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Abstract
The beginning of a pandemic is a crucial stage for policymakers. Proper manage-
ment at this stage can reduce overall health and economical damage. However,
knowledge about the pandemic is insufficient. Thus, the use of complex and sophisti-
cated models is challenging. In this study, we propose analytical and stochastic heat
spread-based boundaries for the pandemic spread as indicated by the Susceptible-
Infected-Recovered (SIR) model. We study the spread of a pandemic on an interaction
(social) graph as a diffusion and compared it with the stochastic SIR model. The pro-
posed boundaries are not requiring accurate biological knowledge such as the SIR
model does.

Keywords Diffusion rate boundary · Graph-based stochastic SIR model ·
Partial-knowledge pandemic management

1 Introduction

Over the history of mankind, pandemics cause repetitive catastrophic suffering [1]. It
causes significant increase in the mortality rate [2], major economic losses [3], and
substantial political instability [4]. However, proper management of the pandemic
can significantly reduce all of this [5, 6]. Nonetheless, suitable governance during a
pandemic time requires an understanding of the pandemic’s dynamics. Unfortunately,
this task is very challenging. The main difficulty is the uncertainty in real time. To
reduce this, one needs to consider all the relevant factors. Nevertheless, pointing out
the suitable features that appear in real time is extremely hard [7]. The process of
collecting epidemiological, clinical, and biological data is time-consuming, expensive,
and complex at the operational level [8, 9]. In addition, policymakers need to act fast
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during the beginning of the pandemic to contain it at an early stage [10]. Inability to
do so will result in greater disaster later in the pandemic [10].

Thus, providing policy-making with good analytic tools is essential. The fashion to
obtain data-driven decisions is epidemiological-mathematical models [11]. These pro-
vide an analytical framework to obtain an analysis of the pandemic’s spread dynamics
[12–14]. A large group of epidemiological models is based on the Susceptible-
Infected-Recovered (SIR) model [7]. This model provides good baseline results [15].
The SIR model assumes that the course of an epidemic is short compared with the
life of an individual. Therefore, the size of the population may be considered to be
constant. This assumption is reasonable as far as it is not modified by deaths due to
the epidemic disease itself. Furthermore, the SIRmodel assumes all individuals in the
population are initially equally susceptible to the disease (S) and only one individual
is infected (I ) at the beginning of the pandemic. Moreover, it is further assumed that
complete immunity is conferred by a single infection. In other words, it is possible to
represent the SIR model using a system of non-linear ordinary differential equations
where the average infected rate, β, and the average recovery rate, γ , are known:

dS(t)
dt = −βS(t)I (t)

dI (t)
dt = βS(t)I (t) − γ I (t)

dR(t)
dt = γ I (t).

(1)

Naively, one would consider the average infected rate β and the average recovery
rate γ to be deterministic quantities that might cause model artifacts. For example,
a susceptible individual (p ∈ S) can be infected and transformed into the infected
sub-population (I ) in a given time t . Immediately afterward, in time t + 1, there is
a probability γ that the same individual is recovered and transformed to the recov-
ered sub-population (R) [16]. To overcome this, we considered these quantities to be
stochastic. This is because the uncertain nature of multiple epidemiological, social,
and economic processes produce these coefficients. Hence, it is possible to treat these
coefficients as a transformation probability between the states [17].

To gain a more epidemiological detailed model, one can use an interaction graph
to represent infection routes. From an epidemiological point of view, an interaction
graph gives a more descriptive representation of infections between individuals [18].
Formally, an interaction graph is where individuals are the graph’s nodes and the
graph’s edges are the possible infection routes. Indeed, Wang et al. [19] proposed
a graph-based Susceptible-Infected-Susceptible (SIS) model. In their settings, each
individual is represented as a node in a static, connected, and random graph. Similarly,
Hau et al. [20] proposed an SEIR (E-exposed) model for sexually transmitted diseases.
The authors defined the interactions between individuals using a bipartite static graph.
These approaches are shown to well capture the pandemic spread dynamics. However,
they still depend on a precise approximation of the infection and recovery rates [20].
This is due to the resilience problem in the ordinary differential equations [6]. Formally,
we define an infection graph to be a graph G := (V , E ⊂ V × V ) where V are
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the nodes of the graph that represent individuals in a population with one of three
epidemiological states (according to the SIR model’s definition) using a timed finite-
state machine [21], and E is the set of possible epidemiological interaction between
individuals that can cause infection. For example, two individuals who work together
in the same room have an edge between them as they can infect each other.

