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Abstract A solution technique is presented for the determination of residual stresses in a finite-length solid cylinder
subject to non-uniform axisymmetric distributions of incompatible residual strains. The problem is reduced to the
sequential solving of three individual problems: a problem on the determination of residual stresses in an infinitely
long cylinder (the basic state) and two auxiliary problems for evaluating the stresses induced by the end-face effects
(the disturbed states). The variational method of homogeneous solutions is implemented in order to determine the
disturbed states within the framework of two latter problems. The solution technique is verified numerically for
typical distribution profiles of incompatible strains depending on both the radial and axial coordinates. The approach
can be used to evaluate residual stresses in a solid cylinder of finite length due to the intense thermal treatment.

Keywords Axisymmetric elasticity · Finite-length solid cylinder · Homogeneous solutions · Residual stresses ·
Variational method
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1 Introduction

The residual strains and stresses may occur in solids during various manufacturing processes, particularly welding,
casting, high-pressure rolling, forming, etc. [1], and specific exploitation regimes quite often associated with intense
non-uniform thermal impacts [2,3]. Being selfequilibrated, i.e., producing zero resultant force and moment within
a macrovolume, the residual stresses are often neglected within the framework of the engineering estimates. Nev-
ertheless, the impact of residual stresses, especially under the facilitating conditions, may peak the critical levels
and cause structural failure [1,4].
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The practical measurement of the residual strains or stresses in solids is typically based on either destructive or
non-destructive testing. The destructive techniques imply the complete or partial destruction of structural members
in order to perform the measurements (e.g., the hole drilling and ring coring techniques [5–7], the slitting and contour
methods [8–10], etc.). On the other hand, the non-destructive methods (e.g., the X-ray and neutron diffraction [11–
13], the magnetic, ultrasonic, and optical methods [14–16], etc.) allow for saving the structural integrity but have
limited applicability. The most advanced way for predicting the actual levels of residual stresses corresponding to
certain distribution profiles of incompatible strains combines both theoretical and experimental techniques [17,18].
One of such approaches is a non-destructive computational–experimental method [19] based on solving the inverse
elastoplastic problems [20] and fitting the results with the experimental evidence obtained by non-destructive
techniques in order to evaluate the effective stress distribution parameters. The formulation and solution of the
inverse problems is based on the so-called conventional-plastic strain hypothesis [21,22] implying the base material
of a solid to be elastic, while the expected zone of residual stress distribution exhibits specific elastic–plastic behavior
so that the total strain can be represented in the following form:

ε = εe + ε0, (1)

where ε is the total strain tensor, εe is the tensor of elastic strains occurring within the entire solid, and ε0 denotes
the tensor of incompatible strain [23] distributed within the area affected by the impacts causing the residual stress–
strain state. This approach has been efficiently employed for the analysis of residual stresses due to welding residual
strains in infinite layers with rectilinear and circular welds [24,25], butt-welded cylindrical vessels [26,27], and
rectangular plates [28]. Special attention in the latter paper was given to the end effects in the butt-welded rectangular
plate by performing the exact analysis based on the direct integration method [29]. It was shown, in particular, that
the presence of boundary that is transverse to the butt-weld axis effects significantly the aggregated stress state
comparing with one for an infinitely long (with respect to the butt-weld length) plate. Thus, the end effects are very
important for the accuracy in the evaluation of the residual stress–strain state of the bounded domains.

In general, the exact analysis of the end effects in the stress state of finite solids with irregular points (lines) of the
boundary (i.e., the corner points or the edge lines) presents a challenge for both analytical and numerical methods
due to the fact that the resulting operator of the corresponding boundary value problem of the elasticity theory is
not self-conjugated. This fact complicates significantly the variables separation in the governing equations and,
consequently, exact satisfaction on the boundary conditions imposed on the dissimilar segments of the boundary
separated with the corner points. An interested reader can find more detail on the earlier development history of the
methods for two-dimensional problems of such kind presented by Meleshko [30].

