Skip to main content
Log in

Film evolution of a spherical soap bubble

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We present a theoretical and numerical study of the time evolution of the film of a soap bubble. Bubbles are assumed to remain approximately spherical with axisymmetric evolution. Inertia is neglected, and the surfactant is assumed insoluble. Applying lubrication theory, we simplify the equations governing the film thickness evolution, surfactant concentration, and tangential fluid velocity. Solving the simplified equations numerically, we examine the long-term behavior of the film and find that most features follow a power law of the form \(\alpha T^\beta \) where T is a dimensionless time parameter. We also predict the location (angle from the top) at which the film is thinnest and thus most likely to initiate bursting and present a similarity solution that predicts the decay rate of the minimum film thickness near the pinch-off location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sha Y, Li Z, Wang Y (2011) The Marangoni convection induced by acetone desorption from the falling soap film. Heat and Mass Transf 48(5):749

    Article  Google Scholar 

  2. Stefanus S, Steers S, Goldburg WI (2011) Direct measurement of turbulent shear. Physica D 240(23):1873–1876

    Article  Google Scholar 

  3. Kostarev K, Viviani A, Zuev A (2006) Thermal and concentrational Marangoni convection at liquid/air bubble interface. J Appl Mech 73:66

    Article  MATH  Google Scholar 

  4. Van Nierop EA, Scheid B, Stone HA (2008) On the thickness of soap films: an alternative to Frankel’s law. J Fluid Mech 602:119–127

    Article  MathSciNet  MATH  Google Scholar 

  5. Karakashev SI (2017) Hydrodynamics of foams. Exp Fluids 58:91

    Article  Google Scholar 

  6. Bremond N, Villermaux E (2005) Bursting thin liquid films. J Fluid Mech 524:121–130

    Article  MATH  Google Scholar 

  7. Lhuissier H, Villermaux E (2009) Soap films burst like flapping flags. Phys Rev Lett 103:054501

    Article  MATH  Google Scholar 

  8. Müller F, Bohley C, Stannarius R (2009) Second sound in bursting freely suspended smectic-A films. Phys Rev E 79:046315

    Article  Google Scholar 

  9. Müller F, Stannarius R (2009) Comparison of the rupture dynamics of smectic bubbles and soap bubbles. Liq Cryst 36(2):133–145

    Article  Google Scholar 

  10. Couder Y, Basdevant C (1986) Experimental and numerical study of vortex couples in two-dimensional flows. J Fluid Mech 173:225–251

    Article  Google Scholar 

  11. Kellay H, Wu XL, Goldberg WI (1998) Vorticity measurements in turbulent soap films. Phys Rev Lett 80:277–280

    Article  Google Scholar 

  12. Belmonte A, Goldberg WI, Kellay H, Rutgers MA, Martin B, Wu XL (1999) Velocity fluctuations in a turbulent soap film: the third moment in two dimensions. Phys Fluids 11:1196–1200

    Article  MATH  Google Scholar 

  13. Kellay H, Goldburg WI (2002) Two-dimensional turbulence: a review of some recent experiments. Rep Prog Phys 65(5):845

    Article  Google Scholar 

  14. Vorobieff P, Rivera M, Ecke RE (1999) Soap film flows: statistics of two-dimensional turbulence. Phys Fluids 11(8):2167–2177

    Article  MathSciNet  MATH  Google Scholar 

  15. Lv W, Zhou H, Lou C, Zhu J (2012) Spatial and temporal film thickness measurement of a soap bubble based on large lateral shearing displacement interferometry. Appl Opt 51(36):8863–8872

    Article  Google Scholar 

  16. Lv W, Zhou H, Zhu J (2012) Thickness measurement of full field soap bubble film in real time based on large lateral shearing displacement interferometry. AIP Conf Proc 1428(1):209–216

    Article  Google Scholar 

  17. Vitry Y, Dorbolo S, Vermant J, Scheid B (2019) Controlling the lifetime of antibubbles. Adv Coll Interface Sci 270:73–86