Another possible approach to tackle the pandemic spread prediction task is using
heat spread. The transformation of heat on manifold plays an important role in many
fields of science and engineering [22–24]. Heat spread shown to be promising in both
theoretical [25, 26] and practical settings [27, 28]. The heat spread can be represented
using the following partial differential equation:

∂u(t, x̄)

∂t
= c�u(t, x̄), (2)

where u : Rn+1 → R is a function, t is the time, x̄ is an n-dimensional space, and
c ∈ R

+ is the diffusion coefficient. The diffusion coefficient, c, can be treated as
the average rate in which a physical area is heated. In our case, the average rate a
pathogen is gathered inside an individual’s body. We note that the classical definition
of the functionU is the temperature. However, additional interpolations can be applied.
For instance, probability of the arrival of information. The second definition is spatially
discrete compared to the proposed continuous definition proposed inEq. (2).A discrete
version of the heat spread equations takes the form:

∂u(t, x̄)

∂t
= c�n

i=0
∂2u(t, x̄)

∂x2i
(3)

such that

∂u(t, x̄)

∂t
:= u(t + h, x̄) − u(t, x̄)

h

and

∂u(t, x̄)

∂xi
:= u(t, [x1, . . . , xi + h, . . . xn]) − u(t, [x1, . . . , xi , . . . xn])

h
,

where h ∈ R
+\{0} [29].

Graphs are locally, on the node-level, isometric to manifold with a dimensional
corresponding to the number of neighbors of the center node. Hence, assuming a
graph G := (V , E), the heat spread dynamics for each node v ∈ V agrees with Eq.
(3) such that h = 1 and n = |{vi ∈ V | (v, vi ) ∈ E}|.

Following this, one can conclude that knowledge is required to obtain a fine approx-
imation of the heat spread in an interaction graph. Specifically, only information on
the interaction between individuals is needed. While the stochastic graph-based SIR
model is based on more precise biological, social, and epidemiological knowledge,
this information is not necessarily available during the beginning of a pandemic.
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Thus, one can use the diffusion spread model, which requires less information
and thus easier to approximate, to obtain an initial upper-bounded estimation to the
pandemic spread compared to the SIR-based model. Nonetheless, as far as we aware
of, no such comparison has been investigated so far. To fill this gap, we propose two
upper boundaries for the pandemic spread in the population based on the heat spread
coefficient. Our method is based on the heat spread on interaction graphs. This allows
us to provide policymakers with a range of insights based on the connection between
the two. This paper is organized as follows: in Sect. 2, we present two upper boundaries
(maximum and mean) of a stochastic graph-based SIR model using the heat spread.
In Sect. 3, we evaluate the usefulness of the proposed boundaries in a k-regular and
randomgraphs. Following this,we evaluate the boundaries on social network data from
Facebook to simulate realistic interaction graph settings. In Sect. 4, we discuss the
possible epidemiological usage of these boundaries with their limitations and propose
future work.

2 Pandemic spread bounded by heat spread

To formalize the heat equation on a single node, one needs to calculate the probability
of the node being infected. The probability a node i with |Nb(i)| adjacent nodes
(Nb(i) is the set of adjacent nodes to node i) would be infected is corresponding to
the probability that each infected adjacent node (v j ∈ Nb(i)) would infect node i .

pi (infected) := 1 −
∏

j∈Nb(i)

(
1 − p j (infected)

)
, (4)

such that p j (infected) = 0 if node j is not infected and some probability p ∈ (0, 1]
otherwise.

