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Abstract
Mixing of solute in sub-surface flows, for example in the leakage of contaminants into
groundwater, is quantifiedby adispersion coefficient that depends on the dispersivity of
the medium and the transport velocity. Many previous models of solute transport data
have assumed Fickian behaviour with constant dispersivity, but found that the inferred
dispersivity increases with the distance from the point of injection. This approach
assumes that the dispersion on either side of the advective front is symmetric and that
the concentration there is close to half of the injected value. However, field data show
consistent asymmetry about the advective front. Here, motivated by experimental data
and a fractal interpretation of porous media, we consider a simplified heterogeneous
medium described by a dispersivity with a power-law dependence on the downstream
distance from the source and explore the nature of the asymmetry obtained in the
solute transport. In a heterogeneous medium of this type, we show that asymmetry
in solute transport gradually increases with the increase in heterogeneity or fractal
dimension, and the concentration at the advective front becomes increasingly different
from 50% of that at the inlet. In particular, for a sufficiently heterogeneous medium,
the concentration profiles at late-time approach a non-trivial steady solution and, as
a result, the concentration at a downstream location will never reach that at the inlet.
By fitting the Fickian solution to our results, we are able to connect the parameters
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from our model to those found from experimental data, providing a more physically
grounded approach for interpreting them.

Keywords Anomalous dispersion · Dispersivity · Fractal heterogeneity ·
Heterogeneity · Solute transport

Mathematics Subject Classification 76S05 · 86A05 · 76R50

1 Introduction

Dispersion in porousmedia is the processwhereby the tortuosity of flowpaths enhances
the molecular mixing of constituents. It is therefore fundamental to the mixing and
distribution of tracers – for example in the dispersal of contaminants in groundwater
[1], the intrusion of seawater into groundwater [2], or the dispersion of geochemical
tracers [3] – and has been studied extensively [4]. Theoretical models of dispersion
are generally based on an effective advection–diffusion equation,

∂C

∂t
+U

∂C

∂x
= ∂

∂x

(
D

∂C

∂x

)
, (1)

where C is the concentration, t is time, and x is the downstream distance from the
source.U is the average flow velocity through the porous medium, related to the Darcy
flux q and porosity φ via q = φU , while D is the effective diffusivity that incorporates
both molecular diffusion and dispersivity. This approach follows the classic work by
Taylor [5] on flow and dispersion in a pipe (conceptually a simplified porous medium),
where dispersion is a consequence of the longitudinal stretching of the tracer through
transverse shear. This results in greatly enhanced transverse diffusion rates which may
be interpreted, at the pore scale, as enhanced longitudinal dispersion. In Taylor’s work,
transport of an initial step-function of a non-reactive tracer results in a concentration
profile that may be described by self-similar functions that are symmetrical about the
mean concentration, which travels at the mean fluid velocity. Taylor found that the
effective dispersion coefficient in the direction of flow,

D = a2u20
192Dm

, (2)

may be related to the square of the fluid velocity at the axis u0, the pipe radius a, and
the molecular diffusion coefficient Dm .

Since Taylor’s original work, similar models of velocity-dependent dispersion have
been applied in a number of contexts. In general, these studies find that compilations
of laboratory measurements and field observations of the dispersion of tracers at a
fixed distance from the source in porous media may be fit to the advection–dispersion
equation assuming a constant effective dispersivity

D = Dm + αU , (3)
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expressed as the sum of the molecular diffusion coefficient Dm with the product of a
longitudinal dispersivity α and the average flow velocity U [1, 6]. In many settings,
it is assumed that the Péclet number Pe = αU/Dm � 1 such that the effects of
molecular diffusion are negligible and so

D ≈ αU . (4)

However, experimental measurements show that the apparent ‘constant’ α increases
with the distance travelled by the tracer. Neuman [7] suggests from a compilation of
laboratory and field data that α scales with advective distance, x̄ = Ut , as

α = α0 x̄
γ , (5)

where α0 is a reference dispersivity and has dimensions of [L]1−γ , and found that
the observations were best explained by γ ≈ 1.5. After analysing the data from
other field experiments, Gelhar et al. [6] disputed this, suggesting that there is no
single relationship such as equation (5) for all porous media, and that the degree of
heterogeneity in an aquifer is likely to control the magnitude and scale dependence of
its dispersivity.

There have been numerous attempts to create theoretical models of porous flow
and predict dispersivities as a function of the heterogeneity of the permeability and
pore structure of the porous medium. Pickens and Grisak [8], following Mercado [9],
showed that macro-dispersivity of an aquifer with horizontally layered permeability
in the direction of flow and no exchange between layers would evolve as

α =
(

σK

K̄

)2

x̄, (6)

where K̄ is the mean hydraulic conductivity and σK is the standard deviation of the
hydraulic conductivity. Thus, they infer a value of γ = 1. However, more complex
models describing aquifer structure either by a fractal hierarchy of permeabilities [10]
or as a stochastic distribution of permeabilities [11] predict a range of behaviours. In
some models,the longitudinal dispersivity approaches a constant value at long travel
times and at large travel distances, while at early times and at short distances, it exhibits
‘non-Fickian’ behaviour described by equation (5) with γ ≈ 1 [11, 12]. Pickens
and Grisak [8], using multiple depth samplers in field experiments in a sand aquifer,
observed that dispersion in individual homogeneous horizons was not scale-dependent
but in the whole aquifer longitudinal dispersion scaled with distance (γ ≈ 1).

