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Longitudinal flow in superhydrophobic channels
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Abstract Analytical expressions are derived for the longitudinal flow in a superhydrophobic microchannel where
flat menisci in the Cassie state have partially invaded the grooves between no-slip blades. Using these solutions, the
effective slip lengths are computed and compared with recent analytical results for unbounded shear flow over the
same class of surfaces. Expressions for the first-order corrections to these effective slip lengths when the menisci
are weakly curved are also derived. A mathematical connection to superhydrophobic channel flows where the flat
menisci are still pinned to the tops of the pillars is also made, resulting in novel analytical expressions for those
solutions too.

Keywords Conformal maps · Mixed boundary value problem · Prime function · Superhydrophobic surfaces

1 Introduction

Superhydrophobic surfaces, or SHS, can dramatically reduce flow resistance in the manipulation of small volumes
of fluid in microchannel devices [1,2]. At small scales, surface tension allows interfaces or menisci to span the
gaps between microstructural protrusions that prevent fluid from fully penetrating interstitial regions. This leads to
trapped gas pockets and enhanced slip over the spanning menisci. This so-called Cassie state can prove difficult to
maintain and requires careful pressure control in many situations to prevent reversion to a fully wetted, or Wenzel,
state. The use of textured groove sidewalls with reentrant and doubly reentrant pillar designs has been proposed in
recent work [3–6] as a means to improve the robustness of the Cassie state. In many of these configurations, the
menisci have depinned from the tops of the pillars and have partially invaded the grooves between pillars.

The quantification of the slip properties of superhydrophobic surfaces has been an area of much recent activity.
Philip [7] provides explicit solutions to several mixed boundary value problems relevant to the mixture of no-slip
and no-shear surfaces, which provide a good model of flow over superhydrophobic surfaces. Philip’s solutions are
relevant when flat interfaces are flush with interspersed flat no-slip surfaces, a feature shared with later studies [8].
Sbragaglia and Prosperetti [9] examined how weak meniscus curvature affects slip by solving the relevant mixed
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Fig. 1 A bounded channel
flow between two
superhydrophobic surfaces
making up the top and
bottom of the channel where
the menisci have invaded
the grooves

boundary value problems. Their study was reappraised and extended by Crowdy [10] who showed that their slip
length corrections can be found instead using integral identities, or “reciprocal theorems,” together with Philip’s
exact solutions for flat menisci. In practice, this meniscus curvature is caused by pressure differences between the
trapped gas and the working fluid.

As discussed above, another circumstance that can often occur is the depinning of the menisci from the top
of the grating [5,11]. This could be due to pressure fluctuations or mass transfer out of the cavities, among other
reasons (see [12,13] for more details). This causes the menisci to descend into the grooves and partially wet the
cavities, a scenario that has received much less attention in the theoretical literature. Lee et al. [2] have pointed
out that meniscus depinning and cavity invasion are significantly more deleterious to slip than mere curving of the
menisci without depinning [14]. Several authors have carried out numerical studies to quantify slip for partially
filled cavities [15–17]. Crowdy [18,19] has derived several analytical results that quantify the effective slip for
semi-infinite shear over grooved surfaces when the menisci have partially invaded the cavities.

The purpose of the present paper is to extend the recent work of [19], which involves semi-infinite shear over
a single superhydrophobic surface, to the case of a bounded channel flow between two superhydrophobic surfaces
making up the “top” and “bottom” of the channel, where fluid flows longitudinally parallel to the grooves. Figure 1
shows a schematic.

A new theoretical method is presented for obtaining the velocity field and the effective slip length for the flow
in such a superhydrophobic channel. The main result of this paper is to show that a parametric solution for the flow
(0, 0, wF (x, y)) driven by a constant pressure gradient S over flat menisci that have partially invaded the grooves
as shown in Fig. 1 is

wF (x, y) = S
{
x

(
L − x

2

)
+ L(H + G)

π2 Im
∮

|ζ ′|=1

ω(ζ ′, θ1(∞))

ω(ζ ′, θ2(∞))
d log ω(ζ ′, ζ )

}
,

z = x + iy = Z(ζ ) = −H + G

π
log

ω(ζ, θ1(∞))

ω(ζ, θ2(∞))
,

(1)

where the variable ζ sits in an appropriate circular domain Dζ shown in Fig. 3, and ω(., .) is a readily computable
special function, known as the prime function [20], naturally associated with Dζ . The function z = Z(ζ ) is a
conformal mapping that transplants Dζ to a period window of the flow as indicated in Fig. 3. Formula (1) is
almost explicit, but not quite: given the geometric parameters L , H , and G characterizing the surface geometry, two
non-linear equations must be solved numerically for two parameters, denoted by δ and q shown in Fig. 3. These
furnish the center and radius, respectively, of the circular boundaries of Dζ , and are needed to define two functions
{θ j (.)| j = 1, 2}, which are simple Möbius maps as given in (30). Having derived the above expression for the flow,
its features and slip properties are easily calculated. As G/L → ∞, the calculated normalized slip lengths agree
well with explicit formulas for the slip lengths of a semi-infinite shear flow where the menisci between the walls
have invaded the grooves [19].

