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Abstract
A small spherical source discharges a fluid into a porous medium that is already fully
saturated with another fluid. The injected fluid has higher density than the ambient
fluid, and so it forms a plume that moves downward under the effects of gravity. We
present a simple asymptotic analysis assuming the two fluids do not mix that gives the
width of the plume far from the source as a function of the injected volume flux. A
spectral method is then developed for solving the full nonlinear problem in Boussinesq
theory. Accurate numerical solutions are presented, which show in detail the evolution
of the plume of heavier injected fluid over time. Close agreement with the asymptotic
plume shape far from the source is demonstrated at later times.

Keywords Boussinesq flow · Porous medium · Spectral methods

1 Introduction

The study of the flow of fluid through rock or soil, and the path it takes, is relevant
to many practical scenarios. An example of such a flow arises in the contamination
of groundwater by an industrial leak [1]. Further applications arise in in situ mineral
leaching, in which a lixiviant is injected into rock to dissolve the ore and recover it in
solution [2, 3], and the extraction of fluid from groundwater aquifers or oil reservoirs
[4, 5].

Flow in fully saturated porous media is generally modelled using a well-known sys-
tem of linear differential equations. When phreatic surfaces or interfaces are present,
however, the location of these free boundaries is usually unknown. This makes the
mathematical problem highly nonlinear, and thus, difficult to solve, since both the
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fluid velocity and the shape of the fluid region itself must be determined as part of the
solution process. Closed-form solutions to these problems, in terms of familiar analyt-
ical functions, are, therefore, not usually possible, although some classical results are
known for problems in which a high degree of symmetry exists and certain simplify-
ing assumptions are possible (see the texts by Bear [6, 7] and Strack [8]). Otherwise,
numerical methods must be used instead.

Many of the studies of plumes in porous media involve an assumption that the
flow can be regarded as two dimensional. In addition, by considering the flow that
is established after a long time, only steady-state behaviour need be considered, and
this simplifies the problem description substantially. This has allowed a number of
important insights into plume structure to be obtained. Wooding [9] carried out a two-
dimensional steady asymptotic analysis inwhich the outer fluid could be entrained into
themoving plume,which as a result becomeswider as it develops. This analysis is valid
when the vertical speed in the plume is almost equal to that in the ambient fluid, and
predicts that thewidth at the head of the entraining plume increases as the 2/3 power of
its distance from the source. In an experimental investigation,Oostrom et al. [10] found
that leachate plumes may be stable or unstable, depending on the density ratio of the
two fluids and the volume flow rate at the source, and conditions for unstable plumes
to form fingers were studied numerically and experimentally by Cremer and Graf [11].
Hewitt et al. [12] considered a steady two-dimensional model for a buoyancy-driven
plume that encounters an internal layer of different permeability, and carried out a
detailed asymptotic analysis of conditions under which the plume spreads. A very
detailed numerical analysis of two-dimensional plumes has been undertaken by Slim
[13], in a study that now incorporates time-dependent effects. She finds six different
time regimes for plume evolution, including an early stage during which the plume
widens and an intermediate stage during which dense fluid is stripped from the plume
interface as it accelerates downwards.

In a recent paper, Browne and Forbes [14] analysed the formation and development,
through time, of a vertical plume formed by the injection of a more-dense fluid into
a wet porous medium. They considered two-dimensional geometry only, in order to
simplify the mathematics. Thus, the flow occurred in vertical planes, with the heavier
fluid injected through a horizontal line source orthogonal to these flow planes. Hori-
zontal drillingwells are, in fact, used in somemining applications [15, 16]. Browne and
Forbes [14] solved their planar flow problem using a spectral approach, in which the
fluid velocity and density were represented using Fourier series with time-dependent
coefficients. This gave highly accurate results, and the evolution of the fluid region
from an initial cylinder into a fully developed vertical plume was demonstrated.