    Article  Google Scholar 

  18. Huang W, Iseringhausen J, Kneiphof T, Qu Z, Jiang C, Hullin MB (2020) Chemomechanical simulation of soap film flow on spherical bubbles. ACM Trans Graph 39(41):1–13

    Article  Google Scholar 

  19. Ishida S, Synak P, Narita F, Hachisuka T, Wojtan C (2020) A model for soap film dynamics with evolving thickness. ACM Trans Graph 39(31):1–11

    Google Scholar 

  20. Reynolds O (1886) I. On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Proc R Soc Lond 40(242–245):191–203

  21. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69:931–980

    Article  Google Scholar 

  22. Jain RK, Ruckenstein E (1976) Stability of stagnant viscous films on a solid surface. J Colloid Interface Sci 54(1):108–116

    Article  Google Scholar 

  23. Sharma A, Ruckenstein E (1986) An analytical nonlinear theory of thin film rupture and its application to wetting films. J Colloid Interface Sci 113(2):456–479

    Article  Google Scholar 

  24. Oron A, Rosenau P (1989) Nonlinear evolution and breaking of interfacial Rayleigh-Taylor waves. Phys Fluids A 1(7):1155–1165

    Article  MathSciNet  MATH  Google Scholar 

  25. Burelbach JP, Bankoff SG, Davis SH (1988) Nonlinear stability of evaporating/condensing liquid films. J Fluid Mech 195:463–494

    Article  MATH  Google Scholar 

  26. Erneux T, Davis SH (1993) Nonlinear rupture of free films. Phys Fluids A 5(5):1117–1122

    Article  MATH  Google Scholar 

  27. Davis SH (1987) Thermocapillary instabilities. Annu Rev Fluid Mech 19(1):403–435

    Article  MATH  Google Scholar 

  28. Reisfeld B, Bankoff SG (1990) Nonlinear stability of a heated thin liquid film with variable viscosity. Phys Fluids A 2(11):2066–2067

    Article  Google Scholar 

  29. Jensen OE, Grotberg JB (1993) The spreading of heat or soluble surfactant along a thin liquid film. Phys Fluids A 5(1):58–68

    Article  MATH  Google Scholar 

  30. De Wit A, Gallez D, Christov CI (1994) Nonlinear evolution equations for thin liquid films with insoluble surfactants. Phys Fluids 6(10):3256–3266

    Article  MATH  Google Scholar 

  31. Yarin AL, Oron A, Rosenau P (1993) Capillary instability of thin liquid film on a cylinder. Phys Fluids A 5(1):91–98

    Article  MATH  Google Scholar 

  32. Reisfeld B, Bankoff SG (1992) Non-isothermal flow of a liquid film on a horizontal cylinder. J Fluid Mech 236:167–196

    Article  MATH  Google Scholar 

  33. Takagi D, Huppert HE (2010) Flow and instability of thin films on a cylinder and sphere. J Fluid Mech 647:221–238

    Article  MathSciNet  MATH  Google Scholar 

  34. Blawzdziewicz J, Wajnryb E, Loewenberg M (1999) Hydrodynamic interactions and collision efficiencies of spherical drops covered with an incompressible surfactant film. J Fluid Mech 395:29–59

    Article  MATH  Google Scholar 

  35. Sett S, Sinha-Ray S, Yarin AL (2013) Gravitational drainage of foam films. Langmuir 29(16):4934–4947

    Article  Google Scholar 

  36. Leal LG (2007) Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  37. Chang CH, Franses EI (1992) Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air/water interface. Colloids Surf 69(2–3):189–201

    Article  Google Scholar 

  38. Eggleton CD, Stebe KJ (1998) An adsorption-desorption-controled surfactant on a deforming droplet. J Colloid Interface Sci 208:68–80

    Article  Google Scholar 

  39. Cristini V, Blawzdziewicz J, Loewenberg M (1998) Near-contact motion of surfactant-covered spherical drops. J Fluid Mech 366:259–287

    Article  MATH  Google Scholar 

  40. Lyu S (2003) Block copolymers suppressing droplet coalescence through stopping film rupture. Macromolecules 36(26):10052–10055

