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Abstract We present a number of exact solutions to the linearised Grad equations for non-equilibrium rarefied
gas flows and heat flows. The solutions include the flow and pressure fields associated to a point force placed in a
rarefied gas flow close to a no-slip boundary and the temperature field for a point heat source placed in a heat flow
close to a temperature jump boundary. We also derive the solution of the unsteady Grad equations in one dimension
with a time-dependent point heat source term and the Grad analogue of the rotlet, a well-known singularity of
Stokes flow which corresponds to a point torque.
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1 Introduction

Rarefied microscale gas flows are present in a wide variety of applications. In biomedical science, they are used
in the study of the transport and inhalation of small droplets which can potentially carry respiratory viruses when
they are expelled from an infected person during coughing or sneezing [1]. They are also applied in the design
of microelectromechanical system (MEMS) devices where the relevant gas flows are slow rarefied flows [2]. In
astrophysics, there are certain bodies in the Solar System whose atmospheres are of extremely low density such
that the gases in question must be considered as rarefied gases [3]. It is widely known that microscale dilute gas
flows cannot be accurately described with the traditional fluid dynamics framework based on the Navier–Stokes–
Fourier closure and that the Navier–Stokes–Fourier equations can fail to capture the relevant phenomena even in
a qualitative manner [4]. The study of rarefied gas motion goes back at least as far as the work of Maxwell, who
used kinetic theory to study gas flows induced by temperature gradients [5]. There have since been many studies
of rarefied gas flows and in particular, there has been a great deal of interest in thermophoresis on a sphere in a
steady-state rarefied gas flow (thermophoresis being the force experienced by solid particles or surfaces in a rarefied
gas in the presence of a temperature gradient) [6,7]. Interest in rarefied gas flows in idealised geometries apart from
microflows around isolated spherical particles has recently renewed, with examples including the rarefied gas flow
between two infinite parallel plates [8,9] and the drag force on a sphere moving close to a planar boundary through
a highly rarefied gas [10]. Modelling of rarefied gas flows is generally complicated even for steady-state flows in
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simple geometries because the usual continuum NSF equations lose their accuracy as the Knudsen number Kn (the
ratio of the mean free path in the gas to the characteristic length scale L for the problem) becomes larger.

For Knudsen numbers bigger than 0.01, the NSF equations typically give a picture which is not even qualitatively
correct, missing out on the existence of effects such as heat flow from colder regions of the gas to warmer regions
[11]. Once the gas flow becomes moderately rarefied, the Boltzmann equation is the only model which gives
accurate answers, and must in general be solved numerically. Numerical solution of the Boltzmann equation can be
implemented via direct simulation Monte Carlo (DSMC) [12] or deterministic methods [13], but these are usually
prohibitively expensive in computational cost for the flows which interest us. DSMC becomes computationally
expensive when used to model low-speed microflows where the flow velocity is much smaller than the thermal
velocity and is particularly expensive for Knudsen numbers in the so-called transition regime between 0.01 and
1 at low speeds. In the flows in MEMS which interest us in applications, the signal-to-noise ratio is too low to
make solution by DSMC computationally viable [13,14]. Our statements on computational cost depend on the
assumption that the interaction between the particles is described by a simple inverse power law potential rather
than the more realistic Lennard-Jones potential but this is a standard and widely used assumption in the literature (as
is our assumption that the gas is monatomic) [15]. There are also methods which use the smallness of the Knudsen
number to greatly increase the efficiency of numerical solution of the Boltzmann equation for moderately small
Knudsen numbers [16].

One possibility for effective modelling of rarefied gas flows in the transition regime which also might have
some physical insight is to create continuum equations using moment approximations to the Boltzmann equation.
The original approximation of this kind was made by Grad who expanded the distribution function in Hermite
polynomials and derived 13-moment equations known as the Grad or G13 equations [17,18]. The Grad equations
suffer from a number of deficiencies, including inability to capture the effect of Knudsen boundary layers. Struchtrup
and Torrilhon proposed a regularisation of the Grad equations to overcome these issues which are known as the
R13 equations [19]. We will not attempt to explain the method of moments here or justify the Grad equations, as
there are various detailed reviews in the literature which the reader could consult [20]. Informally, one can think of
the Grad equations as an approximation to the Boltzmann equation which is suitable for low-speed microflows at
the transitional Knudsen numbers which we are going to study. Moment equations do not currently have tractable
methods of numerical solution in three dimensions. Techniques do exist for certain two-dimensional flows, but these
are difficult to apply to low-speed external flows [21]. However, given that the flows which interest us are slow
creeping flows, one can make significant simplifications by considering the linearised forms of the Grad and R13
equations and in this paper we will only work with the linearised versions. Even in linearised form, solution of the
R13 equations is non-trivial and typically involves exact symmetry assumptions [22]. This is the main reason for
studying analytic solutions to the Grad equations rather than the R13 equations, and there are already some existing
examples in the literature.

We will now summarise the previous work which has been done in this respect. In an important study of
thermophoresis on spherical particles, Young examined several models for particle thermophoresis and solved the
Grad equations with spherical symmetry to obtain an analytic solution for the drag force on a sphere (Young
explicitly states that he has chosen to study the Grad equations because of the complexity of the R13 equations even
in their linearised form) [23]. Young also showed that the G13 method generates a hierarchy of expressions for the
thermophoretic force on a sphere at low Knudsen numbers which includes all the classic results and that the G13
solution can be used to derive an interpolation formula for the transition regime [23]. The relevance of the G13
method is further clarified in [20]. Before Young, Dwyer attempted to give a theory for the thermophoretic force on
a spherical particle based on an analytic solution of the Grad equations [24]. Lockerby and Collyer derived Green
functions for the G13 equations, where a Green function is taken to be the flow response to a Dirac delta forcing
term. We will discuss these solutions in more detail in Sect. 2 [14]. These solutions are useful from the numerical
point of view because one can exploit linearity of the equations and represent a flow field with a superposition of
Green functions [25]. The number of analytic solutions to the Grad equations is still somewhat limited given the
physical interest of the equations and that these solutions are mostly restricted to the study of thermophoresis on
spherical particles or to solutions corresponding to points placed in an infinite dilute gas.
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The aim of this work is to study the classical analytic solutions and techniques from potential theory for Stokes
flow and investigate the extent to which these techniques can be carried over to slow, steady-state rarefied gas flows.
In the process, we hope to derive new exact and integral solutions which can be employed in numerical schemes
or used to model steady-state dilute gas flows in certain geometries which are idealised but which at least include
some kind of boundary. Given that the equations of motion and the boundary conditions for the analogous boundary
value problems are more complicated, it would be natural to expect that these techniques will not carry over entirely
and that it might not be possible to derive the analogue for certain analytic solutions of Stokes flow. This turns out
to be the case, as we will see shortly.

