF of �̂∗

l , with �̂∗
1 reflects the mean β̂∗

1 and others. Thus, the point
bootstrap estimate is given by

�̂∗
l = 1

N

N∑

i=1

�∗
l(i). (26)

Also, the 100(1 − ϑ)% PBCIs are given by

(�̂∗
lboot( ϑ

2 )
, �̂∗

lboot(1- ϑ
2 )

), (27)

where �̂∗
lboot = F−1(x).

2.3.3 HPD credible intervals

To build HPD credible interval of �(β1, β2, θ), rearrange all �i (β
(i)
1 , β

(i)
2 , θ(i)), i =

1, 2, ..., M in ascendingorder as,�1,�2, ...,�M . Then, to compute 100(1−μ)%, 0 <

μ < 1, HPD credible intervals of the function �B(β1, β2, θ), the method proposed
by Chen and Shao [20] is applied as follows:
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1. Construct the MCMC sample of �
(i)
ι (β

(i)
1 , β

(i)
2 , θ(i)), ι = 1, 2, 3 and i =

1, 2, ..., N − M using the importance sampling technique. Hence, compute hι =
h(�

(i)
ι ), ι = 1, 2, 3.

2. Sort hι, i = 1, 2, ..., N − M in ascending order can be expressed as h(1) < h(2) <

... < h(N−M).
3. Compute the weighted function Wi

Wi = h(β
(i)
1 , β

(i)
2 , θ(i))

∑N
i=M+1 h(β

(i)
1 , β

(i)
2 , θ(i))

, ι = 1, 2, 3. (28)

Now recallWi , i = M + 1, M + 2, ..., N asW(i), i = 1, 2, 3, ..., N − M , then i th

of W(i) correspondence to the value h(i).
4. To construct the order pairs (., .) defined the values of the marginal posterior of

Wi as

Ŵi =
{

W1, if μ = 0,
Wk, if

∑k−1
i=1 W(i) < μ <

∑k
i=1 W(i).

5. Then, 100(1 − μ)% HPD credible intervals of �(β1, β2, θ), is

(�
�
N ,�(�+[(1−μ)N ]/N )), f or , � = 1, 2, ..., N − [(1 − μ)N ]. (29)

Furthermore, [.] is the greatest integer value and the ( �
N ) can be obtained such

that.

�(�+[(1−μ)N ]/N ) − �
�
N = min(�(�+[(1−μ)N ]/N ) − �

�
N ),

for � = 1, 2, ..., N − [(1 − μ)N ].
(30)

The performance of all estimators is discussed in the next section using real data set
and simulations.

3 Data analysis and simulation study

Here, we discussed examples to demonstrate the findings developed in this study. In
the first example, we considered a real data set that was collected in a laboratory
experiment in a traditional laboratory environment Hoel [24]. The data came from
testing male mice subjected to a radiation dose of three hundred Roentgens at the age
of five to six weeks. These data are used by various authors, for example, Pareek et al.
[25] and Sarhan et al. [26]. In the second example, we adopted for different parameters
values and censoring a simulated data set generated from INHD.
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Table 1 Autopsy data for 99 RFM conventional male mice that received a radiation dose of 300 Roentgens
at the age of 5 to 6 weeks, as given in [24]

Thymic lymphoma: 159, 189, 191, 198, 200, 207, 220, 235, 245, 250, 256, 261, 265, 266, 280,
343, 356, 383, 403, 414, 428, 432.

Other causes: 40, 42, 51, 62, 163, 179, 206, 222, 228, 249, 252, 282, 324, 333, 341, 366, 385,
407, 420, 431, 441, 461, 462, 482, 517, 517, 524, 564, 567, 586, 619, 620, 621, 622, 647, 651,
686, 761, 763.

Fig. 1 Plots of a ECDF, b P-P, and c Q-Q under cause 1 for given data

3.1 Applications to real life data set

A real data set consisting of failure times reported in Table 1 of the autopsy operation
presented in Hoel [24] has been considered here. Two causes of failure were classified
in the data set: Thymic Lymphoma as the first caue and other caues as the second
cause of failure.

Under the transformation Y = ( X
500 )

2, we checked the validity of modeling these
data by INHD. A goodness-of-fit test is used in this situation to determine whether or
not the transformeddata sets are assumed to be distributedwith the INHD.Calculations
are made to determine the K-S distances (p-values) that correlate with causes 1 and 2
as 1.00797 (0.2149) and 1.19717 (0.1917). Based on these findings, we may say that
H0 is accepted for test (1) that each transformed data set is drawn from INHD, yet
fails to accept the other one. As a result, it is reasonable to conclude that θ1 = θ2 = θ

and β1 �= β2 for this data set.
In order to provide more explanation, we plot the empirical CDF (ECDF),

probability-probability (P-P) and quantile-quantile(Q-Q) plots in Fig. 1 and Fig. 2
based on causes 1 and 2, respectively. As a further check, we fit Kolmogorov-Smirnov
(K-S) distances between the fitted distribution functions and the empirical distribution
functions equal to 0.3035. The conclusion that can be drawn from these plots is that
the INHD is a good match for the given data set.