The purpose of this present paper is to investigate the analogous problem, in which
the flow geometry is now three-dimensional and axisymmetric, with the denser fluid
injected through a small spherical source. This would represent a situation as occurs
in mineral leaching, for example, in which the leaching liquor is introduced through
a narrow vertical pipe drilled into the rock. The equations describing this flow are
presented in Sect. 2. To solve this nonlinear problem numerically, we use a spectral
method similar in some ways to that in Browne and Forbes [14], but here we develop
new basis functions, as discussed in Sect. 3 that allow us to consider a finite-sized
source region. This is possibly more realistic and closer to industrial reality than
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approximating the injection region as an idealized point source, and it avoids the
singularity that a point source represents. Nevertheless, at some distance from the
source, outflow froma point source or a finite sourcewould be almost indistinguishable
from one another [17], as also observed experimentally by Bietenholz et al. [18]. We
also present an asymptotic closed-form solution in Sect. 4 that estimates the plume
shape far from the injection zone, and we compare this approximate solution with
the computations of the fully nonlinear problem in Sect. 5. We consider the time-
dependent behaviour of this three-dimensional flow, and a key aim is to determine
the way in which the plume evolves in time, towards a steady-state configuration. A
discussion in Sect. 6 concludes this paper.

2 Governingmodel

We wish to model the trajectory of some fluid as it flows through a porous medium
of uniform porosity n and permeability k. The fluid is injected from a point source at
the origin of a Cartesian coordinate system where the z-axis points vertically and the
horizontal ground is located parallel to the xy-plane high enough above the point of
injection such that the fluid remains underground. The acceleration of gravity, g, is
directed downward. We assume that the fluid has density ρ1, and that the porous rock
is already saturated with a fluid of a lower density, ρ2; however, both fluids have the
same constant viscosity, μ.

Fluid is flowing radially in all directions from the injection point, and given this
geometry, it is intuitive to use a spherical coordinate system, which will be done for
the rest of this paper. We assume that the flow of fluid is axisymmetric such that there
is no dependence on the azimuthal angle θ , but only the radial distance r and the polar
angle φ measured from the z-axis.

Initially, we assume there is a sharp interface between the region the heavier fluid
saturates and the rest of the porous medium. As fluid is injected into the system,
the two fluids will mix and it is no longer appropriate to assume a sharp boundary
between two distinct fluids. We instead assume that the fluid density ρ(r , φ, t) varies
continuously across a narrow boundary of finite width from ρ1 (the density of fluid
injected at the source) to ρ2 (the density of the fluid that saturates the ground far away
from the source). Similarly to a number of other papers [14, 19–21], we assume that
the higher density of the introduced fluid is due to the addition of some solute with
concentration C(r , φ, t) such that the density varies linearly with the concentration
and C → C0 as ρ → ρ1; that is

ρ = ρ2

(
1 + ρ1 − ρ2

ρ2C0
C

)
. (1)

The concentration of the solute satisfies the transport equation:

n
∂C

∂t
+ q · ∇C = nD∇2C, (2)
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where D is a constant diffusion coefficient for the solute and n is the porosity of the
medium, a dimensionless constant that gives a measure of the void space in the porous
rock that the fluid can flow through. From the pore pressure of the fluid, p, we can
find the seepage velocity q using Darcy’s law in the form [22],

μ

k
q = −∇p − ρg

(
cosφer − sin φeφ

)
. (3)

Here μ is the dynamic viscosity of the fluid and k is the permeability of the porous
medium. The unit vectors er and eφ point in the directions of increasing radial r and
angular φ coordinates, respectively. We use a Boussinesq approximation in which the
fluid velocity also satisfies the continuity equation:

∇ · q = 0, (4)

representing an incompressible fluid.
We assume that initially, the higher density fluid saturates a spherical region of

radius a around the point source and that at time t = 0 the point source is suddenly
turned on, thereafter, injecting fluid at the volumetric flow rate Q. The velocity of the
fluid near the source can be written as follows:

q → Q

4πr2
er as r → 0. (5)

At this point, it is convenient to make use of dimensionless variables, where all
lengths have been scaled by the initial radius a of the injected fluid. Similarly, all
times are scaled by nμa/kρ2g, pressures by ρ2ga, and the concentration of the solute
is scaled with reference to its value C0 at the source. Using this scaling, our governing
Eqs. (1)–(3) become

ρ = 1 + (D − 1)C, (6)
∂C

∂t
+ q · ∇C = β∇2C, (7)

and
q = −∇p − ρ

(
cosφer − sin φeφ

)
. (8)

The non-dimensional velocity of the fluid near the source is given by

q → F

4πr2
er as r → 0. (9)