In the case of general boundary conditions, the dominant analytical methods for solving the boundary value
problems for finite domains with corner points imply the realization of one of the following strategies: A) the
construction of general solutions to the governing equations which allow for approximate satisfaction of boundary
conditions imposed on some or all sides of a finite domain, and B) the construction of a solution that exactly satisfies
the full set of boundary conditions imposed, while the governing equations are satisfied within the required accuracy.
Strategy B was realized, for example, with the method of direct integration [29,31], which has been recently used
in [32] for solving a thermoelasticity problem in a cylinder of finite length. Strategy A is represented by at least
two dominant methods, i.e., the method of cross-wise superposition [33,34] and the method of homogeneous
solutions [35]. The latter method presents a natural extension of the classical separation of variables implying
the construction of eigenvalues, which belong to the complex plane C in the case of finite domains with corner
points. The corresponding eigenfunctions are usually non-orthogonal which complicates the satisfaction of boundary
conditions. In order to overcome this difficulty, the variational approaches with implication of the least square method
are often employed. In [36], a variational method of homogeneous solutions was used for the evaluation of residual
stresses in the vicinity of an inplane weld joint connecting the dissimilar materials. This method was also used for
the solution of problems on the non-destructive evaluation of the axisymmetric residual stresses near circular welds
in long cylindrical shells on the basis of the available empirical data obtained through the magnetoelastic method
[37].
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A variational method of homogeneous solutions was used in [38,39] for the analysis of axisymmetric residual
stresses in a finite-length cylinder. The residual stresses are modeled with the use of concept of incompatible residual
strains (1) with the latter strains being regarded as the cause of the residual stresses appearance. The incompatible
strains were presented by an isotropic tensor depending only on the radial coordinate. This method was also used
for a variational formulation of the inverse problem for the residual stresses determination on the basis of empirical
data obtained by a photoelasticity method. This paper is aimed to extend the technique on the evaluation of the
axisymmetric residual stresses in a finite-length solid cylinder due to the incompatible strains depending on both
the radial and axial coordinates. This provides a prominent tool for the analysis of the end effects in the cylinders
of finite length.

2 Mathematical formulation of the problem

Consider an elastic cylinder of finite length 2H and radius R. In the dimensionless cylindrical coordinate system,
the cylinder occupies domain C = {(r, θ, z) : r ∈ [0, 1], θ ∈ [0, 2π ], z ∈ [−b, b]}. Here, r = ρ/R, z = ζ/R,
b = H/R, ρ and ζ are the dimensional radial and axial coordinates, and θ is the circumferential coordinate. Assume
the lateral surface and the end faces of the cylinder to be free of the external force loadings, i.e.,

σrr (1, z) = σr z(1, z) = 0, σzz(r,±b) = σr z(r,±b) = 0. (2)

Here, σrr (r, z), σzz(r, z), and σr z(r, z) are the normal and tangential stress-tensor components.
Assume the interior of the cylinder to undergo a non-uniform axisymmetric (i.e., irrespective of coordinate θ )

distribution of incompatible [23] strains ε0
rr (r, z), ε0

θθ (r, z), and ε0
zz(r, z) induced by thermal treatment and, hence,

represented by the normal components only [40]. Then, according to the model (1), the components εrr (r, z),
εθθ (r, z), εzz(r, z), and εr z(r, z) of the total strain are to be represented in the form as follows:

εrr (r, z) = εe
rr (r, z) + ε0

rr (r, z), εθθ (r, z) = εe
θθ (r, z) + ε0

θθ (r, z),
εzz(r, z) = εe

zz(r, z) + ε0
zz(r, z), εr z(r, z) = εe

r z(r, z).
(3)

Here, εe
rr (r, z), εe

zz(r, z), εe
θθ (r, z), and εe

r z(r, z) are the elastic strains.
The total strains are expressed through the radial and axial displacements, ur (r, z) and uz(r, z), via the strain-

displacement Cauchy equations [41]:

εrr (r, z) = ∂ur (r, z)

∂r
, εθθ (r, z) = ur (r, z)

r
,

εzz(r, z) = ∂uz(r, z)

∂z
, εr z(r, z) = 1

2

(
∂ur (r, z)

∂z
+ ∂uz(r, z)

∂r

)
.

(4)

Within the context of equations (3) and (4), the constitutive equations of Hooke’s law [40,41] take the following
form:

σrr (r, z) = λε(r, z) + 2μ
∂ur (r, z)

∂r
− λε0(r, z) − 2με0

rr (r, z),

σθθ (r, z) = λε(r, z) + 2μ
ur (r, z)

r
− λε0(r, z) − 2με0

θθ (r, z),

σzz(r, z) = λε(r, z) + 2μ
∂uz(r, z)

∂z
− λε0(r, z) − 2με0

zz(r, z),

σr z(r, z) = μ

(
∂ur (r, z)

∂z
+ ∂uz(r, z)

∂r

)
,

(5)

where ε = ∂ur/∂r + ur/r + ∂uz/∂z, ε0 = ε0
rr + ε0

θθ + ε0
zz , and λ and μ are the Lamé constants.

Assuming the cylinder to be in the state of equilibrium, the stress-tensor components meet the following equi-
librium equations [40,41]
1

r

∂(rσrr (r, z))

∂r
+ ∂σr z(r, z)

∂z
− σθθ (r, z)

r
= 0,

1

r

∂(rσr z(r, z))

∂r
+ ∂σzz(r, z)

∂z
= 0.