    Article  Google Scholar 

  41. Vannozzi C (2012) Coalescence of surfactant covered drops in extensional flows: Effects of the interfacial diffusivity. Phys Fluids 24:08

    Article  Google Scholar 

  42. Cohen C, Darbois Texier B, Reyssat E, Snoeijer JH, Quéré D, Clanet C (2017) On the shape of giant soap bubbles. Proc Natl Acad Sci 114(10):2515–2519

    Article  MathSciNet  MATH  Google Scholar 

  43. Sett S, Sahu RP, Sinha-Ray S, Yarin AL (2014) Superspreaders versus “cousin’’ non-superspreaders: disjoining pressure in gravitational film drainage. Langmuir 30(10):2619–2631

    Article  Google Scholar 

  44. De Gennes PG, Brochard-Wyart F, Quéré D (2002) Gouttes, bulles perles et ondes. Belin, Paris

    Google Scholar 

  45. Ungarish M (2009) An introduction to gravity currents and intrusions. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  46. Singh G, Hirasaki GJ, Miller CA (1996) Effect of material properties on the drainage of symmetric, plane parallel, mobile foam films. J Colloid Interface Sci 184:92–105

    Article  Google Scholar 

  47. Yeo LY, Matar OK, Perez ES, Hewitt GF (2001) The dynamics of Marangoni-driven local film drainage between two drops. J Colloid Interface Sci 241(1):233–247

    Article  Google Scholar 

  48. Bergeron V (1999) Forces and structure in thin liquid soap films. J Phys: Condens Matter 11(19):R215–R238

    Google Scholar 

  49. Constantin P, Dupont TF, Goldstein RE, Kadanoff LP, Shelley MJ, Zhou SM (1993) Droplet breakup in a model of the Hele-Shaw cell. Phys Rev E 47(6):4169–4181

    Article  MathSciNet  Google Scholar 

  50. Bertozzi AL, Brenner MP, Dupont TF, Kadanoff LP (1994) Singularities and similarities in interface flows. Springer, New York, pp 155–208

    MATH  Google Scholar 

  51. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–930

    Article  MATH  Google Scholar 

  52. Vitasari D, Grassia P, Martin P (2015) Surfactant transport onto a foam film in the presence of surface viscous stress. Appl Math Model 40:10

    MathSciNet  MATH  Google Scholar 

  53. Bhakta A, Ruckenstein E (1997) Decay of standing foams: drainage, coalescence and collapse. Adv Colloid Interface Sci 70:1–124

    Article  Google Scholar 

  54. Burgess JM, Bizon C, McCormick WD, Swift JB, Swinney HL (1999) Instability of the Kolmogorov flow in a soap film. Phys Rev E 60(1):715–21

    Article  Google Scholar 

  55. Wegener PP, Parlange JY (1973) Spherical-cap bubbles. Annu Rev Fluid Mech 5(1):79–100

    Article  Google Scholar 

  56. Byakova AV, Gnyloskurenko SV, Nakamura T, Raychenko OI (2003) Influence of wetting conditions on bubble formation at orifice in an inviscid liquid: Mechanism of bubble evolution. Colloids Surf A 229(1–3):19–32

    Article  Google Scholar 

  57. Abbena E, Salamon S, Gray A (2006) Modern differential geometry of curves and surfaces with mathematica, 3rd edn. Chapman & Hall/CRC, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Martin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Soluble surfactant

The surfactant concentration in the film, c, (in mass per volume) satisfies an advection-diffusion equation, given, in dimensional form, as

$$\begin{aligned} \frac{\partial c}{\partial t}+{\bar{\nabla }}\cdot ({\mathbf {u}}c)=k_\mathrm{c}{\bar{\nabla }}^2c, \end{aligned}$$
(52)

where \(k_\mathrm{c}\) is the bulk diffusivity and \({\bar{\nabla }}\) is a dimensional gradient. In the presence of sorption, Eq. (4) is supplemented with a bulk exchange term [37, 38],

$$\begin{aligned} \frac{\partial \gamma }{\partial t}+{\bar{\nabla }}_\mathrm{s}\cdot ({\mathbf {u}}_\mathrm{s}\gamma ) =k_\Gamma {\bar{\nabla }}_\mathrm{s}^2\gamma +j(\gamma ,c_\mathrm{s}), \end{aligned}$$
(53)