In the equations above, three dimensionless parameters have appeared. There is a
density ratio,

D = ρ1

ρ2
, (10)

a Froude number,

F = μ

k

Q

ρ2ga2
, (11)
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and a dimensionless diffusion coefficient for the solute,

β = μ

k

nD
ρ2ga

. (12)

At the point of injection, the scaled concentration of the solute is subject to the
boundary condition that

C → 1 as r → 0. (13)

Far from the source,
C → 0 and ∇ p → 0 as r → ∞. (14)

Given that the velocity of the fluid satisfies the continuity Eq. (4), we know that a
stream function �(r , φ, t) exists such that the fluid seepage velocity can be written
as follows:

q = − 1

r sin φ

∂

∂φ
(� sin φ) er + 1

r

∂

∂r
(r�) eφ. (15)

Hence, the condition (9) for the velocity near the source can be transformed into a
condition on the stream function; that is,

� → F

4π

cosφ

r sin φ
as r → 0. (16)

Using the state Eq. (6) and the stream function form for the velocity as in (15), by
taking the curl of Darcy’s law (8), we can show that

∇2� − �

r2 sin2 φ
= (D − 1)

(
sin φ

∂C

∂r
+ cosφ

r

∂C

∂φ

)
. (17)

3 Numerical method

In this section, we describe the numerical methodwe use to solve (17) coupledwith the
transport Eq. (7), along with the conditions (16) and (13) at the source. It follows the
method given in Browne and Forbes [14] which solved a similar system of equations,
but for planar flow involving fluid injected along a line source. It is necessary to create
an artificial boundary at r = R∞ that is chosen to be large enough that it does not
interact with the top of the plume; naturally it is inevitable that the bottom of the
plume will always reach the computational boundary given enough time. At this outer
boundary, we follow (14) and introduce the condition that

C(R∞, φ, t) = 0, (18)

meaning that there is no solute in the fluid far away from the source. We have also
introduced a boundary at r = α around the source to exclude the origin from the
computational volume, which consequently is now a spherical shell as shown in Fig. 1.
This was done to avoid problems caused by the singularity at the origin, but in any
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Fig. 1 Schematic diagram of a
point source (marked by the red
dot) that is injecting a fluid into a
porous medium which is already
saturated with a less dense fluid.
The computational volume we
are solving over is α ≤ r ≤ R∞,
0 ≤ φ ≤ π , 0 ≤ θ ≤ 2π

event, the finite fluid speed on the injection sphere r = αmore closelymimics physical
reality. We replace the boundary conditions (13) and (16) at the source with conditions
at this inner boundary such that

C(α, φ, t) = 1, (19)

and

�(α, φ, t) = F

4π

cosφ

α sin φ
. (20)

Note that the computational boundaries are chosen such that

0 < α < 1 < R∞. (21)

The dimensionless concentration of the solute is represented in the form:

C(r , φ, t) =1 − (r − α)2

(R∞ − α)2
+

M∑
m=1

Am,0(t) sin

(
mπ(r − α)

R∞ − α

)

+
N∑

n=1

M∑
m=1

Am,n(t)r
− 1

2 pn+ 1
2
(κm,nr;α)Pn (cosφ) , (22)

where pn+ 1
2
(κm,nr;α) is the Bessel function cross-product

pn+ 1
2
(κm,nr;α) = Jn+ 1

2

(
κm,nα

)
Yn+ 1

2

(
κm,nr

)− Jn+ 1
2

(
κm,nr

)
Yn+ 1

2

(
κm,nα

)
, (23)
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and κm,n is the mth positive root of

Jn+ 1
2

(
κm,nα

)
Yn+ 1

2

(
κm,n R∞

) − Jn+ 1
2

(
κm,n R∞

)
Yn+ 1

2

(
κm,nα

) = 0. (24)

Here, Jn+1/2(z) and Yn+1/2(z) are the Bessel functions of half-integer order of the first
and second kinds, respectively, and we have used the notation pn+ 1

2
(κm,nr;α) for the

Bessel function cross-product, so as to be consistent with Abramowitz and Stegun [23,
p. 361]. We can numerically find these roots in (24) using the method as described by
Horsley [24, 25]. Not to be confused with pn+ 1

2
(κm,nr;α), the terms Pn(cosφ) are the

Legendre polynomials of order n, as defined in Abramowitz and Stegun [23]. We note
that the basis functions go to zero on both boundaries, so the boundary conditions (18)
and (19) for the concentration of the solute are satisfied by the first two terms in (22).