The structure of the paper is as follows. In Sect. 2, we will fix notation and outline the methods, equations,
boundary conditions and solutions which we will use in the rest of the paper. In Sects. 3 and 4, we will consider
some applications of the method of images. The basic idea of this method in the context of fluid dynamics is to
consider the flow fields generated by a point forcing or a point heat source close to a boundary surface in terms
of an ‘image system’ of singularities on the other side of the wall. The related fields can then be found by using
Fourier analysis to obtain the image system which satisfies the required boundary conditions. This method has not
before been applied to dilute microscale gas flows as far as we know. Using the method of images we will derive the
velocity and temperature fields due to point forcings and point heat sources in the presence of and without velocity
slip and temperature jump at the boundary. The purpose of this is two-fold: to obtain a better physical understanding
of velocity (temperature) fields due to a point forcing (point heat source) in dilute microscale gas flows and heat
flows close to a plane boundary, and to derive novel exact solutions which can be implemented in the study of such
flows in simple geometries and problems. This could potentially enable us to better understand the movement of
slender bodies or small aspherical particulates in rarefied microscale gas flows close to walls. The solutions could
also be employed in certain numerical schemes [14,25].

In Sect. 5, we derive a novel solution for the unsteady Grad equations given a time-dependent point heat source.
The motivation for this is to try to extend our understanding of dilute microscale gas flows slightly beyond the usual
steady-state case and to obtain a solution which complements the existing time-dependent fundamental solutions
obtained for unsteady Stokes flow [26]. This solution could be implemented in a numerical method which uses
time-dependent fundamental solutions and used to model an unsteady heat flow in a very simple geometry [27].
Our assumption of one dimension seems prohibitive, but is quite typical in the existing literature [28]. Many of the
solutions which we derive refer to a flow with constant velocity and pressure. This is obviously quite a restrictive
condition, but does correspond to some physically realistic scenarios of current interest (for example, Fourier flow,
where one has a static gas between two stationary parallel plates and the flow structure as it exists is due only to
the temperature difference between the plates) [29]. We will refer to these types of flow as heat flows to emphasise
that the medium is not moving.

Finally, in Sect. 6, we derive the analogue of the ‘rotlet’ from studies of Stokes flow (the rotlet being a point torque
rather than a point force). As well as extending the result from Stokes flows to rarefied microscale gas flows for
the sake of interest, this result has potential applications in biology and biomedical science since micro-organisms
can exhibit helical beating motions as they move close to flat walls, in which case angular momentum needs to be
accounted for [30]. To use the rotlet which we derive in applications, one would need to place it close to a no-slip
boundary and determine the associated velocity and pressure fields. One might wonder if this could be made more
realistic by placing the rotlet close to a partial-slip boundary, but we show in Sect. 4 that obtaining the relevant
fields even for the simpler case of a point forcing in a rarefied gas flow close to a partial-slip plane boundary is
unfortunately intractable.

2 Preliminaries

For the sake of clarity, we will now fix all the notation and equations which are used in the rest of the paper so that
the reader can refer back to them as necessary. The basic geometry which we will consider for all the results in
Sects. 3 and 4 is shown in Fig. 1. The domain on which our PDEs are defined is the upper half-space given by the
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Fig. 1 The point force or
heat source is located at a
height h above the boundary
at z = 0 and there is a
mirror image point force or
heat source whose strength
is equal in magnitude at a
height h below the
boundary outside the
domain in which the PDEs
are defined. Note that the
point source of force can be
perpendicular to the plane at
z = 0, or parallel to it

set of all triples S = {(x, y, z) : z > 0} and the boundary of the domain (denoted in grey in Fig. 1) is the flat infinite
plane given by all triples {(x, y, z) : z = 0}. At a height z = h above the plane, one then places either a point source
of force fδ(r) or a point source of heat gδ(r) at the point (x, y, z) = (0, 0, h), where f is the point force vector, g is
the strength of the heat source, δ denotes the Dirac delta function and r = (x, y, z−h) is the vector from the source
to the point of observation. On the opposite side of the wall outside of the domain on which the PDEs are defined,
one imagines that there is a mirror image point source of force fδ(r) or a point source of heat gδ(r), where f is the
associated point force vector chosen to satisfy the no-flux boundary condition, and r = (x, y, z + h) is the position
vector for the point at which the image source is observed. The idea of the method of images is to decompose the
velocity field v into three parts

v = u + u′ + u′′, (1)

where u is the velocity field due to the point forcing placed in the flow, u′ is the velocity field due to the mirror
image point forcing placed on the other side of the wall and u′′ is the unknown velocity field due to some system
of singularities on the other side of the wall. The basic reason for needing more singularities in the image system
apart from the mirror image point force is that velocity is a vector quantity and not a scalar, hence an image point
force by itself would not be able to cancel those components of the flow which are both tangential and normal to
the boundary surface. Note that the prime does not denote differentiation and we hope that this is not misleading,
as we feel that it is more confusing to denote the different parts of the total velocity field v with different letters.
v as a whole is required to solve the boundary value problem, so one uses Fourier analysis to find the unknown
velocity field u′′ and finally adds the three parts together to obtain the total flow field due to a point force or heat
source close to the wall. The analysis in question requires two-dimensional Fourier transforms. For reference, the
Fourier transform and the inverse Fourier transform are defined via

ûi (k1, k2, z) = 1

2π

∫ ∫
ui (x, y, z)e

ik1x+ik2 y dx dy, (2a)

ui (x, y, z) = 1

2π

∫ ∫
ûi (k1, k2, z)e

−ik1x−ik2 y dk1 dk2. (2b)

