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Abstract
The linear stability of plane Couette flow subject to one rigid boundary and one flexible
boundary is considered at both finite and asymptotically large Reynolds number. The
wall flexibility is modelled using a very simple Hooke-type law involving a spring
constant K and is incorporated into a boundary condition on the appropriate Orr–
Sommerfeld eigenvalue problem. This problem is analyzed at large Reynolds number
by the method of matched asymptotic expansions and eigenrelations are derived that
demonstrate the existence of neutral modes at finite spring stiffness, propagating with
speeds close to that of the rigid wall and possessing wavelengths comparable to the
channel width. A large critical value of K is identified at which a new short wave-
length asymptotic structure comes into play that describes the entirety of the linear
neutral curve. The asymptotic theories compare well with finite Reynolds number
Orr–Sommerfeld calculations and demonstrate that only the tiniest amount of wall
flexibility is required to destabilize the flow, with the linear neutral curve for the
instability emerging as a bifurcation from infinity.

Keywords Fluids · Instability · Bifurcation · Asymptotics

1 Introduction

The interaction between the flow of a fluid and a flexible boundary is a scenario
often encountered in nature. The flow of blood through veins and arteries, peristaltic
motion, the swimming of micro-organisms, and the minimally-invasive injection of
medical implants are some common examples. Often in these applications, one may
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be interested in how the stability of a flow is altered by the presence of wall flexibility,
and whether it enhances or suppresses any linear instability that may be present in
the rigid situation. For example in the case of the implant injection mentioned above
(often referred to as ‘thread injection’; see Frei et al. [1]; Walton [2]) one may wish
to suppress such instabilities in order to ensure a smooth injection with the minimum
of surgical trauma.

A very simplemodel of the injection process would be to consider amoving flexible
boundary (representing the implant) below an incompressible fluid (modelling the
accompanying carrier fluid), and bounded above by the rigid wall of the injection
device. If the lower wall is rigid, then the basic fluid flow would simply be plane
Couette flow: a flow well-known to be stable to infinitesimal disturbances at all values
of the Reynolds number (Romanov [3]).

Various models have been proposed that modify the classical plane Couette flow
by incorporating some element of visco-elasticity, and then study the resulting effect
on the linear stability properties. For example Chokshi and Kumaran [4] investigate
the Couette flow of a dilute polymer and discover that although the classical Oldroyd
B model is still linearly stable, the introduction of an inhomogeneity into the polymer
concentration can destabilize the flow, while using a continuum viscoelastic wall
model, Kumaran et al. [5] showed that plane Couette flow is linearly unstable at
low Reynolds number.

Our interest here is predominantly in the high Reynolds number regime, and we
choose to represent the flexibility of the wall using a surface method in which the wall
interacts with the fluid through an interface condition. For a review of the use of surface
methods to model compliant boundaries the reader is referred to Lebal et al. [6]. The
specific model which we use here treats the wall as a thin plate mounted on springs. In
this model the wall parameters are traditionally the spring stiffness, tension, bending
stiffness,mass, and damping coefficient. Thismodel has been used extensively to study
the effect of wall flexibility in many different scenarios. For example, the stability of
Tollmien-Schlichting waves in compliant-walled plane Poiseuille flow (Davies and
Carpenter [7]; Gajjar and Sibanda [8]; Nagata and Cole [9]), flexible protuberances
in boundary layers (Pruessner and Smith [10]), and droplet impact on deformable
surfaces (Henman et al. [11]). It does not appear however to have previously been
applied to plane Couette flow over flexible boundaries.

As a first step, and with the thread injection application in mind, we use a very
simple model in which the pressure perturbations at the lower wall are connected to
the displacement of the wall purely through the effect of spring stiffness, while the
upper wall is considered rigid. Although this model is extremely primitive, we will
demonstrate that it is sufficient to generate an instability at high Reynolds numbers in
which the wavelength of the disturbance is comparable with the width of the channel.
The simplicity of the model also allows us to make significant analytic progress in the
analysis of the nature of the instability. The appropriate linear eigenvalue problem can
be considered at high Reynolds number, and asymptotic structures corresponding to
the upper and lower branches of the linear neutral curve obtained, with the solutions in
each layer derived analytically. The resulting linear eigenrelations can be solved with
minimal numerical effort, with the computed values for wavenumber and phasespeed
showing excellent agreement with numerical computations of the eigenvalue problem

123



The linear stability of plane Couette flow... Page 3 of 31 1

at large but finite Reynolds number. We also demonstrate that a new structure, uniting
the upper and lower branches, comes into play when the wall spring stiffness K is
sufficiently large, and leads to a disturbance of short wavelength propagating at a speed
close to that of the rigid wall. This new structure allows us, at large spring stiffness, to
obtain an approximation to the entire neutral curve, and predict the critical Reynolds
number Recrit for instability as a function of K . In particular we show that Recrit → ∞
as K → ∞, in accordance with the linear stability of the rigid flow referred to above.

The structure of the remainder of the paper is as follows. In Sect. 2 we set out
our governing model for the instability of Couette flow with a flexible lower wall.
This is followed in Sect. 3 by a high Reynolds number analysis leading to upper and
lower branch neutral stability structures at O(1) values of K which we refer to as
AS1 and AS2, and the large-K unified structure (AS3). This is followed in Sect. 4 by
numerical solutions of the linear eigenvalue problem at finite Reynolds number, and a
comparison with their asymptotic counterparts. Finally in Sect. 5 we draw conclusions
and propose directions for future research.

2 The governing equations

Consider two infinitely long parallel plates separated by a distance 2h∗. The upper
plate, which is taken to be rigid, moves to the right with speed U∗, while the lower
plate moves to the left with the same speed. This lower plate is flexible and responds
to the fluid flow in a way to be outlined below. The space between the plates is filled
with an incompressible fluid of constant density ρ∗ and kinematic viscosity ν∗. We
introduce a Cartesian coordinate system (x∗, y∗), with the x∗ axis aligned along the
centreline of the channel so that the walls are located at y∗ = ±h∗, and write the
corresponding fluid velocity components as (u∗, v∗), and the fluid pressure as p∗. It
is convenient to non-dimensionalize by writing

(x∗, y∗) = h∗(x, y), t∗ = (h∗/U∗)t, (u∗, v∗) = U∗(u, v), p∗ = ρ∗(U∗)2 p,

where t∗ is the dimensional time, so that the governing unsteady two-dimensional
Navier–Stokes equations for (u(x, y, t), v(x, y, t), p(x, y, t)) may be written as

∂u

∂x
+ ∂v

∂ y
= 0, (1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂ y
= −∂ p

∂x
+ Re−1

(
∂2u

∂x2
+ ∂2u

∂ y2

)
, (1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂ y
= −∂ p

∂ y
+ Re−1

(
∂2v

∂x2
+ ∂2v

∂ y2

)
, (1c)

with Reynolds number Re defined as

Re = U∗h∗

ν∗ .
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Since we are assuming the upper wall to be rigid, the no-slip condition of viscous flow
applies there, and in non-dimensional form we have

u = 1, v = 0 on y = 1. (2)

We denote the unknown lower wall position by yW (x, t), and suppose that the wall
displacement is small by writing

yW = −1 + εη(x, t), (3)

where ε � 1. In the absence of any displacement we have u = −1, v = 0 on y = −1.
Thus, at leading order, the steady, parallel solution to (1) is simply plane Couette flow,
i.e.

u = y, v = 0, p = 0.