The stream function is also represented spectrally: the form

�(r , φ, t) = F

4π

cosφ

r sin φ
+ r sin φ

2
+ (D − 1) sin φ

{
− r(r − α)(2r − 3α)

10(R∞ − α)2

+
M∑

m=1

Am,0(t)
R∞ − α

mπ

[
cos

(
mπ(r − α)

R∞ − α

) {
2

(
R∞ − α

mπr

)2

− 1

}

+ 2

(
R∞ − α

mπr

)
sin

(
mπ(r − α)

R∞ − α

)
− 2

(
R∞ − α

mπr

)2 ]

+
N∑

n=1

M∑
m=1

Bm,n(t)r
− 1

2 pn+ 1
2
(κm,nr)P

′
n (cosφ)

}
, (25)

ensures that (17) is satisfied when the Bm,n(t) are chosen appropriately.
In these series representations forC(r , φ, t) and�(r , φ, t), the coefficients Am,0(t),

Am,n(t), and Bm,n(t) are unknown functions of time t and the expressions become
exact as the numbers M and N of Fourier modes approaches infinity. The first term
in (25) is chosen to satisfy the condition (20) that models the fluid being injected into
the system and the second term is there to represent the downward acceleration of
gravity. As they satisfy

∇2
(

F

4π

cosφ

r sin φ
+ r sin φ

2

)
− 1

r2 sin2 φ

(
F

4π

cosφ

r sin φ
+ r sin φ

2

)
= 0, (26)

they do not have equivalent terms in the series for the concentration (22).
For the Bm,n(t) to satisfy equation (17), we must find the relation to the Am,n(t)

using Fourier analyses. We substitute the spectral forms for the concentration (22) and
� (25) into (17), and after some algebra, we find that

123



10 Page 8 of 18 C. A. Browne, L. K. Forbes

N∑
n=1

M∑
m=1

Bm,n(t)κ
2
m,nr

− 1
2 pn+ 1

2
(κm,nr)P

′
n (cosφ) sin φ

=
N∑

n=1

M∑
m=1

Am,n(t)r
− 3

2

[
1

2
pn+ 1

2
(κm,nr)Pn (cosφ) sin φ

− κm,nrqn+ 1
2
(κm,nr)Pn (cosφ) sin φ

+pn+ 1
2
(κm,nr)P

′
n (cosφ) cosφ sin φ

]
. (27)

We thenmultiply (27) by functions r3/2 pl+ 1
2
(κk,lr)P ′

l (cosφ) sin2 φ and integrate over
the volume α < r < R∞, 0 < φ < π to get

Bk,l(t) = 1

2κ2
k,lOk,l

∫ R∞

a
pl+ 1

2
(κk,lr)Sm,l(r) dr , (28)

where

Sm,l(r) =
M∑

m=1

Am,l−1(t)

[
pl− 1

2
(κm,l−1r) − 2κm,l−1r

2l − 1
ql− 1

2
(κm,l−1r)

]

+
M∑

m=1

Am,l+1(t)

[
pl+ 3

2
(κm,l+1r) + 2κm,l+1r

2l + 3
ql+ 3

2
(κm,l+1r)

]
, (29)

and

Ok,l = 1

2

[{
R∞ql+ 1

2
(κk,l R∞)

}2 −
{
αql+ 1

2
(κk,lα)

}2]
. (30)

Note that

qn+ 1
2
(κm,nr) = Jn+ 1

2

(
κm,nα

)
Y ′
n+ 1

2

(
κm,nr

) − J ′
n+ 1

2

(
κm,nr

)
Yn+ 1

2

(
κm,nα

)
, (31)

where we have used the same notation for the derivative of the cross-product as in
Abramowitz and Stegun [23, p. 361].