The central assumption formost of thesemodels is that dispersion occurs symmetri-
cally on both sides of themean advective distance, x̄ , and that the relative concentration
at x = x̄ is half of the injected value at x = 0. However, a few researchers, e.g. Day
[13], recognised that there is persistent asymmetry in the time–concentration curves
of field data. The asymmetry in the data implies that the dispersion coefficient is not
constant on either side of x̄ . Furthermore, Gelhar et al. [1] cast doubt on the appli-
cability of a Taylor-type dispersion model at the field scale and Pickens and Grisak
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[8] agree that there is no common consensus on the dependence of dispersivity on the
advective distance and that other mathematical forms may be more applicable than
what they present.

In recent decades, numerical techniques for modelling anomalous dispersion have
gained tremendous popularity [14, 15]. Some of the popular methods use random
realisations [16] or pore network models [17] to predict the behaviour of solute
transport stochastically in a representative elementary volume. Given that aquifers
are highly heterogeneous and that their boundaries are not well defined, techniques
involving space–time–nonlocal representations are widely used [14]. Some of the
popular nonlocal models are a continuous time random walk model [18], fractional
advection-dispersion models [19–21], and a Lagrangian model [22], among others.
Some models include multirate mass transfer [23] and delayed diffusion techniques
[24]. All the abovemodels have been successful to varying degrees inmodelling solute
transport observed in field settings.

These previous studies have sought to develop the physical picture underpinning
the large scale effects of dispersion. Most of them, however, are indeterministic in
nature. In contrast, in the present work, we present simple analytical results that we
obtain using a power-law spatial dispersivity which is motivated by the concept of
fractal hierarchy of heterogeneity, introduced byWheatcraft and Tyler [10]. The fractal
hierarchy states that the degree of irregularity or the increase in heterogeneity in
aquifers is self-similar and independent of scale. Building on this concept, here we
assume that the self-similarity in the fractal heterogeneity applies to the dispersivity
as well such that the increase in the value of dispersivity with the downstream distance
is also self-similar. Therefore, we approximate the dispersivity by

α = α0x
β, (7)

where α0 is the reference dispersivity at x = 0 and has a dimensional unit of [L]1−β ,
while β encodes the fractal dimension and themagnitude and correlation length of het-
erogeneity. In equation (7), dispersivity is assumed to depend on the actual downstream
distance, x , away from the source rather than the advective distance x̄ , in contrast to
the previous consideration in equation (5). We thereby explore the asymmetry in the
solutions to the advection–diffusion equation.

There have been a large number of studies of the advection-dispersion equationwith
a similar dispersivity to (7). Several have considered linear power-law dispersivity
(i.e. β = 1) in one or more spatial dimension [25–30]. Some have extended this to
more complicated functional forms that are linear near the injection point and tend
to a constant in the far field [31–33] or have considered dispersivities that scale with
particular powers of x and t in order to derive self-similar solutions [34, 35]. Others
have looked at spatial power-law dispersivity as in (7) [36, 37], but have not described
the full range of behaviours as in the present work.

In equation (7), the value of β = 0 indicates that the medium is homogeneous,
whereasβ > 0 implies a heterogeneousmedium,with larger values ofβ corresponding
to larger heterogeneity in the medium. It should be noted that previous interpretations
of the longitudinal dispersion from single laboratory and field experiments are based
on assuming a constant macro-scale dispersivity at a fixed travel distance or time,
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i.e. implicitly β = 0. In this work, we investigate the effects of heterogeneity and
fractal hierarchy, quantified in the formofβ, on solute transport in a simplifiedmedium
with dispersivity described by (7). The solutions from the reduced model presented
here characterise the different behaviours that occur for a dispersivity of this type and
could be used as a computationally efficient way to assess the degree of heterogeneity
present in a real-world system.

The remainder of the paper is structured as follows.Wefirst set out themathematical
model of the problem being considered in Sect. 2, for both one-dimensional and radial
flow. In Sect. 3, we present the numerical solution of this problem, as well as the
exact and approximate analytical solutions that are then discussed in more detail in
Sect. 4. In Sect. 5, we consider the breakthrough curves produced by this system, and
the implications of interpreting it through a Fickian lens. We then discuss the broader
implications of our results in Sect. 6 and present our conclusions in Sect. 7.

2 Mathematical model

2.1 One-dimensional flow

We consider the one-dimensional flow of fluid with initial solute concentration C0
into a porous medium saturated with ambient fluid with solute concentration Ca . The
average flow velocity of the injected fluid, U , is taken to be constant. The injected
fluid is assumed to be completely miscible with the ambient fluid and therefore the
conservation C of solute may be modelled by an effective advection–dispersion equa-
tion

∂C
∂t

+U
∂C
∂x

= ∂

∂x

(
D

∂C
∂x

)
. (8)

This is linear in C, so we can instead work with the reduced concentration

C(x, t) = C(x, t) − Ca
C0 − Ca . (9)

The initial condition and boundary conditions are then

C(x, 0) = 0 , C(0, t) = 1 , C(x, t) → 0 as x → ∞ . (10)