Based on these dynamics, we formally define the epidemiological interaction graph
as follows. Let G := (V , E) be a underacted, connected graph such that E ⊂ V × V
and |V | = N . Each node v ∈ V is representing an individual in the population. A
node is defined by a finite-state machine with three states {S, I , R}—corresponding
to the SIR model’s epidemiological states. In addition, the edge e = (vi , v j ) ∈ E is a
possible interaction between two individual vi , v j ∈ V such that i �= j .

Following this, a stochastic SIR on an infection graph can be defined as follows.
Given an infection graph (G) and the parameters β, γ ∈ (0, 1]. At a given point in
time, if v j ∈ Nb(vi ) ∧ v j ∈ S ∧ vi ∈ I , than v j infected. Viz, v j transforms to state
I at a probability β. In addition, if vi ∈ I than vi recover. Namely, transforms to
state R at a probability γ . The process is terminated when I reaches zero. Lazebnik
et al. [16] had proved that the only recurrent state for the stochastic SIR model is
(S, I , R) = (N − d, 0, d) such that 1 ≤ d ≤ N . Thus, the asymptotic state of the
dynamics is achieved when I = 0. Therefore, the process halts.

Akin, one can define the heat spread on an infection graph as follows. Given an
infection graph (G) and the parameter c ∈ R

+. At a given point in time, if v j ∈
Nb(vi ) ∧ v j ∈ S ∧ vi ∈ I , then v j becomes infected. That is, v j transforms to state
I after � 1

c 	 time steps. Moreover, if vi ∈ I then vi recovered. Namely, transforms
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to state R if ∀v j ∈ Nb(vi ) such that v j ∈ I . The process is terminated when I
reaches zero. By treating the dynamics as a Markovian process [30], one can notice
that the only recurrent state of the process takes the form (S, I , R) = (0, 0, N ). This
happens because all individuals would eventually be infected and recover, assuming a
connected graph. Hence, the asymptotic state of the dynamics is achieved when I = 0.
Consequently, the process halts.

Based on these definitions, given an interaction graph that represents a population,
one can bound the pandemic spread according to the stochastic SIR model using the
heat spread model as shown in Theorem 1. In the following, we will show that the
basic infection rate of the SIR model is dominated by the basic infection rate of the
diffusion process.

Theorem 1 Given an infection graph (G) with infection rate β ∈ (0, 1] and recovery
rate γ ∈ (0, 1]. In addition, assuming the initial condition (S, I , R) = (N − 1, 1, 0).
Thus, exists a diffusion rate c ∈ R

+ that agrees with:

∀t ∈ N : RSIR(β,γ )
0 (t) ≤ RDiffusion(c)

0 (t), (5)

where RSIR(β,γ )
0 (t) is the basic infection rate of the SIR model. Namely,

RSIR(β,γ )
0 (t) := max(0,

R(t) − R(t − 1) + I (t) − I (t − 1)

max(1, R(t) − R(t − 1))
) ≤ β

γ
I (t − 1)

for a graph-based SIR model with infection rate β and recovery rate γ , and
RDiffusion(c)
0 (t) is the basic infection rate of the diffusion model. I.e.,

RDiffusion(c)
0 (t) := max(0,

R(t) − R(t − 1) + I (t) − I (t − 1)

max(1, R(t) − R(t − 1))
) ≤ cI (t − 1)

for a graph-based heat spread model with diffusion rate c. Of note, while the defini-
tions of both R0 metrics are identical when represented using the SIR’s model states
(i.e., S(t), I (t), R(t)), they are not identical in practice due to the differences in the
dynamics.