To solve numerically for C(r , φ, t) (and consequently �(r , φ, t) as well), we wish
to find the coefficient functions Am,0(t) and Am,n(t) so as to satisfy the transport
Eq. (7) for the concentration of the solute. The coefficient functions Bm,n(t) will
follow using (28). We use Fourier analysis to find the following system of nonlinear
ordinary differential equations for the coefficients:

A′
k,0(t) = − 1

R∞ − α

∫ π

0

∫ R∞

α

(
u

∂C

∂r
+ w

r

∂C

∂φ

)
sin

(
kπ(r − α)

R∞ − α

)
sin φ dr dφ

− 12β [1 − cos(kπ)]

kπ(R∞ − α)2
+ 8βα

(R∞ − α)3

∫ R∞

a

1

r
sin

(
kπ(r − α)

R∞ − α

)
dr
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− β

(
kπ

R∞ − α

)2

Ak,0(t) +
M∑

m=1

Am,0(t)
4βmπ

(R∞ − α)2

×
∫ R∞

α

1

r
cos

(
mπ(r − α)

R∞ − α

)
sin

(
kπ(r − α)

R∞ − α

)
dr , (32)

and

A′
k,l(t) = β

Ok,l

M∑
m=1

Am,l(t)

[
−

(
l + 1

2

)∫ R∞

a

1

r
pl+ 1

2
(κm,lr)pl+ 1

2
(κk,lr) dr

+ κm,l

∫ R∞

a
ql+ 1

2
(κm,lr)pl+ 1

2
(κk,lr) dr

+κ2
m,l

∫ R∞

a
rp′′

l+ 1
2
(κm,lr)pl+ 1

2
(κk,lr) dr

]
− 2l + 1

2Ok,l

×
∫ π

0

∫ R∞

a

(
u

∂C

∂r
+ w

r

∂C

∂φ

)
r3/2 pl+ 1

2
(κk,lr)Pl (cosφ) sin φ dr dφ.

(33)

We also need to transform the initial conditions for the concentration, C(r , φ, 0)
into initial conditions for the coefficients, Ak,0(0) and Ak,l(0). Recall that initially
we assumed that the porous medium is already saturated with some fluid without the
presence of the solute (corresponding to a concentration of the solute equal to zero)
and that there is a spherical region with radius r = rini t around the source in which
a solute is dissolved in the fluid such that the concentration of the solute is equal to
one. Therefore,

C(r , φ, 0) =
{
1, α ≤ r ≤ rini t ,

0, rini t < r ≤ R∞,
(34)

where rini t is another parameter to be chosen. Using similar Fourier analysis on our
series representation (22), we can show that the initial coefficients are

Ak,0(0) = − 2

kπ

[
cos

(
kπ(rini t − α)

R∞ − α

)
+ 2

k2π2 [1 − cos(kπ)]

]
, (35)

and
Ak,l(0) = 0, l ≥ 1. (36)

We make use of Lanczos smoothing [26] to lessen the impact of Gibbs’ phenomenon
[27] occurring in our spectral solution at the jump discontinuity at r = rini t . This has
been done by multiplying each Fourier coefficient Ak,0(0) by sin(εk)/εk where ε is a
small parameter. We typically chose this Lanczos parameter to have the value ε = 0.1.

The system of Eqs. (32) and (33) is then integrated numerically forward in time
using theMATLAB routine ode45. To do this, we have evaluated the integrals in (32)
and (33) using von Winckel’s [28] Gauss–Legendre quadrature program lgwt and
have used five times the number of points in r and φ as the number of modes M and

123
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N in Fourier space. This ensures our solutions are accurate according to the Nyquist
criterion [29].

4 Asymptotic solution

As a comparison to our numerical results, we also look for a large-time steady-state
solution by considering the scenario in which there exists a sharp interface r = R(φ)

between the two fluids. The densities are constant either side of this interface and the
fluids cannot cross this sharp boundary. As such, and turning our focus to the denser
fluid being injected, the fluid is subject to the kinematic condition:

∂R

∂t
= u − w

R

∂R

∂φ
on r = R(φ, t), (37)

where u and w are the velocity components such that q = uer + weφ . As we are
looking for a steady-state solution, we want to find an interface R(φ, t) ≡ R(φ) that
does not depend on time. We assume the approximate asymptotic form:

� = F

4πr

cosφ

sin φ
+ r sin φ

2
, (38)

where the first term represents the outflow of fluid from the point source as in (16) and
the second term represents the downward acceleration of gravity. It implies that

u = F

4πr2
− cosφ and w = sin φ. (39)

Thus, far from the source at the bottom of the plume (i.e. as r → ∞ and φ → π ),
the velocity of the descending plume approaches q = 1er in these dimensionless
variables.

