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Abstract
Flutter is an important instability in aeroelasticity. In this work,we derive a model for
this phenomenon which naturally leads to an equation similar to a van der Pol oscil-
lator in which the friction term is given by a fractional derivative. Motivated by these
considerations,we study a fractional van der Pol oscillator and show that it exhibits a
Hopf bifurcation. The model is based on a one-dimensional reduction where the insta-
bilities associated with flutter are preserved. However, due to the fractional derivative,
the bifurcation analysis differs from the standard case. We present both analytical
and numerical results and discuss the implications to aerodynamics. Additionally, we
contrast our qualitative results with experimental data.
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Mathematics Subject Classification 26A33 · 34A08 · 74S40

1 Introduction

Mathematical modeling of memory effects requires non-local in time constitutive
equations. Fractional derivatives are thus well suited to capture memory effects in vis-
coelastic materials, as noted in [1]. Fluid–structure interaction is one scenario where a
system acquires effective viscoelastic properties, even though thematerials themselves
are not viscoelastic, as explained in [2]. A well-established problem in engineering
involving mechanical instabilities is that of the aircraft wing in flight.
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Fig. 1 Effective cross section of wing (Ω). The figure on the left represents the equilibrium position. The
right-hand one shows the position in time of the same cross section as a result of bending of the wing

The general theory of aerodynamic instability and the mechanism of flutter is
attributed to Theodorsen [3]. In the 1935 technical report, Theodorsen relies on poten-
tial flow to model both the effects of translation and rotation of the wing. This line
of research focused on studying the behavior of classical flutter for complex aircraft
configurations, including wing–fuel tank interactions by Sewall [4] and Reese [5],
wing–flap interactions, among others.

There are two kinds of flutter, classical and stall flutter. While the former emerges
as flow velocity exceeds a critical value, the latter ensues as a result of leading-edge
vortex shedding. Dynamic stall was extensively studied by McCroskey in [6, 7]. A
first approach to model it using point vortex dynamics was used by Ham in [8, 9].
However, these attempts do not account for the fluid–structure interactions involved
in flutter, a process which introduces memory effects [6]. More recent approaches to
the problem have predicted classical flutter with reasonable accuracy, but stall flutter
remains elusive [10]. Hence, taking advantage of a fractional derivative-based model
is appropriate since it captures memory effects.

2 A fractional model for flutter

From experimental results, it is known that classical flutter can only materialize in a
system that effectively behaves as if it had at least two degrees of freedom. On the
other hand, it is known that this phenomenon can take place in one degree-of-freedom
systems if it originates from stall. The degree of freedom corresponds to the vertical
bending of the cross section of the wing, as it can be observed in the diagram of the
mechanical system proposed (Fig. 1). Therefore, it is desirable to understand how to
obtain a simplified mathematical model for these instabilities from the conservation
laws of solid and fluid mechanics.

We choose a fractional derivative model to describe these instabilities due to the
limitations of classical models. This deduction is not straightforward and frequently
little emphasis is put on the details of the procedure. Consequently, we believe it is
important to review the relevant steps in order to accurately interpret the physical
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meaning of the fractional derivative in this context. In order to simplify the argument,
we make the following assumptions: (1) the airfoil is thin enough to be approximated
by a flat plate of length L and width w; and (2) the motion of the plate is exclusively
a vertical translation. That is, the position of the plate is given by

x = X + u(t), (1)

where X is the equilibrium position. By integrating the conservation law ofmomentum
for the solid in an Eulerian reference frame, i.e.,

∫
Ω

ρüd3x =
∫

Ω

∇ · σd3x, (2)

where ü is the second derivative with respect to time, ρ is the density and σ is the stress
tensor. Notice that the density can be interpreted as a piecewise continuous function
across ∂Ω . Considering the aircraft wing as a homogeneous linearly elastic body, we
arrive at