We are interested here in the case when the Péclet number is large, so that molecular
diffusivity can be neglected outside of a narrow region near the injection point, and
the diffusivity due to dispersion scales as a power of the downstream distance x :

D = Dm + Ddisp ≈ Ddisp = α0Uxβ . (11)

Here, α0 is a reference dispersivity and has dimensions of L1−β . We will focus here
on the behaviour of the solution for β ≥ 0, with β = 0 corresponding to the case of
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Fickian Diffusion. The full governing system for the concentration C(x, t) can then
be written as

∂C

∂t
+U

∂C

∂x
= ∂

∂x

(
α0Uxβ ∂C

∂x

)
, (12)

C(0, t) = 1 , (13)

C(x, t) → 0 as x → ∞ , (14)

C(x, 0) = 0 . (15)

We would expect the three terms in (12) to respectively scale like

C

t
, U

C

x
, α0Uxβ C

x2
. (16)

For the special case of β = 1, we can balance all three of these terms and look for a
self-similar solution in terms of the similarity variable η = x/(Ut). For β �= 1, (16)
instead suggests the rescaled variables

z = α
−1/(1−β)
0 x , T = α

−1/(1−β)
0 Ut . (17)

This allows us to write the governing equations in the simpler form

∂C

∂T
+ ∂C

∂z
= ∂

∂z

(
zβ

∂C

∂z

)
, (18)

C(0, T ) = 1 , (19)

C(z, T ) → 0 as z → ∞ , (20)

C(z, 0) = 0 . (21)

The expected scaling behaviours of the advective and dispersive terms now suggest

∂zC

∂z
(
zβ∂zC

) ∼ z−1C

zβ−2C
∼ z1−β . (22)

For 0 ≤ β < 1, we thus expect the solution to be predominantly governed at early
times by dispersion, when the main part of the solution lies in the region z < 1,
and at late times by advection, when the solution has spread sufficiently far into the
region z > 1. Correspondingly, for β > 1, we would expect the reverse: advection
dominating at early times, and dispersion at late times. For the intermediate case of
β = 1, as seen above, advection and dispersion remain in balance at all times.

2.2 Radial flow

Above we have set up the mathematical model for power-law dispersion in flow along
one dimension. Equally important is the case of axisymmetric flow; thankfully, there
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is a convenient trick shown by Philip [36] that allows us to reduce the axisymmetric
system to the one discussed above.

In the axisymmetric case, the average flow velocity now varies spatially as Ũ/r , due
to conservation of mass, where we take Ũ to be constant. If we express the dispersion
coefficient as D = α̃0Ũr δ , then the governing advection–dispersion equation is now

∂C

∂t
+ Ũ

r

∂C

∂r
= 1

r

∂

∂r

(
r · α̃0Ũr δ ∂C

∂r

)
. (23)

Following [36], we introduce y = (1/2)r2, so that (1/r)∂r = ∂y . In terms of y, (23)
becomes

∂C

∂t
+ Ũ

∂C

∂ y
= ∂

∂ y

([
21+

δ
2 α̃0

]
Ũ y1+

δ
2
∂C

∂ y

)
. (24)

Relabelling the parameters as

α0 = 21+
δ
2 α̃0 , β = 1 + δ

2
, U = Ũ , (25)

we are left with (12). The parameter range −2 ≤ δ ≤ 0 corresponds to 0 ≤ β ≤ 1,
and δ > 0 to β > 1, and so the results in the linear geometry can straightforwardly be
applied to the case of axisymmetric flows.

3 Numerical results

The governing system (18)–(21) was solved numerically via Finite Differences, using
the Il’in upwinding discretisation scheme [38, 39] to accurately capture both advection
and dispersion. An adaptive, predictor-corrector time-stepping routine was used to
keep the relative error due to a finite step size beneath a set relative threshold (typically
10−7).

The far-field boundary condition (20) was replaced by a zero gradient condition at
the end of the numerical domain, z = z∞. An adaptive, non-uniform spatial grid was
employed to minimise the effect of this artificial far-field boundary condition, with
z∞ doubled while the number of grid points was kept the same whenever C(z∞, T )

rose above a threshold value (typically 10−7), while also maintaining resolution near
the inlet and up to the advective front. The agreement shown in Fig. 1 between the
numerically determined profiles and their corresponding exact or approximate analytic
solutions reassures us that our solver has accurately solved this system.

Figure1 highlights the full range of behaviour of this system for β ≥ 0. Plotted
are the numerical results for β = 0, 0.5, 1, and 1.5 from early to late times, first in
the advective frame in the left-hand column, and then against log(z) in the right-hand
column. The analytical solutions discussed in Sect. 4 are also shown for comparison.

Figure1(a) shows the Fickian case of β = 0, with the magenta dashed curves
showing the known exact solution discussed in Sect. 4.1; this is plotted at early and

123



8 Page 8 of 23 A. J. Butler et al.

late times, but matches the numerical solution at all intermediate times as well. The
two panels of Fig. 1(a) show how the profiles transition from a solution that is initially
dominated by dispersion, due to the strong gradients in the initial step-function profile
at T = 0, to one that is predominantly governed by advection at late times, with a
dispersive region around the advective front that diminishes in time in the advective
frame z/T as this region only grows like T 1/2.