Useful tables of Fourier transforms can be found at [31,32]. Quantities with hats indicate Fourier transformed
quantities. In Fig. 1, we have mentioned that one must consider separately the cases where the point forcing is
perpendicular or parallel to the wall: this is because the presence of the wall breaks isotropy of particles moving
close to it. A superscript ⊥ for a quantity indicates that we are considering the case where the point forcing is
perpendicular to the boundary (in the z-direction), and a superscript ‖ for a quantity indicates that we are considering
the case where the point forcing is parallel to the boundary (in the x-direction). To be clear, this has nothing to do
with the actual components of the velocity field itself. By the no-flux boundary condition, the z-component of the
velocity field vanishes at the boundary whether the point forcing is in the x- or the z-direction.
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2.1 Stokes equations with point forcing

We now outline the PDEs, boundary conditions and solutions which we will be referring to throughout the paper.
To begin with, the Stokes equations are given by

∇ · v = 0, (3a)

∇ p + ∇ · S = 0, (3b)

S = −2 Kn′ ∇v, (3c)

where Kn′ is a rescaled version of the Knudsen number which is relevant for the gas flows which we are studying

Kn′ =
√

2

π
Kn (4)

and the overline denotes the symmetric trace-free part of a tensor. The equations which we consider are dimensionless
and linearised about an equilibrium state which is defined by a constant reference density ρ0 and a reference
temperature θ0. We only consider small deviations away from equilibrium in this work. The relations between the
variables for dimensionless deviation away from the equilibrium state (denoted with tilde symbols) and variables
with dimension are

θ = θ0(1 + θ̃ ), ρ = ρ0(1 + ρ̃), p = p0(1 + p̃), r = L r̃, (5a)

v = √
Rθ0ṽ, q = ρ0(Rθ0)

3/2q̃, S = ρ0Rθ0S̃, (5b)

where L is a characteristic length scale, p0 is the equilibrium pressure and R is the ideal gas constant. In the rest of
this work, tilde symbols will not be shown and all variables will be dimensionless unless stated otherwise.

The Green function for the Stokes equations with a point forcing term on the right-hand side of the momentum
equation is extremely well studied in the literature (recall that the point forcing for the Stokes equations is called
the Stokeslet) [33]. The reader should bear in mind that with a point forcing term applied, the momentum equation
(3b) is actually

∇ p + ∇ · S = fδ(r). (6)

Assuming that the pressure and the magnitude of the velocity and stress tensors vanish as one goes to infinity, it is
well known that one obtains [14,32]

v = f · G, p = f · r
4π |r|3 , S = − f · r

4π

(
I

|r|3 − 3rr
|r|5

)
, (7)

where I is the identity matrix and the Green function G is given by

G = 1

8πKn′
(

I
|r| + rr

|r|3
)

. (8)

Note that this is the free-space solution and that we have not yet introduced a boundary condition at z = 0. Using the
parallel and perpendicular notation which we mentioned above, one has for parallel and perpendicular Stokeslets

v⊥ = fGx , (9a)

v‖ = fGz, (9b)

where f is the magnitude of the force, so one takes the component of the Green function which corresponds to the
direction of the point forcing. For the velocity field due to the mirror image point forcing, the sign in front of the
force is reversed if one takes the force in the perpendicular direction

v′⊥ = − fGx , (10a)

v′‖ = fGz, (10b)
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which often leads to some cancellations in the computations. The sign of the force is chosen in this way to enforce the
no-flux condition at the boundary. The no-slip boundary condition is simply the requirement that every component
of the velocity vanishes at the boundary

v = 0 (11)

and for a stationary wall the slip boundary condition in terms of the stress tensor S is [14]

v = −
√

π

2
n · S · (I − nn), (12)

where n is the unit normal vector to the boundary surface. In our case, the boundary surface is a flat plane at z = 0
and the unit normal vector is the unit vector in the z-direction, so the slip boundary condition in terms of each
component of the velocity becomes

v1 = −
√

π

2
S31, (13a)

v2 = −
√

π

2
S32, (13b)

v3 = 0. (13c)

2.2 Stokes equations with point heat source

One can instead look for solutions when the conservation equations are subject to a steady-state point heat source
rather than a point force source (in [14], this point heat source is called a thermal Stokeslet). In terms of the stress
tensor and heat flux, the conservation equations are

∇ · v = 0, (14a)

∇ p + ∇ · S = 0, (14b)

∇ · q = gδ(r), (14c)

where q is the heat flux and g is the strength of the point heat source. The equations for the stress tensor and heat
flux are given by the NSF closure:

S = −2 Kn′∇v, (15a)

q = −15

4
Kn′∇θ. (15b)

In the literature, one then typically looks for isobaric zero flow solutions such that v = p = 0 which gives us the
equations

∇ · q = gδ(r), (16a)

q = −15

4
Kn′∇θ. (16b)

Taking the boundary condition to be that the temperature θ scaled by the mass goes to its equilibrium value at
infinity, one then finds that for the thermal Stokeslet applied to an infinite rarefied gas, the temperature θ and the
heat flux q are

θ = g

15 Kn′π |r| , (17a)

q = gr
4π |r|3 . (17b)

The no-temperature jump boundary condition is the requirement that the temperature vanishes at the boundary

θ = 0 (18)
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and the temperature jump boundary condition is

θ = −1

2

√
π

2
n · q. (19)

Since the unit normal vector is the unit vector in the z-direction, the temperature jump boundary condition becomes

θ = −1

2

√
π

2
q3. (20)

2.3 Grad equations with point forcing

In this work, we are primarily interested in the Grad equations for rarefied gas flows. For a point forcing applied
to the momentum equation, these consist of the usual equations for conservation of mass, momentum and internal
energy

∇ · v = 0, (21a)

∇ p + ∇ · S = fδ(r), (21b)

∇ · q = 0, (21c)

combined with equations for the stress tensor and the heat flux given by Grad’s closure

S = −2 Kn′∇v − 4

5
Kn′∇q, (22a)

q = −15

4
Kn′∇θ − 3

2
Kn′∇ · S. (22b)

The point forcing in the case of the Grad equations is known as the Gradlet [14]. Solving these equations for an
infinite rarefied gas, one finds that the velocity and pressure fields associated to a Gradlet in an infinite domain far
away from boundaries are

v = f
8πKn′

(
I
|r| + rr

|r|3
)

− 3Kn′f
20π

(
I

|r|3 − 3rr
|r|5

)
, (23a)

p = f · r
4π |r|3 . (23b)

The slip boundary condition for the Grad equations is more complicated than the slip boundary condition for the
Stokes equations and includes a term which depends on the heat flux [34]:

v = −
√

π

2
n · S · (I − nn) − 1

5
q · (I − nn). (24)