Below is provided information on the competing risks data set based on GT-II HCS
taken from the given data set.
(0.0064, 2), (0.0071, 2), (0.0104, 2), (0.0154, 2), (0.1011, 1), (0.1063, 2), (0.1282, 2),
(0.1429, 1), (0.1460, 1), (0.1568, 1), (0.1600, 1), (0.1697, 2), (0.171396, 1), (0.1936,
1), (0.197136, 2), (0.207936, 2), (0.2209, 1), (0.2401, 1), (0.2480, 2),(0.2500, 1),
(0.2540, 2),(0.2621, 1), (0.2725, 1), (0.2809, 1), (0.2830, 1), (0.3136, 1), (0.3181, 2),
(0.4200, 2), (0.4436, 2), (0.465124, 2), (0.4706, 1), (0.5070, 2), (0.5358, 1), (0.5868,
2), (0.5929, 2).
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Fig. 2 Plots of a ECDF, b P-P, and c Q-Q under cause 2 for given data

Table 2 Point and 95% interval MLE and BE for the real data set

� MLE Bayes ACI Length BCI Length

β1 9.9002 4.6926 (3.2625, 17.0628) 13.8003 (−0.0047, 7.0096) 7.0143

β2 7.2242 3.0468 (0.9384, 12.7992) 11.8608 (−0.0083, 6.0149) 6.0232

θ 0.2770 0.3408 (0.2041, 0.3499) 0.3408 (0.0433, 0.8808) 0.8375

Where 1 signified the first cause, 2 denoted the second cause. From this data, we
can see that (m1,m2,m) = (18, 17, 35).

The data is then analyzed using the proposed model under two causes of death.
For m = 40, τ1 = 0.3, τ2 = 0.6, q = 0.05, and p = 0.1. The MLE is calculated
by iteration with an initial guess of β1, β2 and θ . The non-informative prior is used
for prior information, as ai = bi = 1, i = 1, 2, 3. Table 2 displays point and interval
estimates derived from the competing risk data sets using GT-II HCS. For the MCMC
technique in Bayes approach, we run the chan 21000 with the first 1000 values as
brun-in.

Table 2 displays point and interval estimates derived from the aforementioned
competing risk data sets using GT-II HCS. From Table 2, it has been noticed that the
point estimates are quite similar to one another. When comparing the standard error
of MLE and Bayes estimates, the latter generally provides more accurate results. In
comparison to ACIs, Bayesian credible intervals have superior performance based on
the length of the intervals.

3.2 Simulate data set

Here, we generate a data set from the INHD and analyze it using the following algo-
rithm:

1. From gamma prior distributions with (ai , bi )i=1,2,3 = (0.3, 5), (0.2, 5), (0.1, 5),
generate a sample of size 20. The genuine parameter’s value is then calculated to
be the sample mean � = {β1, β2, θ} = {1.5, 1, 0.5}.

2. Generat a random sample from the INHD with parameters β1 + β2 and θ of size
40 to be:

{0.032451, 0.052182, 0.053380, 0.058725, 0.064027, 0.074505, 0.083419, 0.112684,
0.113543, 0.120729, 0.139183, 0.166689, 0.171822, 0.194085, 0.194973, 0.203049,
0.232722, 0.257349, 0.259924, 0.267359, 0.277452, 0.301836, 0.327261, 0.339334,
0.579614, 0.601571, 0.659922, 0.663395, 0.688138, 0.695096, 0.745303, 0.865290,
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Table 3 Point and 95% interval MLE and BE

� MLE Bayes ACI Length BCI Length

β1 = 1.5 1.61939 1.57817 (0.0103, 3.2285) 3.21826 (0.5387, 2.0952) 1.5565

β2 = 1 1.75870 1.51971 (−0.0392, 3.5566) 3.59586 (0.4691, 1.8955) 1.4264

θ = 0.5 0.43081 0.31543 (0.2805, 0.5812) 0.30069 (0.4104, 0.8813) 0.4709

0.977975, 0.985364, 1.131510, 1.241950, 1.88080, 2.464560, 3.973810, 4.318960}.
3. Under consideration that, T1 = 2.5 and T2 = 3 and m = 25 the GT-II HCS

competing risks sample given by
{0.032451, 0.052182, 0.053380, 0.058725, 0.064027, 0.074505, 0.083419, 0.112684,
0.113543, 0.120729, 0.139183, 0.166689, 0.171822, 0.194085, 0.194973, 0.203049,
0.232722, 0.257349, 0.259924, 0.267359, 0.277452, 0.301836, 0.327261, 0.339334,
0.579614, 0.601571, 0.659922, 0.663395, 0.688138, 0.695096, 0.745303, 0.865290,

0.977975, 0.985364, 1.131510, 1.241950, 1.88080, 2.464560}.
Then, the integer value R = 38.