Proof Let v0 be the node which satisfies v ∈ I at t = 0. Node v0 is a single node
according to the assumptions. Performing a breadth-first search (BFS) [31] starting
from v0. During the BFS, each node v ∈ G has been allocated with a distance d from
v0. I.e., d(v0, v) is the length of the shortest path between v0 and v in the graph, G.
On one hand, for the stochastic SIR process, the worst case scenario obtained where
β = 1 and γ = ε > 0. This happens as larger β and smaller γ increase the pandemic
spread. In this case,

RSIR(β,γ )
0 ≤ RSIR(1,ε)

0 ≤ maxk∈[1,N−1](|{v ∈ V | d(v0, vi ) = k}|). (6)

Intuitively, maxk∈[1,N−1](|{v ∈ V | d(v0, v) = k}|) is the infection front of the graph
as all nodes (individuals) in the graph that are neighboring an infected nodes are the

123



6 Page 6 of 13 T. Lazebnik, U. Itai

largest set of individuals that can be infected in a single step in time. By setting the
diffusion rate c to be maxk∈[1,N−1](|{v ∈ V | d(v0, v) = k}|), for any infection rate
β ∈ (0, 1] and recovery rate γ ∈ (0, 1], the condition

∀t ∈ N : RSIR(β,γ )
0 (t) ≤ RDiffusion(c)

0 (t), (7)

satisfied. ��
A corollary of Theorem 1 is that the pandemic spread and heat spread are isomor-

phic where β = c = 1 and γ = 0. This is true since, the processes are defined to
be isomorphic if and only if ∀t ∈ N : |{v ∈ V | v ∈ I }| is identical for both pro-
cesses. In addition, an isomorphism analysis between the two models is provided in
the Appendix.

Definition 2.1 The event horizon is the set of nodes H which satisfies:

H := {vi ∈ V | i �= j ∧ v j ∈ Nb(vi ) : v j ∈ I ∧ vi ∈ S}

Following this, one can point out that, at time t = 0 in both processes the size of
infected nodes depends on the interaction graph. For each step in time, the event
horizon H ⊂ V is infected, while the other nodes are not. This means both processes
are deterministically identical for β = c = 1 and γ = 0.

While this boundary holds for any pandemic, we note that this boundary is not tied
for the most realization of a pandemic. This is due to the high variance in the pandemic
spread [11, 32, 33]. Therefore, one can bound the mean pandemic spread given the
interaction graph, as shown in Theorem 2. Themean pandemic spread provides amore
tied boundary of the pandemic spread given only the infection rate β.

Theorem 2 Given an infection graph (G) with infection rate β ∈ (0, 1] and recovery
rate γ ∈ (0, 1]. In addition, assuming the initial condition (S, I , R) = (N − 1, 1, 0).
The vector of mean infection time (V i

j ) agrees with the minimal (e.g., if x j is another

solution with x j ≥ 0 then x j ≥ V i
j ) non-negative solution of the following equation:

{
V i
j = 1

β
+ �k �= jβV i

k , i �= j

V i
j = 0, otherwise

, (8)

where V i
j ∈ N∪∞ is a random variable that stands for the time pass that an infection

that starts at individual i will infect individual j . We define the “hitting time” of a
state i ∈ V as a random variable Hi : V → N ∪ ∞ given by

Hi (v) = in f {n ≥ 0 : V i
n (v) = j}

Proof First, we show that V i
j satisfies Eq. (8). If i = j than Hi = 0 by definition and

therefore V i
j = 0. If i �= j , than Hi ≥ 1. According to the Markov property,

Ei (H
i |V1 = j) = 1

β
+ E j (H

i ).
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Fig. 1 A schematic view of a
ladder graph

and

V i
j = E j (Hi ) = �k∈V Ei (Hi1V1=k) = �k∈V Ei (Hi |V1 = k)Pi (V1 = k)

= 1
β

+ �k �= jβV i
k .

(9)

Suppose that y is any solution to Eq. (8). Then, for i = j , V i
j = y = 0. If i �= j ,

y = 1
β

+ �k �= jβ yk = 1
β

+ �k �= jβ
(
1 + �l �= j (β yk,l)

) = P(Hi ≥ 1)
+P(Hi ≥ 2) + . . .