Substituting this solution for � into the kinematic boundary condition and letting
∂R/∂t = 0, we find that

F

4πR2 − cosφ − sin φ

R

dR

dφ
= 0 on r = R(φ). (40)

This is a first-order differential equation for R(φ) which we can solve to find

R(φ) = 1

sin φ

√
γ − F

2π
cosφ. (41)

where γ is a constant that is yet to be determined. We choose γ by requiring R(φ) to
be finite at the top of the plume where φ = 0 and as such, choose γ = F/2π .

Therefore, as time approaches infinity, we find that the asymptotic interface
becomes

R(φ) =
√

F

4π

1

cos(φ/2)
. (42)
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Fig. 2 Plots of the initial concentration profile as defined in (34) for rini t = 1 on the left, and rini t =
0.45

√
F/π for F = 5 on the right. The profile has been reconstructed from the Fourier representation (22),

and for both plots, we have used M = N = 81 Fourier modes over the domain 0.3 < r < 10 with a
Lanczos smoothing parameter of ε = 0.1. In both plots, evidence of Gibbs’ phenomenon [27] is visible as
small wavelets near the jump discontinuity

In Sect. 5 below, we compare this asymptotic solution to the results of our numerical
solution. We also use it to guide our choice of rini t , the radius of the initial spherical
region inside which C = 1 at t = 0. From (42), we can show that far from the source
(i.e. as φ → π and r → ∞) the radius of the plume approaches

√
F/π .

For the results shown in this paper, we have set rini t as the smaller of one and
0.45

√
F/π , both of which are illustrated in Fig. 2. We have done this to balance

between avoiding an initial condition that is larger than the asymptotic plume shape
and also avoiding an initial condition that fills too much of the computational domain.

5 Results

In this section, we present a number of numerical results for a variety of different
parameter values. Recall that our three-dimensionless parameters in (10)–(12) are a
density ratio D, a Froude number F , and a dimensionless diffusion coefficient β. We
have used D = 1.05 for all results shown in this paper, which is well within the range
for the Boussinesq approximation to hold true. We will present results for F = 5, 50
and 100 and β = 0.01 and 0.0001, and we have chosen these to be consistent with the
dimensional parameters as follows:

• The dynamic viscosity, μ, of the fluid depends on the temperature of the given
fluid; however, as some examples, at 20◦ Cwater has a dynamic viscosity of about
0.001 Pa s [6, p. 35] and a 60% aqueous solution of sulfuric acid has a dynamic
viscosity of about 0.0059 Pa s [30, pP. 5–132]. We have considered both water and
also sulfuric acid for its relevance to in situ mining [2, 31].

• The permeability, k, of the porous medium might range from around 10−19m2 for
unweathered clay to 10−11m2 for peat [6, p. 136].
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10 Page 12 of 18 C. A. Browne, L. K. Forbes

Fig. 3 Colour maps of the concentration of the solute C for the Boussinesq solution at the dimensionless
time t = 6 using Froude number F = 50, density ratio D = 1.05, and dimensionless diffusion coefficient
β = 0.0001. The solution on the left was computed using M = N = 31 Fourier modes with 155 × 155
grid points over the computational domain 0.3 < r < 10. The solution in the middle was computed using
M = N = 61 Fourier modes with 305×305 grid points over the same domain and the solution on the right
was computed using M = N = 81 Fourier modes with 405× 405 grid points again, over the same domain

• The porosity, n, of the medium is a dimensionless measure of the void space so
can only take values between zero and one. Typical values of the porosity of soils
similar to those considered above are around 0.3 to 0.8 [6, p. 46].

• A typical diffusion coefficient, D, in an aqueous solution is in the order of
10−10m2/s to 10−9m2/s [30].

• For the flow rate, Q, of the fluid out of the injection point we considered volumetric
flow rates in the range of 10−6m3/s to 1 m3/s.

• The initial radius of the spherical region that the heavier fluid saturates is given by
a. We considered values of a in the range from 0.01 m to 0.5 m.