For a flat plane as the boundary, these become

v1 = −
√

π

2
S31 − 1

5
q1, (25a)

v2 = −
√

π

2
S32 − 1

5
q2, (25b)

v3 = 0. (25c)

2.4 Grad equations with point heat source

As with the Stokes equations, one can instead consider the Grad equations with a point heat source applied to the
conservation equations:

∇ · v = 0, (26a)
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∇ p + ∇ · S = 0, (26b)

∇ · q = gδ(r), (26c)

S = −2 Kn′∇v − 4

5
Kn′∇q, (26d)

q = −15

4
Kn′∇θ − 3

2
Kn′∇ · S. (26e)

In this case, the point heat source is known as a thermal Gradlet. As before, it is usual to simplify by taking v = p = 0
which gives us

∇ · S = 0, (27a)

∇ · q = gδ(r), (27b)

S = −4

5
Kn′∇q, (27c)

q = −15

4
Kn′∇θ. (27d)

One then can solve to find the heat flux q, the stress tensor S and the temperature θ rescaled by the mass for a point
heat source in an infinite rarefied stationary gas [14]:

θ = g

15 Kn′π |r| , (28a)

q = gr
4π |r|3 , (28b)

S = −Kn′g
5π

(
I

|r|3 − 3rr
|r|5

)
. (28c)

Again, as before, there is some additional complexity in the temperature jump boundary condition for the Grad
equations which now involves a term which depends on the stress tensor [34]:

θ = −1

2

√
π

2
n · q − 1

4
n · S · n. (29)

For a flat surface, this simplifies to

θ = −1

2

√
π

2
q3 − 1

4
S33. (30)

The coupling between the stress tensor and the heat flux is an effect which is present in rarefied gas flows but not
in standard Stokes flows.

3 Exact solutions from the method of images

The basic question is to what extent the fields due to a point force or a point heat source placed in an infinite rarefied
gas are modified in the presence of a flat planar boundary, and this is what we will now proceed to study in some
detail via the method of images. Along the way, we will also derive some solutions for Stokes flows, some of which
are new as far as we are aware.

3.1 Solutions for no-slip and no-temperature jump boundaries

We will begin by focussing on the no-slip and no-temperature jump boundary conditions given by (11) and (18). The
situation is simplest for a boundary value problem where the temperature is prescribed to vanish at the boundary.
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In this setting, the image system required to solve the boundary value problem is just the mirror image of whatever
was placed in the domain on the other side of the wall.

As an example, we start with the temperature and heat flux fields associated to a point heat source placed in
isobaric stationary-state Stokes flow close to a no-temperature jump surface (Eqs. (14), solutions (17) and boundary
condition (18)). As emphasised before, this type of flow would be better characterised as a heat flow, since the
medium is not moving. We will abuse notation slightly and decompose the total temperature field as θ + θ ′ + θ ′′,
where θ denotes the temperature field for the point heat source placed in the domain close to the boundary, and does
not denote the total temperature field unless explicitly stated otherwise (this should only be at the end of a section
when we are ready to write down total fields). Hopefully this is not too confusing, as it saves on having to introduce
extra letters in the notation. If the total temperature field satisfies the no-temperature jump boundary condition, then
we must have

θ + θ ′ + θ ′′ = 0. (31)

After taking Fourier transforms of each quantity, we have

θ̂ + θ̂ ′ + θ̂ ′′ = 0. (32)

θ is given by (17a), so taking the Fourier transform we have

θ̂ = g

15 Kn′π
1

k
e−kz, (33)

where k =
√
k2

1 + k2
2. The next point also has some potential for confusion, so we will clarify. The unknown

temperature field θ ′′ and unknown heat flux q′′ by themselves satisfy Eqs. (14), but without the point heat source
term on the right-hand side of the conservation equation:

∇ · q = 0, (34a)

q = −15

4
Kn′∇θ. (34b)

This needs to be made clear as it may be used implicitly in the rest of the text. It should be clear from a physical
point of view because the unknown fields are associated with a fictitious system of singularities on the other side
of the wall outside the physical domain. To find θ̂ ′′, one takes two-dimensional Fourier transforms of the above
equations and solves the resulting differential equations. The above equations simplify to

�θ ′′ = 0. (35)

The two-dimensional Fourier transform of this is

∂2θ̂ ′′

∂z2 − k2θ ′′ = 0, (36)

where k2 = k2
1 + k2

2. The solution to this differential equation is

θ̂ ′′ = Ae−kz, (37)

where A is a constant to be determined and the positive exponential term has been neglected because the temperature
goes to zero at spatial infinity. Substituting all the hatted quantities into the Fourier transformed boundary condition
at z = 0, we have

A = − 2g

15 Kn′π
1

k
, (38)

so

θ̂ ′′ = − 2g

15Kn′π
1

k
e−kz . (39)

From Eq. (14c), we have

q ′′
1 = −15

4
Kn′ ∂θ

∂x
, q ′′

2 = −15

4
Kn′ ∂θ

∂y
, q ′′

3 = −15

4
Kn′ ∂θ

∂z
. (40)
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Taking Fourier transforms as usual, we have

q̂ ′′
1 = 15ik1

4
Kn′θ̂ = − g

2π

ik1

k
e−kz, (41a)

q̂ ′′
2 = 15ik2

4
Kn′θ̂ = − g

2π

ik2

k
e−kz, (41b)

q̂ ′′
3 = 15

4
k Kn′Ae−kz = − g

2π
e−kz . (41c)

We finish by taking the inverse Fourier transforms to arrive at

θ ′′ = − 2g

15 Kn′π
1

|r| , (42a)

q′′ = − gr
2π

1

|r|3 , (42b)

and adding the unknown fields to the fields due to the point heat source in the domain and the mirror image heat
source on the other side to obtain the expected total fields for a heat source close to a no-temperature jump surface

θ = g

15 Kn′π

(
1

|r| − 1

|r|
)

, (43a)

q = gr
4π

(
1

|r|3 − 1

|r|3
)

. (43b)

We have been somewhat explicit here, but hope that the method of calculation should be clear in the rest of the paper
even if some steps are missed out for brevity. Similar computations confirm that the fields due to a point heat source
placed in a isobaric stationary-state rarefied gas flow close to a no-temperature jump surface (Eqs. (27), solutions
(28) and boundary condition (18)) are equivalent to the ones obtained in (43a) and (43b).