The structure of the paper is as follows. Section 2 sets out the problem statement and shows how it can be reduced
to finding a single harmonic function in a typical period window. Section 3 discusses how to define an effective slip
length associated with the flow; such diagnostics are used by applied scientists to quantify the slipperiness of the
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Fig. 2 (i) A superhydrophobic channel flow with flat menisci. (ii) A superhydrophobic channel flow with weakly curved menisci

surface [1,2]. The main tools needed to construct the flow solution, namely a conformal mapping from a circular
preimage domain in a parametric ζ plane and an associated special function called the prime function [20], are
described in Sect. 4. Then, in Sect. 5, those tools are used to construct the solution reported in (1). With the solution at
hand, Sect. 6 gives a characterization of the flows and a calculation of the associated effective slip lengths discussed
in Sect. 3. In Sect. 7 it is shown that, given the flow solution over partially invaded grooves where the menisci are
flat, integral expressions for the first-order corrections to the slip lengths for weakly curved menisci can be written
down. Finally, an intriguing mathematical observation is made in Sect. 8, connecting the problem considered here
to a similar longitudinal channel flow over a symmetric superhydrophobic surface where the menisci are still pinned
at the tops of the pillars and the pillars have variable width. An analytical solution to the latter problem has been
given by [21], and the observations of Sect. 8 make a connection between the analysis of this paper and that earlier
work.

2 Channel flow with partially invaded menisci

The challenge is to calculate the longitudinal flow (0, 0, wF (x, y)) in a typical period window of the superhy-
drophobic channel shown in Fig. 2. The origin in the cross-sectional (x, y) plane is taken at the intersection of the
centerlines shown in Fig. 3. The period of the geometry in the x-direction is 2L , and the distance of displacement
of the flat meniscus below to tips of the sidewalls is H . The height of the channel, or distance between the sidewall
gratings, is 2G as shown in Figs. 3 and 9. We define � as the whole period window bounded by partially invaded
grooves as shown in Figs. 3 and 4.

Following the approach taken in [19,21,22], we assume that the fluid satisfies a no-slip condition on the walls and
a no-shear condition on each meniscus. At first, it is assumed that the menisci are flat. Steady flow in the Z -direction
along the channel is driven by a constant pressure gradient ∂p/∂Z , where p is the pressure of the liquid. Let D
denote the half-period window of the channel shown in Fig. 3. Then wF (x, y) satisfies the following boundary
value problem:

∇2wF = −S, (x, y) ∈ D, (2)

∂wF

∂y
= 0, 0 ≤ x ≤ L , y = ±(H + G), (3)

∂wF

∂x
= 0, x = 0, 0 ≤ |y| ≤ G, (4)

∂wF

∂x
= 0, x = L , 0 ≤ |y| ≤ H + G, (5)
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Fig. 3 Conformal map from the upper-half unit disc with a circular hole to a half-period of the channel flow

wF = 0, x = 0, G ≤ |y| ≤ H + G. (6)

The boundary conditions (4) and (5) follow from the reflectional symmetry of the period window region.
It is convenient to define a new variable ŵ(x, y) via

wF = wP + Sŵ, wP (x, y) ≡ Sx
(
L − x

2

)
. (7)

The corresponding boundary value problem for ŵ is then

∇2ŵ = 0, (x, y) ∈ D, (8)

∂ŵ

∂y
= 0, 0 ≤ x ≤ L , y = ±(H + G), (9)

∂ŵ

∂x
= −L , x = 0, 0 ≤ |y| ≤ G, (10)

∂ŵ

∂x
= 0, x = L , 0 ≤ |y| ≤ H + G, (11)

ŵ = 0, x = 0, G ≤ |y| ≤ H + G. (12)

Since ŵ(x, y) is a harmonic function in D we aim to determine its analytic extension h(z) ≡ χ + iŵ, where χ is
the harmonic conjugate of ŵ.

Use of the Cauchy–Riemann equations and (10) implies that

∂χ

∂y
= L , or χ = Ly + c1, x = 0, 0 ≤ |y| ≤ G. (13)

Similar arguments can be used to show that since ∂ŵ/∂x = 0 on x = L , 0 ≤ |y| ≤ H + G and since ∂ŵ/∂y = 0
on 0 ≤ x ≤ L , y = ±(H + G), then

χ = c2, x = L , 0 ≤ |y| ≤ H + G, (14)

and

χ = c±, 0 ≤ x ≤ L , y = ±(H + G), (15)

where c2, c± ∈ R. Since χ is defined up to a constant, we set c2 = 0 without loss of generality. The continuity of
χ around the boundary of D then requires that c± = c2 = 0. An integral relation also reveals that c1 = 0. To see
this, consider the upper-left quadrant of �, denoted by D′ := {(x, y) : x ∈ [0, L], y ∈ [0, H + G]}. Due to the
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symmetry of the flow about y = 0, ∂ŵ/∂y = 0 on the lower boundary of D′, i.e., {(x, y) : x ∈ [0, L], y = 0}.
Thus