where \(k_\Gamma \) is a diffusivity of surface surfactant. Combining Eq. (52) with the exchange term, we obtain a boundary condition on the bulk concentration,

$$\begin{aligned} j(\gamma ,c_\mathrm{s})=-k_\mathrm{c}({\mathbf {n}}\cdot {\bar{\nabla }})c_\mathrm{s}, \end{aligned}$$
(54)

where \({\mathbf {n}}\) is the outward unit normal at h. To describe the bulk exchange term, we can apply the constitutive relation [37, 38]

$$\begin{aligned} -j(\gamma ,c_\mathrm{s})=k_{\mathrm {ad}}c_\mathrm{s}\bigg (1-\frac{\gamma }{\gamma _\infty }\bigg )-k_{\mathrm {de}}\gamma , \end{aligned}$$
(55)

where \(k_{\mathrm {ad}}\) and \(k_{\mathrm {de}}\) are kinetic constants of adsorption and desorption, with units of \(\mathrm {m}/\mathrm {s}\) and \(\mathrm {s}^{-1}\), respectively.

To obtain dimensionless equations, we define \(C=c/c_0\) where \(c_0\) is the equilibrium bulk concentration. The exchange term in Eq. (55) rescales to \(J(\Gamma ,C_\mathrm{s})=j(\gamma ,C_\mathrm{s})/(\gamma _\infty u_0/r_0)\). To describe it more precisely, we write the gradient of the bulk concentration in coordinates, \((\varphi ,R)\):

$$\begin{aligned}{\bar{\nabla }}c=\left( \frac{1}{r}\frac{\partial c}{\partial \varphi },\frac{\partial c}{\partial r}\right) =\frac{c_0}{r_0}\left( \frac{\partial C}{\partial \varphi },\frac{1}{\varepsilon }\frac{\partial C}{\partial R}\right) ,\end{aligned}$$

so that in rescaled coordinate form, Eq. (54) becomes, on the outer film,

$$\begin{aligned} -J(\Gamma ,C_\mathrm{s})=\frac{1}{L\mathrm {Pe}_\mathrm {c}}\left( \frac{\partial C}{\partial R}\bigg |_\mathrm{s} -\varepsilon ^2\frac{\partial H}{\partial \varphi }\frac{\partial C}{\partial \varphi }\bigg |_\mathrm{s}\right) \left( 1+\varepsilon ^2\Big (\frac{\partial H}{\partial \varphi }\Big )^2\right) ^{-1/2}=\frac{1}{L\mathrm {Pe}_\mathrm {c}}\frac{\partial C}{\partial R}\bigg |_\mathrm{s}+{\mathcal {O}}(\varepsilon ), \end{aligned}$$
(56)

where L is a dimensionless surfactant depletion length \(L=\gamma _\infty /h_0c_0\). The expression on the inner film is the same but with the opposite sign of the R derivative. Rescaling, we obtain

$$\begin{aligned} J(\Gamma ,C_\mathrm{s})=-\mathrm {Bi}\left( \mathrm {Ad}C_\mathrm{s}(1-\Gamma )-\Gamma \right) , \end{aligned}$$
(57)

where we have introduced a Biot number and an adsorption number

$$\begin{aligned} \mathrm {Bi}=\frac{r_0k_{\mathrm {de}}}{u_0}\quad \text {and}\quad \mathrm {Ad}=\frac{k_{\mathrm {ad}}c_0}{k_{\mathrm {de}}\gamma _\infty }. \end{aligned}$$