(6)
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Substituting equations (5) into the equilibrium equations (6) yields the following Lamé–Navier equations:

μ

(
∇2ur (r, z) − ur (r, z)

r2

)
+ (λ + μ)

∂ε(r, z)

∂r
= f (r, z),

μ∇2uz(r, z) + (λ + μ)
∂ε(r, z)

∂z
= g (r, z),

(7)

where

f (r, z) = ∂

∂r

(
λε0(r, z) + 2με0

rr (r, z)
)

+ 2μ

r

(
ε0
rr (r, z) − ε0

θθ (r, z)
)

,

g(r, z) = ∂

∂z

(
λε0(r, z) + 2με0

zz(r, z)
)

, ∇2 = ∂2

∂r2 + 1

r

∂

∂r
+ ∂2

∂z2 .

For the case of isotropic tensor of incompatible strains, i.e., when ε0
rr = ε0

θθ = ε0
zz = ε0/3, Eqs. (7) take the

following form:

μ

(
∇2ur (r, z) − ur (r, z)

r2

)
+ (λ + μ)

∂ε(r, z)

∂r
= ∂η(r, z)

∂r
,

μ∇2uz(r, z) + (λ + μ)
∂ε(r, z)

∂z
= ∂η(r, z)

∂z
,

(8)

where η = (3λ + 2μ)ε0/3.
Equations (2)–(5) and (8) present a mathematical model (a closed-form boundary value problem) for the deter-

mination of axisymmetric residual stresses and displacements in cylinder C due to non-uniform distributions of
incompatible strains represented with the isotropic tensor induced by intensive thermal treatment depending on
both the radial and axial coordinates. Below, we provide a solution technique for the formulated problem based on
the variational method of homogeneous solutions.

3 Solution technique

3.1 Solution structure

In our approach, we follow the solution strategy [39] by presenting the displacement field as a superposition of two
states, i.e.,

ur (r, z) = ûr (r, z) + ũr (r, z), uz(r, z) = ûz(r, z) + ũz(r, z).

Here, ûr (r, z) and ûz(r, z) are the displacements resulted from non-homogeneous equations (8) for an infinitely
long cylinder (b2 → ∞) of the unit radius (they reflect the so-called basic state of the cylinder), and ũr (r, z) and
ũz(r, z) are the displacements derived from the corresponding homogeneous equations

μ

(
∇2ũr (r, z) − ũr (r, z)

r2

)
+ (λ + μ)

∂ε̃(r, z)

∂r
= 0,

μ∇2ũz(r, z) + (λ + μ)
∂ε̃(r, z)

∂z
= 0,

(9)

formulated for cylinder C . Here, ε̃ = ∂ ũr/∂r + ũr/r + ∂ ũz/∂z. The latter displacements reflect the disturbance of
the deformed state due to the end effects and thus are referred to as the “disturbed state.”

3.2 Basic state

In order to construct a solution to the system of non-homogeneous equations (8) for the basic state, we implement
the following representation [33]:

ûr (r, z) = ∂�(r, z)

∂r
, ûz(r, z) = ∂�(r, z)

∂z
, (10)
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where �(r, z) is an unknown potential function that is analogous to the Papkovich – Goodier thermoelastic potential
[42,43].

Substitution of representations (10) into (8) yields

∇2�(r, z) = −4πω(r, z), ω(r, z) = − 1

λ + 2μ

η(r, z)

4π
. (11)

A solution to Eq. (11) can be given in the form as follows [44]:

�(r, z) =
∫∫
C

G(r, z; ξ, ζ )ω(ξ, ζ )ξ dξ dζ, (12)

where

G(r, z; ξ, ζ ) = K(m)

π
√

(r + ξ)2 + (z − ζ )2
,

m ≡ m(r, z; ξ, ζ ) = 4rξ

(r + ξ)2 + (z − ζ )2 ,

K(m) is the Legendre complete normal elliptic integral of the first kind

K(m) =
1∫

0

dt√
(1 − t2)(1 − t2m2)

, K(0) = π

2
, K(1) = ∞,

which can be evaluated by making use of the following formula:

K(m) = π

2

∞∑
k=0

(2k)!
22k(k!)2 m

2k .

Thus, the displacements ûr (r, z) and ûz(r, z) can be computed by putting (12) into (10). The corresponding stress-
tensor components, σ̂rr (r, z), σ̂θθ (r, z), σ̂zz(r, z), and σ̂r z(r, z), can be computed by making use of (5), (10), and
(11) in the following form:

σ̂rr (r, z) = 2μ

(
∂2�(r, z)

∂r2 − 1

λ + 2μ
η(r, z)

)
,

σ̂θθ (r, z) = 2μ

(
1

r

∂�(r, z)

∂r
− 1

λ + 2μ
η(r, z)

)
,

σ̂zz(r, z) = 2μ

(
∂2�(r, z)

∂z2 − 1

λ + 2μ
η(r, z)

)
,

σ̂r z(r, z) = 2μ
∂2�(r, z)

∂r∂z
.