0 =
∫
D′

∇2ŵ d A =
∮

∂D′
∂ŵ

∂n
ds =

∫ H+G

G

∂ŵ

∂x
dy − LG. (16)

Use of the Cauchy–Riemann equations gives

0 = −
∫ H+G

G

∂χ

∂y
dy − LG = χ(G) − χ(H + G) − LG

= (LG + c1) − c2 − LG = c1,

(17)

where we have used the fact that c2 = 0. It follows from (13) that

χ = Ly, x = 0, 0 ≤ y ≤ G. (18)

3 Calculation of the slip lengths

The formula (1) for the velocity profile will be derived in Sects. 4 and 5. Once found, the effective slip lengths
associated with the flow can readily be determined. We now discuss the calculation of these quantities.

We follow the approach expounded in [22] where reciprocity arguments are proposed to determine the volume
flux associated with flows over superhydrophobic surfaces of this kind.

For

QF ≡
∫

�

wF d A =
∫

�

(wP + Sŵ) d A = 4

3
S(H + G)L3 + S

∫
�

ŵ d A, (19)

where the first term has been retrieved by elementary surface integration, and the second term will be evaluated
using Green’s second identity. Noting that∫

�

(
wP∇2ŵ − ŵ∇2wP

)
d A =

∮
∂�

(
wP

∂ŵ

∂n
− ŵ

∂wP

∂n

)
ds, (20)

the partial differential equations satisfied by, and symmetry in y = 0, of wF and wP reduce this to

S
∫

�

ŵ d A = 4S
∫ G

0
ŵ(0, y)

dwP

dx
(0, y) dy = 4SL

∫ G

0
ŵ(0, y) dy, (21)

and thus

QF = 4

3
S(H + G)L3 + 4SL

∫ G

0
ŵ(0, y) dy. (22)

Next, we compare this flux with that of the Navier-slip problem. This is the standard procedure for calculating
slip lengths in channels used in [21,23]. The comparison flow that we have chosen imposes a Navier-slip condition
on a flat boundary taken at the level of the menisci as shown in Fig. 4. We set the origin as the center of a period
window. The flow field wλ(x, y) in the period window �λ satisfies

∇2wλ = −S, (x, y) ∈ �λ, (23)

wλ = λ
∂wλ

∂n
, 0 ≤ |x | ≤ L , y = ±(H + G), (24)

∂wλ

∂x
= 0, x = ±L , 0 ≤ |y| ≤ H + G, (25)

where n denotes the normal pointing into the liquid in this case. Here, λ is the slip length in question. This problem
is solved by

wλ(x, y) = wP,λ(x, y) + λS(H + G), wP,λ(x, y) ≡ S
2

[(H + G)2 − y2] (26)
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Fig. 4 The definition of the effective slip length for a channel flow. The flow is compared to a Navier-slip flow with walls taken at the
level of the invaded menisci

which gives the flux

Qλ ≡
∫

�λ

wλ d A = 4

3
S(H + G)3L + 4λS(H + G)2L . (27)

Comparing (27) and (22) then yields

λ = L2

3(H + G)
− H + G

3
+ 1

(H + G)2

∫ G

0
ŵ(0, y) dy. (28)

4 Conformal mapping and the prime function

Let Dζ be the circular domain in a parametric complex ζ plane interior to the unit circle, denoted by C0, but exterior
to two circles C1 and C2 each of radius q and having centers at ±δ, where δ is purely imaginary as shown in Fig. 3.
It will be convenient later to denote by C+

0 the semicircular portion of C0 that is in the upper-half ζ plane, and by
C−

0 the semicircle in the lower-half ζ plane.
Now introduce the holomorphic conformal mapping function

Z(ζ ) = −H + G

π
log

(
ω(ζ, θ1(∞))

ω(ζ, θ2(∞))

)
, (29)

where

θ1(ζ ) ≡ δ + q2ζ

1 − δζ
, θ2(ζ ) ≡ −δ + q2ζ

1 + δζ
= θ1(ζ ), (30)

and where overbars denote the Schwarz conjugate of an analytic function, which is defined by θ1(ζ ) ≡ θ1(ζ ).
The function ω(·, ·) is the so-called (Schottky–Klein) prime function [20] on the triply connected domain Dζ . A
detailed exposition of the diverse properties of the prime function associated with multiply connected domains has
recently been given in [20]. The function (29) provides the one-to-one conformal map, z = Z(ζ ), from the upper
half of D. Figure 3 shows the correspondence between D and Dζ schematically. The semicircle C+

0 in the ζ -plane
is mapped to the line |y| ≤ G on the imaginary axis in the z-plane, and the inner circle C1 is mapped to middle line
x = L , |y| ≤ H + G of the periodic channel.

