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Abstract
The paper presents a fast and stable solver algorithm for structural problems. The
point is the distance between the eigenvector of the constrained stiffness matrix and
the unconstrained matrix. The coarse motions are close to the kernel of the uncon-
strained matrix. We use lower-frequency deformation modes to construct an iterative
solver algorithm through domain decomposition expressing near-rigid-body motions,
deflation algorithms, and two-level algorithms. We remove the coarse space from the
solution space and hand over the iteration space to the fine space. Our solver is paral-
lelized, and the solver thus has two sets of domain decomposition. One decomposition
generates the coarse space, and the other is for parallelization. The basic framework
of the solver is the parallel conjugate gradient (CG) method on the fine space. We use
the CG method for the basic framework instead of the (simplest) domain decomposi-
tion method. We conducted benchmark tests using elastic static analysis for thin plate
models. A comparison with the standard CG solver results shows the new solver’s
high-speed performance and remarkable stability.

Keywords Domain decomposition · Deflation algorithm · Distance between
eigenvectors of stiffness matrix and kernel of unconstrained one · Fast stable solver ·
Rigid-body motion

Mathematics Subject Classification 15 Linear and multilinear algebra · Matrix
theory · 65 Numerical analysis · 74 Mechanics of deformable solids

1 Introduction

The three-dimensional analysis is a standard technique for structural mechanics. How-
ever, it has yet to be used in the design of large-scale structures, safety assessment,
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and maintenance. Instead, frame and lumped mass models have long been used owing
to historical background, insufficient computer power, and computational techniques.
However, in recent years, three-dimensional analyses have been gradually but widely
used for nuclear power plants (NPPs) [1], high-rise buildings [2], and bridges [3].
For example, Japan’s practice standard for the seismic probabilistic risk assessment
(PRA) of NPPs requires a detailed evaluation of the damage limits of buildings and
structures using three-dimensional seismic response analysis [4]. In a study of high-
rise buildings [2], three-dimensional elastoplastic seismic response damage analysis
has been conducted with as many as 74 million degrees-of-freedom (DOFs), which
represents a level of detail and complexity of damage that is impossible to evaluate
detailed damage through the frame and lumped mass analysis.

We need to shorten the calculation time and stability when performing three-
dimensional analyses. The present study considers these two properties in the
development of our solver.

It is widely known that small eigenvalues close to zero hamper the convergence
of iterative methods, mainly because the condition number increases with a decrease
in the smallest eigenvalue. Many studies have focused on avoiding eigenvalues close
to zero [5–8]. The deflation algorithm mainly aims to eliminate eigenvectors corre-
sponding to eigenvalues close to zero [7–14].

In the case of structural problems discretized by the finite element analysis (FEA),
the stiffness matrices A are symmetric positive semi-definite. There are three parallel
translations and three infinitesimal rotations, a total of six rigid-body motions, which
implies that A duplicates the six zero eigenvalues. We must, therefore, impose at
least six constraint conditions to eliminate the zero eigenvalues. Let Ā be the stiffness
matrix after imposing the constraint conditions as will be discussed in Sect. 3. The
eigenvalues of A and Ā are then different from each other. However, the eigenvalues
of these two matrices have the so-called interlacing property [15]. The rigid-body
mode is widely used in structural analysis for different objectives [10, 16–20, 22, 23].

We assume that the analysis models are constructed with solid elements. The rigid-
body motions, which are the bases of KerA (the kernel of A), relate to the lower
or lowest eigenvalue(s) of Ā, owing to the interlacing property. We can construct the
near rigid-bodymodes using domain decomposition in which the subdomains have six
rigid-body modes. We can set a basis of a coarse space by aggregating the subdomains
through a partition of unity.We use the above-noted six rigid-bodymotions to simulate
low-frequency motions described in the literature [22, 24].

This paper discusses the distance between the eigenvectors of Ā and KerA. The
distance describes how the lower-frequency modes are segregated from the higher
modes.

In our analysis, we use the parallelized conjugate gradient (CG) method as our
basic framework on the entire domain instead of the simplest domain decomposition
method (DDM) [25], which means that we do not apply a direct method to the decom-
posed subdomains in our method. The performance of the DDM and CG methods are
compared in the next section, showing the reason for using the CG method.

Our solver uses two sets of domain decomposition. One decomposition is for par-
allelizing the CGmethod, and the other is for generating the coarse space. The former
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corresponds to the subdomains of the DDM, and the latter generates the projection in
the deflation algorithm.

Near-rigid-body motions generate a projection from the entire space to the coarse
space. The projection space is so small that the reduced equation can be solved using
direct methods. In contrast, we can apply the CG method to the large complementary
space, which is much easier to solve than the entire space containing “rough” com-
ponents generated by lower-frequency modes. Given the direct sum decomposition of
the solution space, our method is a two-level method [13, 26, 27].

Our definition of the projection constructs by the coarsemotion, which is in contrast
with definitions adopted in many studies (e.g., [7–14]), which will be described in
Sect. 5.2.

The deflated domain decompositionmethod (DDDM)algorithm,whichwedescribe
in this paper, shares similarities with the algorithm given in [7] that expands the Krylov
subspace, adding approximated eigenvectors corresponding to eigenvalues close to
zero using the orthogonality of the residuals, which we describe in Sect. 6.

The DDDM solver outperforms a successive symmetric overrelaxation (SSOR)
preconditioned solver, which we assume is a standard solver, as will be discussed
in Sect. 6.3. Also, in an article [28], an elastic seismic response analysis of an NPP
building installed on the ground consisting of one million DOFs with hexahedral and
plate elements involving 2700 steps for 54 s took 1.1h using the DDDM solver. In
contrast, the SSOR solver took 13.8h. We used sixteen parallel processes in both
cases. The stability of the DDDM solver compared to the SSOR solver concerning the
tolerance range of the convergence was also discussed in this article.

2 Basic framework of the linear solver

2.1 Displacement-based finite element equations

We outline the FEA method used in the paper. Only a static equilibrium state is
assumed. We start from the principle of virtual work. We omit the commonly used
isoparametric discretization here. Refer to the detailed discussion in [21].
(a) Discretization

Weonly consider the solid elements.We approximate the target body as an assembly
of a finite number of discrete finite elements, e.g., tetrahedral, hexahedral, or other
elements. Each element m has nodal points x, y, z in a local coordinate system. Let
the number of DOFs be n.

We use indicial notation and summation convention. xi denotes the coordinate axis,
where i = 1, 2, 3 in the three-dimensional analysis given to each nodal point and ui
denote the displacement components, where i = 1, 2, 3.
(b) Principle of Virtual Work

We take virtual displacements ūi and take the corresponding virtual strains ε̄i j ,
differentiating ūi .We then have the following principle of virtual displacements,which
is the fundamental equation for the equilibrium of a general three-dimensional body:
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∫
�

τi j ε̄i j d� =
∫

�

Xi ūi d� +
∫
S
Yi ū

(S)
i dS, (1)

where Xi is the components of the body force X , and Yi is the components of the
surface traction Y on the surface S of the body. u(S)

i is the displacements on the
surface S. The displacement (essential) boundary conditions are given by

ui = u(S)
i . (2)

The natural boundary condition is given by

τi jn j = Yi , (3)

on the surface S, where n j is the unit normal vector to the surface S. The left side of
(1) corresponds to the internal virtual work, and the right side represents the external
virtual work.
(c) Finite element equations

Let û be the unknown vector of all the global displacements, where the unknown
displacements ui , i = 1, 2, 3 of the nodal points are globally aligned.

ûT = (û1 û2 û3 · · · ûn). (4)

Let N(m) be a displacement interpolation matrix and B(m) be the strain–displacement
matrix for element m. We write

u(x, y, z) = N(m)(x, y, z)û,

ε(x, y, z) = B(m)(x, y, z)û.
(5)

We assume the virtual displacements and strains are

ū(x, y, z) = N(m)(x, y, z) ¯̂u,

ε̄(x, y, z) = B(m)(x, y, z) ¯̂u.
(6)

We further need a relation between ε and τ

τ (m)(x, y, z) = D(m)(x, y, z)ε(m)(x, y, z), (7)

where D(m) is the elasticity matrix of element m. Substituting u(m), ε(m), ū(m), ε̄(m),
and τ (m) into (1), we have a summation form of the virtual equation for the unknown
displacements:

¯̂uT
(∑

m

∫
�(m)

B(m)T D(m)B(m)d�

)
û

= ¯̂uT
(∑

m

∫
�(m)

N(m)T X(m)d�(m) +
∑
m

∫
S(m)

N(m)TY (m)dS(m)

)
.