In such manner, the stresses and displacements are determined for the basic state of an infinitely long solid elastic
cylinder of the unit radius under the isotropic incompatible strains distributed non-uniformly within the coordinates
(r, z). These components induce the non-uniform boundary conditions on the lateral surface and the end faces of
the finite cylinder C . In order to compensate these non-uniform boundary conditions, we introduce the “disturbed
state,” which can be determined by implementing the technique presented in the following section.

3.3 Disturbed state

The disturbed state is to be realized by solving the following two boundary value problems.
The first problem implies solving system (9) for cylinder C with free lateral surface

σ̃ (1)
rr (1, z) = 0, σ̃ (1)

r z (1, z) = 0, (13)
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and the end faces loaded as follows:

σ̃ (1)
zz (r,±b) = −σ̂zz(r,±b), σ̃ (1)

r z (r,±b) = σ̂r z(r,±b). (14)

The second boundary value problem implies solving the system (9) accompanied with the boundary conditions
of free end faces

σ̃ (2)
zz (r,±b) = 0, σ̃ (2)

r z (r,±b) = 0 (15)

along with the conditions of loaded lateral surface

σ̃ (2)
rr (1, z) = −σ̂rr (1, z), σ̃ (2)

r z (1, z) = −σ̂r z(1, z). (16)

The total components for the disturbed state can be computed by superposing the solutions of boundary value
problems (9), (13), and (14), and (9), (15), and (16).

A general solution to system (9) can be constructed by implementing the Love stress function χ(r, z) [45]
satisfying the following biharmonic equation

∇2∇2χ(r, z) = 0.

The displacements are represented via the Love function by the following expressions:

ũr (r, z) = −∂2χ(r, z)

∂r∂z
, ũz(r, z) = 2(1 − ν)∇2χ(r, z) + ∂2χ(r, z)

∂z2 ,

and the stress-tensor components are expressed as follows:

σ̃rr (r, z) = 2μ
∂

∂z

(
ν∇2χ(r, z) − ∂2χ(r, z)

∂r2

)
,

σ̃θθ (r, z) = 2μ
∂

∂z

(
ν∇2χ(r, z) − 1

r

∂χ(r, z)

∂r

)
,

σ̃zz(r, z) = 2μ
∂

∂z

(
(2 − ν)∇2χ(r, z) − ∂2χ(r, z)

∂z2

)
,

σ̃r z(r, z) = 2μ
∂

∂r

(
(1 − ν) ∇2χ(r, z) − ∂2χ(r, z)

∂z2

)
.

(17)

Here, ν is the Poisson ratio.
In view of the linearity of the problem, we can construct the Love functions χ(1)(r, z) and χ(2)(r, z) corresponding

to the boundary value problems (9), (13), (14) and (9), (15), (16), separately; then they can be superposed in order
to determine the disturbed stress–strain state of the finite cylinder C .

Assuming, for the simplicity sake, the symmetry of the problem with respect to the plane z = 0, we can represent
function χ(1)(r, z) in the following form [46]:

χ(1)(r, z) = 1

2

∞∑
k=1

(
Bk cosh(γk z) fk(r) + B̄k cosh(γ̄k z) f̄k(r)

)
, (18)

where Bk are unknown complex constants, the overline denotes the complex conjugation,

fk(r) = rκk J1(γkr) − 2

πγk
J0(γkr),

γk are the complex roots of the transcendental characteristic equation

γ 2
k

(
J 2

0 (γk) + J 2
1 (γk)

)
− 2(1 − ν)J 2

1 (γk) = 0,

κk = − 2

π

J1(γk)

2(1 − ν)J1(γk) + γk J0(γk)
.
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Within the context of expressions (17) and (18), the stress field for the first disturbed problem (9), (13), and (14)
can be given in the form as follows:

σ̃ (1)
rr (r, z) = 1

2

∞∑
k=1

(
Bkσ

(1)
rr,k(r, z) + B̄k σ̄

(1)
rr,k(r, z)

)
,

σ̃
(1)
θθ (r, z) = 1

2

∞∑
k=1

(
Bkσ

(1)
θθ,k(r, z) + B̄k σ̄

(1)
θθ,k(r, z)

)
,

σ̃ (1)
zz (r, z) = 1

2

∞∑
k=1

(
Bkσ

(1)
zz,k(r, z) + B̄k σ̄

(1)
zz,k(r, z)

)
,

σ̃ (1)
r z (r, z) = 1

2

∞∑
k=1

(
Bkσ

(1)
r z,k(r, z) + B̄k σ̄

(1)
r z,k(r, z)

)
,

(19)

where σ
(1)
rr,k(r, z), σ

(1)
θθ,k(r, z), σ

(1)
zz,k(r, z), and σ

(1)
r z,k(r, z) are given in Appendix A. Expressions (19) allow for exact

satisfaction of the equations in system (9) and boundary conditions (13) under arbitrary constants Bk , which are to
be found by satisfying conditions (14).