Because Dζ is reflectionally symmetric about the real axis, its associated prime function has the special property

ω(z, ζ ) = ω(z, ζ ), (31)
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where we use the notation ω(z, ζ ) ≡ ω(z, ζ ); see [20] for more details. A consequence of this, together with (30),
is that

Z(ζ ) = −Z(ζ ). (32)

5 A Schwarz problem

Armed with this conformal mapping it will now be shown that the composed analytic function

H(ζ ) ≡ h(Z(ζ )), ζ ≡ ξ + iη (33)

is the solution to a classical problem in complex analysis known as the Schwarz problem in the triply connected
circular domain Dζ [20,24].

Owing to the fact that we expect h(z) to have the same values on y = ±(H + G) for any 0 ≤ x ≤ L , we seek
a function H(ζ ) that is continuous across ± and, consequently, analytic in the upper half of Dζ . On ζ = ζ , we
know from (12) that

ŵ(x, y) = Im[H(ζ )] = 0, (34)

implying that the Schwarz conjugate function of H(ζ ) defined by H(ζ ) ≡ H(ζ ) coincides with H(ζ ), that is,

H(ζ ) = H(ζ ). (35)

By the Schwarz reflection principle [25], since H(ζ ) is known to be analytic in the upper half of Dζ we infer that
H(ζ ) is analytic in the lower half too, that is, in the whole of Dζ .

If ζ ∈ C+
0 it follows from (18) that

Re[H(ζ )] = LIm[Z(ζ )], ζ ∈ C+
0 . (36)

Suppose now that ζ ∈ C−
0 , then clearly ζ ∈ C+

0 . Furthermore,

Re[H(ζ )] = Re[H(ζ )] = Re[H(ζ )] = LIm[Z(ζ )] = −LIm[Z(ζ )] = LIm[Z(ζ )], (37)

where the first and fourth equalities follow from trivial properties of complex quantities, the second and last equalities
follow from (35) and (32), respectively, and the third equality follows from (18) since ζ ∈ C+

0 .
A similar argument can be used to show that because Re[H(ζ )] vanishes on C1 due to (14), then it also vanishes

on C2.
We therefore arrive at a boundary value problem for the function H(ζ ), analytic in Dζ , with boundary values

satisfying

Re[H(ζ )] =
{
LIm[Z(ζ )], ζ ∈ C0,

0, ζ ∈ C1, C2.
(38)

This is a standard Schwarz problem in Dζ : the problem of finding an analytic function in Dζ given its real part
everywhere on the domain boundary. Significantly, an explicit integral formula for its solution in a multiply connected
circular domain like Dζ has been given by [24]; see also Chapter 13 of [20]. This integral formula for the solution
itself depends on the prime function of the domain Dζ . From the results in [20,24] it can be inferred that, in this
case, the solution for H(ζ ) is given by the simple formula

H(ζ ) = − L

π

∮
C0

Z(ζ ′) d log ω(ζ ′, ζ ). (39)

Note that H(ζ ) is not only analytic in Dζ but also single-valued. More details are given in Appendix 1. The final
expression for ŵ(x, y) is

ŵ(x, y) = Im [H(ζ )] = L(H + G)

π2 Im

[∮
C0

ω(ζ ′, θ1(∞))

ω(ζ ′, θ2(∞))
d log ω(ζ ′, ζ )

]
. (40)

Combining (7) and (40) furnishes the explicit integral formula (1).
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6 Characterization of the solutions

Analytical formulas have been derived for the solution of the flow problem in terms of the prime function. To study
the flow, plot the velocity contours and calculate effective slip lengths, it is necessary to be able to evaluate the
prime function ω(., .) and there are (at least) two ways to do this.

The most numerically efficient method is to make use of freely available MATLAB codes that compute ω(., .)

for any user-specified circular domain akin to Dζ [20,26,27]. These codes are based on a numerical algorithm
described in detail in [27], and which extends an earlier algorithm proposed by Crowdy and Marshall [28].

For a triply connected domain, however, it is also known (see Chapter 14 of [20]) that the infinite product
representation

ω(z, ζ ) = (z − ζ )
∏

θ∈�′′

(θ(z) − ζ )(θ(ζ ) − z)

(θ(z) − z)(θ(ζ ) − ζ )
, (41)

is convergent; here each function θ lies in the set of Möbius maps �′′ which denotes all elements of the free Schottky
group generated by the basic Möbius maps {θ j , θ

−1
j : j = 1, 2}, except for the identity and excluding all inverses

[20,27,28]. For numerical purposes of evaluation it is necessary to truncate this product, and the natural way to do so
is to include all Möbius maps up to a chosen level: see [28] for more details. Use of this infinite product is perfectly
feasible for most channel geometries. However, maintaining a required degree of accuracy requires truncation at
increasingly high levels as the radii of C1 and C2 get larger, resulting in the convergence of the product becoming
unacceptably slow. In such cases, use of the MATLAB code from [26] is preferred and advised.