Figure1(b) shows the β = 0.5 case, which is representative of 0 < β < 1. This
follows a similar pattern to the Fickian case – governed by dispersion at early times
and advection at late times. However, due to the form of the dispersivity, D ∼ zβ ,
in comparison with the Fickian case dispersion here is initially weaker, in the region
z < 1 and so at early times, and stronger at late times, when the bulk of the profiles
lies in the region z > 1. The magenta dashed curves here correspond to the early-time
and late-time approximate solutions discussed in Sect. 4.2.

Figure1(c) shows the dividing case of β = 1. As discussed in Sect. 2, this is the case
in which the advective and dispersive terms can be in balance at all times, producing a
self-similar solution – this is clear from the profiles plotted in the advective frame, in
terms of η = z/T , where all of the profiles collapse onto a single curve. The rescaling
of variables to z and T as defined in (17) is not possible unless α0 = 1, and so this is
the particular case shown in Fig. 1(c) so that it can be compared with the other values
of β considered. The magenta dashed curve here shows the self-similar profile for
α0 = 1, which is discussed for general α0 in Sect. 4.3.

Finally, Fig. 1(d) shows the solution for β = 1.5, which is representative of β > 1.
In contrast to 0 ≤ β < 1, advection now dominates at early times. At late times,
however, there is a non-trivial, physically relevant steady solution that the profiles
accumulate towards, as can be seen in the right-hand panel of Fig. 1(d). As a result, the

Fig. 1 Concentration profiles for β = 0, 0.5, 1, 1.5 at a logarithmically spaced range of times from T =
10−3 to T = 103. In the left column, the profiles are plotted in the advective frame, against z/T = x/(Ut),
while in the right column, the same profiles are plotted against log z. The magenta dashed curves are the
early-time and late-time analytical results discussed in Sect. 4
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concentration at any fixed location z > 0 will never reach the value at the inlet. The
magenta dashed curves here show the early-time and late-time approximate solutions
discussed in Sect. 4.4.

4 Exact and approximate solutions

4.1 ˇ = 0: Fickian Dispersion

For the well-known case of Fickian Dispersion, corresponding to β = 0, there is an
exact solution [40] that can be derived for example via a Laplace Transform, or the
convenient method discussed in [36]. This exact solution is

C(z, T ) = 1

2
erfc

(
z − T

2
√
T

)
+ 1

2
ez erfc

(
z + T

2
√
T

)
, (26)

or in terms of x and t ,

C(x, t) = 1

2
erfc

(
x −Ut

2
√

α0Ut

)
+ 1

2
ex/α0 erfc

(
x +Ut

2
√

α0Ut

)
, (27)

where erfc is the complementary error function [41]:

erfc(u) =
√

2

π

∫ ∞

u
e−s2 ds . (28)

At late times, the second term in (27) can be neglected away from the inlet at x = 0.
The size of the dispersive region around the advective front then grows as

√
α0Ut .

4.2 0 < ˇ < 1

4.2.1 Early-time behaviour

When β < 1, the ratio of the advective and dispersive scalings, (22), suggests that
dispersion will dominate at early times. The balance between the time derivative and
the dispersive term in (18) then points towards changing variable from z to

ν = (2 − β)−2 z2−βT−1 , (29)

where the prefactor here is chosen for convenience later in the analysis. With this
substitution, we can rewrite (18) as

T
∂C

∂T
− ν

∂C

∂ν
= ν

(1−β)
(2−β)

∂

∂ν

(
ν

1
(2−β)

∂C

∂ν

)
, (30)
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where we have neglected the term corresponding to ∂C/∂z on the left-hand side of
(18). This can be rewritten as

T
∂C

∂T
= ν

1− 1
(2−β) e−ν ∂

∂ν

(
ν

+ 1
(2−β) e+ν ∂C

∂ν

)
, (31)

which, on applying the inlet and far-field boundary conditions (19) & (20), has the
self-similar solution

C(z, T ) =
�U

(
1−β
2−β

, ν
)

�
(
1−β
2−β

) (32)

where �U is the upper incomplete gamma function [41]:

�U (χ,w) =
∫ ∞

w

sχ−1e−s ds . (33)

This solution is shown for a range of β values in Fig. 2(a). Based on the term neglected
in order to derive this approximation, the next-order correction to the solution is
O(T (1−β)/(2−β)).

4.2.2 Late-time behaviour

At late times, advection now dominates. If we switch to a frame moving with the
advective front, i.e. from z to ζ = z − T , then (18) becomes

∂C

∂T
= ∂

∂ζ

(
(ζ + T )β

∂C

∂ζ

)
≈ T β ∂2C

∂ζ 2 , (34)
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1

(b)

Fig. 2 a The dispersion-dominated approximate solution for a range of values of β < 1. b The advection-
dominated approximate solution for all β ≥ 0

123



The effects of heterogeneity on solute... Page 11 of 23 8

where in the last step, we have assumed that dispersion is the strongest in the region
around the advective front, where |z/T − 1| � 1. This then suggests the similarity
variable

ρ =
√
1 + β

4
ζ T−(1+β)/2 , (35)

where the prefactor has been chosen for convenience below. The governing equation
can then be written as

T
∂C

∂T
=

(
1 + β

4

)
∂2C

∂ρ2 +
(
1 + β

2

)
ρ

∂C

∂ρ
(36)

=
(
1 + β

4

)
e−ρ2 ∂

∂ρ

{
e+ρ2 ∂C

∂ρ

}
. (37)

Applying the inlet and far-field boundary conditions, (19)& (20), this points us towards
the self-similar solution

C(z, T ) = 1

N erfc

(√
1 + β

4
(z − T ) T−(1+β)/2

)
. (38)

The normalisation constant N is chosen here so that C(0, T ) = 1:

N = erfc

(
−

√
1 + β

4
T (1−β)/2

)
→ 2 as T → ∞ . (39)

This solution is shown in Fig. 2(b). In comparison with the Fickian solution (27), the
size of the dispersive region around the advective front here grows as α

1/2
0 (Ut)(1+β)/2.