3.2 Velocity distribution for a gradlet close to a no-slip surface

The next problem is to determine the fields due to a point forcing (known in this context as a Gradlet) placed in a
rarefied gas flow close to a no-slip boundary (Eqs. (22), solutions (23), and boundary conditions (24)). As mentioned
earlier, we do have to consider as separate cases when the point forcing is perpendicular to the wall or parallel to it,
because the wall breaks isotropy of nearby particle motions. The Grad equations are generally combined with a slip
boundary condition. The reason for this is that gas flows in microscale or nanoscale devices whose dimensions are
of the order of the mean free path of the gas molecules typically exhibit a significant amount of gas slip. However,
it is possible to have certain rarefied gas flows where the effect of gas slip can be approximately neglected [35,36]
and in this case, the exact solution which we are about to derive would be very useful and applicable in mesh-free
numerical methods [37].

Starting with Eqs. (21) and removing the point forcing term applied to the momentum equation, it can be shown
with some substitutions [23] that

∇2 p′′ = 0, (44a)

∇ p′′ = Kn′∇2u′′, (44b)

∇2q′′ = 0. (44c)

Taking Fourier transforms and solving the resulting differential equations, we get

û′′
1 =

(
h

8πKn′
)

(B1 + ik1Az)e
−kz, (45a)

û′′
2 =

(
h

8πKn′
)

(B2 + ik2Az)e
−kz, (45b)
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û′′
3 =

(
h

8πKn′
)

(B3 + k Az)e−kz, (45c)

p̂ =
(

h

4π

)
Ae−kz, (45d)

where h is the height at which the Gradlet has been placed above the boundary. The goal is now to use the boundary
conditions and the continuity equation (21a) to determine the constants A and Bi . We will start with the case where
the Gradlet is perpendicular to the surface. The no-slip boundary condition is

u⊥ + u⊥′ + u⊥′′ = 0. (46)

The meaning of the primes in the decomposition of the total velocity field v into three parts is the same as in the
previous section and was also explained in the preliminary section. Next, add the velocity fields (23) for the Gradlet
and the mirror image Gradlet when the Gradlet is in the perpendicular direction (i.e. one takes the z-component of
the force). If one took the point forcing to be in the parallel direction, the expressions would be slightly different as
one would take the x-component of the force. This leaves us with

u⊥
1 + u′⊥

1 = − 1

4πKn′
xh

r3
h

− 9Kn′

10π

xh

r5
h

, (47a)

u⊥
2 + u′⊥

2 = − 1

4πKn′
yh

r3
h

− 9Kn′

10π

yh

r5
h

, (47b)

u⊥
3 = 0, (47c)

where r2
h = x2 + y2 + h2 and h is always the height at which the point force or point heat source is placed above

the boundary. We Fourier transform this to get

û⊥
1 + û′⊥

1 = −i
h

4πKn′
k1

k
e−kh − i

3Kn′

10π
k1e−kh, (48a)

û⊥
2 + û′⊥

2 = −i
h

4πKn′
k2

k
e−kh − i

3Kn′

10π
k2e−kh, (48b)

û⊥
3 + û′⊥

3 = 0. (48c)

Finally, we add all the hatted quantities at the boundary at z = 0 to obtain expressions for the coefficients Bi :

h

8πKn′ B
⊥
1 = −i

h

4πKn′
k1

k
− i

3Kn′

10π
k1, (49a)

h

8πKn′ B
⊥
2 = −i

h

4πKn′
k2

k
− i

3Kn′

10π
k2 (49b)

h

8πKn′ B
⊥
3 = 0. (49c)

Equation (49c) implies that B⊥
3 = 0, so we only need a third equation to close the system and determine A⊥.

This is provided by the continuity equation (21a). Fourier transforming the continuity equation and making some
cancellations, we end up with

A⊥ = i

k
(k1B

⊥
1 + k2B

⊥
2 ). (50)

Substituting these constants back into Eqs. (49) and taking inverse Fourier transforms, we obtain the unknown
pressure and velocity fields which can be added to the fields for the Gradlet and the mirror image Gradlet to obtain
the total fields associated with a point forcing placed in a rarefied gas flow perpendicular to the boundary.

u⊥′′
1 = − h

4πKn′
(

∂

∂z

(
hx

|r|3
)

− ∂

∂z

(
zx

|r|3
))

+ 3 Kn′

10π

(
∂

∂z

(
3zx

|r|5
)

− ∂

∂z

(
3hx

|r|5
))

, (51a)
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u⊥′′
2 = − h

4πKn′
(

∂

∂z

(
hy

|r|3
)

− ∂

∂z

(
zy

|r|3
))

+ 3 Kn′

10π

(
∂

∂z

(
3zy

|r|5
)

− ∂

∂z

(
3hy

|r|5
))

, (51b)

u⊥′′
3 = − h

4πKn′
(

∂

∂z

(
hz

|r|3 − 1

|r| − z2

|r|3
))

+ 3 Kn′

10π

(
∂

∂z

(
3z2

|r|5 − 1

|r|3 − 3hz

|r|5
))

, (51c)

p⊥′′ = − h

4π

(
∂

∂z

(
2z

|r|3
)

+ 12 Kn′2

5h

∂

∂z

(
3z2

|r|5 − 1

|r|3
))

. (51d)

It is straightforward to repeat the analysis for a point forcing in the parallel direction, as this just changes some of
the expressions slightly due to certain expressions no longer cancelling out. The corresponding unknown velocity
and pressure fields in this case are

u‖′′
1 = h

4πKn′
(

∂

∂x

(
hx

|r|3
)

− ∂

∂x

(
zx

|r|3
))

− 3 Kn′

10π

(
∂

∂x

(
3zx

|r|5
)

− ∂

∂x

(
3hx

|r|5
))

, (52a)

u‖′′
2 = h

4πKn′
(

∂

∂x

(
hy

|r|3
)

− ∂

∂x

(
zy

|r|3
))

− 3 Kn′

10π

(
∂

∂x

(
3zy

|r|5
)

− ∂

∂x

(
3hy

|r|5
))

, (52b)

u‖′′
3 = h

4πKn′
(

∂

∂x

(
hz

|r|3 − 1

|r| − z2

|r|3
))

− 3 Kn′

10π

(
∂

∂x

(
3z2

|r|5 − 1

|r|3 − 3hz

|r|5
))

, (52c)

p‖′′ = h

4π

(
∂

∂x

(
2z

|r|3
)

+ 12 Kn′2

5h

∂

∂x

(
3z2

|r|5 − 1

|r|3
))

. (52d)

For the reader who is familiar with the literature on singularities of Stokes flows, what we have shown here is that
the image system which is required to solve the boundary value problem is the analogue of the corresponding image
system needed to solve the same boundary value problem when one instead has a Stokeslet close to a flat no-slip
wall [38]. Recall that the singular point forcing we have defined is only the simplest type of singularity of a flow,
and that one can take derivatives to obtain higher-order singularities [39]. In the terminology of the literature on
singularities of viscous flows, if the force is in the z-direction the additional singularities in the image system on
the other side of the wall apart from the mirror image Gradlet are just the analogous source dipole in the z-direction
and a z-dipole of z-Gradlets [30].