We now perturb this solution by seeking a solution in normal-mode form

(u, v, p) = (y, 0, 0) + ε(̃u(y), ṽ(y), p̃(y)) exp[iα(x − ct)] + c.c.. (4)

Here c.c. denotes complex conjugate, while α and c are the wavenumber and phas-
espeed of the disturbance. We will adopt a temporal approach to the stability problem
by prescribing a real value of the wavenumber α while allowing the complex phas-
espeed c to be determined as part of the solution. Substitution of (4) into the
Navier–Stokes equations (1) leads, at O(ε), to the perturbation equations

iαũ + ṽ′ = 0, (5a)

iα(y − c)̃u + ṽ = −iα p̃ + Re−1
(
ũ′′ − α2ũ

)
, (5b)

iα(y − c)̃v = − p̃′ + Re−1
(
ṽ′′ − α2ṽ

)
. (5c)

The streamwise and pressure perturbations can be eliminated, leaving us with the
familiar fourth-order Orr–Sommerfeld equation:

iαRe(y − c)
(
ṽ′′ − α2ṽ

)
= ṽ′′′′ − 2α2ṽ′′ + α4ṽ. (6)

The boundary conditions on the rigid upper surface are, from (2), (4) and (5a):

ṽ(1) = ṽ′(1) = 0. (7)

We now turn to the boundary conditions on the lower flexible wall. Kinematic consid-
erations dictate that fluid particles in contact with the wall remain there for all time.
Mathematically:

u(yW ) = −1, v(yW ) = D

Dt
yW .
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Fig. 1 The flexible channel. The shaded region is filled with an incompressible fluid

Assuming a normal-mode form

η = η̃ exp[iα(x − ct)] + c.c.., (8)

for the wall displacement, and substituting for (u, v) from (4), yW from (3), and
linearizing we have

ũ(−1) + η̃ = 0, −iα(1 + c)̃η − ṽ(−1) = 0. (9)

Eliminating η̃, and then using the continuity equation (5a) to eliminate ũ, leads to

(1 + c)̃v′(−1) + ṽ(−1) = 0, (10)

which provides a third boundary condition on the Orr–Sommerfeld equation (6). This
also allows us to rewrite the second of equations (9) as

ṽ′(−1) − iαη̃ = 0, (11)

which will prove useful below. To close the problem we need to postulate a dynamic
conditionwhich links the fluid properties to those of the lowerwall. Here, asmentioned
in the introduction, we assume a very simple spring-backed model where pressure
fluctuations in the fluid directly give rise to normal fluctuations of the boundary, i.e.

p(x, yW , t) = −Kη(x, t),

with the spring constant K > 0. A sketch of the channel is given in Fig. 1. Using (4)
for p, (3) for yW and (8) for η, this becomes to leading order:

p̃(−1) = −K η̃. (12)

We need to translate (12) into a boundary condition on the normal velocity perturbation
ṽ. This can be achieved by evaluating (5b) at y = −1, using the continuity equation
(5a) to eliminate ũ, and then the kinematic condition (10), so that we can express the
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Fig. 2 Wavenumber α versus Re
for the case K = 1. The
contours show different growth
rates. From outer to inner: αci =
0 (neutral case), 0.003, 0.006, 0.009.
The dotted line shows part of the
contour for αci = 0.0003

wall pressure in terms of the normal velocity fluctuations as

p̃(−1) = Re−1
(
α−2ṽ′′′(−1) − ṽ′(−1)

)
.

Thus, in terms of the normal velocity, the law of the wall (12) now reads

α−2ṽ′′′(−1) − ṽ′(−1) = −ReK η̃.

Finally, using (11) to eliminate η̃, we have

iαReK ṽ′(−1) = ṽ′′′(−1) − α2ṽ′(−1), (13)

which serves as our fourth boundary condition on (6). For the numerical calculations
we will carry out in Sect. 4, it is convenient to rewrite condition (13) so that it involves
the phasespeed c. This can be achieved by using the kinematic condition (10), which
converts (13) to the form

ṽ(−1) + (1 + c)(iαReK )−1(̃v′′′(−1) − α2ṽ′(−1)) = 0. (14)

In order to provide the reader with a flavour of the nature of the instability that
we uncover at finite Reynolds number, we present in Fig. 2 the results of one of our
stability calculations that we will undertake and discuss in more detail in Sect. 4. Here
we show curves of constant growth rate αci in the Reynolds number–wavenumber
plane for the case of spring stiffness K = 1. The observed instability is similar to
the viscous instability for a linearly unstable shear flow over rigid boundaries: there
is a critical Reynolds number for instability with Recrit � 152 in this case, a band of
unstable wavelengths for any Re in excess of this value, and there are upper and lower
branches along which the disturbance is neutral with a higher growth rate gradient
in the vicinity of the lower branch. The flexible lower wall apparently has the same
effect as an inflectional profile over a rigid boundary in that it leads to a finite band of

123



The linear stability of plane Couette flow... Page 7 of 31 1

unstable wavelengths at all Reynolds numbers, no matter how large. Another familiar
feature from shear flow instability over rigid boundaries is the presence of the ‘kink’
in the upper branch present at around Re � 4000 for K = 1. Over a small range
of Re near this value there are four neutral points rather than the usual two. Part of
the contour for the small growth rate αci = 0.0003 is shown (as a dotted curve) to
emphasize the fact that the kink is not just present in the neutral curve but moves to
higher Reynolds number as the growth rate is increased.

It is also worth noting for future purposes, that using the continuity equation (5a)
and the pressure-displacement law (12), the kinematic and dynamic conditions (10),
(13), can also be rewritten in the form

ṽ(−1) = iα(1 + c)̃u(−1), iα(1 + c) p̃(−1) = K ṽ(−1). (15)

This final form for the boundary conditions facilitates the asymptotic solution at large
Reynolds number, which is the task we turn to in the next section.