The parameters δ and q are determined uniquely, for a given channel geometry, by solving the two equations

Z(1) = iG, Z(δ + qi) = L , (42)

subject to the constraints |δ| + q < 1, |δ| > 0, and q > 0. Equations (42) are readily solved using any non-linear
solver such as Newton’s method.

The half-period L has been used to non-dimensionalize lengths so that H/L and G/L are the relevant non-
dimensional geometrical parameters. Figures 5 and 6 show typical velocity contour plots of wF (x, y). In Fig. 5,
H/L is varied while fixing G/L = 0.8; in Fig. 6, the invasion depth G/L is varied while fixing H/L = 0.8.

The effective slip length λ discussed in Sect. 3 has also been calculated. The left panel of Fig. 7 shows how the
normalized slip length λ/2L behaves for different values of G/L when the invasion depth H/L is varied. For the
limiting case of a channel of infinite height, i.e., G/L → ∞, the problem becomes equivalent to that studied by
Crowdy [19] who derived the analytical result

λ∞ = 2L

π
log cosech

(
πH

2L

)
. (43)

The cross-dot line in Fig. 7 shows the slip length as given by this formula, which agrees well with the results of the
new formulation when G/L = 8.5.

There is a value of H/L which yields a “zero slip length.” A similar observation was made by Crowdy [19] for
the case of semi-infinite flow over a single surface. The reason for the vanishing slip length at this “critical invasion
depth” is clear: since the slip length is measured relative to an effective slip flow in a channel taken at the level of the
invaded menisci, the more the no-slip blades protrude into the flow, the more they will provide increased resistance.
Thus, at a sufficiently large groove invasion depth, or equivalently, when the blades have protruded sufficiently far
into the flow, any slip advantage afforded by the no-shear nature of the menisci will eventually be canceled out by
the resistance offered by the protruding no-slip blades. The (non-dimensional) critical invasion depth, (H/L)crit

say, is determined as a function of G/L by the criterion

λ = λ((H/L)crit,G/L) = 0. (44)
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(a) (b) (c)

Fig. 5 Contours of the velocity field wF (x, y). L and G are fixed to 1 and 0.8 in all figures, respectively. (a) H = 0.4, (b) H = 0.8,
(c) H = 1.2

(a) (b) (c)

Fig. 6 Contours of the velocity field wF (x, y). L and H are fixed to 1 and 0.8, respectively, in all figures. (a) G = 0.4, (b) G = 0.8,
(c) G = 1.2

Fig. 7 (Left) Normalized slip lengths λ/2L for four different ratios of channel height G and period length L . The cross-dot line
corresponds to the slip lengths, where G tends to infinity, calculated explicitly by [19]. (Right) Critical invasion depth (H/L)crit for
increasing G/L

The right panel of Fig. 7 shows the behavior of this critical invasion depth. As G/L → ∞, it tends to (2/π) log(1+√
2), the value found by Crowdy [19]. Interestingly, as G/L tends to 0 (by definition, we must have G > 0) the

critical invasion depth tends to unity. When G/L tends to 0, the blades touch and form continuous no-slip walls.
The menisci are shear-free so the flow resembles a channel flow in a vertical channel. Therefore, the comparison
problem in a horizontal channel has the same mass flux when λ = 0 and H = L since these two flows are just
rotations of each other by 90o. By taking the limit G/L → 0 in equation (28) the slip length for this flow is obtained:

λ = L2 − H2

3H
, (45)

which means λ = 0 when H/L = 1.
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Fig. 8 The behavior of λ1.
λ1/2L agrees well with the
infinite-height case when
G/L = 20.0
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0

0.2

0.4

0.6

7 Slip correction for weakly curved menisci

If the menisci are weakly curved, we expect the slip length to be modified according to a regular perturbation
expansion

λθ = λ + λ1θ + O(θ2), (46)

where, in order to make contact with other studies [9], the coefficient of the first-order slip correction λ1 is decom-
posed as λ1 = λ11 + λ12, where λ11 and λ12 are defined in appendix 1.

Figure 8 shows graphs of λ1. For large G/L , the slip length agrees well with analogous explicit integral formulas
for the first-order correction to the slip length given recently in [19] for semi-infinite shear over a single surface. An
interesting feature is that, for large G/L , λ1 is monotonically decreasing, but this behavior is different for smaller
values of G/L . At some critical value of G/L (close to unity) the slip length correction becomes negative as H/L
increases. This observation means that increasing the curvature of the meniscus does not enhance slip when G/L
is small, i.e., for shallow channels.