ü + ω2u = f

(
u, u̇,

dαu

dtα
, t;α, η

)
, (3)

whereω2 is the normalized stiffness coefficient, η is the normalized dissipation coeffi-
cient and f is the force per unit mass that the fluid is exerting on the structure, which in
particular depends on the parameter α. The latter corresponds to the fractional deriva-
tive order, which is associated with the degree of viscoelasticity. Thus, f contains both
the information of the fluid and the interaction between the two media. Of course, Eq.
(3) can be transformed using Eq. (1) into its familiar form in a Lagrangian reference
frame. Next, we proceed to deduce the functional form of f . We manage to do this by
integrating the conservation law of momentum for the fluid in an Eulerian reference
frame, i.e.,

∫
R2−Ω

ρüd3x = −
∫
R2−Ω

∇ pd3x +
∫
R2−Ω

∇ · τd3x, (4)

and by incorporating the incompressibility condition. In the equations above, σ is
the stress tensor which is decomposed in the familiar spherical and deviatoric parts,
σ = τ − pI. We use the following fractional, non-local in time, constitutive equation

τ = κ
(
∇ · C

0 Dα
t u

)
I

+ η

[
∇C

0 Dα
t u +

(
∇C

0 Dα
t u

)T]
, (5)
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where κ is the normalized volumetric dissipative coefficient, included here just for the
sake of completeness, and C

0 Dα
t is the Caputo derivative [1]

C
0 Dα

t f (t) = 1

Γ (1 − α)

∫ t

0
(t − τ)−α d f (τ )

dτ
dτ, (6)

where 0 < α ≤ 1, which is consistent with a homogeneous linearly viscoelastic mate-
rial. On the other hand, κ0, η0, T α−1

λ and T α−1
μ are factors which are introduced to

preserve dimensional homogeneity. Observe that when α = 1, the constitutive rela-
tion for a Newtonian fluid is recovered. Equation (5) is invariant under translations
(Galilean invariance) and rotations. This is a particular case of the constitutive equa-
tions proposed by Rivlin in [11–13]. For more information regarding this case, see
[14]. The result of the aforementioned procedure leads to

ü = I1(x(t)) + I2(x(t)), (7)

I1 =
∫ L

0

∫ w

0
−p|x=X+u(t) J |x=X+u(t)dzdy, (8)

I2 =
∫ L

0

∫ w

0
η
[
∇C
0 Dα

t u
∣∣∣
x=X+u(t)

+
(
∇C

0 Dα
t u

)T ∣∣∣
x=X+u(t)

]
J |x=X+u(t)dzdy, (9)

where J is the Jacobian of the transformation. Due to Newton’s third law, we know
Eq. (7) must be equal to f . Hence, the simplified model of this mechanical system in
its most general form is

ẍ = −ω2x + I1 (x(t))

+ I2

(
x, ẋ,

dαx

dtα
, t;α, η

)
. (10)

Equation (10) is crucial because integrated forces I1 and I2 have different physical
origins and, as a matter of fact, only I2 contemplates the interaction between the
flow and the structure. Depending on the functional forms of I1 and I2, bifurcations
concomitant with coefficients of the model will be associated with divergence, flutter
or a combination of both. More specifically, I1 is linked to external interactions, while
I2 will determine the abruptness of the self-excitation onset [15].

Equations (5) and (9) are novel, in particular the latter relates the divergence–flutter
effects.

3 Bifurcation analysis for a fractional van der Pol oscillator

For our study, we assume no external interactions and consider the equation

ẍ = −ω2x − μ(1 − x2)ẋ, (11)
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which is the standard van der Pol equation. Since it was proposed and studied [16–18],
it has been used to model robust oscillations in many fields. Flutter on aerohydrofoils
is no exception [15, 19].

Equation (11) has an equilibrium point at (0, 0) and it is a well-known fact that it
exhibits a Hopf bifurcation for μ = 0. Based on the previous section, we study the
following fractional van der Pol equation

ẍ = −ω2x − μ(1 − x2)
dαx

dtα
, (12)

whereω is the frequency,μ is a dissipation parameter and α is the fractional derivative
order. When α = 1, we recover the classical van der Pol equation.