3 Large Reynolds number asymptotic analysis of the eigenvalue
problem

The eigenvalue problem consisting of (6), (7), (10 ), (13) can be solved numerically and
weundertake this calculation inSect. 4.At very large K wemight expect stability since,
in the limit of K → ∞, our problem reduces to that of plane Couette flow between
rigid boundaries: a flow generally considered to be linearly stable at all Reynolds
numbers, as mentioned in the introduction. However for each finite value of K there
is a large parameter space in (α,Re) to explore and therefore if one is interested in
possible instabilities it is useful to have some idea of the likely values of K , Re and α

at which the flow might be unstable. In order to reduce that parameter space, we begin
our analysis of the problem by considering the solution at large Reynolds number
where the method of matched asymptotic expansions can be used to demonstrate that
instability of the flow occurs at O(1) values of the wall stiffness K . In what follows
we will seek neutral modes where the value of c is real. It emerges that there are two
branches to the linear neutral curve at high Reynolds number with distinct scalings for
each.Although the disturbance is neutral on both branches,wewould expect instability
in the region in between: our numerical investigations in Sect. 4 will bear this out.
We discuss the details of the two branches below in Sects. 3.1, 3.2. Further analysis
for large K in Sect. 3.3 indicates that both these structures evolve into a new shared
structure, a feature of which is that the entirety of the unstable region can be described
on this new scaling.Wewill see that, as K → ∞, the critical value of Re for instability
also tends to infinity, with a simple relationship between the two parameters.

123



1 Page 8 of 31 A. Walton, K. Yu

Fig. 3 Sketch of the AS1
structure: an inviscid core and
two viscous Stokes layers

3.1 Asymptotic structure I (AS1)

We explore the possibility that wall flexibility has a destabilizing effect on plane
Couette flow by first considering the limit

α = O(1), 1 ± c = O(1), K = O(1), Re � 1.

In this case the flow field subdivides into a core flow which is inviscid to leading
order and includes the location where y = c, while there are wall layers (of classical
O(Re−1/2) thickness) adjacent to the boundaries in which viscous effects play an
important role: see Fig. 3. For this analysis it is convenient to deal with the disturbance
equations in their primitive-variable form which we rewrite here for convenience:

iαũ + ṽ′ = 0, (16a)

iα(y − c)̃u + ṽ = −iα p̃ + Re−1
(
ũ′′ − α2ũ

)
, (16b)

iα(y − c)̃v = − p̃′ + Re−1
(
ṽ′′ − α2ṽ

)
, (16c)

together with the boundary conditions from (7), (15):

ũ(1) = ṽ(1) = 0, (17a)

iα(1 + c)̃u(−1) = ṽ(−1), (17b)

iα(1 + c) p̃(−1) = K ṽ(−1). (17c)

As mentioned earlier, the system (16), (17) constitutes an eigenvalue problem. If we
specify a real wavenumber α and wall stiffness parameter K , then the phasespeed c
is the eigenvalue to be determined. In what follows we will seek real values of c, and
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hence neutral solutions to the problem. The wavenumber and phasespeed expansions
are written as

α = α0 + Re−1/2α1 + · · · , c = c0 + Re−1/2c1 + · · · , (18)

where our main aim is to determine the order one quantities (α0, c0) and their depen-
dence on the stiffness parameter K . We start by considering the solution in the main
bulk of the flow, referred to here as the ‘core’.

3.1.1 Core solution

Here, the fluid-dynamic quantities expand in the form

(̃u, ṽ, p̃) = (u0, v0, p0) + Re−1/2(u1, v1, p1) + · · · , (19)

with all the subscripted quantities dependent on the O(1) normal variable y. To begin,
we concentrate on the leading-order contributionwith the zero subscripts. From substi-
tution of (19) into the governing perturbation equations (16), alongwith the expansions
(18) for the wavenumber and phasespeed, we find:

iα0u0 + v′
0 = 0, (20a)

iα0(y − c0)u0 + v0 = −iα0 p0, (20b)

iα0(y − c0)v0 = −p′
0. (20c)

The streamwise velocity and pressure can be eliminated, leaving the normal velocity
satisfying the Rayleigh equation

v′′
0 − α2

0v0 = 0.

It is worth noting here that because the basic Couette flow possesses no curvature, the
system (20) is regular at y = c0 and so no critical layer is required in this structure,
unlike analogous structures for flows subject to pressure gradients (e.g. see Smith
[12]). Since we have a rigid boundary at y = 1 we would expect to impose the
impermeability condition at this location, namely

v0(1) = 0.

The solution for v0 is therefore determined to be

v0 = sinh[α0(1 − y)], (21)

where the constant of proportionality has been taken to be unity without loss of gener-
ality as a normalization condition on the eigenvalue problem. We note in passing that
these disturbances are neither sinuous nor varicose as the symmetry has been removed
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from the problem by the introduction of the flexible lower wall. The corresponding
solutions for (u0, p0) follow from (20) as

u0 = −i cosh[α0(1 − y)], (22a)

p0 = i
{
(y − c0) cosh[α0(1 − y)] + α−1

0 sinh[α0(1 − y)]
}

, (22b)

so that as the upper and lower walls are approached, respectively:

(u0, v0, p0) → (−i, α0(1 − y), i(1 − c0)), (23a)

(u0, v0, p0) → (−i cosh 2α0, sinh 2α0, iα
−1
0 sinh 2α0 − i(1 + c0) cosh 2α0).

(23b)

We now turn to the second-order terms in (19). It transpires that it is sufficient for our
purposes to consider the contributions

u1R = 	(u1), v1I = 
(v1), p1R = 	(p1).

From substitution of (19), (18) into (16), these components satisfy

α0u1R + v′
1I = 0, (24a)

α0(y − c0)u1R + v1I = −α0 p1R, (24b)

α0(y − c0)v1I = p′
1R . (24c)

As in the leading-order case, some elementary manipulations lead to

v′′
1I − α2

0v1I = 0,

and so we deduce that

v1I = A1 cosh[α0(1 − y)] + A2 sinh[α0(1 − y)]. (25)

The constant A2 can be taken to be zero, as this part of the solution can be absorbed
into the expression (21) for v0. This leaves

v1I = A1 cosh[α0(1 − y)],

where A1 is an unknown real constant. The solution for the second-order streamwise
and pressure perturbations follow from (24) as

u1R = A1 sinh[α0(1 − y)], (26a)

p1R = −A1

{
(y − c0) sinh[α0(1 − y)] + α−1

0 cosh[α0(1 − y)]
}

. (26b)
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We see that as the upper and lower walls are approached:

(u1R, v1I , p1R) → A1(0, 1,−α−1
0 ), (27a)

(u1R, v1I , p1R) → A1(sinh 2α0, cosh 2α0, (1 + c0) sinh 2α0 − α−1
0 cosh 2α0).

(27b)

Clearly the boundary conditions (17) are not satisfied by the solutions in the core,
implying the existence of thin wall layers where viscosity must be re-introduced.
We will start by considering the upper layer which possesses a classical structure,
before moving to the lower layer where the inclusion of wall flexibility alters the flow
dynamics.

3.1.2 Upper wall layer

Equation (23a) implies the existence of a tangential slip velocitywhichmust be reduced
to zero at the wall. Applying the standard boundary-layer concepts, the relevant
expansion here is

u = U0(Y ) + · · · , v = −Re−1/2V0(Y ) + · · · , p = P0(Y ) + · · · , (28)

where Y = Re1/2(1 − y) is the O(1) normal variable in the upper wall layer.
Substitution into (16) yields

iα0U0 + V ′
0 = 0, (29a)

iα0(1 − c0)U0 = −iα0P0 +U ′′
0 , (29b)

0 = −P ′
0, (29c)

subject to the matching conditions to the core (23a):

U0 → −i, P0 → i(1 − c0) as Y → ∞, (30)

and the no-slip conditions (7), which become

U0 = V0 = 0 on Y = 0.