The above dimensional parameters give rise to a large range of values for F and β,
and given the constraints of time and computing power, we have only found numerical
solutions for a subset of sensible values. However, the results shown in this paper are
consistent with the physically realistic dimensional parameters as described above.

In order to establish the convergence of the numerical solution, it is important to
demonstrate that the numerical results are independent of the numbers M and N of
Fourier modes in our series representations (22), (25). In Fig. 3, we have compared
colour maps of the concentration where we have used the same parameter values in all,
except for the number of modes and mesh points used. The picture on the left in Fig. 3
was computed using M = N = 31 Fourier modes with 155×155 grid points over the
computational domain. Although evidence of Gibbs’ phenomenon can be seen over
the whole domain, the shape of the descended plume can still be sufficiently observed.
In comparison, the middle diagram of Fig. 3 was computed using M = N = 61 with
305 × 305 grid points over the computational domain and shows a more converged
numerical result. The shape of the plume is now much sharper and although still
present, oscillations due to Gibbs’ phenomenon are greatly reduced. Lastly, the right-
most picture in Fig. 3was computed usingM = N = 81 Fouriermodeswith 405×405
grid point and shows a very converged numerical result with oscillations associated
with Gibbs’ phenomenon even further reduced. Nevertheless, its plume shape is nearly
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Fig. 4 Colour maps of the concentration of the solute C for the Boussinesq solution at the dimensionless
time t = 6. The solutions were computed using Froude number F = 50, density ratio D = 1.05, and
dimensionless diffusion coefficient β = 0.01 using M = N = 81 Fourier modes with 405 × 405 grid
points. The solution on the left was solved over the computational domain 0.3 < r < 10, whereas the
solution on the right has a larger inner boundary, specifically, its domain is 0.9 < r < 10

indistinguishable from the results with 61 coefficients, showing that convergence has
occurred with 81 coefficients. This is consistent with the convergence analysis by
Allwright et al. [32]. We note that for Fig. 3 and subsequent figures in this paper, we
have shown only a portion of the computational domain such that x ∈ [−6, 6] and
y ∈ [−10, 5]. This is the region in which the higher density fluid descends and is
therefore the region of most interest.

Figure 4 shows a comparisonbetween two solutions computedusingFroudenumber
F = 50, diffusion coefficient β = 0.01, and density ratio D = 1.05 at time t = 6
with different inner computational boundaries. The solution on the left was computed
over the computational domain from r = α = 0.3 to r = R∞ = 10 whereas the
solution on the right was computed from r = α = 0.9 to the same r = R∞ = 10.
The larger inner boundary means that there is less of a difference between the inner
and outer boundaries which makes the solution more numerically stable in respect to
the calculation of the roots of the basis functions (23); however, in practice, there is
not much difference between the two solutions. Importantly, the shape of the plume
is unchanged.

Solutions using Froude number F = 5 are illustrated in Fig. 5 at the three dimen-
sionless times t = 2.75, 5.5 and 8.25. They show the colour maps of the concentration
C that were computed from (22) using M = N = 81 Fourier modes with 405 × 405
grid points over the computational domain (note that only a subset of the domain is
shown in the plots). The computational boundaries were set at α = 0.3 and R∞ = 10
and the density ratio is D = 1.05. The top row of plots has a diffusion coefficient of
β = 0.01 and the bottom row uses β = 0.0001. At t = 8.25, we have also overlaid
the numerical solutions with the large-time steady-state solution (42) as indicated by
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Fig. 5 Colour maps of the concentration of the solute C for the Boussinesq solution at the dimensionless
times t = 2.75, 5.5, and 8.25. The solutions were computed using Froude number F = 5, density ratio
D = 1.05, and use M = N = 81 Fourier modes with 405 × 405 grid points over the computational
domain 0.3 < r < 10. The solution at the top was computed using a dimensionless diffusion coefficient of
β = 0.01 whereas the solution on the bottom was computed using β = 0.0001. The long-time solution has
been plotted with a thick black-dashed line over the t = 9 plots

the thick black-dashed line. This is independent of β and so is the same for both top
and bottom solutions. It can be seen that the steady-state solution is in close agree-
ment with the numerical solutions for both values of β. In both t = 5.5 plots, some
disturbance is visible above the top of the plume; by t = 8.25, it can be seen that
this disturbance has moved inside of the top part of plume. Nevertheless, it does not
appear to have impacted the overall shape of the plume. In addition, at this time, the
plume has almost reached the outside edge of the computational domain, thus, running
our solution much further past this time has no practical motivation. Initially, at time
t = 0, the heavier fluid occupies an initial sphere of radius 0.45