(10)

By repeating this substitution for y, in the final term (after n steps), we obtain

y ≥ P(Hi ≥ 1) + . . . P(Hi ≥ n) (11)

and, by letting n → ∞,

y ≥ �∞
n=1P(V i

j ≥ n) = V i
j . (12)

��
Example 1 In the ladder graph, as illustrated in Fig. 1 , the inequality in Eq. (8) is
sharp. For that, two insights can be concluded. The first one is that each infection path
is independent. Namely, if one path is faster or slower it is orthogonal to any other
path. The second is that there exists a positive probability realization that the node
would be infected by another path than the shortest path. This implies that when one
calculates the expected infection time, he would get a lower time than taking only the
shortest path.

Corollary 2.1 Given an infection graph with a fixed infection rate β ∈ (0, 1) and
recovery rate γ ∈ (0, 1). The infection rate would strictly increase by adding infection
paths.

We note that for a single adjacent node, the boundary in Eq. (8) is tight. It can be
monotonically relaxed by increasing the number of adjacent nodes, γ , and β.

According to Theorem 1 and 2, for β = c and γ = 0, the processes are converging
to the same mean. Thus, in the case γ > 0, the heat spread with diffusion rate c = β is
an upper boundary of the mean case of the stochastic SIR dynamics. This outcome can
be obtained by computing the mean infection time from the first infected individual to
any other individual in the population. Following this step, one needs to compute the
inverse value for this quanta to obtain the mean pandemic spread rate. Nonetheless,
using this boundary requires a good approximation of the infection rate (β). Otherwise,
the boundary may be either too high or too low. In the case of the first boundary (Eq.
5), such knowledge is not required.
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Fig. 2 The mean basic reproduction number as a function of the k-regularity of the interaction graph.
The values provided for the stochastic SIR model (blue circles), mean diffusion boundary (gray axis), and
maximum diffusion boundary (black triangles). Each sample is shown as mean ± standard deviation for
n = 10

3 Numerical simulations

Based on the proposed theoretical bounds on the pandemic spread, and since these
bounds are not tight for some cases, we further investigate them numerically. In this
section, we numerically examine the spread dynamics on several graph types. For each
graph, we calculate the stochastic SIR spread and associated heat spread models.

In particular, k-regular graphs, random graphs, and a real-world social interaction
graph.We computed the pandemic spreadwith infection rate of β = 0.07 and recovery
rate of γ = 0.07. These values were chosen to represent the COVID-19 pandemic
[33]. Additionally, according to Theorems 1 and 2, the maximum and mean diffusion
rates are set to be 1 and 0.07, respectively.

First, we obtain the connection between the k-regularity of a graph and the pandemic
spread. In plain English, we computed the mean basic reparation number (R0) of the
pandemic. We choose this metric because it is commonly considered to be the proper
metric to measure overall pandemic spread [34, 35]. We randomly generated n = 10
connected, k-regular graphs with |V | = 1000. The results of this process are presented
in Fig. 2, where the x-axis is the value of k and the y-axis is the mean basic reparation
number.

Since interaction graphs are not necessarily k-regular, we computed the mean basic
reproduction number for connected, random graphs. The graphs were randomly gen-
erated such that each node v ∈ V has between 3 and 200 edges, sampled using a
uniform distribution. We generated 100 samples for graphs at size |V | = 1000. The
results of this process are presented in Fig. 3. Where the x-axis is the number of edges
in the graph (|E |) and the y-axis is the mean basic reparation number.
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Fig. 3 The mean basic reproduction number as a function of the interactions graph’s connectivity (e.g.,
|E |). The values for the stochasticSIR model, mean diffusion boundary, and maximum diffusion boundary
are provided