Setting β = 0, (38) agrees with the late-time behaviour of the Fickian solution (26).

4.3 ˇ = 1: Self-similar behaviour

As seen in Sect. 2, the advection and dispersion terms in (12) are in balance at all times
forβ = 1. This allows us to seek a self-similar solution in terms of η = x/Ut , which in
fact turns out to be an exact solution for our initial and boundary conditions (13)–(15)
and has been studied previously [30, 34]. For C(x, t) = C(η), (12) becomes

C ′′(η) +
[(

1 − 1

α0

)
η−1 + 1

α0

]
C ′(η) = 0 . (40)
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0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Fig. 3 The self-similar solution for β = 1 and α0 ranging from 10−2 to 101

Integrating this twice and applying the inlet and far-field boundary conditions, (13) &
(14), leads us to the solution

C(x, t) =
�U

(
1
α0

,
η
α0

)

�
(

1
α0

) =
�U

(
1
α0

, x
α0Ut

)

�
(

1
α0

) . (41)

When α0 = 1, this simplifies to C(x, t) = e−x/Ut .
Figure3 shows the behaviour of this solution for different values of α0. Unlike

for β �= 1, where the dispersion coefficient α0 could be scaled out of the governing
equation via z and T , here it plays a direct role in determining the character of the
solution.

4.4 ˇ > 1

4.4.1 Early-time behaviour

At early times for β > 1, the solution is now controlled primarily by advection and
we can reuse the approximate solution derived in Sect. 4.2.2:

C(z, T ) = 1

N erfc

(√
1 + β

4
(z − T ) T−(1+β)/2

)
, (42)

where

N = erfc

(
−

√
1 + β

4
T (1−β)/2

)
. (43)
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1

Fig. 4 The steady solution Cs (z) for a range of values of β > 1

4.4.2 Late-time behaviour

At late times, advection no longer dominates, but we are not able to apply the
dispersion-dominated approximation derived in Sect. 4.2.1 – �U (χ, ν) diverges as
ν → 0 when χ = (1− β)/(2 − β) < 0. Instead, there is a physically relevant steady
solution Cs(z) which C(z, T ) approaches at late time for β > 1, as seen in Fig. 1(d).
This steady solution is given by

0 = (
zβC ′

s(z)
)′ − C ′

s(z)

= zβ
(
C ′′
s +

[
βz−1 − z−β

]
C ′
s

)

= e−(β−1)−1z−(β−1)
(
zβe+(β−1)−1z−(β−1)

C ′
s

)′

⇒ Cs(z) = B + Ae−(β−1)−1z−(β−1)
. (44)

For 0 ≤ β ≤ 1, the only physically relevant steady solution is the trivial one, Cs(z) =
1. For β > 1, we are able to apply both the inlet and far-field boundary conditions,
(19) & (20), to get

Cs(z) = 1 − e−(β−1)−1z−(β−1)
. (45)

The behaviour ofCs(z) for different values of β is shown in Fig. 4. This steady solution
has an important implication for a system with β > 1. Whereas for 0 ≤ β ≤ 1 the
concentration at any fixed location z will tend to 1 as T → ∞, for β > 1 the
concentration will instead tend to Cs(z) < 1 – the concentration downstream will
never reach that at the inlet.

We can approximate how the concentration profile C(z, T ) approaches this steady
solution Cs(z). If we write the concentration as C(z, T ) = Cs(z)F(z, T ) then, after
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some manipulation, the governing equation (18) becomes

0 = ∂F

∂T
+

(
1 − 2zβC ′

s(z)

Cs(z)

)
∂F

∂z
− ∂

∂z

(
zβ

∂F

∂z

)

= ∂F

∂T
+ coth

(
z−(β−1)

2(β − 1)

)
∂F

∂z
− ∂

∂z

(
zβ

∂F

∂z

)
. (46)

When z is sufficiently large, z−(β−1) � 1 and we can use the approximation coth u ∼
u−1 + (1/3)u + O(u3) for u � 1. For 1 < β < 2, a scaling balance again suggests
that we should introduce the dispersive variable ν defined in (29) and expand F as
F(z, T ) = F0(ν) + . . . . At leading order, we get

0 = ν

(
F ′′
0 +

[(
1 − (β − 1)

(2 − β)

)
ν−1 + 1

]
F ′
0

)
(47)

= ν
(β−1)
(2−β) e−ν

(
ν
1− (β−1)

(2−β) e+νF ′
0

)′
. (48)

In a similar manner to (32), we arrive at

F0(ν) =
�U

(
β−1
2−β

, ν
)

�
(

β−1
2−β

) . (49)

The second term in the expansion of coth u above suggests that the next-order correc-
tion to the solution is O(T−2(β−1)/(2−β)). For β ≥ 2, a similar, but more involved,
process can be followed to determine the late-time behaviour.