(8)

123



Deflated domain decomposition method... Page 5 of 36 21

This equation leads to the finite element equation for the displacements û of DOFs of
the discretized entire body:

Kû = F. (9)

The second term of (8) on the right side corresponds to the constraint condition of
the linear equation, which we will describe in the following sections, ensuring this
equation is solvable.

Asnoted above, the explanationhere describes the static equilibriumstate.However,
we can describe the dynamic or nonlinear dynamic state similarly. The corresponding
dynamic equation is:

M ¨̂u + C ˙̂u + Kû = F, (10)

where C is a damping matrix. In many cases of the FEA, the dynamic equation is
solved using, e.g., Newmark’s β method, which converts the dynamic equation to
the static equation in the form of (9). The nonlinear equation is linearized by, e.g.,
Newton’s method and is reduced to the linear equations.

We use the symbol A for the stiffness matrix corresponding to K in (9), and we
focus on the linear equation in this paper:

Ax = b, A ∈ Rn×n, b ∈ Rn, x ∈ Rn . (11)

2.2 Comparison of the DDM and CGmethod

As noted in Sect. 1, In our DDDM algorithm, we use the CG method on almost all
the solution space instead of the DDM. The DDM refers to the simplest iterative
substructuring method using a domain decomposition, which overlaps only with the
boundaries of the neighboring subdomains. The direct methods are applied on each
subdomain inside the boundaries with the displacement boundary condition on the
boundaries. It is not easy to compare the performance of the DDMwith that of the CG
method, even though the two methods were compared in previous work [29], wherein
the advantages of the CGmethodwere demonstrated under some conditions. However,
the performances depend on the models, elements, boundary conditions, multi-point
constraint (MPC)s, materials, and especially the sparsity of the stiffness matrix. We
compare the two methods through simple static analysis using simple models.

Note that the results in this section do not have generality. The objective of this
section is to show that our restricted but simple and standard examples have better
performances than those using the DDM and the reason we take the CGmethod on the
entire space. Significantly, the simple structure of the CG method helps the DDDM
algorithm.

We used the open-source structural analysis code, Adventure [30], to compare the
DDM and CG methods. Adventure has options of (a) the simplest DDM with the
diagonal scaling, (b) the balancing domain decomposition (BDD) method, and (c)
the parallel CG method in its simplest form with the diagonal scaling. Here, we used
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options (a) and (c). The CG method is parallelized, but only a single process was
assumed. The CG method used the same code in the DDM, which could thus be fairly
compared with the DDM. The computer used was a cluster computer with an Intel
Xeon Platinum 9242, operating at 2.3 GHz, six nodes with 96 core processors per
node, 384 GB of RAM (16 GB DDR4-2933 × 24), and Infiniband EDR networking
capability (100 Gbps). We assume a single thread for all the following cases.

We use a plate model built by arranging hexahedral linear elements having dimen-
sions of 1mm×1mm×1mm as shown in Fig. 1.We conducted cantilever-type analyses
as follows. The x , y, and z elements align in the directions of the x , y, and z-axes,
respectively. We refer to this plate as “x × y × z.” We use standard steel with Young’s
modulus of 200 GPa and Poisson ratio of 0.3 as the material. The plate was rotated
90◦ around the x axis in the direction of −y. This plate’s xy surface (z = 0) was then
constrained fully, and we applied a dead weight in the direction of −y. y corresponds
to the thickness of the plate, whereas z corresponds to the length of the plate.

The eight models had dimensions from 50×5×50 up to 200×10×200, as shown
in Table 1.

Weused up to 16 cores in the calculation. For eachmodel,we conducted the analyses
of theDDMwith 2, 4, 8, and16processeswith the samenumber of processor cores. The
results were compared with those of the CG method without parallelization, resulting
in five parallel cases. The elapsed times until convergence, measured in wall-clock
time, are compared in Table 1. We set the tolerance value of the residual error for the
convergence to 1.0 × 10−7.

There are irregularities in Table 1 in the DDM analysis results. For example, the
calculation time increases from two to four processes for the 50 × 5 × 50 and 100 ×
5 × 100 models. The 100 × 5 × 100 model in Fig. 2 shows this state of irregularity.

2.3 Basic framework of the linear solver

The previous section showed that the CGmethod can be a basic framework. The well-
known solver algorithm FETI (Finite Element Tearing Interconnecting) [17, 18], BDD
[19, 20] both depend on the DDM in the sense that the entire domain is decomposed
into non-overlapping subdomains, a direct method is applied to each of subdomain,

Fig. 1 Thin-plate model with the dimensions of 6mm × 1mm × 6mm. We refer to it as the “6 × 1 × 6”
model, used in comparing the performance of the CG method and DDM for cantilever-type dead weight
analysis. We use this model in later sections in various dimensions
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Fig. 2 Typical convergence curves of the 100 × 5 × 100 model. The single-process CG method is faster
than the DDM with two, four, and eight processes

Fig. 3 Typical analysis result—displacement of the 150×5×150model. Color represents the displacement
norms. We applied the deformation factor of 1000

and the solution is divided into the rigid-body motion and the motion that includes
the strain. The rigid-body motions of the subdomains are solved globally. The subdo-
mains are taken to be structural objects. The FETI method takes the surface traction
for the unknowns on the inner boundaries between the neighboring subdomains. In
contrast, the BDDmethod takes the displacement between the boundaries of the neigh-
boring subdomains. The CG method removes the gaps in the displacements between
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the boundaries in the FETI method and the gaps in the surface traction between the
boundaries in the BDD method.

As noted in Sect. 1, our approach uses the CGmethod on the entire space in contrast
to the DDM. Our solver uses two classes of domain decomposition. One parallelizes
the CG method, whereas the other generates the coarse space based on the rigid-body
motions. The number of subdomains for the parallel CG method corresponds to the
number of parallel processes. The number of the subdomains used in the deflation
algorithm should be much greater than the number used in the parallel CG method,
from our experience.

In the FETI andBDDmethods, the rigid-bodymotions are used to build the approxi-
matedmotions of the subdomains in the iteration processes.Meanwhile, in ourmethod,
We use the rigid-body motions to construct lower-frequency modes.

2.4 DDDM: deflated domain decompositionmethod

The strategy of our algorithm is summarized as follows.

(a) We apply the parallel CGmethod to the entire domain as the basic framework, and
we decompose the entire domain into subdomains that correspond to the parallel
processes. The domain decomposition is the “nodal-point” base decomposition.

(b) Separately and independently from the domain decomposition in a), the entire
domain is decomposed into some non-overlapping subdomains, which approxi-
mate lower-frequency modes (i.e., the coarse grid modes) using the rigid-body
motions. The domain decomposition is the “element” base decomposition.

(c) The deflation algorithm removes the lower-frequency components from the solu-
tion based on the domain decomposition b). As will be explained in Sect. 4, there
are lower-frequency eigenvectors close to the kernel of the unconstrained stiffness
matrix, and we construct the lower-frequency modes using the basis of the kernel.
Removal of the lower-frequency modes gives rise to high-speed performance and
stability of the solver.

(d) In the parallel CGmethod, we distribute the coarse grid motion generation process
into the parallel processes of the CG method.