The idea of this proposal is to substitute the term ẋ representing the usual friction or
dissipation as a fractional derivative due to viscoelastic effects. We choose the Caputo
derivative as previously discussed for the following procedure. Let’s define

dαx

dtα
= y. (13)

We write Eq. (12) as a first-order system, allowing to set the subsequent two variants:

dy

dt
= ẑ, (14)

d1−α ẑ

dt1−α
= −ω2x − μ(1 − x2)y, (15)

or

d1−α y

dt1−α
= z̄, (16)

dz̄

dt
= −ω2x − μ(1 − x2)y. (17)

Both systems (13)–(15) and (13), (16), (17) have a stationary point at X0 = (0, 0, 0)
and possess the same system matrix, which is

B(x, y, ζ ) =
⎛
⎝ 0 1 0

0 0 1
2μxy − ω2 −μ(1 − x2) 0

⎞
⎠ , (18)

where ζ = ẑ, z̄. Their corresponding linearizations around X0 are

Dα̂(X) = AX(α̂ = (α, 1, 1 − α)) (19)

Dᾱ(X) = AX(ᾱ = (α, 1 − α, 1)), (20)
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, respectively, where

A =
⎛
⎝ 0 1 0

0 0 1
−ω2 −μ 0

⎞
⎠ (21)

and the Caputo derivativeDαi
t0,t isD

α(X) = [
D

α1
t0,t x1,D

α2
t0,t x2, . . . ,D

αn
t0,t xn

]T. It must
be emphasized that ω and μ on Eq. (21) become bifurcation parameters.

3.1 Stability theorems and results

Wewill analyze the stability of equation (12) based on the stability of the systems (19)
and (20). Moreover, by virtue of the next theorems [20, 21], they are the same and can
be studied directly from the matrix A.

Theorem 1 (Deng–Li–Lü) Suppose that {αi }n
i=1 are rational numbers such that 0 <

αi ≤ 1. Let M be the lowest common multiple (LCM) of the denominators of the αi ’s.
Then for the system

Dα
t0,t (X) = AX ,

where X(t) = [x1(t), . . . , xn(t)]T ∈ R
n, A ∈ R

n×n, α = [α1, . . . , αn]T with initial
value X0 = X(0); the zero solution is:

– Asymptotically stable if and only if any zero of the characteristic polynomial

det
(
diag

(
λMα1 , λMα2 , . . . , λMαn

)
− A

)
,

satisfies |M arg(λ)| > π/2, the components of the state variable

(x1(t), x2(t), . . . , xn(t))T ∈ R
n,

decay toward 0 like t−α1, . . . , t−αn , respectively.
– Stable if and only if either it is asymptotically stable or those critical λ values

of the above polynomial satisfying |M arg(λ)| = π/2 have geometric multiplicity
one.

Theorem 2 If we assume that the conditions of Theorem 1 hold except replacing the
Caputo derivative and the initial value X0 = X(0) by the Riemann–Liouville deriva-
tive and the initial value X0 = RLD

α
t0,t X(t)

∣∣
t=0

, respectively, then the stability result
is still available.

If α1, . . . , αn are not rational numbers but real numbers between 0 and 1, then we
have the following result, which was introduced using the initial-value theorem of
Laplace’s transform.
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Theorem 3 If all the roots of the characteristic equation

det
(
diag

(
sα1 , sα2 , . . . , sαn

) − A
) = 0

have negative real parts, then the zero solution of the system is asymptotically stable,
where αi is real and lies in (0, 1).