3.3 Pressure distribution for a stokeslet perpendicular to a slip surface

We will now derive the total pressure field due to a point forcing in a Stokes flow which is close to a slip boundary
and perpendicular to the boundary (Eqs. (3), solutions (7) and boundary conditions (12)). Taking Fourier transforms
of Eq. (5c) for the unknown stress tensor field, we obtain

Ŝ′′⊥
13 = Ŝ′′⊥

31 = −Kn′
(

∂ û⊥
1

∂z
− ik1û

⊥
3

)
, (53a)

Ŝ′′⊥
23 = Ŝ′′⊥

32 = −Kn′
(

∂ û⊥
2

∂z
− ik2û

⊥
3

)
. (53b)

We have only written down the transforms of the components which we will need for our computations. Making
some rearrangements with the Stokes equations [38], we see that the unknown pressure satisfies the Laplace equation

�p′′ = 0, (54)

so as before, after taking Fourier transforms and solving the differential equation one obtains

p̂′′ = Ae−kz . (55)

Again, as with Sect. 3.2, the Fourier transformed components of the unknown velocity field are

û′′
1 =

(
h

8πKn′
)

(B1 + ik1Az)e
−kz, (56a)
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û′′
2 =

(
h

8πKn′
)

(B2 + ik2Az)e
−kz, (56b)

û′′
3 =

(
h

8πKn′
)

(B3 + k Az)e−kz . (56c)

Adding the relevant components for the velocity and stress tensor fields due to a Stokeslet and a mirror image
Stokeslet in the perpendicular direction, we obtain

u⊥
1 + u⊥′

1 = − h

4πKn′
x

r3
h

, (57a)

u⊥
2 + u⊥′

2 = − h

4πKn′
y

r3
h

, (57b)

u⊥
2 + u⊥′

2 = S⊥
31 + S⊥′

31 = S⊥
32 + S⊥′

32 = 0. (57c)

The Fourier transformed boundary conditions are

û⊥
1 + û⊥′

1 + û⊥′′
1 = −

√
π

2
(Ŝ⊥

31 + Ŝ⊥′
31 + Ŝ⊥′′

31 ), (58a)

û⊥
2 + û⊥′

2 + û⊥′′
2 = −

√
π

2
(Ŝ⊥

32 + Ŝ⊥′
32 + Ŝ⊥′′

32 ), (58b)

û⊥
3 + û⊥′

3 + û⊥′′
3 = 0. (58c)

Taking Fourier transforms of (57) and adding everything at the boundary at z = 0, we obtain

û⊥′′
1 − Kn

∂ û⊥′′
1

∂z
= i

h

4πKn′
k1

k
, (59a)

û⊥′′
2 − Kn

∂ û⊥′′
2

∂z
= i

h

4πKn′
k2

k
, (59b)

û⊥′′
3 = 0. (59c)

Closing the system with the same Fourier transformed continuity equation as before, we obtain for the coefficients

B⊥
1 = 2ik1

k(1 + 2k Kn)
, (60a)

B⊥
2 = 2ik2

k(1 + 2k Kn)
, (60b)

B⊥
3 = 0, (60c)

A⊥ = −2

1 + 2k Kn
. (60d)

Note that the Knudsen number is now the standard Knudsen number because the scaling has cancelled out. After
dimensionalisation to account for the slip length λ, these are the same Fourier coefficients as the ones obtained in
[39] i.e. when Kn is replaced by λ. In fact, the Fourier coefficients are the same as those in the no-slip case (when
the slip length λ is zero) divided through by 1 + 2λk, so by differentiating one can write down the relation
(

1 − 2λ
∂

∂z

)
p̂⊥′′

(r, λ) = p̂⊥′′
(r, 0). (61)

This implies a differential equation for the inverted quantities:
(

1 − 2λ
∂

∂z

)
p⊥′′

(r, λ) = p⊥′′
(r, 0). (62)
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In [38], it is shown that

p⊥′′
(r, 0) = h

2π

∂

∂z

(
z

|r|3
)

, (63)

so integrating by parts and adding the other contributions p⊥ and p⊥′
due to the Stokeslet and the mirror image

Stokeslet, we find that the total pressure due to a point forcing in Stokes flow close to and perpendicular to a flat
slip boundary is

p⊥ = 1

4π

(
z

|r|3 − z

|r|3 + h

λ

∫ ∞

0
ds

[
∂

∂z

(
z

|r|3
)]

(r + (h + s)ez)e−s/2λ

)
, (64)

where ez is the unit vector in the z-direction.

3.4 Temperature distribution for a thermal stokeslet close to a temperature jump surface

Finally, we consider the case of a point heat source (thermal Stokeslet) in heat flow close to a temperature jump
surface (Eqs. (14), solutions (17) and boundary condition (19)). By the same analysis as before, one obtains for the
Fourier transformed temperature

θ̂ = Ae−kz . (65)

The Fourier transformed boundary condition is

θ̂ + θ̂ ′ + θ̂ ′′ = −1

2

√
π

2
(q̂3 + q̂ ′

3 + q̂ ′′
3 ). (66)

By the same or very similar analysis as Sect. 3.1, we substitute in the Fourier transformed quantities at the boundary
where z = 0 and then rearrange for the coefficient A, which is found to be

A = − 2g

15 Kn′πk(1 + 15
8 Kn k)

. (67)

Note that this is the same Fourier coefficient as the one which we obtained for the same problem in Sect. 3.1 with a
no-jump boundary after dividing through by 1+15 Kn k/8. Differentiating as before implies a differential equation
for θ̂ ′′, which is inverted to give(

1 − 15

8
Kn

∂

∂z

)
θ ′′ = θ ′′

nj , (68)

where θ ′′
nj is the unknown temperature field for the heat source close to the no-temperature jump surface. Substituting

in θ ′′
nj which was found in Sect. 3.1, integrating by parts and adding θ ′′ to the temperature fields θ and θ ′ contributed

by the heat source and the mirror image heat source, we obtain the total temperature field due to a point heat source
placed in isobaric stationary Stokes flow close to a temperature jump boundary:

θ = g

15 Kn′π

(
1

|r| − 1

|r| + 16

15 Kn

∫ ∞

0
ds

[
1

|r|
]
(r + (h + s)ez)e−8s/15 Kn

)
. (69)

The components of the heat flux can be obtained in a similar way.