Then, if we discard higher order terms, Eqs. (52) and (53) rescale to

$$\begin{aligned} \frac{\partial C}{\partial T}+\frac{\partial }{\partial R}\left( VC\right) +\frac{1}{\sin \varphi }\frac{\partial }{\partial \varphi }(UC\sin \varphi ) =\frac{1}{\mathrm {Pe}_\mathrm {c}}\frac{\partial ^2 C}{\partial R^2}, \end{aligned}$$
(58)

and

$$\begin{aligned} \frac{\partial \Gamma }{\partial T}+\dfrac{1}{\sin \varphi }\frac{\partial }{\partial \varphi }(U_\mathrm{s}\Gamma \sin \varphi ) =\frac{1}{\mathrm {Pe}_\Gamma \sin \varphi }\frac{\partial }{\partial \varphi }\left( \sin \varphi \frac{\partial \Gamma }{\partial \varphi }\right) +J(\Gamma ,C_\mathrm{s}), \end{aligned}$$
(59)

where

$$\begin{aligned} \mathrm {Pe}_\mathrm {c}=\frac{\varepsilon ^2r_0u_0}{k_\mathrm{c}}\quad \text {and}\quad \mathrm {Pe}_\Gamma =\frac{r_0u_0}{k_\Gamma }, \end{aligned}$$
(60)

are Péclet numbers associated to the bulk and to the surface, respectively. Note that the factor of \(\varepsilon ^2\) in \(\mathrm {Pe}_\mathrm {c}\) ensures that \(\mathrm {Pe}_\mathrm {c}\) is likely much smaller than \(\mathrm {Pe}_\Gamma \). In general, surface diffusion, i.e., \(1/\mathrm {Pe}_\Gamma \), tends to be very small. The symmetry of the system results in the condition \(\frac{\partial C}{\partial R}\big |_{R=0}=0\) at the center of the film.

Proceeding in a manner similar to Sect. 2.5, we integrate the bulk surfactant equation, Eq. (58), across the film, using Eq. (17) and the boundary conditions (21) and (56). We obtain

$$\begin{aligned} \frac{\partial }{\partial T}\int _0^HC\,\mathrm{d}R+\dfrac{1}{\sin \varphi }\frac{\partial }{\partial \varphi }\bigg (\sin \varphi \int _0^HUC\,\mathrm{d}R\bigg )=-LJ(\Gamma ,C_\mathrm{s}). \end{aligned}$$
(61)

Appendix B: The derivation of equations (19) and (20)

Here, we derive equations (19) and (20) from Eq. (16). In axisymmetric spherical coordinates, the components of the stress tensor are given by

$$\begin{aligned} \tau _{rr}&=-p+2\mu \frac{\partial v}{\partial r}, \end{aligned}$$
(62)
$$\begin{aligned} \tau _{\varphi \varphi }&=-p+2\mu \left( \frac{1}{r}\frac{\partial u}{\partial \varphi } +\frac{v}{r}\right) \quad \text {and}\quad \end{aligned}$$
(63)
$$\begin{aligned} \tau _{r\varphi }&=\mu \left( \frac{1}{r}\frac{\partial v}{\partial \varphi }+\frac{\partial u}{\partial r} -\frac{v}{r}\right) . \end{aligned}$$
(64)

In dimensionless form, the components of the stress tensor rescale as

$$\begin{aligned} T_{rr}&=-P+{\mathcal {O}}(\varepsilon ^2), \end{aligned}$$
(65)
$$\begin{aligned} T_{\varphi \varphi }&=-P+{\mathcal {O}}(\varepsilon ^2)\quad \text {and}\quad \end{aligned}$$
(66)
$$\begin{aligned} T_{r\varphi }&=\varepsilon \frac{\partial U}{\partial R}+{\mathcal {O}}(\varepsilon ^2). \end{aligned}$$
(67)

Now we write the outward unit normal, \({\mathbf {n}}\), and the unit tangent, \({\mathbf {t}}\), in terms of \({\mathbf {r}}=r(\sin \varphi \cos \theta ,\sin \varphi \sin \theta ,\cos \varphi )\),