5 Breakthrough curves

The dispersivity is often estimated experimentally by assuming that the system is
governed by Fickian Diffusion and fitting the exact solution (27) to a breakthrough
curve, i.e. measurements of concentration over time at a fixed spatial location. In
order to investigate the applicability and limitations of this approach when applied to
a spatially variable dispersivity, here we compare our results for the ‘true’ solution to
equations (18)–(21) with the equivalent approximation assuming Fickian dispersion.
To do so, we can rewrite the Fickian solution (27) in terms of z and T . If the system
has a dispersivity D = α0Uxβ but is instead assumed to have the Fickian dispersivity
DF = αFUF , then the corresponding Fickian solution can be written as

C = 1

2
erfc

(
x −UFt

2
√

αFUFt

)
+ 1

2
ex/αF erfc

(
x +UFt

2
√

αFUFt

)
(50)

= 1

2
erfc

(
z − UT
2
√

σUT

)
+ 1

2
ez/σ erfc

(
z + UT
2
√

σUT

)
, (51)
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Fig. 5 Breakthrough curves at a range of z locations for different values of β, normalised by the late-time
concentration value C∞(z) at that z location. The breakthrough curves from this model are shown with
solid curves. The best-fit Fickian curves (51) are also shown for σ free, U = 1 (dashed curve, •) and for
both σ and U free (dotted curve, ×)

where σ = αF/α
1/(1−β)
0 is the ratio of dispersivities and U = UF/U is the ratio of

average flow velocities. For a given value of β, we can fit (51) to the breakthrough
curves from the numerical results described in Sect. 3 at a range of z locations. This
fitting process can be done in twoways: either specifying the true averagefluid velocity,
U = 1, and determining σ alone, or fitting to the breakthrough curves with both U and
σ as free, independent parameters. Once σ has been determined, fitting the scaling
relation σ ∼ zγ (β) for each value of β then establishes a relationship between the
inferred ‘Fickian-fit’ exponent γ discussed in Sect. 1 and the true exponent β. The two
stages of this fitting process were carried out using MATLAB’s nlinfit and fit
routines, respectively.

Figure5 shows breakthrough curves for values of β between 0 and 1.5, and the
corresponding best-fit results from (51). The breakthrough curves are normalised by
the late-time concentration valueC∞(z) = C(z, T → ∞) at that z location – forβ ≤ 1
this limiting value is just C∞ = 1, but for β > 1 it is given by the steady solution
(45) and so C∞ < 1. The Fickian solution (51) is fit to these breakthrough curves in
two cases: a ‘1-parameter’ case with σ free and U = 1 fixed and a ‘2-parameter’ case
with both σ and U as free parameters.

Figure5 shows that (51) accurately captures the β = 0 breakthrough curves, as
expected. For β < 1 both the 1-parameter and 2-parameter cases produce good fits to
the data, as the breakthrough curves are dominated by the late-time behaviour given by
(38), which has a similar form to (51). For values of β close to 1 and above, however,
the 1-parameter fit isn’t capable of recreating the breakthrough curves we see here –
an apparent average flow velocity UF that varies with space is required. The best-fit
velocity profiles U(z) from the 2-parameter approach are discussed in Appendix 1.

123



8 Page 16 of 23 A. J. Butler et al.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

(a)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

0

1

2

3

4

5

6

(b)

0 0.5 1 1.5 2 2.5
10-6

10-4

10-2

100

(c)

0 0.5 1 1.5 2 2.5
10-6

10-2

102

106

(d)

Fig. 6 The results of the power-law fit for the dispersivity ratio σ . The coloured regions around each curve
show their respective 95% confidence intervals. (a) The variation of the Fickian exponent γ with β. (b) The
variation of the prefactor A, with the left y-axis corresponding to the 1-parameter result and the right y-axis
to the 2-parameter result, for ease of comparison. (c) The normalised root-mean-square error (NRMSE) for
the fitting to the normalised breakthrough curves, averaged over the number of time points and the number
of breakthrough curves used. (d) The NRMSE for the power-law fitting to the best-fit σ values against z,
averaged over the number of reference locations used and normalised by the mean of the σ values for each β

We find that for small values of β the results are close to the true value, U = 1, but for
larger values of β there is clear spatial dependence, with close-to-linear growth with
z for β > 2.5.

For a given value of β, the diffusivity ratio σ(z) is well described by the power law
σ ∼ Azγ , giving us a relation between the Fickian exponent γ and the true exponent
β. Figure6 shows the results of fitting this power law to σ for a range of β values, in
both the 1-parameter and 2-parameter cases. The 95% confidence intervals are also
plotted around each curve – these are larger for the 2-parameter case as there is now
a trade-off between the values of σ and U when fitting, but the 2-parameter case still
produces a better fit to the breakthrough curves as can be seen in Fig. 5 and Fig. 6(c).
The prefactor A has differing behaviours in the two cases, but remains O(1). The
Fickian exponent γ closely follows β for β < 1, due to the late-time behaviour (38)
that mimics the β = 0 case. In the 1-parameter case, this continues for β > 1, while
in the 2-parameter case after β ≈ 1.2, the corresponding value of γ begins to decrease
but remains close to 1. As a result in the 2-parameter case, the relationship between β

and γ is not one-to-one, and values of β greater than 1 all produce similar values of
γ . For Fig. 6 each calculation for a particular value of β was run until T = 105, and
breakthrough curves were then determined at logarithmically spaced points between
z = 100 and z = 103.