4 Solutions for rarefied gas flows close to boundaries

In this section, we will return to rarefied gas flows and heat flows modelled by the Grad equations. We will find in
this section that the method of images can be pushed far enough to obtain the solution in the case of a point heat
source in a heat flow close to a flat temperature jump surface, but that obtaining the solution in the case of a point
forcing in a rarefied gas flow close to a flat velocity slip surface is intractable (even if we assume for simplicity that
the point forcing is perpendicular rather than parallel to the boundary).
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4.1 Temperature distribution for a thermal gradlet close to a temperature jump surface

We start with the case of a point heat source (thermal Gradlet) placed in a heat flow close to a temperature jump
surface (Eqs. (26), solutions (28) and boundary condition (30)). The Fourier transformed temperature jump boundary
condition is now quite complicated:

θ̂ + θ̂ ′ + θ̂ ′′ = −1

2

√
π

2
(q̂3 + q̂ ′

3 + q̂ ′′
3 ) − 1

4
(Ŝ33 + Ŝ′

33 + Ŝ′′
33). (70)

If we Fourier transform Eqs. (26) and solve the resulting differential equations, we obtain

θ̂ ′′ = Ae−kz, (71a)

q̂ ′′
3 = 15

4
k Kn′Ae−kz, (71b)

Ŝ′′
33 = 3 Kn′2k2Ae−kz, (71c)

Using the solutions (28), we also have at the boundary

θ + θ ′ = 2g

15 Kn′πrh
, (72a)

q3 + q ′
3 = 0, (72b)

S33 + S′
33 = 2 Kn′g

5π

(
3h2

r5
h

− 1

r3
h

)
. (72c)

Taking Fourier transforms of the above and adding everything at the boundary, we arrive after some rearrangements
at

A = − 2g + 15
10 Kn′2gk2

15 Kn′πk(1 + 15
8 Kn k + 3

4 Kn′2k2)
. (73)

Substituting this back into (71a) and differentiating, we obtain after some algebra the following relation:(
1 − 15

8
Kn

∂

∂z
+ 3

4
Kn′2 ∂2

∂z2

)
θ̂ ′′ = − 2g

15Kn′πk
e−kz − Kn′gk

10π
e−kz . (74)

This implies a differential equation for the unknown temperature field θ ′′ after inverting:(
1 − 15

8
Kn

∂

∂z
+ 3

4
Kn′2 ∂2

∂z2

)
θ ′′ = −Kn′g

10π

(
1

|r|3
(

3z2

|r|2 − 1

))
− 2g

15Kn′π
1

|r| . (75)

Solving this linear PDE for θ ′′, we obtain an explicit solution

θ ′′ = 16g

15CKn′2π

( ∫ ∞

0
ds K e−(15

√
2
√

1/π+C)s/24Kn′
(r + (h + s)ez)

−
∫ ∞

0
ds K e(−15

√
2
√

1/π+C)s/24Kn′
(r + (h + s)ez), (76)

where

C = √
450π − 768, (77a)

K = (3 Kn′2 − 4y2 − 4z2)x2 + (3 Kn′2 − 4z2)y2 − 6 Kn′2z2 − 2x4 − 2y4 − 2z4

|r|5 . (77b)

The two arbitrary constants which appear in this solution vanish, because the temperature goes to zero at infinity
and the constants both multiply exponential terms raised to a positive multiple of z. Adding θ ′′ to θ and θ ′ finally
results in the total temperature field due to a point heat source which is placed close to a flat temperature jump
surface.
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4.2 Gradlet perpendicular to a slip surface

We will end our discussion of the method of images by considering the case of a point forcing placed in a rarefied
gas flow close to and perpendicular to a slip surface (Eqs. (21) and (22), solutions (23) and boundary conditions
(25)). p̂⊥′′

, û⊥′′
1 , û⊥′′

2 and û⊥′′
3 are the same as in Sect. 3.2 where we studied the point forcing close to a no-slip

boundary. The Fourier transformed boundary conditions are

u⊥
1 + u⊥′

1 + u⊥′′
1 = −

√
π

2
(S⊥

31 + S⊥′
31 + S⊥′′

31 ) − 1

5
(q⊥

1 + q⊥′
1 + q⊥′′

1 ), (78a)

u⊥
2 + u⊥′

2 + u⊥′′
2 = −

√
π

2
(S⊥

32 + S⊥′
32 + S⊥′′

32 ) − 1

5
(q⊥

2 + q⊥′
2 + q⊥′′

2 ), (78b)

u⊥
3 + u⊥′

3 + u⊥′′
3 = 0. (78c)

Using Eqs. (21), we obtain

u1 + u⊥′
1 = − 1

4πKn′
xh

r3
h

− 9 Kn′

10π

xh

r5
h

, (79a)

u2 + u⊥′
2 = − 1

4πKn′
yh

r3
h

− 9 Kn′

10π

yh

r5
h

, (79b)

u3 + u⊥′
3 = 0, (79c)

q⊥
1 + q⊥′

1 = −9 Kn′

8π

hx

r5
h

, q⊥
2 + q⊥′

2 = −9 Kn′

8π

hy

r5
h

, (79d)

S⊥
31 + S⊥′

31 = S⊥
32 + S⊥′

32 = 0. (79e)

Fourier transforming Eq. (22a) for the stress tensor S we get

Ŝ′′
31 = −Kn

(
∂ û′′

1

∂z
− ik1û

′′
3

)
− 4

5
Kn′

(
∂q̂ ′′

1

∂z
− ik1q̂

′′
3

)
, (80a)

Ŝ′′
32 = −Kn

(
∂ û′′

2

∂z
− ik2û

′′
3

)
− 4

5
Kn′

(
∂q̂ ′′

2

∂z
− ik2q̂

′′
3

)
, (80b)

It is possible to Fourier transform equations (80) and add everything at the boundary as we have now done several
times throughout this article, but after solving for the Fourier coefficients, the problem of taking inverse two-
dimensional Fourier transforms is completely intractable.