$$\begin{aligned}&{\mathbf {t}}=\left\| \frac{\partial {\mathbf {r}}}{\partial \varphi }\right\| ^{-1}\frac{\partial {\mathbf {r}}}{\partial \varphi }=\dfrac{\frac{\partial r}{\partial \varphi }{\hat{{\mathbf {r}}}}+r\hat{\varvec{\varphi }}}{\sqrt{\big (\frac{\partial r}{\partial \varphi }\big )^2+r^2}} =\varepsilon \frac{\partial H}{\partial \varphi }{\hat{{\mathbf {r}}}}+\hat{\varvec{\varphi }}+{\mathcal {O}}(\varepsilon ^2), \end{aligned}$$
(68)
$$\begin{aligned}&\quad \text {and}\quad {\mathbf {n}}=\left\| \frac{\partial {\mathbf {r}}}{\partial \varphi }\times \frac{\partial {\mathbf {r}}}{\partial \theta }\right\| ^{-1}\frac{\partial {\mathbf {r}}}{\partial \varphi }\times \frac{\partial {\mathbf {r}}}{\partial \theta } =\dfrac{-\frac{\partial {\mathbf {r}}}{\partial \varphi }\hat{\varvec{\varphi }}+r{\hat{{\mathbf {r}}}}}{\sqrt{\big (\frac{\partial r}{\partial \varphi }\big )^2+r^2}} ={\hat{{\mathbf {r}}}}-\varepsilon \frac{\partial H}{\partial \varphi }\hat{\varvec{\varphi }}+{\mathcal {O}}(\varepsilon ^2), \end{aligned}$$
(69)

where \({\hat{{\mathbf {r}}}}\) is the unit vector in the radial direction and \(\hat{\varvec{\varphi }}\) is the unit vector in the angular direction. Now, we calculate the total curvature (the sum of the two principal curvatures), following [57]

$$\begin{aligned} \kappa =\dfrac{\det \left( \frac{\partial ^2 {\mathbf {r}}}{\partial \varphi ^2}\frac{\partial {\mathbf {r}}}{\partial \varphi }\frac{\partial {\mathbf {r}}}{\partial \theta }\right) \left| \frac{\partial {\mathbf {r}}}{\partial \theta }\right| ^2-2\det (\frac{\partial ^2 {\mathbf {r}}}{\partial \varphi \partial \theta }\frac{\partial {\mathbf {r}}}{\partial \varphi }\frac{\partial {\mathbf {r}}}{\partial \theta })\left( \frac{\partial {\mathbf {r}}}{\partial \varphi }\cdot \frac{\partial {\mathbf {r}}}{\partial \theta }\right) +\det (\frac{\partial ^2 {\mathbf {r}}}{\partial \theta ^2}\frac{\partial {\mathbf {r}}}{\partial \varphi }\frac{\partial {\mathbf {r}}}{\partial \theta })\left| \frac{\partial {\mathbf {r}}}{\partial \varphi }\right| ^2}{\left( \left| \frac{\partial {\mathbf {r}}}{\partial \varphi }\right| ^2\left| \frac{\partial {\mathbf {r}}}{\partial \theta }\right| ^2-\left( \frac{\partial {\mathbf {r}}}{\partial \varphi }\cdot \frac{\partial {\mathbf {r}}}{\partial \theta }\right) ^2\right) ^{3/2}}\quad . \end{aligned}$$
(70)

We obtain

$$\begin{aligned} K=r_0\kappa =-2+\varepsilon \left( \frac{\partial ^2 H}{\partial \varphi ^2}+\frac{\partial H}{\partial \varphi }\cot \varphi +2H\right) +{\mathcal {O}}(\varepsilon ^2). \end{aligned}$$
(71)

Next, we write Eq. (16) explicitly in normal and tangential components, using Eqs. (68) and (69), and keeping in mind the form of the Cauchy stress tensor,

$$\begin{aligned}{\mathbf {T}}=T_{rr}{\hat{{\mathbf {r}}}}\otimes {\hat{{\mathbf {r}}}}+T_{r\varphi }{\hat{{\mathbf {r}}}}\otimes \hat{\varvec{\varphi }} +T_{\varphi r}\hat{\varvec{\varphi }}\otimes {\hat{{\mathbf {r}}}}+T_{\varphi \varphi }\hat{\varvec{\varphi }}\otimes \hat{\varvec{\varphi }}\end{aligned}$$