√
5/π as shown in the

plot on the right in Fig. 2, noting that the heavier fluid is in regions where C = 1.
At the earliest time t = 2.75 shown in Fig. 5, the plume widens slightly near its top

in both pictures, to forman approximately conical shape. This is caused by the injection
of fluid through the finite-radius hole shown, but may also be due to some entrainment
of the surrounding stationary fluid in the wetted rock; this is suggested by the paper of
Wooding [9] even though the conditions required for that approximation to be valid
do not hold here. At later times, however, the plume develops a constant diameter,
consistent with the analysis of Slim [13]. Figure 5 shows that as time progresses, the
plume then descends under the effects of gravity and fluid injection at the source (9),
and given how closely the numerical plume shape follows the large-time asymptotic
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Fig. 6 Colour maps of the concentration of the solute C for the Boussinesq solution at the dimensionless
times t = 2.25, 4.5, and 6.75. The solutions were computed using Froude number F = 50, density ratio
D = 1.05, and use M = N = 81 Fourier modes with 405 × 405 grid points over the computational
domain 0.3 < r < 10. The solution at the top was computed using a dimensionless diffusion coefficient of
β = 0.01 whereas the solution on the bottom was computed using β = 0.0001. The long-time solution has
been plotted with a thick black-dashed line over the t = 6.75 plots

solution (42) it suggests that both gravity and the source term are the dominant features
of the flow, in the simple combination suggested by (38), for large time. For this
relatively low injection rate, measured by the Froude number (11), the plume forms a
narrow structure, in excellent agreement with the approximation (42).

In Figs. 6 and 7, we have increased the Froude number to F = 50 and F = 100,
respectively, but have again shown colour maps of the concentration C that were
computed from (22) using M = N = 81 Fourier modes with 405 × 405 grid points
over the same computational domain. The top rowof plots in each figure has a diffusion
coefficient of β = 0.01 and the bottom row uses β = 0.0001. At the last dimensionless
time shown for each solution, we have also overlaid the colour maps with the large-
time steady-state solution (42) as indicated by the thick black-dashed lines. Again, we
see good agreement between the numerical solutions and the large-time asymptotic
solutions. For all the solutions in Figs. 6 and 7, initially, at time t = 0, the heavier
fluid occupies an initial sphere of unit radius as shown in the plot on the left in Fig. 2.
We note that the higher the Froude number, the sooner the plume reaches the bottom
of the computational domain. This is unsurprising as a larger Froude number (11)
corresponds to a larger flow rate Q of the injected fluid (assuming all other parameters
are kept constant) meaning that the fluid is entering the system and falling at a faster
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Fig. 7 Colour maps of the concentration of the solute C for the Boussinesq solution at the dimensionless
times t = 2, 4, and 6. The solutions were computed using Froude number F = 100, density ratio D = 1.05,
and use M = N = 81 Fourier modes with 405×405 grid points over the computational domain 0.3 < r <

10. The solution at the top was computed using a dimensionless diffusion coefficient of β = 0.01 whereas
the solution on the bottom was computed using β = 0.0001. The long-time solution has been plotted with
a thick black-dashed line over the t = 6 plots

rate. In addition, the width of the plume widens as the Froude number increases, as
suggested by the asymptotic solution (42).

6 Conclusions

In this paper, we have studied the injection of fluid into a porous medium in three-
dimensional geometry.Wehave presented an asymptotic solution, valid for large times,
and numerical results using a spectral method. The agreement between the two is very
good for later times for all parameter sets we have considered. As the injection rate is
increased (representing increasing Froude numbers), the plume that forms becomes
wider, and also falls at a faster rate. For plumes with a larger dimensionless diffusion
coefficient, the narrow interfacial zone between the heavier and lighter fluids widens
and is less sharp. For futurework,wemay be able to generalize the spectral formulation
such that it is able to cope with the presence of multiple singular injection points and
extraction points as well.
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