4. From Step 3 compute m1 and m2.
5. The simulated number generated by the important sample method with the cor-

responding histogram is given in Figs. 3 and 4. These two Figures show the
convergence in the empirical posterior distribution.

6. The findings ofMLE and BE are presented in Table 3 for a point and 95% intervals
estimate.

3.3 Simulation studies

In this part, the Monte Carlo simulation study is used to evaluate and compare the
estimation findings that were developed and obtained in this paper. Therefore, we
assess the effect of changes in sample size n, affected sample size m, and parameter
vector � = {β1, β2, θ}. We also investigate the effect of changing the ideal test times
(T1, T2).

To get the true values of the model parameters to agree with the hybrid parameter
values of the prior distribution, we suggested the shape and scale hybrid parameters
and generated a random sample of size twenty. Hence, the genuine parameter is chosen
to be the mean of the random sample. Different combinations of (n,m, T1, T2) and
two sets of parameters � = {β1, β2, θ} = {2, 1.7, 0.6}, {1.5, 1, 0.5} are reported in
the simulation study tables. The simulation study is carried out with respect to one
thousand simulated data sets.

In our research, we compute the two point estimates MLEs andMCMCs, as well as
the three interval estimates ACIs, PBCI, and HPD credible intervals. The instruments
that are utilized to test the point estimate are the mean estimate (ME) and the mean
squared error (MSE). But the interval estimate test under the average interval length
(AIL) and probability coverage (PC). For the MCMC method, we run the chain with
11,000 values, with the first 1000 values as brun-in. The results of the simulation study
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Fig. 3 Plot of the simulation number of β1, β2 and θ generated via MCMC

are presented in Tables 4 to 7. From the numerical results in Tables 4-7, we observed
that the proposed GT-II HCS competing risks model serves well for the statistical
inference of INHD. The Bayes estimators for the parameters β1 and β2 perform better
than the MLEs in terms of MSEs. For the parameter θ , MLEs perform better than
Bayes estimators. When affect sample size increases, the MSEs and AILs decrease.

4 Conclusion

Statistical infrance of the INHD is discussed based on a GT-II HCS. Both the classical
and Bayes estimations of the parameters were found under GT-II HCS. Since none
of the proposed estimators have analytical expressions, the Newton–Raphson method
has been taken into consideration. Depending on the asymptotic normality of the
MLEs, the ACIs are calculated. For the purpose of comparison, the Bayes estimates
were generated for different values of the parameters under the SEL function. Since
Bayes estimates cannot be obtained explicitly, the MCMC method was considered.
Furthermore, for the unknown parameters samples generated by the MH algorithm
are used to calculate the HPD intervals.

Suggested estimates are then numerically contrasted, and suitable comments are
offered. According to the computational findings, the Bayesian estimation for the
scale parameters is more accurate than the MLE. Furthermore, HPD intervals have
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Fig. 4 Plot of the histogram of β1, β2 and θ generated via MCMC

Table 4 MEs and MSEs from � = {2, 1.7, 0.6}
(n,m, T1, T2) MLE Bayes-MCMC

β1 β2 θ β1 β2 θ

(40, 15, 2.5, 3) MEs 1.86505 1.67215 0.70306 1.73317 1.59773 0.46435

MSEs 0.95423 0.87343 0.05892 0.11120 0.04579 0.01935

(40, 25, 2.5, 3) MEs 1.75060 1.51091 0.71712 1.74495 1.59137 0.46264

MSEs 0.70213 0.50763 0.07144 0.09744 0.04512 0.02009

(60, 25, 2.5, 3) MEs 1.96358 1.74375 0.65132 2.19451 2.00345 0.41714

MSEs 0.67465 0.68165 0.01968 0.15495 0.16801 0.03405

(60, 35, 2.5, 3) MEs 2.11762 1.75974 0.62693 2.23557 2.03180 0.40861

MSEs 0.64978 0.61919 0.01268 0.11147 0.16798 0.03400

(40, 15, 2.5, 5) MEs 1.89205 1.72972 0.70042 1.76128 1.61401 0.46286

MSEs 0.88006 0.99643 0.05521 0.10920 0.05270 0.02000

(40, 25, 2.5, 5) MEs 1.89174 1.60236 0.69681 1.72475 1.57704 0.46143

MSEs 0.70159 0.61782 0.04596 0.10598 0.05085 0.02034

(60, 25, 2.5, 5) MEs 1.98396 1.68327 0.64835 2.23748 2.00722 0.41334

MSEs 0.56287 0.40486 0.01718 0.11235 0.16927 0.03556

(60, 35, 2.5, 5) MEs 1.95646 1.69886 0.67026 2.19763 2.00736 0.41701

MSEs 0.54669 0.40569 0.01346 0.11102 0.14723 0.03421
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Table 5 AILs and PCs from � = {2, 1.7, 0.6}
(n,m, T1, T2) MLE Boot Bayes-MCMC