3 Rewriting of the stiffness matrix

Let A ∈ Rn×n be a stiffness matrix without constraint conditions, i.e., a symmetric
semi-positive definite matrix. A includes six zero eigenvalues and six corresponding
eigenvectors, namely rigid-body motions. Our problem is to solve

Ax = b, (12)

by imposing necessary constraint conditions. Let r ≥ 6 be the number of constraint
conditions. By relocating the DOF numbers of the constraint conditions to the upper
position and taking the first r DOFs as the constraint conditions in ascending order,
A is rewritten as:
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A′ =
(
0 0
0 Ā

)
∈ Rn×n . (13)

where Ā is a symmetric positive definite matrix. We rewrite (12) in the form:

A′x′ = b′, (14)

where1

x′ =

⎛
⎜⎜⎜⎝

0
xr+1

...

xn

⎞
⎟⎟⎟⎠ ∈ Rn, b′ =

⎛
⎜⎜⎜⎝

0
br+1

...

bn

⎞
⎟⎟⎟⎠ ∈ Rn . (15)

We further rewrite the components xr+1, . . . , xn as x1, . . . , xn−r and rewrite
br+1, . . . , bn as b1, . . . , bn−r . We thus write

x′ =
(
0
x̄

)
, x̄ =

⎛
⎜⎝

x1
...

xn−r

⎞
⎟⎠ ; b′ =

(
0
b̄

)
, b̄ =

⎛
⎜⎝

b1
...

bn−r

⎞
⎟⎠ . (16)

The original constrained components x1, . . . , xr are included in b̄ in the form of a
product sum of b̄ and the first to r -th components of Ax in (12). We identify x̄ ∈ Rn−r

and x′ ∈ Rn given above to evaluate the distance between x̄ and the kernel of A in
the following sections. Our problem (12) is then rewritten as

Āx̄ = b̄. (17)

These procedures give a structure of Rn−r as a subspace of Rn .
Let

λ1 = · · · = λ6 = 0, (0 <)λ7 ≤ · · · ≤ λn (18)

be the eigenvalues of A, and let

(0 <) λ̄1 ≤ · · · ≤ λ̄n−r (19)

be the eigenvalues of Ā.

1 We can also define

A′ =
(
Ā 0
0 0

)
, x′ =

⎛
⎜⎜⎜⎝

x1
.
.
.

xn−r
0

⎞
⎟⎟⎟⎠ , b′ =

⎛
⎜⎜⎜⎝

b1
.
.
.

bn−r
0

⎞
⎟⎟⎟⎠ .
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The relationship of λi , (1 ≤ i < n) and λ̄i (1 ≤ i < n − r) is known from the
so-called interlacing properties [15]:

λ
(0)
1 ≤ λ

(1)
1 ≤ λ

(0)
2 ≤ λ

(1)
2 ≤ · · · ≤ λ

(0)
n−1 ≤ λ

(1)
n−1 ≤ λ

(0)
n ,

λ
(1)
1 ≤ λ

(2)
1 ≤ λ

(1)
2 ≤ λ

(2)
2 ≤ · · · ≤ λ

(1)
n−2 ≤ λ

(2)
n−2 ≤ λ

(1)
n−1,· · · · · ·

λ
(r−1)
1 ≤ λ

(r)
1 ≤ λ

(r−1)
2 ≤ λ

(r)
2 ≤ · · · ≤ λ

(r−1)
n−r ≤ λ

(r)
n−r ≤ λ

(r−1)
n−r+1,

(20)

where λ
(0)
1 , · · · , λ

(0)
n are the eigenvalues of A, which are the alias names of λ, · · · , λn

shown in (18), and λ
(r)
1 , · · · , λ

(r)
n−r are those of Ā, which are the alias names shown

in (19). From this relation, we obtain the following relationship of the intervals of
the maximum and minimum of the eigenvalues with the increasing the number of
constraint conditions:

[λ(0)
1 , λ(0)

n ] ⊃ [λ(1)
1 , λ

(1)
n−1] ⊃ · · · ⊃ [λ(r)

1 , λ
(r)
n−r ], (21)

(21) shows that the existence ranges of the eigenvalues are monotonously decreas-
ing, included in the range with the smaller number of constraints. Significantly, the
range of the eigenvalues (19) are included in the range of the eigenvalues (18).

We let the eigenvectors corresponding to the eigenvalues (19) be

x̄1, . . . , x̄n−r . (22)

The eigenvalues of A and Ā are close in the sense of (21), which gives the funda-
mentals of considering the distance between the eigenvectors of A and the kernel of
Ā.

4 Distance between the eigenvector and the kernel of the
unconstrained stiffness matrix

4.1 Coarse grid matrix

Let A ∈ Rn×n be the unconstrained stiffness matrix, as noted above. In this section,
we discuss the distances between KerA and the eigenvectors of Ā.

Let � be the target of the analysis model and (xi , yi , zi ), 1 ≤ i ≤ n be the nodal
points of �. All the elements are assumed to be solid elements. According to descrip-
tions given in the literature [22, 24], let
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� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 z1 −y1
0 1 0 −z1 0 x1
0 0 1 y1 −x1 0
1 0 0 0 z2 −y2
0 1 0 −z2 0 x2
0 0 1 y2 −x2 0
· · ·
1 0 0 0 zn/3 −yn/3
0 1 0 −zn/3 0 xn/3
0 0 1 yn/3 −xn/3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rn×6, (23)

where (xi , yi , zi ) denotes the coordinates of nodal point i . Each column of � is
normalized. We refer to � as a coarse-grid matrix.

The first three columns correspond to the parallel translations of the structure, and
the last three are infinitesimal rotations around each coordinate. These six columns
are independent and consist of a basis of KerA, which means that the six vectors are
the basis of the rigid-body motions of �. We write these as f 1, . . . , f 6:

� = ( f 1 f 2 f 3 f 4 f 5 f 6) ∈ Rn×6. (24)

We replace these vectors’ first r rows with zero values, where these r rows corre-
spond to the constraint condition. We write these as f̄ 1, . . . , f̄ 6. According to the
rule described in Sect. 3, we identify f̄ i ∈ Rn−r and f ′ ∈ Rn :

f ′
i =

(
0
f̄ i

)
. (25)

� is rewritten as �′ ∈ Rn×6 or �̄ ∈ R(n−r)×6 corresponding to (14) or (17):

�′ = ( f ′
1 · · · f ′

6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
· · ·
0 0 0 0 0 0
1 0 0 0 z1 −y1
0 1 0 −z1 0 x1
0 0 1 y1 −x1 0
· · ·
1 0 0 0 zn/3−[r/3] −yn/3−[r/3]
0 1 0 −zn/3−[r/3] 0 xn/3−[r/3]
0 0 1 yn/3−[r/3] −xn/3−[r/3] 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

�̄ = ( f̄ 1 · · · f̄ 6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 z1 −y1
0 1 0 −z1 0 x1
0 0 1 y1 −x1 0
· · ·
1 0 0 0 zn/3−[r/3] −yn/3−[r/3]
0 1 0 −zn/3−[r/3] 0 xn/3−[r/3]
0 0 1 yn/3−[r/3] −xn/3−[r/3] 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

123



Deflated domain decomposition method... Page 13 of 36 21

where [r/3] represents the quotient r/3. In the expression for �′, the first r rows are
zero matrix in Rr×6, and in �̄, these r rows are excluded. Although we assume that
the active elements in both (26) and (27) start from the row (1 0 0 0 z1 − y1) for
simplicity, the expression of the first three rows depends on whether r is a multiple of
3 or not. In other words, although n is a multiple of 3, r is not necessarily a multiple
of 3. We also refer to �′ and �̄ as the coarse grid matrices, as we refer to � defined
by (23).

In the following, we assume the form of the equation for our problem to be (17),
and accordingly, the form of the coarse grid matrix is taken to be (27); i.e., �̄.

4.2 Distance between the eigenvector and the kernel of the unconstrained
stiffness matrix

In this section, we consider the L2 distance between the eigenvector x̄ of Ā, which
we identify with x′, and KerA.

LetU be a subspace of Rn . The distance between a point x ∈ Rn andU is then the
distance between x and the closest point of U . We denote this distance as

dist (x,U ) = min
y∈U ‖x − y‖2. (28)

Let P be an orthogonal projection from Rn to U . This equation is equal to

dist (x,U ) = ‖x − Px‖2. (29)

In particular, if ‖x‖2 = 1, then

‖x − Px‖22 = 1 − xT Px, 0 ≤ dist (x, U ) ≤ 1. (30)

The projection from Rn to KerA is given by

P = �(�T�)−1�T = ��T ∈ Rn×n, (31)

where � is defined by (23).
In the following, we evaluate the distance between the eigenvector x̄ ∈ Rn−r of

Ā and KerA. According to the rule described in Sect. 3, we identify x̄ ∈ Rn−r and
x′ ∈ Rn . We consider the distance to be

dist(x̄, KerA) = ‖x′ − Px′‖2. (32)

Additionally, we discuss, in the following theorem, the angle (minimal angle)
between a point x ∈ Rn with the unit norm and a subspace U , which is defined
as in [31]

θ = arccos max
u∈U , ‖u‖2=1

xT u. (33)
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Theorem 1 (Distance between the eigenvector and the kernel of the unconstrained
stiffness matrix)

Let the eigenvalues and the corresponding eigenvectors of Ā be given by (19) and
(22), respectively. We then have the following properties.