The biharmonic function for the second disturbed problem χ(2)(r, z) can be constructed in the form as follows
[47]:

χ(2)(r, z) = 1

2

∞∑
k=1

(
Akϕk(z)J0(λkr) + Āk ϕ̄k(z)J0(λ̄kr)

)
, (20)

where ϕk(z) = �k sinh (λk z) + z cosh (λk z), �k = −2ν/λk − b/ tanh (λkb), and λk are the complex roots of the
transcendental characteristic equation sinh (2λkb) + 2λkb = 0.

Now, using (17) and (20), we can construct the stresses for the second disturbed problem (9), (15), and (16) in
the following form:

σ̃ (2)
rr (r, z) = 1

2

∞∑
k=1

(
Akσ

(2)
rr,k(r, z) + Āk σ̄

(2)
rr,k(r, z)

)
+ c,

σ̃
(2)
θθ (r, z) = 1

2

∞∑
k=1

(
Akσ

(2)
θθ,k(r, z) + Āk σ̄

(2)
θθ,k(r, z)

)
,

σ̃ (2)
zz (r, z) = 1

2

∞∑
k=1

(
Akσ

(2)
zz,k(r, z) + Āk σ̄

(2)
zz,k(r, z)

)
,

σ̃ (2)
r z (r, z) = 1

2

∞∑
k=1

(
Akσ

(2)
r z,k(r, z) + Āk σ̄

(2)
r z,k(r, z)

)
.

(21)

Here, functions σ
(2)
rr,k(r, z), σ

(2
θθ,k(r, z), σ

(2)
zz,k(r, z), and σ

(2)
r z,k(r, z) are given in Appendix B, and c is an arbitrary

constant.
Representations (19) of the stress-tensor components meet the boundary conditions (13) under arbitrary coeffi-

cients Bk . Meanwhile, representations (21) meet the boundary conditions in (15) under arbitrary coefficients Ak .
Obviously, the sets of coefficients Bk and Ak , k = 1, 2, ..., can be determined by satisfying conditions (14) with
expressions (19) and conditions (16) with expressions (21), respectively. In order to do so, we implement the varia-
tional method of homogeneous solutions [39] by introducing the following quadratic functionals corresponding to
the first and second disturbed problems:
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F1 =
1∫

0

r

((
σ̃ (1)
zz (r,±b) + σ̂zz(r,±b)

)2 +
(
σ̃ (1)
r z (r,±b) + σ̂r z(r,±b)

)2
)

dr, (22)

F2 =
b∫

0

((
σ̃ (2)
rr (1, z) + σ̂rr (1, z)

)2 +
(
σ̃ (2)
r z (1, z) + σ̂r z(1, z)

)2
)

dz. (23)

The functionals in (22) and (23) can be minimized under the following necessary conditions [48]:

∂F1

∂Bk
= 0,

∂F1

∂ B̄k
= 0,

∂F2

∂Ak
= 0,

∂F2

∂ Āk
= 0,

∂F2

∂c
= 0. (24)

The last equation in (24) yields the following formula:

c = − 1

4b

b∫
0

∞∑
k=1

(
Akσ

(2)
rr,k(r, z) + Āk σ̄

(2)
rr,k(r, z)

)
dz.

Within the context of the latter formula along with the representations (14), (16), (19), and (21) the remaining
equations in (24) yield the following infinite systems of linear algebraic equations:

∞∑
k=1

2∑
p=1

Mlp
mk B

p
k = Kl

m,

∞∑
k=1

2∑
p=1

Nlp
mk A

p
k = Ll

m, (25)

where B1
k = Bk , B2

k = B̄k , A1
k = Ak , A2

k = Āk , and the coefficients Mlp
mk , Nlp

mk , Kl
m , and Ll

m , l = 1, 2, m = 1, 2,
p = 1, 2, and k = 1, 2, ..., are given in Appendix C.