It is easy to see from (29c) that the pressure remains constant to leading order across
the layer and therefore assumes the form

P0 = i(1 − c0) for all Y ,

in view of (30), while the solutions for the velocity perturbations are

U0 = −i(1 − exp[−mY ]), (31a)

V0 = −α0(Y − m−1 + m−1 exp[−mY ]), (31b)
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with
m ≡ α

1/2
0 (1 − c0)

1/2 exp[iπ/4]. (32)

From (31b) we see that

V0 → −α0(Y − m−1) as Y → ∞. (33)

The first term in (33) matches to the near-wall behaviour of v0 in (23a), while the
second term implies, using the definition of m in (32), that


(V0) → − α
1/2
0

(1 − c0)1/221/2
.

Matching this solution to that in the core via (27a), we see that this fixes the constant
A1 as

A1 = α
1/2
0

(1 − c0)1/221/2
. (34)

This quantity connects the flow behaviour near the upper rigid wall to that in the wall
layer near the flexible lower wall. The dynamics in this wall layer are considered next.

3.1.3 Lower wall layer analysis and the eigenrelation for AS1

The near-wall form (23b) shows that, as the lower wall is approached, we have both a
tangential slip velocity and a non-zero normal velocity component. It transpires thatwe
need to work to second order in this layer to determine the leading-order wavenumber
and phasespeed. We therefore pose the expansion:

(̃u, ṽ, p̃) = (U 0(Y ), V 0(Y ), P0(Y )) + Re−1/2((U 1(Y ), V 1(Y ), P1(Y )) + · · · (35)

with y = −1 + Re−1/2Y and Y of O(1). The leading-order governing equations are,
from substitution of (35) into (16):

V
′
0 = 0, (36a)

iα0(−1 − c0)U0 + V 0 = −iα0P0 +U
′′
0, (36b)

0 = −P
′
0 (36c)

with matching to the core (23):

U 0 → −i cosh 2α0, V 0 → sinh 2α0, P0 → i
{
α−1
0 sinh 2α0 − (1 + c0) cosh 2α0

}
,

(37)
as Y → ∞. We see from (36a), (36c), that in this layer, the leading-order normal
velocity and the pressure remain constant and therefore take on the values

V 0 = sinh 2α0, P0 = i
{
α−1
0 sinh 2α0 − (1 + c0) cosh 2α0

}
. (38)
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However the solution here must also obey the dynamic condition (17c) at the wall,
which in terms of the wall layer variables is

iα0(1 + c0)P0 = KV 0.

Substituting for V 0, P0 from (38) we obtain a first relationship between α0 and c0,
namely:

α0(1 + c0)
2 cosh 2α0 − (1 + c0) sinh 2α0 = K sinh 2α0. (39)

The corresponding solution for U0 satisfies (36b), (37) and the kinematic condition
(17b), which implies

iα0(1 + c0)U0(0) = V 0(0).

The required solution is easily found to be

U0 = −i

(
cosh 2α0 +

{
sinh 2α0

α0(1 + c0)
− cosh 2α0

}
exp[−mY ]

)
, (40a)

m ≡ α
1/2
0 (1 + c0)

1/2 exp[−iπ/4]. (40b)

We now turn to the O(Re−1/2) correction to the solution. The continuity equation
yields, from substitution of (35) into (16a):

V
′
1 = −iα0U 0.

Using (40) for U 0, and integrating, we find that

V 1 = V 1(0) −
(

α0Y cosh 2α0 + m−1
{
α0 cosh 2α0 − sinh 2α0

1 + c0

}{
e−mY − 1

})
.

(41)
The complex constant V 1(0) is thus far unknown, but from the dynamic condition
(17c) we can deduce that

α0(1 + c0)P1R(0) = KV 1I (0), (42)

where again we use the subscripts R and I to represent the real and imaginary parts
respectively. In addition, the normal momentum equation (16c) implies that

P
′
1R = 0,

and hence from matching to the core solution (27b):

P1R = α
1/2
0

(1 − c0)1/221/2
{(1 + c0) sinh 2α0 − α−1

0 cosh 2α0},
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Fig. 4 Solutions of the AS1 eigenrelations. (a) Wavenumber α0 versus spring stiffness K . (b) Phasespeed
c0(K ). The dotted lines show the large K asymptotes

where we have used the value of A1 deduced in (34). It therefore follows from (42)
that

V 1I (0) = α
3/2
0 (1 + c0)

K (1 − c0)1/221/2
{(1 + c0) sinh 2α0 − α−1

0 cosh 2α0}.

Returning now to the wall layer solution (41), and using the wall value deduced above,
we see that as Y → ∞:

V 1I → α0 cosh 2α0 − (1 + c0)−1 sinh 2α0

21/2α1/2
0 (1 + c0)1/2

+
α
3/2
0 (1 + c0)

{
(1 + c0) sinh 2α0 − α−1

0 cosh 2α0

}
K (1 − c0)1/221/2

.

This expression should match to the near-wall core solution given in (27), leading to
a second relation between α0 and c0, namely:

α0(1 + c0) cosh 2α0 − sinh 2α0

α
1/2
0 (1 + c0)3/2

+ α
1/2
0 (1 + c0){α0(1 + c0) sinh 2α0 − cosh 2α0}

K (1 − c0)1/2

= α
1/2
0 cosh 2α0

(1 − c0)1/2
. (43)

Together, for a given value of K , the relations (39) and (43) determine the leading-
order wavenumber α0 and phasespeed c0. Plots of α0 and c0 versus the wall stiffness
K are shown in Fig. 4. We see that the neutral value of the wavenumber decreases
as K increases, reaching a minimum, and then growing linearly with further increase
in K . The phasespeed increases monotonically with increasing K , approaching the
speed of the upper wall. The dotted lines show the solution to the AS1 eigenrelations
at asymptotically large K and are given explicitly in Sect. 3.3. It is evident that the
asymptotic forms provide a good approximation to the solutions for both wavenumber
and phasespeed for values of spring stiffness as low as K = 2.
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Fig. 5 The AS2 structure in
which the upper layer is a
viscous shear layer

It can be seen from (43) that the upper wall layer structure ceases to be valid once
the phasespeed c0 is close to the speed of the upper plate. In fact when c0 is sufficiently
close to unity there is a new distinguished limit which we investigate next.

3.2 Asymptotic structure II (AS2)

This second asymptotic structure is valid in the limit

α = O(1), 1 − c � 1, K = O(1), Re � 1.