The above graphs were constructed synthetically. Thus, a natural question that rise
is “does this model words on real-life graphs?”. To answer this question, we tested
the model on the Facebook interaction graph. This graph represents the friendships
between individuals in the Facebook social platform [36]. For our needs, each individ-
ual is set to be a node in the infection graph and each friendship between individuals
is assumed to define a possible physical meeting between the individuals and there-
fore a possible infection route, making it an edge in the infection graph. It contains
|V | = 4039 nodes and |E | = 176, 468 edges (1.01% density). Each node v ∈ V
has 44± 52 neighbors. A histogram of the number of neighbors per node is provided
in the supplementary material. We calculated the pandemic spread for the maximum
heat spread boundary, the mean heat spread boundary, and the stochastic SIR model,
as shown in Fig. 4a–c, respectively.

4 Discussion

Estimating the infection rate is critical information for pandemic management [7, 20].
In this paper, we showed boundaries on the infection rate. By using the heat spread
dynamics with different diffusion rates, we learned that the rate is highly dependent
on the topology of the interaction graph. The boundaries of a stochastic SIR model’s
infection rate were assumed to take place on an interaction graph. This provides a
better representation of the epidemiological dynamics in a heterogeneous population.
Health professionals would benefit from the representation we provide. Since the
proposed boundaries are relatively easy to obtain as they require almost no prior data.
Specifically, we presented the worst case (also called the maximum case) and the
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Fig. 4 The pandemic spread over time for the Facebook [36] infection graph such that the susceptible,
infected, and recovered normalized group sizes are donated by S, I , and R, respectively

mean case pandemic spread boundaries. This is especially useful at the beginning of a
pandemic since acting fast can significantly reduce overall infection [10]. For example,
during the COVID-19 pandemic [37], the infection and recovery rates were rapidly
update [15, 33, 38–40]. This led to large errors in the estimations of the pandemic’s
spread. As a result, policymakers are provided with a distorted image. Hence, the
proposed boundaries provide an initial solution. Once more data are gathered, one
would be able to both improve the proposed boundaries and use more sophisticated
and adjusted models.

The maximum heat spread boundary is deterministic tight. Therefore, it cannot be
improved. Nonetheless, this case represents a catastrophic scenario where β = 1, γ =
0. This case may cause unnecessary panic and extreme reactions. Obviously, these are
not necessarily required to contain the pandemic spread. However, if slightly more
information is provided such as the approximation of the infection rate (β), one can
obtain a better approximation of the infection spread rate. Indeed, in such a case,we can
use themean heat spread boundary. This boundary provides a tighter approximation to
the stochastic SIR model. This is done without knowing the recovery rate or anything
on the interaction graph, as shown in Fig. 3. Withal, the mean heat spread boundary is
constituent in providing a mean boundary over the stochastic SIR. This is significantly
less than the maximum heat spread boundary over different levels of connectivity in
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the population, as shown in Fig. 2. In fact, when applied to the Facebook interaction
graph [36], the maximum and mean heat spread boundaries provided 20 and 1.66
times greater pandemic spread rate on average compared to the stochastic SIR model,
as shown in Fig. 4.

The usage of heat spread as the boundary for the pandemic spread is useful in real
settings as one canfind the diffusion rate c from local infection spread. For comparison,
this method does not work for obtaining the infection rate (β) and recovery rate (γ ).
Therefore, it is faster and more feasible to obtain the heat spread boundaries to the
pandemic rather than the SIR-based pandemic spread parameters. Thus, while the
SIR model is useful, at the beginning of the pandemic where little to no biological
and epidemiological knowledge is available, one can first bound the pandemic spread
using the diffusion model and later replace it with the SIR one for a more accurate
prediction.

A possible future work can be removing the assumption that the interaction graph is
static over time. Specifically, one can allow the edges of the graph to change according
to some socio-epidemiological logic. This relaxation would lead to a better represen-
tation of the pandemic spread in a population. As a result, this can reveal even better
boundaries to the pandemic spread.
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