8 Connection with another SHS problem

To motivate his study of semi-infinite shear flow over a single surface of blades where the menisci have partially
invaded the grooves, Crowdy [19] includes a figure similar to that shown in Fig. 9 which shows three different
superhydrophobic surface (SHS) channel flows. Figure 9a shows the most commonly considered case: longitudinal
channel flow over a 2L-periodic symmetric channel where menisci are flat, of length 2c, and flush with the tops of
the no-slip pillars. The pillars therefore have width 2(L−c). As c → L the pillars become infinitely thin (“blades”)
as shown in Fig. 9b. This flow scenario is singular because there is no solid surface left to retard the flow against
the imposed pressure gradient. This manifests itself in the effective slip length associated with the flow in Fig. 9a
becoming infinite as c → L . A “continuation” of this singular state, discussed by Crowdy [19], is shown in Fig. 9c
and shows the menisci descending by distance H into the grooves between infinitely thin walls. The analytical
formulas (C9) and (43) refer to slip lengths associated with the flow shown in Fig. 9c in the limit G/L → ∞ (which
can be viewed as the problem of semi-infinite shear over a single SHS).

Remarkably, it turns out that there is a mathematical connection between (the physically distinct) SHS flows
shown in Fig. 9a and c.

This is significant because it renders the new analytical solution (1) doubly useful.
The observation is that if we take the upper-half window in problem (a) and rotate it by 90o, then we obtain the

period window relevant to problem (c) and, moreover, the boundary conditions associated with the two problems
(a) and (c) can be seen to be of the same type on each boundary portion (i.e., either no-slip or the normal derivative
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(a) (b) (c)

Fig. 9 Superhydrophobic channel flows. (a) Symmetric channel flow between two superhydrophobic surfaces with menisci spanning
the grooves between thick walls. (b) The critical case when the walls become infinitely thin, i.e., c → L; the solution here is known to
be singular [19]. (c) The problem solved in this paper: symmetric channel flow where the menisci have partially invaded the grooves
between infinitely thin blades

Fig. 10 (i) Superhydrophobic channel flow in problem (c). (ii) Superhydrophobic channel flow in problem (a). The boundary condition
on the black portion is no-slip, while on the red portion it is no-shear. By the transformation (47), both flows in the period window match

vanishing). Indeed, it can be shown that the flow field in problem (a) can be deduced from the solution of problem
(c) by using the following transformations:

x 
→ y, y 
→ x, L 
→ G, H + G 
→ L , G 
→ c. (47)

This mathematical transformation means that we have essentially solved two physically distinct problems at once.
Figure 10 shows the transformations (47) graphically. We can see that both flows in the period window satisfy the
same type of boundary conditions.

This observation also means that we have produced a new representation of the solution to problem (a) found
by Marshall [21] who used a very different approach. Marshall also adopted use of the prime function technology
but he performed the analysis in a doubly connected annulus rather than the triply connected domain Dζ used
here. Conversely, the observation means that, in principle, the partially invaded meniscus problem (c) could have
been solved by adapting Marshall’s solution of problem (a). Notwithstanding this observation, we believe that the
conciseness of the new formula (1) has its own attractions and is interesting in its own right. Furthermore, use
of the triply connected preimage domain of this paper has “uniformized” a square-root singularity that appears
in the analysis when a doubly connected annulus is used instead. The approach proposed by Marshall involves
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Fig. 11 Slip length and normalized coefficient of the first-order correction for weak meniscus curvature for problem (a). Solid lines
show the quantities calculated using the new approach of this paper; results using Marshall’s approach [21] are shown as circle dots.
The cross dots correspond to the slip length from formula (48)

the incomplete elliptic integral of the first kind, which has square-root singularities at the edges of the menisci.
Such integrable singularities are eliminated safely in our approach. Elimination of square-root singularities can be
desirable for numerical purposes since it obviates the need to deal with branch points and branch cuts associated
with those singularities.

To corroborate this observation, Fig. 11 shows the slip length for problem (a), and the coefficient of the first-
order correction for small meniscus curvature, as calculated by adapting our approach and making use of the
transformation (47). The circle-dot lines correspond to the results obtained using Marshall’s alternative approach
[21]; the cross-dot lines are the slip lengths for the flow in a periodic infinite channel, initially found in [7]:

λ(a),∞ = 2L

π
log sec

(πc

2L

)
. (48)

Following [21], the slip length in problem (a) is

λ(a) = 1

LG

∫ c

0
w̃(x, 0) dx = 1

LG

∫ G

0
ŵ(0, y) dy, (49)

where the flow in problem (a) is w(a) = wP + w̃, and where the transformation (47) is used in the second equality.
Comparing equation (49) with (28) shows that λ has an additional term and a different coefficient in front of the
integral term, which results in the slip lengths having entirely different behavior as seen in Fig. 11. This is of course
not surprising because, while the two flows might be related mathematically, they are nevertheless completely
different flows.

It is interesting that, compared to problem (a), the channel height G in problem (c) needs to be much larger in
order for the channel-flow slip length λ to be well approximated by the semi-infinite flow result λ∞.