(1) For arbitrary 1 ≤ k ≤ n − r , x′
k /∈ KerA, and accordingly,

dist (x′
k, KerA) > 0. (34)

(2) If k < n−r is large enough, then x′
k is nearly orthogonal toKerA, and accordingly,

dist (x′
k, Ker A) ≈ 1. (35)

(3) If k ≥ 1 is small enough, then

dist (x′
k, KerA) ≈ 0. (36)

In particular, if x′
k is the fundamental mode x′

1, then dist (x′
1, KerA) takes the

smallest value.

Proof As noted previously, the number of the eigenvalues and eigenvectors is assumed
to be 1 ≤ k ≤ n − r imposing the r constrained conditions.

We prove 1). If Ax′
k = 0, then x′

k is the rigid-body mode. The r zeros put above
x̄k cannot be represented by the rigid-body motions. This proves (34).

We prove 2) and 3). It is known from modal analysis that the modal displacement
components of a structural body are dominant for the lower frequency range, and the
whole body vibrates largely, whereas, in the range of higher frequencies, vibrations
become minute in proportion to the frequencies and depending on the shape of the
body.

Take an arbitrary 1 ≤ k ≤ n − r . Referring to (33), the angle (minimal angle)
between x′

k and KerA is given by

θ = arccos max
1≤ j≤6

x′
k
T g j , (37)

where g1, · · · , g6 are the appropriate basis of KerA.
We write the components of the i-th nodal point of x′

k as {x ′
ki y

′
ki z

′
ki }. The first r

components of x′
k are zeros, and x′

k can thus be written as
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x′
k = 1

‖x′
k‖

(
0 · · · 0 {x ′

k,[r/3]+1 y′
k,[r/3]+1 z

′
k,[r/3]+1}

· · · {x ′
k,n/3−[r/3] y′

k,n/3−[r/3] z′k,n/3−[r/3]}
)T

. (38)

Although gi in (37) does not coincide with f i in general, by representing appro-
priate gi as a linear combination of f i , we can take f i instead of gi .

The representations of f 1, f 2, f 3 are easily obtained according to their forms.
f 4, f 5, f 6 are given as

f 4 = 1

‖ f 4‖
({0 − z1 y1} · · · {0 − z[r/3] y[r/3]} {0 − z[r/3]+1 y[r/3]+1}

· · · {0 − zn/3−[r/3] yn/3−[r/3]}
)T

,

f 5 = 1

‖ f 5‖
({z1 0 − x1} · · · {z[r/3] 0 − x[r/3]} {z[r/3]+1 0 − x[r/3]+1}

· · · {zn/3−[r/3] 0 − xn/3−[r/3]}
)T

,

f 6 = 1

‖ f 6‖
({−y1 x1 0} · · · {−y[r/3] x[r/3] 0} {−y[r/3]+1] x[r/3]+1] 0}}

· · · {−yn/3−[r/3] xn/3−[r/3] 0})T .

(39)

Assuming that all the vectors are normalized, the inner products of x′
k and

f 1, . . . , f 6 are

x′
k
T f 1 =

n/3−[r/3]∑
i=1

x ′
ki ,

x′
k
T f 2 =

n/3−[r/3]∑
i=1

y′
ki ,

x′
k
T f 3 =

n/3−[r/3]∑
i=1

z′ki ,

x′
k
T f 4 =

n/3−[r/3]∑
i=1

(0 − zk,[r/3]+i yk,[r/3]+i )

⎛
⎝
x ′
k,[r/3]+i
y′
k,[r/3]+i
z′k,[r/3]+i

⎞
⎠ ,

x ′
k
T f 5 =

n/3−[r/3]∑
i=1

(zk,[r/3]+i 0 − xk,[r/3]+i )

⎛
⎝
x ′
k,[r/3]+i
y′
k,[r/3]+i
z′k,[r/3]+i

⎞
⎠ ,

x′
k
T f 6 =

n/3−[r/3]∑
i=1

(−yk,[r/3]+i xk,[r/3]+i 0)

⎛
⎝
x ′
k,[r/3]+i
y′
k,[r/3]+i
z′k,[r/3]+i

⎞
⎠ .

(40)

We can evaluate the variation of the six inner products x′
k
T f i using these repre-

sentations depending on k. The first three equations involve only the displacements,
whereas the displacements are multiplied by the constant values of the coordinates of
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Table 2 Cuboid models for
evaluating the distance between
the eigenvectors and the kernel.
See Fig. 4

Models Elements 1n 1r n − r

1 × 1 × 6 Linear hexa2 84 9 75

2 × 2 × 12 Linear hexa2 351 12 339

4 × 3 × 12 Linear hexa 780 18 762

4 × 3 × 12 Linear tetra2 780 18 762

4 × 3 × 12 Quad tetra2 4725 18 4707

1 n and r indicate the number of DOFs and the number of the con-
straints, respectively
2 “linear hexa”, “linear tetra,” and “quad tetra” indicate linear hex-
ahedral, linear tetrahedral, and quadrilateral tetrahedral elements,
respectively

the nodal points in the last three equations. If 1 ≤ k ≤ n− r is sufficiently small, then
the modal shape of the target model deforms largely from the static state. In particular,
the deformation is largest for the fundamental mode with k = 1, which corresponds
to the maximum of the six values of (40), and dist (x′

1, KerA) is accordingly the
smallest. This proves (36) and the last statement of property 3).

Meanwhile, if k becomes large, the vibration state of the model becomes minute,
and the variations of the components of x′

k decrease. As a result, fixing 1 ≤ l ≤ n − r
and taking sufficiently large k > l, we have

max
1≤ j≤6

x′
l
T f j ≥ max

1≤ j≤6
x′
k
T f j , (41)

and a larger k results in x′
k being closer to the direction orthogonal to KerA, which

means dist(x′
k, Ker A) approaches 1. This proves (35).

4.3 Example of the distance between eigenvectors and the kernel of the
unconstrainedmatrix

In this section, we present actual distance curves of the distance between eigenvectors
and the kernel of the unconstrained matrix using simple examples.

We show three cuboid models in Fig. 4. On the left and at the center are 1 × 1 × 6
and 4× 3× 12 models with hexahedral linear elements, respectively. On the right is a
model of the same size as the 4× 3× 12 model but with tetrahedral elements set to be
linear and quadrilateral. Additionally, we include a 2× 2× 12 model with hexahedral
linear elements in our testing. The constraint conditions are assumed to have 9, 12,
and 18 DOFs for the 1× 1× 6, 2× 2× 12, and 4× 3× 12 models, respectively. The
cuboid models are summarized in Table 2.

Moreover, we use long and short perforated plates and a pipe model. We present
these threemodels in Fig. 5 andTable 3.We assume linear and quadrilateral hexahedral
elements for these models.

We assume the physical properties to be those of standard steel. Young’s modulus
and Poisson ratio are 200 GPa and 0.3, respectively.

123



Deflated domain decomposition method... Page 17 of 36 21

Table 3 Other models for
evaluating the distance between
the eigenvectors and the kernel.
See Fig. 5

Models Elements n r n − r

Short perforated plate linear tetra1 1437 9 1428

Short perforated plate quad tetra1 8802 9 8793

Long perforated plate inear tetra 2064 9 2055

Long perforated plate quad tetra 12462 9 12453

Pipe linear tetra 1476 9 1467

Pipe quad tetra 8640 9 8631

1“linear tetra” and “quad tetra” indicate linear tetrahedral and quadri-
lateral tetrahedral elements, respectively

Fig. 4 Cuboid models used to evaluate the distance between the eigenvectors and the kernel

Curves of the distance between the eigenvectors and the kernel for the cuboid
models, those for the short perforated plate, those for the long perforated plate, and
those for the pipe model are shown in Fig. 6, 7, 8, and 9, respectively.

The eigenvalues and the distance values up to k = 15 are given in Table 4 as exam-
ples; (a) corresponds to the cuboid 1× 1 × 6 model with linear hexahedral elements,
(b) corresponds to the cuboid 4×3×12 model with quadrilateral tetrahedral element,
(c) corresponds to the long plate model with quadrilateral tetrahedral elements, and
(d) corresponds to the pipe model with quadrilateral tetrahedral elements.