In view of the zero asymptotic of the coefficients in the systems given by equation (25) at k → ∞, the practical
computation of the parameters Ap

k and B p
k along with their complex conjugation can be performed by implementing

the simple reduction algorithm [48].
The total values of the stress-tensor components of the first and second disturbed problems and the stress

components of the initial state are the solution of the formulated direct problem of determining the residual stresses.

4 Numerical examples and discussion

Consider a numerical example of the isotropic tensor of residual strain given by formula

ε0(r, z) = 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1Fa
(
ar ,−r + r1

2

)
×

(
1 − Fa(az,−b1 + z) − Fa(az,−b1 − z)

)
, 0 � r < r1,

0, r1 � r � r2,

e2Fa

(
ar , r − 1 + r2

2

)

×
(

1 − Fa(az,−b1 + z) − Fa(az,−b1 − z)
)
, r2 < r � b.

(26)

Here, Fa(a, x) = (tanh(ax) + 1)/2, a = {ar , az}, el , rl , and b1 are given constant parameters, l = 1, 2. Figure 1
presents the distribution of the residual strain (26) computed under the fixed parameters e1 = 1, e2 = −1, r1 =
1/3, r2 = 2/3, b = 1, ar = 18, az = 10, and four different values b1 = 1.00; 0.75; 0.50; 0.25. Note that the strain
ε0 given in the form (26) varies within both the radial and axial coordinates, r and z. It reflects extension on the
cylinder axis, which is maximum at z = 0 and decreases when approaching the end faces z = ±b. On the lateral
surface of the cylinder, the strain (26) verbalizes contraction which decreases when approaching the end faces. For
smaller positive values of b1, the decrement occurs faster. The area r1 < r < r2, whose width is defined by r2 − r1,
is not disturbed with the residual strain (26). Thus, by controlling the parameters involved in (26), it is possible
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Fig. 1 Full-field distributions of the residual strain (26) in a “cubic” cylinder (the radius equals the half-length) at e1 = 1, e2 =
−1, r1 = 1/3, r2 = 2/3, b = 1, ar = 18, az = 10, and b1 = 1.00; 0.75; 0.50; 0.25

to control the distribution profile and the magnitude of the residual stress ε0. Note that decreasing the value of b1

allows for reflecting rather “localized” effect of the residual strain (26) at a distance from the cylinder’s end faces.
So that for small values of b1, the cylinder can be regarded as an infinitely long. On the contrary, the greater values
of b1 allow for capturing the end effects in the distribution of residual stresses due to the strain (26).

Figures 2 – 5 present the plots for the radial, axial, circumferential, and tangential stresses in a “cuboid” cylinder
C (i.e., the one with ratio equal to one, b = 1) due to the residual strain (26) computed under the following
parameters: e1 = 1, e2 = −1, r1 = 1/3, r2 = 2/3, b = 1, ar = 18, az = 10. The Poisson ratio in all considered
case studies is ν = 0.3. In the figures, curves 1 – 5 correspond to the values r = 0; 1/6; 1/2; 5/6; 1, respectively,
indicating the axis, cylindrical midsurface and lateral surface of the cylinder, as well as the middles of the disturbed
zones. The solutions of systems in (25) were computed through the simple reduction algorithm by holding N = 15
terms in the sums by k.

As we can observe in Fig. 2, the computed radial stress exactly satisfies the boundary condition (2) on the lateral
surface (curves 5) under all the considered distribution profiles of the residual strain (26). For b1 = 0.25, and
smaller, the stress exhibits the trend typical for the distributions in infinitely long cylinder, i.e., tending to zero at
cross-sections z = const, which are far enough from the plane z = 0. The magnitude of the residual radial stress at
the cylinder axis decreases with decrement of b1. For the greater values of b1, curves 3 and 4 are remarkably close
to one another. However, for the case studies of lesser end-effect, i.e., for b1 = 0.25, the difference between the
radial stress at these radii is more pronounced at z = 0. Quite similar behavior is observed in the circumferential
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Fig. 2 The radial stress versus axial coordinate z at the specific radii r = 0 (curve 1), r = 1/6 (curve 2), r = 1/2 (curve 3), r = 5/6
(curve 4), and r = 1 (curve 5) of a “cubic” cylinder C under the residual strains given by (26), where e1 = 1, e2 = −1, r1 = 1/3, r2 =
2/3, b = 1, ar = 18, az = 10, and b1 = 1.00; 0.75; 0.50; 0.25