to obtain

$$\begin{aligned} {\mathbf {n}}\cdot {\mathbf {T}}\cdot {\mathbf {n}}&=\bigg (\varepsilon ^2\Big (\frac{\partial H}{\partial \varphi }\Big )^2T_{\varphi \varphi }-2\varepsilon \frac{\partial H}{\partial \varphi }T_{r\varphi } +T_{rr}\bigg )\bigg /\left( 1+\varepsilon ^2\Big (\frac{\partial H}{\partial \varphi }\Big )^2\right) =\Sigma \frac{\partial ^2 H}{\partial \varphi ^2}+{\mathcal {O}}(\varepsilon )\quad \text {and}\quad \\ {\mathbf {t}}\cdot {\mathbf {T}}\cdot {\mathbf {n}}&=\bigg (\varepsilon \frac{\partial H}{\partial \varphi }(T_{rr}-T_{\varphi \varphi }) +T_{r\varphi }\bigg (1-\varepsilon ^2\Big (\frac{\partial H}{\partial \varphi }\Big )^2\bigg )\bigg )\bigg /\left( 1+\varepsilon ^2\Big (\frac{\partial H}{\partial \varphi }\Big )^2\right) =\frac{1}{\varepsilon }\frac{\partial \Sigma }{\partial \varphi }+{\mathcal {O}}(\varepsilon ). \end{aligned}$$

Substituting in Eqs. (65) and (67) and taking leading order terms, we obtain Eqs. (19) and (20).

Appendix C: Analysis of the large Marangoni number limit

For \(\mathrm {El}={\mathcal {O}}(1)\) and \(\mathrm {Mg}={\mathcal {O}}(\varepsilon ^{-2})\gg 1\), we expand \(\Gamma \), \(U_\mathrm{s}\), and H in powers of \(\mathrm {Mg}^{-1}\),

$$\begin{aligned} \begin{aligned}&\Gamma (T,\varphi ,\mathrm {Mg})=\Gamma _{(0)}(T,\varphi )+\mathrm {Mg}^{-1}\Gamma _{(1)}(T,\varphi )+{\mathcal {O}}(\mathrm {Mg}^{-2}),\\&U_\mathrm{s}(T,\varphi ,\mathrm {Mg})=U_{\mathrm{s}(0)}(T,\varphi )+\mathrm {Mg}^{-1}U_{\mathrm{s}(1)}(T,\varphi )+{\mathcal {O}}(\mathrm {Mg}^{-2}),\\&\quad \text {and}\quad H(T,\varphi ,\mathrm {Mg})=H_{(0)}(T,\varphi )+\mathrm {Mg}^{-1}H_{(1)}(T,\varphi )+{\mathcal {O}}(\mathrm {Mg}^{-2}). \end{aligned} \end{aligned}$$
(72)

Substituting this result into Eq. (28) and Taylor expanding the logarithm, we obtain

$$\begin{aligned} \mathrm {Mg}^{-1}\frac{\partial U}{\partial R}\bigg |_{R=H}=\frac{\partial }{\partial \varphi }\left( \log (1-\Gamma _{(0)})-\mathrm {Mg}^{-1}\dfrac{\Gamma _{(1)}}{1-\Gamma _{(0)}}\right) +{\mathcal {O}}(\mathrm {Mg}^{-2}). \end{aligned}$$
(73)

The leading order term in this equation implies that \(\Gamma _{(0)}\) is independent of \(\varphi \). In fact, surfactant conservation, combined with our assumption of insolubility, additionally implies that \(\Gamma _{(0)}\) is constant in time, so \(\Gamma _{(0)}={\bar{\Gamma }}\), where \({\bar{\Gamma }}\) is the average surfactant concentration on the film.