Much of the analysis in the core and lower wall layer remains unchanged. However,
in this limit, the phasespeed approaches the speed of the upper plate which leads to
some dynamic changes in its vicinity. Let us suppose 1 − c = O(δ), and also write
y = 1 − δY , with Y the O(1) normal coordinate in the upper layer. Assuming that
the wavenumber α remains O(1), the inertial operator (y − c)∂/∂x = O(δ). In the
wall layer we expect this quantity should be of the same order of magnitude as the
viscous operator Re−1∂2/∂ y2 = O(Re−1δ−2). Balancing these two quantities leads
to the estimate δ = O(Re−1/3) as the new thickness of the upper layer. We therefore
pose a phasespeed expansion of the form

c = 1 − Re−1/3c1 + · · · , (44)

with the wavenumber expansion remaining as in (18). A sketch of the new structure
is given in Fig. 5 and we explore each region briefly in turn below.

The new expansion in the upper wall layer, replacing (28), is:

ũ = U0(Y ) + · · · , ṽ = −Re−1/3V0(Y ) + · · · , p̃ = Re−1/3P0(Y ) + · · · , (45)
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with y = 1 − Re−1/3Y . Note that in comparison with the corresponding layer in
AS1, the pressure is reduced by a factor Re−1/3 in order to remain in balance with
the other terms in the streamwise momentum equation (16b). Substitution of (45) into
(16) yields

iα0U0 + V ′
0 = 0, (46a)

iα0(c1 − Y )U0 − V0 = −iα0P0 +U ′′
0 , (46b)

0 = −P ′
0. (46c)

These equations are to be solved subject to no-slip on the upper plate:

U0(0) = V0(0) = 0. (47)

In addition we need an outer condition to match to the core flow. Anticipating a
tangential slip velocity from the core solution, as in AS1, we impose that

U0 → A as Y → ∞, (48)

where the displacement A is an unknown complex constant. It can be shown in a
straightforward manner (Appendix A) that a solution to the system (46)–(48) only
exists if the following pressure-displacement law holds:

α2
0P

∗
0 = (iα0)

5/3 Ai
′(ξ0)

κ(ξ0)
A∗. (49)

Here ∗ represents complex conjugate, Ai is the Airy function, and

κ(ξ0) =
∫ ∞

ξ0

Ai(s)ds with ξ0 = −i1/3α1/3
0 c1. (50)

Turning now to the core flow, the expansions (19) and governing equations (20) still
hold, but with the leading-order phasespeed c0 replaced by unity. If we make the same
replacement in the solutions (21), (22) we have

u0 = −i cosh[α0(1 − y)],
v0 = sinh[α0(1 − y)],
p0 = i

{
(y − 1) cosh[α0(1 − y)] + α−1

0 sinh[α0(1 − y)]
}

,

from which we can see that p0 → O(1− y)3 as y → 1, which is consistent with the
reduced upper wall pressure postulated in (45). Matching the streamwise velocity to
that in the upper wall layer, we see that we require

A = −i . (51)
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Fig. 6 The imaginary part of the function G plotted versus s

The solution for (u1, v1, p1) in the core also remains unchanged, and from (25), (26),
setting c0 = 1, we have

u1R = A1 sinh[α0(1 − y)], v1I = A1 cosh[α0(1 − y)],
p1R = −A1

{
(y − 1) sinh[α0(1 − y)] + α−1

0 cosh[α0(1 − y)]
}

.

The constant A1 is no longer given by (34) but is in fact determined at higher order.
We see that 	( p̃) = O(Re−1/2) in the core and so, in order to avoid a mismatch in
pressure perturbations between the core and upper layer, we require

	(P0) = 0.

From (49), with A given by (51), this implies


 {G(ξ)} = 0, where G(ξ) = i5/3
Ai ′(ξ)

κ(ξ)
. (52)

In Fig. 6 the imaginary part of G(ξ) is plotted against the real variable s where ξ =
−i1/3s. In the context of the present structure we can identify s = α

1/3
0 c1 from (50).

The function passes through zero when

α
1/3
0 c1 = s0, s0 � 2.2972, (53)

see, for example, Miles [13], Reid [14].
The lower wall layer analysis proceeds essentially as for AS1: as a consequence

the relation (39) still holds but with c0 replaced by unity, i.e. we have

4α0 cosh 2α0 = (K + 2) sinh 2α0,

determining α0 as a function of K . The phase speed correction c1 then follows from
(53). The quantities α0 and c1 are shown as functions of K in Fig. 7.We can see that for
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Fig. 7 Solutions of the AS2 eigenrelations. (a) Wavenumber α0 versus spring stiffness K . (b) Phasespeed
correction c1(K ). The dashed lines show the large K asymptotes

this structure the wavenumber increases monotonically with K , while the phasespeed
correction decreases monotonically. Thus, with increasing spring stiffness, the neutral
disturbances on this branch are becoming shorter in wavelength and propagating at a
speed ever closer to that of the upperwall. Ifwe compare Fig. 7awith the corresponding
figure for AS1 (Fig. 4a), we can see that at each K , the value of α0 is larger in Fig. 4a.
This means that AS1 forms the upper branch of the neutral stability curve in the Re−α

plane at high Reynolds number, while AS2 represents the lower branch. We will see
this explicitly in Sect. 4 when we compute the neutral curve numerically at large finite
values of Re. In a similar way to AS1, we see that the AS2 solutions approach their
large-K asymptotes (shown as dashed lines on Fig. 7) at moderate values of K .

3.3 Asymptotic structure III (AS3): large spring stiffness

As mentioned earlier, plane Couette flow with rigid boundaries is linearly stable:
thus the neutral modes that we have obtained here must vanish in some fashion as
K becomes large. Possibly the instability may retreat to infinite Reynolds number
as K → ∞, or instead there may be a cut-off at finite K . In order to investigate
what actually transpires, we first examine AS1 in the limit of large K . Analysis of the
eigenrelations (39), (43) reveals that the leading-order wavenumber and phasespeed
behave as

α0 ∼ λ

4
− 1

2
λe−λ + · · · , c0 ∼ 1 − 32e−2λ + · · · , as λ → ∞, (54)

where we have defined
λ = K + 2. (55)

It therefore appears that the phasespeed is approaching the speed of the upper plate,
and suggests that, at sufficiently large λ, a new inertial-viscous balance will hold in an
O(e−2λ) vicinity of that upper boundary. For then we can estimate the inertial operator
iα0(y − c0) as O(λe−2λ), while the viscous operator Re−1∂2/∂ y2 = O(Re−1e4λ).
Balancing these two effects,we obtain a new instability structurewhen K is sufficiently
large that

λe−6λ = O(Re−1). (56)
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Fig. 8 The AS3 asymptotic
structure that arises at large
spring stiffness K

Analysis of AS2 in the large K limit leads to the same prediction for the behaviour of
α0 as in (54), but now the prediction for the phasespeed is

c = 1 − Re−1/3s0(λ/4)−1/3 + · · · , (57)

from (53). It can be predicted that AS2 also breaks down when λ increases sufficiently
that (56) is achieved. Thus, at large spring stiffness, we anticipate the creation of a new
structure which supersedes both AS1 and AS2.We shall now investigate this structure,
which we will refer to as AS3, in some detail.