Our interest is to study the stability for the systems (19) and (20). Supposeα = p/q,
then the denominators of {1, α, 1− α} are 1, q and a divisor of q, respectively, thus in
the theorem M = q. From Theorem 1,we rely on the zeros of the polynomial

det
(
diag

(
λqα1, λqα2 , . . . , λqαn

) − A
)
,

for A given by (21) and α = α̂ or ᾱ. For both systems (19) and (20), the resulting
polynomial equation is

p(λ) ≡ λ2q − μλp + ω2 = 0, (22)

or, for Λ = λq , we have

g(Λ) ≡ Λ2 − μΛα + ω2 = 0. (23)

It is worth noticing that there are 2q complex roots for 0 < α ≤ 1.
The dynamical system is asymptotically stable if all of these roots satisfy

|q arg(λ)| > π/2,

i.e., the real parts of the powers Λ = λq are negative. A similar argument can be
obtained for non-asymptotic stability if the roots with |q arg(λ)| = π/2 (pure imagi-
nary) have multiplicity one.

Observation From Theorem 3, equation (23) is still valid for real valued α, given
the criterion

| arg(Λ)| > π/2,

although nothing can be assured for | arg(Λ)| = π/2.
To find these roots,we can always consider ω ∈ {0, 1}. Otherwise, the scaling

μ̂ = μωp/q−2 is used to reduce it to this case. In this manner, from the polynomial

p̂(τ ) ≡ τ 2q − μ̂τ p + 1,

and function

ĝ(T ) ≡ T 2 − μ̂T α + 1,

123



1 Page 8 of 15 G. Juárez et al.

the zeros of (22) and (23) are obtained, respectively, with the change of variables

τ = ω−1/qλ, T = τ q .

Moreover, this change of variables does not affect the argument angle of the original
roots.
Example For α = 0.5, the characteristic polynomial is of 4th order:

p(λ) = λ4 − μλ + ω2,

that can be solved by radicals in the form:

λ1,2,3,4 =
s1A + s2

√
−A2 − s1

2μ

A
2

, (24)

where s1, s2 ∈ {−1, 1}. To continue with the stability analysis, we study the real part
of Λ = λq , e.g.,| arg(Λ)| = |q arg(λ)|. Rising (24) to the q = 2 power, we obtain

Λ1,2,3,4 = s1
4

(
−2μ

A
+ 2s2A

√
−A2 − 2μ

s1A

)
. (25)

For μ > 0, the values of Λ are given by:

– s1 = 1:

Re(Λ1) = Re(Λ2) = −2μ

4A
< 0, independently of s2.

– s1 = −1:

◦ if R < 0 then 2μ < A3 then Re(Λ3) = Re(Λ4) = 2μ

4A
> 0, independently

of s2.
◦ if R > 0 then 2μ > A3 and so Λ3 and Λ4 are real numbers with the same
sign as:

2μ

A
− 2s2A

√
−A2 + 2μ

A
,

and, in particular, for s2 = −1, Λ4 is positive.
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By virtue of Theorem 1, Eq. (12) is unstable for α = 0.5 when μ > 0.
For μ < 0, the values of Λ are given by:

– s1 = −1:

Re(Λ1) = Re(Λ2) = 2μ

4A
< 0, independently from s2.

– s1 = 1:

◦ if R < 0 then −2μ < A3 and so Re(Λ3) = Re(Λ4) = 2μ

4A
< 0, indepen-

dently from s2.
◦ if R > 0 then −2μ > A3 and so Λ3 and Λ4 are real numbers with the same
sign as:

2μ

A
− 2s2A

√
−A2 − 2μ

A
,

which is negative for s2 = 1. For s2 = −1, Λ4 is also negative.
By virtue of Theorem 1, (12) is stable for α = 0.5 when μ < 0.

3.2 Hopf bifurcation

A Hopf bifurcation occurs at a parameter value where a periodic solution arises as the
stability of an equilibrium point changes, i.e., the appearance or the disappearance of
a periodic orbit for the dynamical system [22]. For Eq. (12), it means that a pair of
complex conjugate zeros of the polynomial (22) crosses the critical argument angle

| arg(λ)| = π

2q
.