The \({\mathcal {O}}(\mathrm {Mg}^{-1})\) terms in Eq. (73) can be substituted into the radial derivative of Eq. (25), to obtain

$$\begin{aligned} \dfrac{1}{1-{\bar{\Gamma }}}\frac{\partial \Gamma _1}{\partial \varphi }=H_{(0)}\left( \frac{\partial P}{\partial \varphi }-\mathrm {Bo}\sin \varphi \right) . \end{aligned}$$
(74)

Substituting Eq. (72) into Eq. (14), we find that

$$\begin{aligned} \Sigma =1+\mathrm {El}\log (1-{\bar{\Gamma }})+\dfrac{\mathrm {El}\Gamma _1(T,\varphi )}{\mathrm {Mg}(1-{\bar{\Gamma }})}+{\mathcal {O}}(\mathrm {Mg}^{-2})=\Sigma _{\mathrm {eq}}+{\mathcal {O}}(\mathrm {Mg}^{-1}) \end{aligned}$$

where \(\Sigma _{\mathrm {eq}}=1+\mathrm {El}\log (1-{\bar{\Gamma }})\) is the equilibrium surface tension of the film. Thus, we can substitute Eq. (19) into Eq. (74), to find

$$\begin{aligned} \frac{\partial \Gamma _{(1)}}{\partial \varphi }=-(1-{\bar{\Gamma }})H_{(0)}\left( \Sigma _{\mathrm {eq}}\frac{\partial }{\partial \varphi }\left( \frac{\partial ^2 H_{(0)}}{\partial \varphi ^2}+\frac{\partial H_{(0)}}{\partial \varphi }\cot \varphi +2H_{(0)}\right) +\mathrm {Bo}\sin \varphi \right) . \end{aligned}$$
(75)

Then, the \({\mathcal {O}}(\mathrm {Mg}^{-1})\) terms yield the equation

$$\begin{aligned} \frac{\partial \Gamma _{(1)}}{\partial T}+\dfrac{\Gamma _{(0)}}{\sin \varphi }\frac{\partial }{\partial \varphi }(U_{\mathrm{s}(1)}\sin \varphi )=0. \end{aligned}$$
(76)

By defining a new rescaled Bond number, \(\mathrm {Bo}_{\mathrm {eq}}\) (32) in terms of the equilibrium surface tension \(\Sigma _{\mathrm {eq}}\) rather than the surfactant-free surface tension, and a new timescale, \({\bar{T}}\), based on the equilibrium surface tension, we obtain an equation similar to Eq. (30). Substituting Eq. (72) into Eq. (13), and taking the leading order terms only, we obtain \(U_{\mathrm{s}(0)}=0\). Dropping the subscript (0) in \(H_{(0)}\), we have (33). Finally, although our analysis assumes \(\mathrm {Mg}={\mathcal {O}}(\varepsilon ^{-2})\), our numerical results indicate that \(U_\mathrm{s}\) is negligible even for moderate values of \(\mathrm {Mg}\) (see Fig. 10).

Appendix D: Exact root of Eq. (47)

If we define \(\xi =1+\cos \varphi _\mathrm{c}\), then Eq. (47) takes the form

$$\begin{aligned} \dfrac{24}{\mathrm {Bo}}=\dfrac{\xi ^3}{2-\xi }\quad \text {or}\quad \xi ^3+\dfrac{24}{\mathrm {Bo}}\xi -\dfrac{48}{\mathrm {Bo}}=0. \end{aligned}$$

This is a depressed cubic with coefficients \(24/\mathrm {Bo}\) and \(-48/\mathrm {Bo}\). The discriminant of the equation is then

$$\begin{aligned} \Delta =-4\left( \dfrac{24}{\mathrm {Bo}}\right) ^2\left( 27+\dfrac{96}{\mathrm {Bo}}\right) . \end{aligned}$$

For \(\mathrm {Bo}>0\), this discriminant is always negative, guaranteeing a single real root. That root then yields

$$\begin{aligned} \cos \varphi _\mathrm{c}=\left( \dfrac{24}{\mathrm {Bo}}\right) ^{1/3}\left( \left( \sqrt{1+\dfrac{8}{9\mathrm {Bo}}}+1\right) ^{1/3}-\left( \sqrt{1+\dfrac{8}{9\mathrm {Bo}}}-1\right) ^{1/3}\right) -1 \end{aligned}$$
(77)

Note that this is confined to the interval \((-1,1)\), and is monotonic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, D.W., Blanchette, F. Film evolution of a spherical soap bubble. J Eng Math 137, 1 (2022). https://doi.org/10.1007/s10665-022-10241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-022-10241-8

Keywords

Navigation