It is convenient to begin by defining a parameter

μ = Re−1/2λ−1/2e3λ, (58)

which is O(1) in the new regime, with both AS1 and AS2 expected to be recovered in
the limit as μ → 0. A sketch of the new flow structure is given in Fig. 8. The O(e−2λ)

thickness of the upper layer is predicted above, but there is also an additional O(λ−1)

region near the upper wall in which the quantity α(1 − y) is O(1). The bulk of the
core flow remains unaffected, while the thickness of the lower layer can be estimated
as O(α Re c)−1/2 = O(e−3λ). Motivated by the asymptotic forms (54), we will pose
the wavenumber and phasespeed expansions

α = λα10 + λe−λα12 + · · · , c = 1 − e−2λc12 + · · · , (59)

and investigate the dynamics of each layer in turn, commencingwith the layer adjacent
to the upper plate.
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3.3.1 Upper wall layer

Here, motivated by the new scalings for the wavenumber and phasespeed in (59), we
pose the expansions

ũ = U (Y ) + · · · , ṽ = −λe−2λμV (Y ) + · · · , p̃ = e−2λP(Y ) + · · · , (60)

where
y = 1 − e−2λμY , (61)

and the O(1) factor μ is inserted for convenience. From substitution of (59)–(61) into
(16 ), the leading-order balances are

iα10U + V ′ = 0, (62a)

iα10(c12 − μY )U − μV = −iα10P +U ′′, (62b)

0 = −P ′. (62c)

These equations are to be solved subject to the no-slip condition

U (0) = V (0) = 0, (63)

and a connection to the core flow via

U (∞) = A = −i, (64)

where we have chosen this specific value as our normalization constant in order to
maintain consistency with the structures AS1 and AS2 (see equations (30), (51)).
A very similar procedure to that carried out in Sect. 3.2, shows that the solvability
condition on (62)–(64) takes the form

α2
10P

∗ = i(α10μ)5/3G(ξ)μ−1, (65)

with G(ξ) defined as in (52), and ξ now given by

ξ = −i1/3α1/3
10 c12/μ

2/3.

From the streamwise momentum equation (62b), and the pressure-displacement law
(65) we see that

	(V ) ∼ −α10Y , 
(V ) → −α
2/3
10 μ−1/3
[G(ξ)] as Y → ∞, (66)

which provide motivation for the scalings of the next region.
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3.3.2 Adjustment region

This forms the outer part of the upper wall layer and is of O(λ−1) thickness. Here we
set

y = 1 − λ−1y,

with y of O(1), and expand the fluid-dynamic functions in the form

ũ = iu0 + · · · + λe−2λu1 + · · · ,

ṽ = v0 + · · · + λe−2λiv1 + · · · ,

p̃ = K−1i p0 + · · · + e−2λ p1 + · · · .

Here, (u0, v0, p0) are real functions of y, and the terms with subscript 1 denote the
first terms in the (̃u, ṽ, p̃) expansions which are not purely imaginary. We refer to
these as the ‘phase-shifted terms’. At leading order we obtain inviscid balances with
solutions

(u0, v0, p0) = (− cosh(α10y), sinh(α10y), α
−1
10 sinh(α10y) − y cosh(α10y)),

which are analogous to the core solutions in (21), (22).Nowwe turn to the phase-shifted
terms. The solutions for the real parts of (u1, v1, p1) are

(u1R, v1R, p1R) = v1R(0)
{
sinh(α10y), cosh(α10y), y sinh(α10y) − α−1

10 cosh(α10y)
}

,

where
v1R(0) = α

2/3
10 μ2/3
[G(ξ)], (67)

in order to match to the upper wall layer via (66). This latter quantity plays the role of
A1 in AS1, connecting the flow adjacent to the upper rigid plate to that in the vicinity
of the lower flexible plate.

3.3.3 Core region

As in the structuresAS1,AS2, this regionoccupies the bulkof theflowand the solutions
here are in essence a continuation of those in the adjustment layer. In particular, on
approach to the lower wall, we have the non-phase-shifted contributions

ũ = −i cosh 2α + · · · , ṽ = sinh 2α + · · · ,

α p̃ = i {sinh 2α − 2α cosh 2α} + · · · , (68)

where the wavenumber α is given by the expansion (59). We will see shortly, when
we analyse the lower layer, that the non-phase-shifted normal velocity and pressure
fluctuations remain constant across the lower layer to the order of magnitude we are
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currently working, and so we can apply the dynamic condition (17c) directly to (68)
to several orders. At orders λe±2λα10 we obtain

α10 = 1/4, α12 = −1/2, (69)

in agreement with the asymptotic form (54). We now turn to the phase-shifted terms
in the expansion. Here we have to leading order:

ṽI = λe−2λv1R(0) cosh(α(1 − y)),

α p̃R = λe−2λv1R(0) {α(1 − y) sinh(α(1 − y)) − cosh(α(1 − y))} .

Evaluating these quantities on the approach to the lower wall, and using the values for
α10, α12 in (69), we obtain, after some simplification:

ṽI ∼ v1R(0){(λ/2)e−3λ/2 − (λ2/2)e−5λ/2 + (λ/2)e−5λ/2 + · · · }, (70a)

α p̃R ∼ v1R(0){(λ2/4)e−3λ/2 + · · · − (λ2/4)e−5λ/2 + · · · }, (70b)

as y → −1.These asymptotic forms need tomatch to the normal velocity and pressure
fluctuations in the lower wall layer, which forms the final part of AS3 and allows us
to determine the phasespeed correction c12.

3.3.4 Lower layer

Here we write y = −1+μe−3λy−,with y− describing O(1) normal variations within
this layer. Motivated by the core behaviour above, the flow expansions holding here
are

ũ = eλ/2iu10(y−) + · · · , (71a)

ṽ = eλ/2v10(y−) + · · · + λ2e−5λ/2iv11(y−) + λe−5λ/2iv12(y−) + · · · , (71b)

α p̃ = λeλ/2i Q10(y−) + · · · + λ2e−5λ/2Q12(y−) + · · · , (71c)

and in order to match to the core solutions (68), (70), we require as y− → ∞:

u10 → −1/2, v10 → 1/2, Q10 → −1/4, (72a)

v11R → −v1R(0)/2, v12R → v1R(0)/2, Q12R → −v1R(0)/4, (72b)

again with a subscript R denoting the real part. Substitution of expansions (71) into
the continuity equation (16a), and the normal momentum equation (16b) shows that

v′
10 = v′

11R = Q′
10 = Q′

12 = 0,

and hence those quantities are equal to their asymptotic values given in (72) through-
out the layer. At order λeλ/2 the continuity and streamwise momentum equations
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(16a), (16b) reduce to

− u10/4 + μ−1iv′
12 = 0, u10/2 = −1/4 + iu′′

10. (73)

The solution for u10 follows as

u10 = −(1/2)(1 − e−q0 y−), q0 = (1 − i)/2.