Let λ0 be a root with |q arg(λ0)| = π/2 and ω �= 0, it implies

ω2 + |λ0|2q − μλ
p
0 = 0,

and as the gcd(p, q) = 1 then λ
p
0 cannot be a real number, this leads to the only

possibility of μ = 0 and |λ0|2q = ω2, so arg(λ0) is not affected by the choice of ω2.
Conversely for μ = 0,

λω = q
√|ω|eiπ/2q

is a root of (12) satisfying |q arg(λ0)| = π/2. That is, the only possibility for the
existence of a stable critical point at 0 is in the case of μ = 0.

We should notice also that in Eqs. (22)–(23)

p(0) = g(0) = ω2 > 0,

p(1) = g(1) = 1 − μ + ω2.

So, fromBolzano’s (intermediate-value) Theorem, for a fixedμ ≥ 1+ω2, there would
be at least one real positive root, i.e., | arg(Λ0)| = | arg(λ0)| = 0.
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Fig. 2 Critical argument angle
(| arg λ|) for different α values,
obtained by solving numerically
the roots of the characteristic
polynomial. Even though the
onset of the bifurcation
corresponds to a value μ = 0 for
all values of α, the abruptness of
the onset changes depending on
the fractional differentiation
order, i.e., the degree of
viscoelasticity
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From the previous analysis and using the implicit function theorem, the arguments
of the root are continuous functions of μ. It is clear that the inequality

| arg(λ)| >
π

2q

holds for all μ > 0. Therefore solutions are stable, being μ = 0 the bifurcation point
(see Fig. 2).

3.2.1 Numerical solutions and phase planes

The (linearized) fractional differential equations (19)–(20) were solved using the pro-
gramFDE_PI1_Im forMATLABcreated byGarrappa and published in [23]. The latter
relies on an implicit method that solves the equation system as shown in (13), (14)
and (15), or equivalently (13), (16) and (17). The implicit method requires introducing
the Jacobian of the right-hand side of the equations. The solution is then achieved via
Newton–Raphson iterations. The following results were obtained using a 14.9467◦
initial value and considering the system begins at rest for all cases.

Figure 3 shows multiple solutions as functions of time for different values of α. It
can be observed that out of the solutions shown in the Figure, the one corresponding
to the value α = 0.1 approximates best the case when α is an integer. Notice that as
α → 0 the solution will tend to a harmonic oscillator. As α grows, a major damping
effect occurs. It is alsoworth noticing a changeof phase between the different solutions.

The phase diagram of the solutions is presented in Fig. 4. The damping effect is
observed as well for the different values of α. It can be observed that even when the
value is 0.9, the solution tends to zero. In this graph, the change of phase between
solutions can be better appreciated.

Given the fact that a fractional differential equation is solved, a corresponding
phase diagram for each value of α was obtained. In this case, the fractional derivative
is plotted against the state variable, shown in Fig. 5. It is in fact a modified phase
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Fig. 3 System response for
different values of α and fixed μ

and ω. It can be observed the
larger the value of α, the greater
the damping is on the system
response. This is consistent with
the limiting case α = 1 of the
original Van der Pol oscillator

Fig. 4 Phase diagram for
different values of α and fixed μ

and ω. Notice the trajectories for
distinct values of α are not
congruent throughout the
evolution of the system. This
shows these system responses
are not in phase even though the
values of μ and ω are the same
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-500

0

500 =0.1

= 0.4

=0.7

=0.9

portrait which can be called a fractional phase plane. Since μ and ω are fixed, the
present case is in fact a generalization of the classical phase diagram. This implies the
angle between this fractional phase diagram and the classical phase diagram is directly
related to the degree of viscoelasticity of the systemunder study. Furthermore, there is a
phase difference between the responses for distinct values of α. A potential interesting
physical interpretation for this fractional phase plane may be proposed.

The nonlinear fractional system given by equations (13), (16), (17)was solved using
the program MT_FDE_PI1_Im for MATLAB created by Garrappa and published in
[23]. Figure6 presents areas formed by initial conditions pairs composed by position
and velocity that give stable soluitions, i.e., solutions that eventually tend to zero.
Each value of α is an area of different color, bounded by a solid curve for better
comprehension.