β1 β2 θ β1 β2 θ β1 β2 θ

(40, 15, 2.5, 3) AILs 3.77977 3.36591 0.73681 4.40715 3.78676 4.87799 1.59287 1.58865 0.67604

PCs 0.86 0.88 0.98 0.89 0.88 0.92 0.88 0.99 0.99

(40, 25, 2.5, 3) AILs 3.52986 3.00647 0.75357 3.52029 2.94339 3.42630 1.58777 1.60581 0.66943

PCs 0.87 0.87 0.99 0.88 0.89 0.86 0.86 0.99 0.99

(60, 25, 2.5, 3) AILs 3.39066 2.78895 0.48638 3.49788 2.77144 0.64170 1.66472 1.67028 0.48024

PCs 0.90 0.91 0.96 0.89 0.89 0.89 0.98 0.99 0.99

(60, 35, 2.5, 3) AILs 3.38340 2.78887 0.44534 3.49383 2.76639 0.55649 1.66429 1.66579 0.47737

PCs 0.96 0.96 0.97 0.95 0.96 0.93 0.98 0.99 0.99

(40, 15, 2.5, 5) AILs 3.86527 3.49332 0.72043 3.89039 3.38950 2.29516 1.60110 1.59180 0.67391

PCs 0.84 0.81 0.98 0.91 0.82 0.86 0.94 0.99 0.98

(40, 25, 2.5, 5) AILs 3.85565 3.21284 0.70582 3.88911 3.12150 1.33319 1.59731 1.59713 0.66832

PCs 0.84 0.87 0.98 0.86 0.90 0.86 0.95 0.99 0.98

(60, 25, 2.5, 5) AILs 3.21791 2.68141 0.51277 3.15392 2.57826 0.59593 1.74851 1.75947 0.48474

PCs 0.91 0.88 0.98 0.93 0.90 0.90 0.99 0.99 0.99

(60, 35, 2.5, 5) AILs 3.16164 2.68139 0.51418 3.12361 2.57709 0.60522 1.74593 1.75798 0.48411

PCs 0.89 0.89 0.96 0.90 0.89 0.89 0.99 0.99 0.99

Table 6 MEs and MSEs from � = {1.5, 1, 0.5}
(n,m, T1, T2) MLE Bayes-MCMC

β1 β2 θ β1 β2 θ

(40, 15, 2.5, 3) MEs 1.51164 1.05450 0.54829 1.54732 1.25968 0.34668

MSEs 0.62327 0.37861 0.01935 0.06793 0.09805 0.02402

(40, 25, 2.5, 3) MEs 1.55068 0.99531 0.55633 1.56125 1.23428 0.34821

MSEs 0.56326 0.37388 0.02021 0.06404 0.09617 0.02370

(60, 25, 2.5, 3) MEs 1.49034 0.95567 0.53805 1.87438 1.51917 0.32861

MSEs 0.50141 0.16065 0.00897 0.21148 0.31103 0.02993

(60, 35, 2.5, 3) MEs 1.44879 0.94465 0.53700 1.84243 1.51217 0.32852

MSEs 0.34755 0.10988 0.00875 0.20672 0.30271 0.02987

(40, 15, 2.5, 5) MEs 1.67632 1.04819 0.55289 1.56859 1.23711 0.35211

MSEs 0.69729 0.29198 0.02392 0.04617 0.09571 0.02251

(40, 25, 2.5, 5) MEs 1.54560 1.07371 0.54246 1.52366 1.27578 0.34480

MSEs 0.68165 0.23785 0.01519 0.04243 0.08543 0.02246

(60, 25, 2.5, 5) MEs 1.44523 0.99958 0.53180 1.85768 1.55243 0.32069

MSEs 0.44187 0.16500 0.00840 0.02048 0.06357 0.02237

(60, 35, 2.5, 5) MEs 1.54590 0.97955 0.52892 1.86216 1.48321 0.32789

MSEs 0.44178 0.13073 0.00765 0.00764 0.06575 0.02012
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been demonstrated to be perform superior to all other CIs. Application of the proposed
estimates to real data sets reveals that the Bayesian estimation for the scale parameters
performs better than other methods. Although we focused on GT-II HCS and INHD
in this study, we can extend this methods to various censoring schemes under deferent
distributions as well.
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