Fig. 3 The axial stress versus axial coordinate z at the specific radii r = 0 (curve 1), r = 1/6 (curve 2), r = 1/2 (curve 3), r = 5/6
(curve 4), and r = 1 (curve 5) of a “cubic” cylinder C under the residual strains given by (26), where e1 = 1, e2 = −1, r1 = 1/3, r2 =
2/3, b = 1, ar = 18, az = 10, and b1 = 1.00; 0.75; 0.50; 0.25
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Fig. 4 The circumferential stress versus axial coordinate z at the specific radii r = 0 (curve 1), r = 1/6 (curve 2), r = 1/2 (curve 3),
r = 5/6 (curve 4), and r = 1 (curve 5) of a “cubic” cylinder C under the residual strains given by (26), where e1 = 1, e2 = −1, r1 =
1/3, r2 = 2/3, b = 1, ar = 18, az = 10, and b1 = 1.00; 0.75; 0.50; 0.25

stress depicted in Fig. 4. It is worth noting that the computed radial stress fits the necessary condition of the
self-equilibration for the residual stress, i.e.,

b∫
−b

zσrr (r.z)dz = 0,

for all the values of the radial coordinate.
The axial stress in Fig. 3 exactly satisfies the boundary condition (2) on the end faces of the cylinder for all values

of the radial coordinate. Similarly to the radial stress, the disturbance due to the residual strain (26) occupies almost
entire length of the cylinder for greater values of b1, i.e., b1 = 1; 0.75. This effect is well pronounced, in particular,
on the lateral surface of the cylinder (curves 5), while the magnitude of this stress on the axis of the cylinder (curves
1) remains almost the same.

The tangential stress (Fig. 5) is an odd function of the longitudinal coordinate z satisfying the zero boundary
conditions on both the lateral surface and end faces. For greater values of b1, this stress exhibits smaller maximum
deviation from the zero distributions, which grows with narrowing the zone of the distributions of the residual strain
(26).

Let us analyze the efficiency of the proposed computational algorithm with regard to solving the systems (25) by
using the simple reduction method. The solution errors for the first and second disturbed problems depending on
number of equations in the reduced systems (25) can be estimated with evaluating the corresponding functionalities
calculated on the solution obtained for a selected value of N :

δ1 =
√
F N

1

2
, δ2 =

√
F N

2

2
.

Here,F N
1 andF N

2 are the values of the functionals (22) and (23) calculated by solving the reduced systems obtained
from (25) by keeping only N first equations. The results of evaluation conducted for N = 5, 7, . . . 15 are given in
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Fig. 5 The tangential stress versus axial coordinate z at the specific radii r = 0 (curve 1), r = 1/6 (curve 2), r = 1/2 (curve 3),
r = 5/6 (curve 4), and r = 1 (curve 5) of a “cubic” cylinder C under the residual strains given by (26), where e1 = 1, e2 = −1, r1 =
1/3, r2 = 2/3, b = 1, ar = 18, az = 10, and b1 = 1.00; 0.75; 0.50; 0.25

Table 1 The errors in the minimization functionals (22) and (23) when using the reduced systems of equations

N 5 7 9 11 13 15

δ1 0.01807 0.01496 0.00801 0.00474 0.00317 0.00191

δ2 0.00593 0.00363 0.00252 0.00167 0.00122 0.00088

Table 1. As we can see, the accuracy gradually grows for greater values of N . The convergence of the solutions
depends on the type of boundary conditions. On the basis of conducted numerical experiments, we can conclude
that accuracy sufficient for practical goals can be achieved at N � 9.

5 Conclusion

A technique for evaluating axisymmetric residual stresses in a finite-length solid cylinder is presented. The cylinder’s
surface is assumed to be free of force loadings. The residual stresses are induced by incompatible strains represented
by an isotropic tensor, whose impact is encountered via the model of conventional-plastic strains.

An analytical solution to this problem is constructed by superposing the solutions of three individual problems.
The first problem implies determining the basic state for an infinitely long solid cylinder of the same radius, which
undergoes the considered distribution profiles of the incompatible strains. In order to find an exact solution to this
problem, an analytical technique was employed that is based upon the implementation of the Goodier–Papkovich
potential constructed through the complete Legendre elliptic integral of the first kind.

In order to compensate the stresses induced by the found stress field when “cutting” the original cylinder of
finite length out of the infinitely long one, two auxiliary problems are considered. The solutions to these problems
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are constructed by implementing the Love biharmonic stress function and the general scheme of the method of
homogeneous solutions, i.e., the ones satisfying the zero boundary conditions on the segments of the cylinder
boundary, represented by different families of coordinate surfaces. These two problems are solved with the use
of the variational method, in which the subordination of the solution to the boundary conditions is performed in
the norm L2. As a result, the problems are reduced to infinite systems of linear algebraic equations regarding the
unknown complex coefficients. Because of the zero asymptotic of the coefficients, the obtained systems can be
solved within any given accuracy by implementing the simple reduction method. This makes the obtained system
to be advantageous over the ones obtained through the method of cross-wise superposition [33]. The conducted
numerical experiments for the considered case studies confirm high convergence of the suggested algorithm, as
sufficient accuracy is reached at N � 9.