To compare with results from experimental data, we express the Fickian disper-
sivity αF as αF ∼ αF,0xγ . The curves in Fig. 6 provide a way to convert from the
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Table 1 A selection of reported values of αF,0 and γ , and the corresponding values of β and α0 from the
1-parameter and 2-parameter curves in Fig. 6. In the 2-parameter case, there is the possibility of multiple(*)
or zero(†) solutions, depending on the value of γ

Source αF,0 γ β(1) α
(1)
0 β(2) α

(2)
0

[42] 0.229 0.755 0.665 0.805 0.826 0.342

0.044 1.13 1.243 0.078 1.095, 1.398∗ 0.061, 6 × 10−6∗
[7] 0.017 1.5 1.442 0.237 † †

0.32 0.83 0.746 1.567 0.894 0.456

[43] 0.23 0.75 0.660 0.802 0.821 0.342

experimentally determined values of αF,0 and γ to A and β, and then to α0 using the
definitions of σ and z via

α0 ∼
(αF,0

A

)(
1−β
1−γ

)
. (52)

A selection of reported αF,0 and γ values, and their corresponding α0 and β values,
is given in Table 1.

The results shown in Figs. 5 and 6 demonstrate that while this ‘Fickian Fit’ approach
can be used as a suitable approximation in some cases, it fails to properly capture the
full range of behaviour of a system with spatially dependent dispersivity such as this.
The 1-parametermethod estimates the value ofβ well, and by definition has the correct
average fluid velocity of U = 1, but only produces the correct breakthrough curves
for small values of β. The 2-parameter method, conversely, reproduces all of the
breakthrough curves well, at the expense of inaccurately estimating β and requiring
unphysical velocity profiles for β > 1. To correctly determine the value of β from
these breakthrough curves, the asymptotic solutions discussed in Sect. 4 should be
used.

6 Discussion

The model discussed here presents a way to investigate the behaviour of a flow with
power-law dispersivity, extending beyond the cases of β = 0 and β = 1 that have
been considered by many before. The behaviours fall broadly into three classes:

(i) the ‘Fickian-like’ case of 0 ≤ β < 1, where advection dominates at late time to
give an error-function profile;

(ii) the dividing case of β = 1, where advection and dispersion balance at all times;
(iii) β > 1, where at late times dispersion is dominant and the concentration pro-

file accumulates towards a steady solution that is significantly less than the inlet
concentration away from the origin.

Wheatcraft and Tyler [10] demonstrated that a bundle of streamtubes in a one-
dimensional flow through a fractal medium of dimension d would have a dispersivity
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D ∼ x2d−1. Since for such a medium the fractal dimension will lie in the range
1 ≤ d ≤ 2, this corresponds to 1 ≤ β ≤ 3. Thus from a fractal point of view
it is the β > 1 behaviour that is relevant for the one-dimensional flow, which has
distinctly different behaviour to the Fickian case. Similarly, the case of radial flow can
be transformed into one-dimensional flow, as shown in Sect. 2.2, with the exponent δ
from D ∼ r δ corresponding to β = 1+ δ/2. Thus Fickian radial flow corresponds to
β = 1/2 one-dimensional flow, and β > 1 for δ > 0.

An often-used measure of the location of the advective front is where the concen-
tration is half that at the inlet, i.e. C = 0.5. This is a reasonable assumption at late
times for β = 0, as shown by (26) and Fig. 1(a), but is not necessarily the case for
β > 0. Unlike in the Fickian case, dispersion is different on the two sides of the advec-
tive front for β > 0. This difference, characterised by the gradient of the dispersivity
D′(z), decreases as z → ∞ for β < 1 and so the concentration at the advective front
Cadv – never equal to 0.5 even for β = 0 – approaches 0.5 from below, as described
by the late-time approximation (38). For β ≥ 1, however, D′(z) increases as z → ∞
and Cadv decreases from 0.5 at early times until it is controlled by the steady solution
(45). These behaviours can be seen in the advective-frame plots in Fig. 1. For β > 1,
the threshold of C = 0.5 would not be a good measure of the advective front, and for
a location sufficiently far downstream would never in fact be reached.

The values of α0 shown in Table 1 allow us to estimate the dimensional times
that delineate the early- and late-time behaviours of the solutions shown in Sect. 3 by
rewriting (17) as Ut = α

1/(1−β)
0 T . Based on the results shown in Fig. 1, we choose

T = 10−2 to mark the end of the early-time behaviour and T = 102 the start of the
late-time behaviour, and take U = 1ms−1 as a representative value for the average
flow velocity. We find that for β < 1 the values of α

1/(1−β)
0 are O(1) to O(101),

or much smaller, so the early-time regime for a medium with β < 1 may not be of
practical importance. In contrast for β > 1, the values of α

1/(1−β)
0 are O(101) to

O(105), or much larger, so both the early- and late-time regimes may be physically
relevant.