We can then find v12 from integration of the first of equations (73) as

v12 = v12(0) + (iμ/8)(y− − q−1
0

{
1 − e−q0 y−}

). (74)

The real part of the quantity v12(0) can be found by applying the dynamic condition
(17c) at O(λ2e−5λ/2) which gives

2Q12R = v12R(0) + v1R(0),

and hence, upon substituting for Q12R from (72b):

v12R(0) = −3v1R(0)/2.

We now return to the expression (74) for v12. We see that

v12R → −3v1R(0)/2 + μ/8 as y− → ∞.

This must be consistent with the matching condition to the core region given in (72).
Hence we have

2v1R(0) = μ/8.

Substituting for v1R(0) from (67), this becomes


[G(ξ)] = μ1/3

28/3
, ξ = −i1/3c12/(2μ)2/3, (75)

where we have substituted for α10 from (69). Equation (75) determines the phasespeed
correction c12 as a function of the parameter μ which controls the value of the spring
stiffness on this scaling.

We already have the graph of 
[G(ξ)] in Fig. 6 plotted versus the real variable s,
where ξ = −11/3s. In the context of AS3 we have

s = c12/(2μ)2/3. (76)

Using our knowledge of the behaviour of 
[G(ξ)], we plot c12(μ) in Fig. 9. A feature
of this graph is the cut-off in μ. This feature is reminiscent of one of the structures in
Cowley & Smith [15], relating to the critical wall speed in Poiseuille-Couette flow.
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Fig. 9 Phasespeed correction c12 as a function of μ for AS3

FromFig. 6wecan see that
[G(ξ)]has amaximum gmax say,where gmax � 1.2406.
It therefore follows that solutions to AS3 only exist if

μ ≤ (gmax)
328 = μmax � 488.8.

According to the definition ofμ in (58), our theory therefore predicts that an instability
at large fixed spring stiffness will only exist beyond a large Reynolds number Recrit
given by

Recrit = μ−2
maxλ

−1e6λ.

It is clear that Recrit increases rapidly with increasing spring stiffness and we will see
this feature in the Orr–Sommerfeld calculations in Sect. 4.

It is now clear that at large values of the spring stiffness parameter λ, the asymptotic
theory AS3 actually describes the entirety of the linear neutral curve, including the
critical Reynolds number. Moreover, given the exponential dependence of Recrit on
λ it is apparent that λ (and hence K ) does not actually need to be particularly large
before we enter the regime where AS3 is valid.

Before we compare the theories AS1, AS2 and AS3 with full numerical compu-
tations of the eigenvalue problem, we check that as μ becomes small in AS3 (at
fixed Re) we recover the AS1 and AS2 structures. This provides a partial check on
the correctness of the considerable asymptotic analysis involved in deriving the AS3
structure.

3.3.5 The� → 0 limits

According to the eigenrelation (75), ifμ → 0 it follows that
[G(ξ)] → 0+.Recalling
that ξ = −i1/3s with s real, an inspection of Fig. 6 reveals that there are two ways
this can be achieved: either s → ∞ or s → s0, where s0 � 2.2972 from (53). We
consider each in turn.

(i) The limit s → ∞. It can be shown (see e.g. Bennett & Hall [16]) that


(G) ∼ (2s)−1/2 as s → ∞.
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Fig. 10 Phasespeed c12 versus μ showing how AS1, AS2 are recovered as μ → 0

Setting s = c12/(2μ)2/3, the eigenrelation (75) leads to c12 → 25. Recalling the
expansion (59), we see that in this limit the phasespeed assumes the form

c = 1 − 25e−2λ + · · · ,

which is an exact match to the large λ asymptote of AS1 as given in (54).
(ii) The limit s → s0. In this case it follows immediately from the definition of s

(76) that c12 ∼ (2μ)2/3s0 as μ → 0, and so, in this limit:

c = 1 − (2μ)2/3s0e
−2λ + · · · .

Substituting for μ in terms of Re and λ from (58 ), this can be rewritten as

c = 1 − Re−1/3s0(λ/4)−1/3 + · · · ,

which links back to the large λ asymptote of AS2 given in (57 ). Figure10 is a zoomed-
in version of Fig. 9, concentrating on small values of μ, and shows how the two
branches of the solution for c12 link back to the phasespeeds in the AS1 and AS2
structures. In particular, we note that the AS1 structure is only recovered once the
‘kink’ in the curve has been negotiated. This kink, which arises from the smaller of
the two local maxima of 
(G) (see Fig. 6), will also be a feature of the finite Reynolds
number calculations we present in the next section.

4 Numerical solution and comparison with asymptotic theories

4.1 Numerical method

The method used here follows that described in Walton [17] for flows over rigid
boundaries, and just brief details will be provided.
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The task at hand is to solve the Orr–Sommerfeld equation (6) subject to the no-slip
conditions (7) on the upper wall, and the kinematic and dynamic conditions (10), (14)
on the lower wall. This is achieved by applying Chebyshev collocation to the system.
The number of collocation points used enabled six decimal place accuracy in the
computed eigenvalues: typically around 200 points proved sufficient, although this
was increased for large Reynolds number.

Since our main interest is in mapping out neutral curves, solving the full eigenvalue
problem at each point in Re − α space is time-consuming and unnecessary, as all but
one of the eigenvalues is discarded at each iteration. Instead, once we have determined
one point on the neutral curve, we can use an arclength continuation method to find
subsequent points at a prescribed spacing along the curve. Each subsequent point is
found by splitting the discretized system into its real and imaginary parts and solving
iteratively using Newton’s method, where the appropriate Jacobian can be computed
analytically. The method can easily be adapted to generate curves of any given growth
rate.

4.2 Numerical results

At the end of Sect. 2 in Fig. 2 we showed results of our numerical calculations for the
case of a spring stiffness K = 1 and noted the existence of a lower critical Reynolds
number for instability, the upper and lower branches along which the disturbance is
neutral and the presence of a ‘kink’ in the upper branch. We now go on to discuss how
these features alter as K is increased, and how the asymptotic theories developed in
the previous section can be used to predict the stability properties.