All the results are in accordance with (1), (2), and (3) described in Theorem 1.
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Fig. 5 Long, short perforated plates and pipe used to evaluate the distance. The long perforated plate model
with the quadrilateral tetrahedral elements has the largest number of DOFs among our models, including
other models (see Fig. 4 and Table 3)

Fig. 6 Distance between the eigenvector and the kernel of the cuboid models. The distance is small at
smaller eigenvalues and rapidly approaches a value of 1 at higher eigenvalues
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Table 4 Example of the eigenvalues and the distances from the kernel up to k = 15

k λk
1dist k λk

1dist k λk
1dist

(a) 21 × 1 × 6 1 18.468 0.0632 6 2527.9 0.5285 11 13970 0.9883

2 43.342 0.1430 7 3152.1 0.9585 12 15849 0.9910

3 364.41 0.4931 8 6162.6 0.9490 13 17522 0.9269

4 835.70 0.7847 9 7274.9 0.9120 14 19919 1.0000

5 1311.1 0.8349 10 8142.8 0.9865 15 20111 0.9945

(b) 34 × 3 × 12 1 0.2526 0.0056 6 163.51 0.5804 11 1334.5 0.9632

2 3.6903 0.0422 7 383.23 0.9734 12 1477.9 0.9906

3 42.031 0.2488 8 611.22 0.8351 13 1629.1 0.9716

4 64.709 0.3899 9 693.50 0.8914 14 2643.6 0.9963

5 139.95 0.5542 10 1252.3 0.9838 15 2772.5 0.9945

(c) 3Long plate 1 0.0730 0.0062 6 77.246 0.8580 11 420.91 0.9915

2 2.0272 0.0270 7 129.81 0.5549 12 460.09 0.9955

3 7.0486 0.1560 8 153.71 0.7520 13 542.13 0.9734

4 7.8107 0.5793 9 207.13 0.7003 14 631.39 0.9980

5 30.108 0.9915 10 242.80 0.8775 15 1048.2 0.9994

(d) 3Pipe 1 0.0230 0.0004 6 355.14 0.4411 11 1153.7 0.9986

2 1.8567 0.0088 7 673.27 0.9998 12 1183.4 0.9983

3 6.5902 0.0548 8 691.64 0.9999 13 1327.9 0.9988

4 129.50 0.2629 9 862.02 0.9926 14 1752.0 0.9755

5 163.58 0.2762 10 931.42 0.9818 15 2215.4 0.9478

1“dist” means distance
2 Linear hexahedral elements
3 Quadrilateral tetrahedral elements

Fig. 7 Distance between the eigenvector and the kernel of the short perforated plate. The same tendency is
seen in Fig. 6. A finer mesh decomposition reduces the distance between the first eigenvector and the kernel
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Fig. 8 Distance between the eigenvector and the kernel of the long perforated plate

Fig. 9 Distance between the eigenvector and the kernel of the pipe model. In our examples, the pipe
model with quadrilateral elements has the smallest first eigenvalue and the smallest distance between the
eigenvector and the kernel

5 Introduction to the DDDM

We use solid elements for all the elements given in this section.

5.1 Expression of the coarse grid by domain decomposition

We decompose � into N non-overlapping subdomains �J , 1 ≤ J ≤ N , except that
the boundaries between subdomains overlap one another. Each �J is a closed domain
that includes boundary surfaces. We write � as

� =
⋃
J

�J . (42)
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The domain decomposition here is “element-base” decomposition as opposed to the
domain decomposition used for the parallelization is “nodal-point-base” decomposi-
tion which we describe in Sect. 7.1.

The domain decomposition is represented by diagonalmatrices D̄ J ∈ R(n−r)×(n−r)

comprising dJi :

D̄J = diag (0, . . . , 0, dJ∗, . . . , dJ∗, 0, . . . , 0), (43)

dJi =
⎧⎨
⎩
0 i /∈ �J

1 i ∈ �◦
J

1/(number of overlaps), where i is a point of the boundary
, (44)

where �◦
J is the interior of the subdomain �J . Representing i that appears in the

component D̄J is complex, and thus in (43), an abbreviated expression dJ∗ is used.
In (43), there are cases in which non-zero components leap and are not continuously
aligned.

From the construction of D̄J , the domain decomposition (42) corresponds to

N∑
J=1

D̄J = I . (45)

This means that { D̄J } is a partition of unity on the space Rn−r . We then have

N∑
J=1

D̄J �̄ = �̄. (46)

Let

F̄ J = D̄J �̄ ∈ R(n−r)×6, 1 ≤ J ≤ N . (47)

We align (47) and let

F̄ = (F̄1 · · · F̄N ) ∈ R(n−r)×6N . (48)

We refer to this matrix as the extension matrix. We write W ≡ R6N and V ≡ Rn−r .
W is a coarse space, whereas V is the global solution space. F̄ embeds W into V .
The column vectors of F̄1, · · · , F̄N constitute a basis of W . Although W is not a

subspace of V , F̄W is a subspace. Since F̄
T
is of full rank, Im F̄

T
is isomorphic to

W : F̄T
V ∼= W .

5.2 Framework of the DDDM algorithm

We describe the DDDM algorithm as follows. Construct a coarse grid using the
rigid-body modes f 1, . . . , f 6 of the original problem without a constraint condi-
tion; remove the corresponding low-frequency modes from the entire space V using
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the deflation algorithm; and apply the CG method to the segregated complementary
space.

Let

ĀF̄ = F̄
T
ĀF̄ ∈ R6N×6N . (49)

We refer to this matrix as a contraction matrix. Because the size of this matrix is small,
we can obtain the inverse matrix Ā

−1
F̄ using a direct method or LU decomposition

(lower-upper decomposition). Moreover, we extend Ā
−1
F̄ onto V and express ( Ā

−1
F )∗

as

( Ā
−1
F̄ )∗ = F̄ Ā

−1
F̄ F̄

T = F̄(F̄
T
ĀF̄)−1 F̄

T ∈ R(n−r)×(n−r). (50)

We refer to this matrix as a pullback of Ā under F̄. Figure10 is a diagram of ĀF̄ and

( Ā
−1
F̄ )∗.
Furthermore, let P̄ Ā be a matrix obtained by multiplying Ā by the pullback from

the right side:

P̄ Ā = ( Ā
−1
F̄ )∗ Ā = F̄(F̄

T
ĀF̄)−1 F̄

T
Ā ∈ R(n−r)×(n−r). (51)

Proposition 2 (Contraction projection)
The following properties hold:

P̄
2
Ā = P̄ Ā, Ā P̄ Ā = P̄

T
Ā Ā. (52)

Therefore, P̄ Ā is a projection.

Proof Easily shown.

We refer to P̄ Ā as a contraction projection obtained from the pullback of Ā
−1
F̄ , or

simply a contraction projection. The image of V obtained by the contraction projection
is called a contraction projection space, or simply a contraction space.

Remark 1 (Definition of the deflation projection)
In many articles (e.g., [7–14]), the deflation projection P̄ is defined as

P̄ = I − ĀF̄(F̄
T
ĀF̄)−1 F̄

T
(53)

if using our notation.

(a) The second term on the right side of (53) corresponds to (51), but in (51), the
matrix Ā is multiplied from the right side, whereas in (53), Ā is multiplied from
the left.

(b) Additionally, the projection P̄ here is defined as the complementary projection of
the contraction projection (in our sense).
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Fig. 10 Restriction of Ā to ĀF and the extension of Ā
−1
F to its pullback

(c) Our definition (51) is needed as will be described in Remark 2 in Sect. 6.2 to reduce
the calculation cost in each CG step.

Proposition 3 (Contraction space and the image of the extension matrix)
The image of the extension matrix coincides with the contraction projection space:

F̄W = P̄ ĀV . (54)

Proof Easily shown.

Because F̄ ∈ R(n−r)×6N is of full rank and one-to-one, and Proposition 3 thus
shows that F̄ is an isomorphism from the coarse space W onto the contraction space.
We therefore refer to F̄W ≡ P̄ ĀV as the coarse space like W .