9 Summary

This paper has shown how to use the prime function associated with a triply connected circular domain [20] to
find compact representations of longitudinal channel flows over superhydrophobic surfaces where the menisci have
depinned from the pillar tops and partially invaded the grooves. The solutions are explicit once two parameters, δ

and q, have been found by solving two non-linear equations given the geometry of the surface. The slip properties of
the surfaces have been quantified based on the use of these new formulas. It has also been indicated how previously
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derived solutions due to Marshall [21] for a different flow in a superhydrophobic channel can be derived by a simple
transformation of our formula.

Given that a single period of any of these channel flows is simply connected, it is perhaps surprising that we
have been able to make use of mathematical technology devised for solving problems in multiply (in this case,
triply) connected geometries [20]. However, the key point is that the boundary of the simply connected flow region
has different boundary conditions on distinct portions of this (single) boundary—it is a mixed-type boundary value
problem—which makes it advantageous, as we have shown here and as also discussed in detail in [20], to identify
the different portions of a boundary on which a particular boundary condition holds (e.g., a Dirichlet-type, or a
Neumann-type condition) with distinct boundaries of a domain of higher connectivity. At first sight, this may seem
like adding complication to the problem. However, with the aid of the prime function, and as the monograph [20]
aims to show, it is no more difficult to solve problems in a triply connected domain as in a simply connected
one. Moreover, transferring the problem to a higher connected domain can allow any boundary-point singularities
resulting from mixed-type boundary conditions on a single boundary to be uniformized, that is, essentially removed.
Notice that there are no explicit boundary-point singularities (e.g., branch points) appearing in the final formula (1).

We believe the compact form of the flow solution (1) is important since many applications of superhydropho-
bic surfaces involve additional physical effects, such as heat [23] and mass transfer, or thermocapillary or other
surfactant effects [29,30], making it useful to have available concise representations of the basic flow. Finally,
for the convenience of readers wishing to make use of the solutions described herein, the authors are preparing
downloadable MATLAB codes based on the theoretical work in this paper [26].
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Appendix A: The conformal map (29)

It is useful to give some background on the origin of the mapping (29). In Sect. 6.8 of [20], Crowdy discusses the
so-called annular slit mappings associated with a multiply connected circular domain, one of which is

e2π i(G1(ζ,a)−G2(ζ,a)), (A1)

where a is some point inside Dζ , and {G j (ζ, a)| j = 1, 2} are (analytic extensions) of two of the modified Green’s
functions associated with Dζ . Such a mapping transplants the two circles C1 and C2 to the concentric circular
boundaries of a bounded annulus in an image plane, with Dζ mapping to the annular region between these two
image circles and with the circleC0 being transplanted to a concentric circular slit of finite length inside this annulus.
Therefore, on taking a logarithm of (A1), one produces the conformal mapping (29) of precisely the kind needed in
the present application: a rectangle with a horizontal slit, or, on multiplying by a pure imaginary constant, a vertical
slit. Furthermore, in Sects. 4.9 and 4.10 of [20], it is indicated how G j (ζ, a) may be written in terms of the prime
function, namely,

G j (ζ, a) = 1

2π i
log

(
ω(ζ, a)

ω(ζ, θ j (1/a))

)
+ c j (a), (A2)

where c j (a) is independent of ζ . Actually, the representations (A2) were first derived in the context of adding
circulation around airfoils in the study of aerodynamic lift on wings [31]. In deriving (29) we have taken a multiple
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of a logarithm of (A1) and used (A2) for j = 1, 2 with the special choice a = 0. As a final remark, we point out
that (29) can also be identified with (a multiple of) the function v1(ζ ) − v2(ζ ), where {v j (ζ )| j = 1, 2} is a set of
important functions associated with Dζ , and is introduced in Sect. 2.5 of [20].

Appendix B : Solution of Schwarz problem

The boundary value problem (38) forH(ζ ) is a standard Schwarz problem in a triply connected domain. The explicit
general solution to such a problem has been given, in terms of the prime function, by Crowdy [24]. More precisely,
a function f (ζ ) that is analytic in Dζ is uniquely determined up to an imaginary constant by the Schwarz integral
formula:

f (ζ ) = 1

2π i

∮
∂Dζ

Re[ f (ζ ′)](d log ω(ζ ′, ζ ) + d log ω(ζ ′, 1/ζ ))

−
2∑

k=1

Ak ivk(ζ ) + ic0, (B3)

Ak =
∫
C0

Re[ f (ζ )]d v̂k −
2∑
j=1

∫
C j

Re[ f (ζ )]d v̂k, k = 1, 2, (B4)

where {v j (ζ )| j = 1, 2} are analytic functions in Dζ , with each v j having a logarithmic branch cut between C0

and C j . Each v̂ j is a linear combination of {vk(ζ )|k = 1, 2}, and c0 is a real constant [20,24]. See more details
in Chapter 13 of [20]. For the particular problem in (38) it can be shown using properties of the prime function
(and confirmed numerically) that, for this problem, A1 = A2 = c0 = 0. This means, in particular, that H(ζ ) is
single-valued in Dζ , a feature that is consistent with earlier arguments in Sect. 5 (indeed, alternatively we could
have stated that the boundary value problem for the single-valued analytic function H(ζ ) is a modified Schwarz
problem in Dζ , and then confirmed that the boundary data satisfy compatibility conditions necessary for such a
single-valued function to exist [20,24]). Consequently, (38) can be simplified to the compact expression