In the following figures we just display for clarity the neutral curve, i.e. the curve
alongwhich αci = 0. In figure 11we show how the instability is affected by increasing
the spring stiffness from K = 0.5 in steps of 0.5 through to K = 2. The left-hand
graphs plot wavenumber α versus Reynolds number Re, while the right-hand plots
are in the Reynolds number–phasespeed plane. We can see that the ‘kink’ referred
to earlier becomes more pronounced and moves to higher Reynolds number with
increasing K , while the critical Reynolds number for instability increases rapidly: for
example Recrit � 24 for K = 0.5, while Recrit � 2300 for K = 2. It is also evident
that the band of unstable wavelengths is becoming increasingly thinner as K increases;
indeed this makes it challenging to locate the neutral curves at all as the stiffness is
increased further. On each plot the dashed curves show the asymptotic predictions
for the wavenumber or phasespeed from the AS1 and AS2 theories. The AS1/AS2
theories describe the upper/lower branch for α and the lower/upper branch for c. It
can be seen that for K = 0.5, 1, 1.5 the predictions of the asymptotic theories are in
excellent agreement with the Orr–Sommerfeld calculations, although the prediction of
AS1 is only accurate beyond the ‘kink’ in the neutral curve. Given that we have already
remarked that this ‘kink’ moves to larger Reynolds numbers with increasing K it is
clear that as we move through the sequence of figures, the AS1 theory only becomes
relevant at increasingly large Reynolds numbers as can be seen from the K = 2
results. The accuracy of AS2 in predicting the wavenumber α is less than that for the
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Fig. 11 Neutral curves. Wavenumber α and phasespeed c versus Re for the cases K = 0.5, 1, 1.5, 2. Also
shown as dotted lines are the large Reynolds number asymptotes from the AS1 and AS2 theories
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Fig. 12 Neutral curves for K = 2.5 and K = 3 shown as solid lines. The dashed curves are the AS3
prediction

phasespeed c at a given K presumably because we have only computed the leading-
order term for α, while we have the first two terms in the phasespeed expansion: see
(44). We can see that once K � 2, the AS1 and AS2 theories are no longer relevant,
at least for the range of Reynolds numbers considered. We also encounter numerical
difficulties here as the Orr–Sommerfeld problem becomes increasingly stiff as Re
is increased and an ever increasing number of Chebyshev polynomials is required
to achieve convergent results. This phenomenon is well-known for the case of rigid
boundaries but appears to be exacerbated by the imposition of the flexible boundary
condition.

Fortunately, although the simple numerical method we use is insufficiently bespoke
to compute stability curves at large values of K we do have the AS3 theory (devel-
oped in Sect. 3.3) to cover this particular region of parameter space. In Fig. 12 we
compare the AS3 prediction for the phasespeed (55), (58), (59), (75) against the Orr–
Sommerfeld calculations for K = 2.5 and K = 3 where we have used 400 Chebyshev
polynomials to obtain sufficient accuracy. It can be seen that despite the fact that K is
not particularly large, the AS3 theory performs excellently in predicting quantitatively
the entire neutral curve, although there is some overestimation in the value of Recrit.
We can also see that in the wavenumber plot for K = 3 there is very little variation of α
with Re as predicted by the asymptotics. The theory accurately captures both the thin-
ning of the neutral curve and its retreat to higher Re as K is increased. Indeed the AS3
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theory should be capable of also predicting the location of the kink in the curve, as this
is associated with the second smaller local maximum of 
[G] in Fig. 6; however our
numerical method does not allow us to compute an accurate Orr–Sommerfeld solution
at the extremely large Reynolds number required so we cannot make a quantitative
comparison for this feature.

5 Conclusion

We have formulated the linear stability eigenvalue problem for plane Couette flow
subject to an upper rigid wall and a lower flexible wall, with the wall displacement
linked to the fluid pressure by a simple Hooke’s law relation. In the limit of large spring
stiffness K the problem reduces to Couette flow over rigid boundaries where the flow
is known to be linearly stable. A large Reynolds number analysis of the problem is
carried out for O(1) values of K and reveals the existence of two branches alongwhich
a neutral disturbance exists with wavelengths comparable to the channel width. The
two structures are referred to as AS1 and AS2. On the AS2 branch the disturbance
phasespeed is asymptotically close to the speed of the upper wall at all values of
K , while on the AS1 branch the phasespeed approaches the upper wall speed as K
becomes large. A critical size of K is identified in terms of the Reynolds number at
which these two modes shorten their wavelength and merge onto a new shared scaling
describing the entirety of the neutral curve including the critical Reynolds number
which increases exponentially with increasing K on this new scaling. Computations
of the eigenvalue problem at finite Reynolds number show good agreement with the
various asymptotic theories and confirm that the instability retreats to infinite Reynolds
number as K is increased. However even the tiniest amount of flexibility is sufficient
to destabilize the flow at large Reynolds nunber.

The detail of the scalings involved in the asymptotic structure AS3 reveal that the
thickness of thewall layers decrease exponentiallywith increasing spring stiffness: this
indicates howdifficult it is to fully resolve the eigenvalue problemas K is increased and
demonstrates very clearly that asymptotic methods are still vital in reaching regions of
parameter space not accessible to numericalmethods, evenwithmodern computational
resources.

The model for the compliant wall we have employed is, of course, extremely unso-
phisticated and was used to simply demonstrate that the inclusion of a small amount of
flexibility can destabilize a flow which is linearly stable at all Reynolds number when
rigid walls are in place. The model can be improved by including effects such as wall
damping, flexural rigidity and the inclusion of mass and investigating how each of the
associated parameters affects the neutral curves we have computed and the asymptotic
structures we have uncovered, and also whether additional modes of instability can
be generated. In addition, our study only deals with flexibility in the lower wall and
it would be interesting to see how the stability properties are affected by having both
walls respond to the fluid motion.
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Appendix A: Derivation of expression (49)

We start with the system (46), (47), (48), removing annotations for clarity:

iαU + V ′ = 0, (A1a)

iα(c − Y )U − V = −iαP +U ′′, (A1b)

U = V = 0 on Y = 0, U → A as Y → ∞, (A1c)

where P is a constant. First we take the complex conjugate of the system of equations
and boundary conditions (A1), recalling that α and c are real. Using ∗ to denote
complex conjugate we then have

iαU∗ − (V ∗)′ = 0, (A2a)

iα(Y − c)U∗ − V ∗ = iαP∗ + (U∗)′′, (A2b)

U∗ = V ∗ = 0 on Y = 0, (A2c)

U∗ → A∗ as Y → ∞. (A2d)

Differentiating the streamwise momentum equation (A2b) twice with respect to Y and
using the continuity equation (A2a), we obtain

τ ′′ = iα(Y − c)τ,

where τ = (U∗)′. The solution of this equation which is bounded as Y → ∞ may be
written as

τ(Y ) = CAi(ξ), ξ(Y ) = (iα)1/3(Y − c), (A3)

where Ai is the Airy function. The constant C can be obtained by setting Y = 0 in
(A2b) and using the no-slip conditions (A2c). This gives

τ ′(0) = −iαP∗,

and hence
C = −(iα)2/3P∗/Ai ′(ξ0), ξ0 = ξ(0) = −(iα)1/3c.

Equation (A3) can then be integrated with respect to Y to yield

U∗ = −(iα)1/3
P∗

Ai ′(ξ0)

∫ ξ

ξ0

Ai(s) ds.
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Finally, applying the outer condition (A2d) we obtain the pressure-displacement
relation

(iα)5/3
Ai ′(ξ0)∫ ∞

ξ0
Ai(s) ds

A∗ = α2P∗,

which is the result quoted in (49).
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