Proposition 2 leads to the direct sum decomposition of V :

V = P̄ ĀV ⊕ (I − P̄ Ā)V

= {x̄ ∈ V | P̄ Ā x̄ = x̄ } ⊕ {x̄ ∈ V | P̄ Ā x̄ = 0}. (55)

Here, P̄ ĀV = Im P̄ Ā is a space spanned by the eigenvectors with the smaller eigen-
values including the lowest one.Meanwhile, (I− P̄ Ā)V = Ker P̄ Ā is a space obtained
by eliminating those eigenvectors with the small eigenvalues. In other words, P̄ ĀV is
a coarse space and (I − P̄ Ā)V is a fine space.

Theorem 4 (Restriction of the stiffness matrix to the contraction space)
The following three properties hold.

(i) The restriction of Ā
−1

onto P ĀV by the contraction projection P̄ Ā coincides with
the pullback of Ā under F̄:

P̄ Ā Ā
−1

P̄
T
Ā = F̄(F̄

T
ĀF̄)−1 F̄

T = ( Ā
−1
F̄ )∗. (56)

(ii) The image of the pullback coincides with the contraction space:

( Ā
−1
F̄ )∗V = P̄ ĀV . (57)
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Fig. 11 Reciprocal relation between the restrictions of Ā
−1

and Ā. Panel (a) shows that the pullback

( Ā
−1
F̄ )∗ on the coarse space P̄ ĀV hides the inverse Ā

−1
on the global space V

(iii) The restriction of the stiffness matrix Ā onto the contraction space P̄ ĀV coincides
with the pullback:

( Ā
−1
F̄ )∗ Ā( Ā

−1
F̄ )∗ = ( Ā

−1
F̄ )∗. (58)

Proof i) and ii) can be easily seen. (58) is a rewriting of (56).

(56) presents the restriction of Ā
−1

onto the contraction space by P̄ Ā, and (58)

presents the restriction onto the contraction space by the pullback ( Ā
−1
F̄ )∗, showing

that the two restrictions give rise to the representations of the same ( Ā
−1
F̄ )∗, and a

reciprocal relation as seen in Fig. 11.
The condition number of the problem (17) is

κ( Ā) = λ̄n−r

λ̄1
. (59)

In the DDDM algorithm, we removed the lower, e.g., m modes, and the condition
number changes to

λ̄n−r

λ̄m+1

(
≤ κ( Ā)

)
, (60)

which means that the DDDM algorithm reduces the condition number to

λ1

λm+1
κ( Ā). (61)

5.3 Examples of deformationmodes obtained using the DDDM

The target object � deforms in the coarse space, as represented by the coarse motion
of the subdomains �J , 1 ≤ J ≤ N . The coarse motion of � is close to the rigid-body
motion of �, though the imposed constraint conditions fix some part of the deforma-
tion of �. �J itself has rigid-body modes, and the boundaries of some neighboring
subdomains or the constrained boundaries restrict the deformation of �.
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Fig. 12 Deformation of the 1× 1× 6 model in the coarse problem setting. Case (a) shows the deformation
in the fine space. There are three and two subdomains in Cases (b) and (c), respectively. In Case (c), the
model body is decomposed only between elements 3 and 4, whereas in Case (b), the body is decomposed
between elements 2 and 3 and between 4 and 5. In Case (c), elements 3 and 4 are dragged by the joining
surface of elements 3 and 4, and both elements are distorted. The result of Case (b) is close to the fine result
(a) because we give a finer decomposition than Case (c)

We present an example of how the target object deforms in the coarse problem. The
stiffness matrix in the coarse space is given by (49). We use here the 1× 1× 6 model
shown in Fig. 4 in Sect. 4.3. The material is standard steel. We give the constraint
conditions to nodal points 1, 2, and 3, corresponding to DOFs 1, 2, 3, 4, 5, 6, 7, 8, and
9. We eliminate these DOFs. Thus, n = 84, r = 9, and n − r = 75, which are the
same as noted in Table 2 in Sect. 4.3.

Our problem is to solve the following equation for the displacement x̄ given an
external force b̄:

ĀF̄ x̄ = b̄. (62)

The results are shown in Fig. 12. In the figure, we show the nodal point numbers 25
and 28 in Case (a), and the element numbers 1, 2, 3, 4, 5, and 6 in Case (c). The number
of decompositions N is two in Case (c) and three in Case (b), whereas Case (a) has
no decomposition (fine analysis). In Case (b), we decomposed the model between
elements 2 and 3 and between elements 4 and 5. In Case (c), we decomposed between
elements 3 and 4.
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We apply the external force on the first DOF (the x coordinate) of nodal points 25
and 28 in the negative and positive directions of the x axis, respectively, clockwise
with twisting. The force strength is assumed to be as high as 3000 N, which creates
an artificially large displacement. The swelling seen in the upper part of the figures,
especially inCases (a) and (b), is supposed to be caused by a violation of the assumption
of the infinitesimal deformation in the FEA. In Case (c), elements 3 and 4 are dragged
by the joining surface between elements 3 and 4, and both elements are distorted. In
Case (b), elements 2, 3, 4, and 5 are distorted. In particular, Case (c) has a deformation
near the rigid-body motion of the model. The result of Case (b), which has a finer
decomposition than Case (c), is close to the fine result of Case (a).

6 DDDM algorithm

The DDDM algorithm shares similarities with the algorithm given in [7] that expands
the Krylov subspace, adding approximated eigenvectors corresponding to eigenvalues
close to zero using the orthogonality of the residuals. In our method, instead of adding
approximated eigenvectors to the Krylov subspace, we choose an appropriate domain
decomposition, whichwe defined in Sect. 5.1, to eliminate eigenvectors corresponding
to eigenvalues close to zero determining the contraction projection space; see Sect. 5.2.

We describe the DDDM algorithm below. The DDDM algorithm is the same as the
standard deflation algorithm. We define the algorithm within the standard precondi-
tioned CG algorithm. The two-level algorithm described below has a much shorter
calculation time owing to the form of the contraction projection matrix (51).

6.1 Preconditioned CGmethod

For use in Theorem 6 below, we note here the general preconditioned CG algorithm.
Let M̄ ∈ R(n−r)×(n−r) be an arbitrary precondition matrix, and let x̄0 ∈ Rn−r be an
arbitrary initial guess of the solution vector. Let the residual vector r̄0 ∈ Rn−r and the
gradient vector p̄0 ∈ Rn−r be

r̄0 = b̄ − Āx̄0, (63)

p̄0 = M̄ r̄0. (64)

Then, repeat for k = 1, 2, · · ·

αk = (r̄k, M̄ r̄k)

( p̄k, Ā p̄k)
, (65)

x̄k+1 = x̄k + αk p̄k, (66)

r̄k+1 = r̄k − αk Ā p̄k, (67)

βk = (r̄k+1, M̄ r̄k+1)

(r̄k, M̄ r̄k)
, (68)

p̄k+1 = M̄ r̄k+1 + βk p̄k . (69)
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Fig. 13 Relationship between the direct sum decomposition and the precondition matrix. R̄ is an arbitrary
precondition matrix in the fine space V

6.2 Definition of the preconditionmatrix and the DDDM algorithm

Our problem is (17), which we obtained by imposing the constraint condition on (12).
Let the precondition matrix be M̄. We multiply both sides of (17) by M̄ to obtain

M̄ Āx̄ = M̄ b̄. (70)

Along with the direct sum decomposition (55), we assume M̄ as

M̄ = P̄ Ā Ā
−1

P̄
T
Ā + (I − P̄ Ā)R̄(I − P̄

T
Ā), (71)

where R̄ ∈ R(n−r)×(n−r) is a symmetric positive definite matrix that plays the role of
a precondition matrix in the fine space. The relationship between the decomposition
(55) and the precondition matrix (71) is shown in Fig. 13.