H(ζ ) = − L

π

∮
C0

Z(ζ ′) d log ω(ζ ′, ζ ), (B5)

where we have used the fact that ζ ′ = 1/ζ ′ on C0 and the prime function property ω(ζ ′−1, ζ−1) = −ω(ζ ′, ζ )/ζ ζ ′
(see Sect. 4.7 of [20]).

Appendix C: Two definitions of the effective slip length

It is worth pointing out that there is arbitrariness in the choice of defining the slip length as already observed in
Crowdy [19]. For example, consider two definitions of the effective slip length for a channel flow denoted by λ(I)

and λ(II) shown in Fig. 12. In (I) the baseline is placed at the top of the grooves, while in (II) the baseline is at the
same level as the meniscus. Case (II) is equivalent to the right panel of Fig. 4, i.e., λ(II) = λ. For case (I) we can
use the same technique as Sect. 3 and obtain a formula for the slip length:

λ(I) = (H + G)L2

3G2 − G

3
+ 1

G2

∫ G

0
ŵ(0, y) dy. (C6)

There is a mathematical relation between λ(I) and λ(II). Multiplying λ(I) by G2 and λ(II) by (H + G)2, we find

λ(I) =
(

1 + H

G

)2

λ(II) + H

(
1 + H

G

)
+ H3

3G2 . (C7)
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This expression can be seen as a generalization of equation (3.8) derived by Crowdy [19], who calculated the slip
length for shear flow over a single surface with partially invaded grooves. Note that for G/L → ∞, we obtain the
asymptotic formula

λ(I) = λ(II) + H, (C8)

which is exactly the relation derived in [19]. For the limiting case of a channel of infinite height, i.e., G/L → ∞,
λ(I) becomes the analytical result derived by Crowdy [19]:

λ(I),∞ = 2L

π
log

(
1 + coth

(
πH

2L

))
. (C9)

Appendix D: Weakly curved menisci

We follow the approach of Crowdy [22] who first proposed combining perturbation analysis with the use of integral
“reciprocal identities” to find the leading order corrections to the flat-state slip length. Marshall [21] followed the
approach of [22] in his analysis of the superhydrophobic channel problem (with non-invaded grooves) shown in
Fig. 9a.

Each meniscus is assumed to be a circular arc with a protrusion angle denoted by θ . In our case, the meniscus
curves slightly downwards, hence θ is assumed to be small and negative. We write the solution for the flow field
wθ(x, y) as a series expansion in θ � 1:

wθ(x, y) = wF (x, y) + θw1(x, y) + O(θ2). (D10)

Since the curved meniscus is a circular arc with protrusion angle θ , the meniscus can be approximated by the
quadratic curve y = θY (x)+O(θ2), where Y (x) = (L2 − x2)/2L [22]. The normal derivative of wθ on the curved
meniscus is

∂wθ

∂n
(x,−H − G) = −θ

∂w1

∂y
(x,−H − G) + θ

(
d

dx

(
Y (x)

dwF

dx

)
+ SY (x)

)
+ O(θ2). (D11)

Fig. 12 The two definitions of the effective slip length for a channel flow. In case (I) the flow is compared to a Navier-slip flow with
walls taken level with the tops of the pillars; in case (II) it is compared to a Navier-slip flow with walls taken at the level of the invaded
menisci
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Green’s second identity states that

∫
�θ

(wF∇2wθ − wθ∇2wF )dS =
∫

∂�θ

(
wF

∂wθ

∂n
− wθ

∂wF

∂n

)
ds, (D12)

and thus the volume flux in �θ , denoted by Qθ , is given by

Qθ = QF + θ(Q11 + Q12) + O(θ2), (D13)

where

Q11 = −4
∫ L

0

(
wF (x,−H − G)Y (x) − Y (x)

S
(

dwF

dx
(x,−H − G)

)2
)
dx, (D14)

Q12 = −4
∫ L

0
wF (x,−H − G)Y (x)dx. (D15)

By equating Qθ and Qλ, we obtain

λθ = λ + θλ1 + O(θ2), (D16)

where λ1 = λ11 + λ12, and

λ11 = − 1

SL(H + G)2

∫ L

0

(
wF (x,−H − G)Y (x) − Y (x)

S
(

dwF

dx
(x,−H − G)

)2
)

dx, (D17)

λ12 = − 1

SL(H + G)2

∫ L

0
wF (x,−H − G)Y (x) dx. (D18)
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