The constructed solution allows for analyzing the residual stresses in the finite-length cylinders with different
ratios and various nature of the incompatible strains. The solution can be efficiently extended for the analysis of
thermal stresses by implying the incompatible strains to be the thermal ones, i.e., ε0

ll = α(T (r, z)−T0(r, z)), where
l = {r, θ, z}, α is the linear thermal expansion coefficient, T0(r, z) is the reference temperature of the stress-free
cylinder, and T (r, z) is the actual temperature.

Finally, in view of the fact that the solution is constructed in an analytical form, it can be rather advantageous
for further implementation with the development of non-destructive evaluation techniques for the residual stresses
in elastic cylinders of finite length.

Acknowledgements This paper is devoted to the brilliant memory of Prof. Vasyl Chekurin (1951–2021) whose life was taken by
COVID-19 in the middle of his research into this subject.

Appendix A

Functions in expressions (19) for the stresses of the first disturbed problem:

σ
(1)
rr,k (r, z) = 2μγ 2

k cosh(γk z)

(
κk ((1 − 2ν)J0(γkr) − rγk J1(γkr)) + 2

πγkr
(rγk J0(γkr) − J1(γkr))

)
,

σ
(1)
θθ,k(r, z) = 2μγk cosh(γk z)

(
κk(1 − 2ν)γk J0(γkr) + 2

πr
J1(γkr)

)
,

σ
(1)
zz,k(r, z) = 2μγ 2

k cosh(γk z)

(
κk

(
γkr J1(γkr) − 2(2 − ν)J0(γkr)

)
− 2

π
J0(γkr)

)
,

σ
(1)
r z,k(r, z) = 2μγ 2

k sinh(γk z)

(
− κk

(
2(1 − ν)J1(γkr) + γkr J0(γkr)

)
− 2

π
J1(γkr)

)
.

Appendix B

Functions in expressions (21) for the stresses of the second disturbed problem:

σ
(2)
rr,k(r, z) = 2μ

(
λk

r

(
λkr(1 + 2ν + λk�k)J0(λkr) − (1 + λk�k)J1(λkr)

)
cosh(λk z)

+λ2
k z

(
λk J0(λkr) − 1

r
J1(λkr)

)
sinh(λk z)

)
,

σ
(2)
θθ,k(r, z) = 2μ

λk

r

((
2νλkr J0(λkr) + (1 + λk�k)J1(λkr)

)
cosh(λk z) + λk z J1(λkr) sinh(λk z)

)
,
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σ
(2)
zz,k(r, z) = −2μλ2

k J0(λkr)

(
λk z sinh(λk z) − (1 − 2ν − λk�k) cosh(λk z)

)
,

σ
(2)
r z,k(r, z) = 2μλ2

k J1(λkr)
(
(2ν + λk�k) sinh(λk z) + λk z cosh(λk z)

)
.

Appendix C

Mlp
mk = 1

2

1∫
0

r
(
σ
p
zz,k(r)σ

l
zz,m(r) + σ

p
rz,k(r)σ

l
r z,m(r)

)
dr ,

Nlp
mk = 1

2

b∫
0

(
σ
p
rr,k(z)σ

l
rr,m(z) + σ

p
rz,k(z)σ

l
r z,m(z)

)
dz − 1

2b

b∫
0

σ
p
rr,k(z)dz

b∫
0

σ l
rr,m(z)dz,

Kl
m = −

1∫
0

r
(
σ̂zz(r, b)σ

l
zz,m(r) + σ̂r z(r, b)σ

l
r z,m(r)

)
dr ,

Ll
m = −

b∫
0

(
σ̂rr (1, z)σ l

rr,m(z) + σ̂r z(1, r)σ l
r z,m(z)

)
dz − 1

b

b∫
0

σ̂rr (1, z)dz

b∫
0

σ l
rr,m(z)dz,

where

σ 1
zz,�(r) = σ

(1)
zz,�(r, b), σ 2

zz,�(r) = σ̄
(1)
zz,�(r, b),

σ 1
r z,�(r) = σ

(1)
r z,�(r, b), σ 2

r z,�(r) = σ̄
(1)
r z,�(r, b),

σ 1
rr,�(z) = σ

(2)
rr,�(1, z), σ 2

rr,�(z) = σ̄
(2)
rr,�(1, z),

σ 1
r z,�(z) = σ

(2)
r z,�(1, z), σ 2

r z,�(z) = σ̄
(2)
r z,�(1, z),

� = {m, k}, m = 1, 2, ..., k = 1, 2, ..., p = 1, 2, l = 1, 2.
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