The second term of (71) is a precondition on the fine space. The first term on
the right side of (71), which eliminates the residuals that comprise the lower modes,

coincides with the pullback ( Ā
−1
F̄ )∗ from (56) in Theorem 4, and then

M̄ = ( Ā
−1
F̄ )∗ + (I − P̄ Ā)R̄(I − P̄

T
Ā). (72)

The first term on the right side of (71) or (72), which we have already seen in (50), is

P̄ Ā Ā
−1

P̄
T
Ā = ( Ā

−1
F̄ )∗ = F̄(F̄

T
ĀF̄)−1 F̄

T
. (73)

This expression hides Ā
−1

by the pullback; see Fig. 11. F̄
T
ĀF̄ ∈ R6N×6N is a

symmetric positive definite matrix on W ≡ R6N . It is so small that we can obtain

(F̄
T
ĀF̄)−1 can be obtained using a direct method (or LU decomposition).
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Proposition 5 (Product of the projection and the precondition matrix)
It holds that

P̄ Ā M̄ = ( Ā
−1
F̄ )∗. (74)

Proof Multiplying both sides of (72) by P̄ Ā = ( Ā
−1
F̄ )∗ Ā yields

P̄ Ā M̄ = ( Ā
−1
F̄ )∗ Ā( Ā

−1
F̄ )∗ + P̄ Ā(I − P̄ Ā)R̄(I − P̄

T
Ā). (75)

From (58) in Theorem 4, the first term on the right side of this equation is ( Ā
−1
F̄ )∗,

and the second term becomes zero because P̄ Ā is a projection. Thus, (74) is obtained.

Theorem 6 (Range of the pullback and the gradient vector)
In the CG iteration steps, (63) to (69), let

x̄0 = ( Ā
−1
F̄ )∗ b̄. (76)

Using this vector, we define

r̄0 = b̄ − Āx̄0 ∈ Rn−r , (77)

p̄0 = M̄ r̄0 ∈ Rn−r . (78)

For k ≥ 0, the residual vector r̄k belongs to the kernel of ( Ā
−1
F̄ )∗, and the gradient

vector p̄k belongs to the kernel of P̄ Ā, which is equal to the conjugate space (I −
P̄ Ā)V ; see (55). Two equations thus hold for arbitrary k ≥ 0:

( Ā
−1
F̄ )∗ r̄k = 0, (79)

P̄ Ā p̄
k = 0. (80)

Proof We show (79) and (80) simultaneously by induction. First, we have

r̄0 = b̄ − Āx̄0 = b̄ − Ā( Ā
−1
¯F )∗ b̄. (81)

Multiplying both sides from the left side of this equation by ( Ā
−1
F̄ )∗, and using (58)

in Theorem 4, we have

( Ā
−1
F̄ )∗ r̄0 = ( Ā

−1
F̄ )∗ b̄ − ( Ā

−1
F̄ )∗ Ā( Ā

−1
F̄ )∗ b̄ = ( Ā

−1
F̄ )∗ b̄ − ( Ā

−1
F̄ )∗ b̄ = 0. (82)

This result shows that

p̄0 = M̄ r̄0 = (( Ā
−1
F̄ )∗ + (I − ( Ā

−1
F̄ )∗ Ā)R̄(I − Ā( Ā

−1
F̄ )∗))r̄0

= (I − ( Ā
−1
F̄ )∗ Ā)R̄(I − Ā( Ā

−1
F̄ )∗)r̄0 = (I − P̄ Ā)R̄r̄0. (83)
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We then have

P̄ Ā p̄
0 = P̄ Ā(I − P̄ Ā)R̄r̄0 = 0. (84)

(82) and (84) show (79) and (80) for k = 0.
We then assume (79) and (80) for k ≥ 1. Multiplying both sides of (67) of the CG

iteration steps by ( Ā
−1
F̄ )∗ Ā, using (79) for k, we have

( Ā
−1
F̄ )∗ r̄k+1 = ( Ā

−1
F̄ )∗ r̄k − αk( Ā

−1
F̄ )∗ Ā p̄k = −αk( Ā

−1
F̄ )∗ Ā p̄k = −αk P̄ Ā p̄

k = 0.

(85)

This shows (79) for k + 1. Multiplying both sides of (69) of the CG iteration steps by

P̄ Ā = ( Ā
−1
F̄ )∗ Ā, we obtain from (80) for k,

P̄ Ā p̄
k+1 = P̄ Ā M̄ r̄k+1 + βk P̄ Ā p̄

k = P̄ Ā M̄ r̄k+1. (86)

From (74) in Proposition 5, we obtain

P̄ Ā p̄
k+1 = ( Ā

−1
F̄ )∗ r̄k+1. (87)

Using (79) for k + 1, which we have already proved, the right side of this equation
becomes zero, which means (80) for k + 1.

Theorem 6 shows that the residual vectors r̄k, k ≥ 1 that appear in the iteration

steps stay in the kernel of ( Ā
−1
F̄ )∗, and the gradient vectors p̄k, k ≥ 1, stay in the fine

space (I− P̄ Ā)V , which means that none of these ever steps over to the counter space.

Remark 2 (Advantageous effect of the definition of the deflation projection. See also
Remark 1 in Sect.5.2)

a) In the CG iteration from (65) to (69), the matrix–vector products that are necessary
for updating the steps from k to k + 1 are Ā p̄k and M̄ r̄k , and p̄k is determined by

M̄ r̄k . Theorem 6 shows that ( Ā
−1
F̄ )∗ r̄k = 0 for all k ≥ 0; therefore, we have

M̄ r̄k = ( Ā
−1
F̄ )∗ r̄k + (I − ( Ā

−1
F̄ )∗ Ā)R̄(I − Ā( Ā

−1
F̄ )∗)r̄k

= (I − ( Ā
−1
F̄ )∗ Ā)R̄r̄k . (88)

Thus, the property ( Ā
−1
F̄ )∗ r̄k = 0 eliminates one matrix–vector product in each

CG iteration step.
b) The reduction of the calculation in (88) is given by the definition of the contrac-

tion projection (51) and the complementary projection defined in the precondition
matrix (71).
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6.3 Performance of the DDDM algorithm

We discuss the performance of the DDDM. Although we parallelize the DDDM, we
assumed only a single process calculation in this section.

In general, depending on their thickness, convergence is difficult to achieve for
thin-plate models when using iterative methods. We thus use thin plate models for our
benchmarks.

Remark 3 (Precondition matrix for the fine space in the DDDM)
We give the precondition matrix for the fine space in the DDDM as R̄ in the

definition for M̄ in (71) or (72). Although we can set R̄ to be any precondition matrix,
we assume R̄ is a matrix of the successive symmetric overrelaxation (SSOR) for the
following reasons.

The DDDM solver for our benchmarks is incorporated into FrontISTR [32], an
open-source structural analysis code. FrontISTR has the SSOR preconditioned CG
solver as a standard solver. The choice of the SSOR precondition for the DDDM
enables a fair comparison between the SSOR preconditioned CG solver on the entire
space and the SSOR-preconditioned-on-the-fine-spaceDDDMsolver. In the following
benchmarks, we switch between the SSOR-preconditioned CG solver and the SSOR-
preconditioned DDDM solver. SSOR below refers to the SSOR-preconditioned CG
method, and DDDM below refers to the SSOR-preconditioned-on-the-fine-space of
DDDM.

In this section, the computer used was a cluster computer with Intel Xeon E5-2670,
operating at 2.6 GHz, 16 cores × 13 nodes, and 128 GB of RAM per node. We do not
parallelize with processes or the multi-threads. We used METIS [33] for the domain
decomposition in the DDDM solver.

We built the plate model by arranging 1mm × 1mm × 1mm hexahedral linear
elements in the same way as in Sect. 2.2. The x , y, and z elements were aligned in the
directions of the x , y, and z-axes, respectively, except for some models noted below.
We refer to the “x × y × z” plate in the same manner as in Sect. 2.2. The direction of
the plate, constraint conditions, and loading conditions were likewise the same as in
Sect. 2.2; see Fig. 1.

The analysis is the same cantilever-type dead weight analysis as conducted in
Sect. 2.2.We ran the analysis starting with the 300×10×300model and then reducing
the thickness (i.e., the number of hexahedral elements in the y-axis direction) to 9, 8,
7, 6, 5, 4, 3, 2, and 1. The DDDM converged even with y = 1. We then set y as thin
as y = 0.5, 0.2, and 0.1.

We set the tolerance as 1.0× 10−7 in all cases and set the maximum number of the
iterations as 10,000 for both the SSOR and DDDM. We considered that the iteration
did not converge when the number of the iteration reached the maximum number, and
there was no tendency for a decrease in the relative residual error.