Figure 6 is made through the following procedure. First, an array of approximately
270-by-270 points was defined with a given set of initial conditions for the nonlinear
equation system given by (13)–(15). By solving the aforementioned equation system
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Fig. 5 Phase diagram of the
fractional component with
different values of α and fixed μ

and ω. This suggests the present
case is in fact a generalization of
the classical phase diagram. Put
in other words, the angle
between this fractional phase
diagram and the classical phase
diagram is directly related to the
degree of viscoelasticity of the
system under study
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-300
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Fig. 6 Basins of attraction built
from various initial conditions
for three different α, as well as
fixed μ = 1 and ω = 1. Each
point within each basin of
attraction corresponds to a pair
(x0, ẋ0) of initial conditions that
result in a stable evolution of the
system in time. A couple of
sharp edges on the limits of the
basin corresponding to α = 0.1
can be identified

Fig. 7 Basin of attraction for
α = 0.5 with a highlighted
solution. The orbit shows
self-intersects near the attractor,
as opposed to the standard case
where foliation occurs
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and only retaining those points which led to a bounded evolution in time, the basins
of attraction for different values of α were obtained. Several features of the basins of
attraction can be observed. First of all, the basin is rotated clockwise as α increases.
At the same time, the area covered by the stable region becomes larger.
Two sharp edges can be identified on the limits of the basin corresponding to α = 0.1.
By introducing (x0, ẋ0) pairs of values in the vicinity of the sharp edges and increasing
the computing time of the solution, it is apparent the sharp edges are not an artifact
of the numerical method. An analysis of the qualitative behavior of the solution near
these edges is suitable.

Figure7 highlights a single solution spiraling toward zero. This implies that the
orbit corresponding to a set of initial conditions which result in a bounded evolution
of the system can nonetheless exit the basin of attraction at later times. This is to
be contrasted with what happens in standard dynamical systems and it is due to the
non-local effects of the fractional derivative, i.e., memory. Self-intersections of the
orbit can be observed near the attractor owing, once again, to the memory effects that
result from the fractional derivative.

4 Conclusions

The fractional model for flutter proposed in Eq. (12) presents a more realistic approach
to study the phenomenon, allowing for the consideration of memory effects due to the
effective viscoelastic properties of the system. It has been pointed out in [6] that these
systems present history effects (memory). These materialize as hysteresis loops in the
aerodynamic forces andmoments of thewing. Furthermore, it is emphasized in [6] that
these “are not clearly correlatable based on any simple parameter of the mechanics of
oscillation.” The present approachmay provide a solution by introducing an additional
quantity, i.e., the fractional viscoelastic parameter α. This parameter may be a physical
property of the system. The latter changes the phase of the response even if the other
parameters remain fixed and leads to generalization of the classical phase plane.
Even when Eqs. (11) and (12) exhibit a Hopf bifurcation, the way in which it happens
is different. In particular, the amplitude of the oscillations is, for the fractional case,
larger than those of the standard model. The value of α affects the abruptness of the
onset of the bifurcation while leaving the critical value of μ for which the onset takes
place unchanged. This has important implications in real airfoils, given the fact that
the effects of flutter in the standard case are underestimated.

There are several differences of the proposed model with the classical van der Pol.
An important one is that there are no stable limit cycles. This is closer to reality, for
wings never reach limit cycles, they either tend to an equilibrium or have a breaking
point. A second one is that, as opposed to the classical case in which orbits do not
intersect, in the fractional setting, this canhappen. In the fractionalmodel, solutions can
temporarily escape the basin of attraction as a direct consequence of memory effects,
in contrast with the standard one. The instance where α = 0, which corresponds to a
solid material with no dissipation becomes a limiting case. This is more realistic from
the standpoint that all materials have some degree of dissipation.
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