While this model extends a class of dispersivities that have previously been consid-
ered, it still has its limitations. It is unreasonable to assume that the dispersivity will
continue to grow unbounded downstream of the injection point, as the properties of the
porous mediumwill vary.While the exponent β can be related to the fractal dimension
of the rock if this is known (which itself is only valid up to some cut-off length scale),
we do not have a direct connection between it and the porosity and permeability of
the porous medium. We can, however, extend our conclusions to a broader class of
dispersivities D(z). If D′(z) is a decreasing function then we would expect similar
behaviour to the ‘Fickian-like’ case of 0 ≤ β < 1, with advection dominating at late
times and a comparatively thin dispersive region around the advective front. On the
other hand, if D′(z) is an increasing function then we would expect behaviour like the
β > 1 case, with the concentration profiles accumulating towards the steady solution

Cs(z) = B + A exp

[∫ ∞

z

1

D(u)
du

]
, (53)
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with suitably chosen values of the constants A and B depending on the near- and
far-field behaviour of D(z).

In this work, we have chosen to focus on a constant concentration inlet condition,
C(0, T ) = 1, in order to describe the characteristics of a system such as this, with
spatially dependent dispersivity, and to highlight the limitations of interpreting it as
if it were Fickian. In practice, field and lab experiments typically inject tracers for a
finite interval, introducing the timescale of tracer injection as a new parameter. The
results presented here would then still be applicable for locations and times where the
end of tracer injection has not yet been felt, but the inclusion of this more realistic
inlet condition and this new parameter would be an important part of future work on
this system.

7 Conclusions

In this paper, we have developed a mathematical model for anomalous solute transport
in heterogeneous porous media with power-law dispersivity, D = α0Uxβ . This is
motivated by experimental measurements of dispersivity at both the lab and field scale,
along with the concept of dispersivity in fractal media as investigated by Wheatcraft
and Tyler [10]. This model includes the well-studied cases of Fickian dispersion (β =
0) and linear dispersivity (β = 1), extending them to the general case of β ≥ 0. We
provide numerical results as well as exact analytical solutions or early- and late-time
approximations.

These results, along with a simple scaling balance of the terms in the governing
equation, demonstrate three classes of behaviour. For 0 ≤ β < 1 the system is
‘Fickian-like’, with dispersion dominating at early times and advection at late times.
For β = 1 advection and dispersion remain in balance at all times, resulting in a
self-similar solution. For β > 1 advection dominates at early times and dispersion at
late times, and the concentration profiles tend to a non-trivial steady solution. This
means that for β > 1 the concentration downstream will never reach that at the inlet.

In the Fickian case, at late times, the profile is close to symmetric about the advective
front x = Ut and the concentration there, Cadv , is nearly 50% of that at the inlet. As
a result of the spatial variability of the dispersivity for β > 0, increasing the degree
of heterogeneity (i.e. β) causes the corresponding profile to become more asymmetric
and the value of Cadv to differ further from 50%; in fact for β > 1, Cadv → 0 as time
progresses.

Many experimental approaches have applied the Fickian solution to data and found
that the inferred dispersivity scales with distance via an exponent γ . By following the
same approach with our numerical results, we provide a direct connection between γ

and the exponent in our model, β.
Here we have shown that, in general, solutions for the advection and dispersion

of tracers in a porous medium with spatially correlated (or fractal) dispersivity lead
to asymmetric concentration profiles. Such profiles, readily observable in both field
and laboratory settings, yield important information on the nature and structure of the
permeability field. It is our hope that the asymptotic solutions to the reduced model
studied here may provide a computationally efficient way of classifying the degree
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of heterogeneity from measured concentration profiles, yielding new insights into
longitudinal dispersion in aquifers. We recognise that this work is based on several
simplifying assumptions and standardised conditions, for instance one-dimensional
flowand a saturatedmedium,whichmaynot necessarily be applicable to real scenarios.
Therefore, in futurework, amore concrete link to theunderlyingheterogeneities in rock
properties needs to be included. Moreover, the current model is purely mathematical
in nature and it would be helpful to see its experimental and field validation.
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Appendix 1: Two-parameter velocity profiles

The ‘2-parameter Fickian Fit’ method discussed in Sect. 5 requires the fitting of the
velocity ratioU(z); Fig. 7 shows the results calculated from this approach. Each profile
is accompanied by power-law behaviour for small and large values of z, fit to the first
5 and last 5 data points, respectively. The corresponding exponents are shown in the
lower-right frame of Fig. 7 as functions of β.

For relatively small values of β, we see that the calculated profiles are close to
the true U = 1 constant profile. This persists until β ≈ 0.5, after which clear spatial
variation in U develops across the range of z values considered here. For 1 < β < 1.5,
there is an interesting region of behaviour with close-to-linear growth in z, but with
U < 1 even up to z = 103. For β > 1.5, the majority of the profile for U is greater
than 1, and as β increases, it grows almost linearly with z. These large, growing
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Fig. 7 Velocity profilesU(z) from the two-parameter Fickian Fitting process described in Sect. 5 for a range
of values of β. Also shown are the best-fit power-law behaviours of U for small and large values of z, with
their corresponding scaling exponents plotted in the lower right as a function of β

velocity profiles are unphysical and a sign that while the 2-parameter Fickian Fit
can accurately reproduce the breakthrough curves associated with this model, it is an
incorrect description of the underlying physical systemand its characteristic behaviour,
as described in Sects. 3 and 4.
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