We summarize the benchmark result in Table 5.
Stability of theDDDMsolver. Table 5 presents the stability of theDDDMsolver in

the sense that the SSORconvergedwith the 300×10×300model but failed to converge
with the 300×9×300model. This tendency shows the difficulty of handling thin plates
using the SSOR preconditioned CG method. Meanwhile, the DDDM converged from
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Table 5 Stability of the DDDM solver. As y decreased from 10, the SSOR diverged at y = 9, whereas the
DDDM converged to y = 0.2. The number of iterations for the DDDM was as low as approximately 40 to
80, whereas that for the SSOR was 4127. The thickness was so small at y = 1 and lower than the number
of iterations increased. The number of subdomains N was determined by preliminary benchmark tests

1y 2n 2r SSOR0 DDDM0

3Rep 3Time 4N 3Rep 3Time

10 2,989,833 3,311 4,127 2,419 1,500 48 140.46

9 2,718,030 3,010 — — 2,000 47 128.39

8 2,446,277 2,709 — — 1,200 52 115.49

7 2,174,424 2,408 — — 1,500 51 102.17

6 1,902,621 2,107 — — 1,500 53 91.60

5 1,630,818 1,806 — — 1,500 54 78.87

4 1,359,015 1,505 — — 1,000 83 70.23

3 1,087,212 1,204 — — 2,000 59 54.36

2 815,409 903 — — 2,000 84 43.50

1 543,606 602 — — 2,000 148 33.93

0.5 543,606 602 — — 3,500 265 58.38

0.2 543,606 602 — — 7,000 676 165.19

0.1 543,606 602 — — — — —

0 The tolerance value of the residual error for the convergence is 1.0 × 10−7

1 y: thickness of the plates
2 n and r : number of DOFs and number of the constraints, respectively
3 Rep: number of the iterations, Time: total calculation time[s]
4 N : number of of subdomains

Table 6 Performance of the DDDM solver for the 300× 10× 300 model. The result is taken from the first
row of Table 5

y n r SSOR0 (1′)Rep DDDM0 (2)/(2’)

(1)Rep (2)Time (2′)Time (1)/(1’)

10 2,989,833 3,311 4,127 2,419 48 140.45 85.9 17.2

0 The tolerance value of the residual error for the convergence is 1.0 × 10−7

the 300× 10× 300 model to the 300× 0.2× 300 model but did not converge for the
300× 0.1× 300 model. The number of iterations and calculation time of the DDDM
decreased from the 300 × 10 × 300 model to the 300 × 1 × 300 model, presumably
because of the decrease in the number of DOFs. However, the trend turned at the
300 × 0.5 × 300 model, which shows the difficulty of convergence with a reduction
in the thickness even when using the DDDM.

Performance of the DDDM solver. Table 6 compares the performances of the
DDDM solver and SSOR solver taken from the first row of Table 5 for y = 10. We
can see that the DDDM solver is 85.9 times as fast as the SSOR solver in terms of the
number of iterations and 17.2 times as fast as the calculation time.
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Fig. 14 Results of the thin model benchmark. Six cases from Table 5 are shown. We enlarged the deforma-
tions by a factor of 10 in all cases. The color contours show the displacement norms with the same range

We show the analysis results of the 300×10×300, 300×5×300, 300×2×300,
300 × 1 × 300, 300 × 0.5 × 300, and 300 × 0.2 × 300 models in Fig. 14. The color
represents the displacement norms, and we enlarged the deformations by a factor of
10 in all cases.

7 Parallelization

As stated in Sect. 1 and Sect. 2.3, our solver uses two sets of domain decomposition.
One is for the generation of the coarse grid, which corresponds to the structure of the
DDDM, and we use the other for parallelizing the CG method in the DDDM.

7.1 Overview of the parallelization

We decompose the entire body � into non-overlapping subspaces:

� =
M⋃
I=1

�I ,

as in Fig. 15, where M is the number of parallel processes, and each �I corresponds
to each of the parallel processes. The domain decomposition here is “nodal-point-
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Fig. 15 Example of domain decomposition for parallelization

base” as opposed to the domain decomposition used for generation of the coarse grid
is “element-base.” �I J is a region consisting of the points nearest the neighboring
both �I and �J . The points in the figure show the nodal points x̄. We fix I and J
(I �= J ). Though both�I and�J have other neighboring subspaces, we omit them for
an explanation. We apply the CG method to the extended subdomains �I ∪ �I J and
�J ∪�I J in parallel. The CG iteration refers to the nodal value in �I ∪�I J and also
�J ∪ �I J updating the values of the nodal points in the iteration process through the
communications between the parallel processes I and J . In the CG process, the points
in �I J have different values in each of the parallel processes I and J . After some
number of the CG iterations, all the nodal values converge to some values, including
the points in �I J within a given residual error range.

In the DDDM algorithm, we parallelize the coarse grid generation process in the
parallel CG method. As noted in Sect. 5.2, we use the contraction matrix ĀF̄ =
F̄
T
ĀF̄ ∈ R6N×6N defined by Equation (49) in the whole space. The components

of Ā and F̄ are distributed to some parallel process I , we then calculate (F̄
T
ĀF̄)I

independently in the process I .We gather those components to the parentMPI process.

We apply the LU decomposition to F̄
T
ĀF̄. We then apply (F̄

T
ĀF̄)−1, which we

distribute to each parallel process in the CG process in parallel for each I . The parallel
process I includes not only the inner points of �I but points in �I J outside of �I .

7.2 Parallel performance

We present here the cantilever-type cuboid model under the dead weight conditions,
which is the same analysis as in Sect. 6.3; however, we assumed a larger model with
dimensions of 500× 30× 500. We compared the result of the DDDM with the result
of the SSOR. We chose the configuration referring to Sect. 6.3. The configuration of
500×30×500 was almost the lower bound for convergence for the SSOR concerning
the thickness; i.e., we cannot set the thickness to be less than 30 in this configuration,

123



21 Page 34 of 36 H. Akiba

Table 7 Parallel performance of the DDDM and comparison with the SSOR. The configuration 500×30×
500 is almost the lower bound concerning the thickness y = 30 by the lower limit of the convergence of
the SSOR

Processes 1 2 4 8 16 24 32

(a)DDDM[s0] 1274.6 647.7 399.9 281.1 201.3 184.1 172.6

(b)SSOR[s0] 19075.6 12251.3 6458.3 3448.5 1925.9 1419.0 1249.0

(b)/(a) 14.96 18.92 16.156 12.27 9.57 7.71 7.23

0 The tolerance value of the residual error for the convergence to 1.0 × 10−7

as the SSOR does not converge. The computer used was the Oakbridge-CX system
[34] installed at the University of Tokyo.

The number of elements, DOFs, and constraints were 7,500,000, n = 23, 343, 093,
and r = 15, 531, respectively. We conducted the analyses using 1, 2, 4, 8, 16, 24, and
32 processes. The number of subdomains N for the DDDM (see Sect. 5.1) was set at
2500 for these processes by conducting preliminary benchmarks.

The performance results are given inTable 7.Although the superiority of theDDDM
is clear, the parallel performance of the DDDM decreases with an increasing number
of processes in contrast with the parallel performance of the SSOR. This tendency is
because the larger number of parallel processes increases the communication traffic.

8 Conclusions

Static structural problems discretized by the FEA method without constraint condi-
tions have singular stiffness matrices, and the kernel of the stiffness matrices has six
eigenvectors with duplicated zero eigenvalues. The static equations become solvable
by imposing at least six forced displacement conditions (i.e., constraint conditions).

The starting point of theDDDMalgorithm is that we apply the (parallel) CGmethod
to the entire domain as the basic framework rather than using the directmethod as in the
DDM.We decompose the entire domain in two ways. One decomposition parallelizes
the CG method, and the other generates the coarse space based on the rigid-body
modes.

We discussed the distance between the eigenvectors and the kernel of the uncon-
strained stiffness matrices. The basis of the kernel represents the rigid-body motions.
The small distance between the eigenvectors with small eigenvalues gives rise to gen-
erating the space of the coarse motions together with the domain decomposition.

We construct the solver algorithm to remove the coarse space obtained by the
coarse motion from the solution space. The iteration space is handed over to the fine
space using the deflation and two-level algorithm. The two-level method contributes
to high-speed performance.

We conducted benchmark tests of the elastic static analysis for thin plate models,
and the results showed the high-speed performance and stability of the DDDM. We
also presented a brief overview of the parallelization and its performance.
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