5 Solution for unsteady thermal gradlet in one dimension

So far all the flows which we have studied have been time-independent. In dimensions two and three, it is also
possible to study the solution to the unsteady Stokes equations with a time-dependent point forcing or point heat
source applied to the conservation equations, but the analysis is somewhat involved [19,23]. The next question is
whether one can solve the unsteady Grad equations with a time-dependent point heat source. In order to simplify
the equations far enough that they can be solved in this setting, we will have to assume one dimension: this is a
standard assumption found elsewhere in the literature on the unsteady Grad and R13 equations [40]. We start with
the linearised Grad equations from [28] in one dimension with a time-dependent point heat source applied to the
conservation of energy equation. This gives us the linearised dimensionless conservation equations

∂ρ

∂t
+ ∂v1

∂x
= 0, (81a)

∂v1

∂t
+ ∂S11

∂x
+ ∂p

∂x
= 0, (81b)
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3

2

∂θ

∂t
+ ∂v1

∂x
+ ∂q1

∂x
= gδ(x)δ(t), (81c)

along with the linearised dimensional equations for the heat flux and the stress tensor
∂S11

∂t
+ 8

15
Pr

w3

w2

∂q1

∂x
= − 2

w2

1

Kn

(
S11 + 4

3
Kn

∂v1

∂x

)
, (82a)

∂q1

∂t
+ 5

4 Pr

θ4

θ2

∂S11

∂x
= − 1

θ2

5

2 Pr

1

Kn

(
q1 + 5

2 Pr
Kn

∂θ

∂x

)
, (82b)

where δ is the Dirac delta function and g is the strength of the point heat source. The other coefficients are defined
in [28] and depend on the collision model which is being used. The Prandtl number is Pr = μcp/k, where μ is the
shear viscosity, cp is the isobaric specific heat and k is the thermal conductivity. For simplicity, we will take the
values for Maxwell molecules [28]:

θ2 = 45

8
, w2 = 2, w3 = θ4 = 3, Pr = 2

3
. (83)

As usual for the point heat source, we search for solutions with constant and uniform pressure and velocity. From
the ideal gas law, this implies that ρ = −θ , so the equations become after some re-arranging

∂q1

∂x
= gδ(x)δ(t), (84a)

∂S11

∂t
+ 8

15

∂q1

∂x
= − 1

Kn
S11, (84b)

∂q1

∂t
= 2

3

1

Kn
q1 + 5

2

∂θ

∂x
. (84c)

It is then straightforward to take separate Laplace transforms with respect to x and t , solve the resulting linear
system for the Laplace transformed quantities θ̂ , q̂1 and Ŝ11 and finish by taking inverse Laplace transforms to
arrive at

q1 = gδ(t), (85a)

S11 = −8g

15
e−t/Knδ(x), (85b)

θ = gx

(
2

5

∂

∂t
δ(t) − 4

15

1

Kn
δ(t)

)
. (85c)

The use of Laplace transforms for both variables makes sense as we only have first-order derivatives for space
and time. In the case of Stokes flow, the preference for using the Laplace transform for the time domain and the
Fourier transform for the spatial domain is slightly subtle, and not simply so that one can solve an ODE of at
most second order [41]. This solution could be employed in a mesh-free numerical method to model an extremely
simple time-dependent heat flow such as the one-dimensional heat flow within a rarefied vapour phase situated
between two liquid bodies [28]. An example of such a numerical method (the method of fundamental solutions)
is described in [27]. This method enables one to model a flow using fundamental solutions for the equations of
motion. The boundary integral method also uses fundamental solutions but unlike MFS, this method requires the
use of numerical integrations which can become computationally expensive. In formal terms, MFS avoids use of
a computational mesh by approximating the solution via a series of radial basis functions [42,43]. As far as we
are aware, using the solution we have just derived in this method would not be too challenging, as the method has
already been applied in three dimensions. We also attempted to solve the unsteady Grad equations in one dimension
with a time-dependent point forcing applied to the momentum equation, but found obtaining non-trivial solutions
to be intractable.

6 Grad analogue of the rotlet

In the literature on singularities of viscous flow, the point forcing is only the simplest possible type of singularity
[30]. One can also obtain a higher-order singularity of Stokes flow corresponding to rotational motion: in other
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Fig. 2 Streamlines for a
Stokes Rotlet b Grad Rotlet

words, one can study the response of the flow field to a point torque rather than a point forcing. This singularity is
discussed in detail by Batchelor in the context of bulk stress in a suspension of non-spherical particles [44] and it
should be simple to generalise to the Grad equations. If one introduces a Stokeslet in the flow, it is well known that
one obtains higher-order singularities like the Stokes dipole (also called the doublet in the literature) and the Stokes
quadrupole by taking the gradient [30]. Below, we do the same with the Gradlet and obtain the fields corresponding
to a Grad dipole:

v =
(
D − DT − TrD

|r|3 + 3rr
|r|5

)
r

8πKn′ −
(
D − DT − TrD

|r|5 + 5rr
|r|7

)
9 Kn′r
20π

, (86a)

p = 1

4π

(
3r · Dr

|r|5 − e · De
|r|3

)
, (86b)

q =
(
D − DT − TrD

|r|5 + 5rr
|r|7

)
9 Kn′r

8π
, (86c)

where D is a rank two tensor of strengths and e is a unit vector.
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By analogy with the singularities of Stokes flow, we could refer to the symmetric part of the fields as the
Grad stresslet (corresponding to straining motion) and the anti-symmetric part as the Grad rotlet (corresponding to
rotational motion). The streamlines due to the Grad rotlet are circles around the line through the origin. In Fig. 2,
we plot the streamlines for the Stokes and Grad rotlets for comparison when Kn = 1. The colourmap and colour
scale are the same for both figures, so one can see that the gradient for the Grad rotlet is much larger. Note that the
Grad rotlet has two terms, the first of which will dominate as Kn tends to zero, leading to the streamlines which
are observed for the Stokes rotlet and described in [3]. The rotlet singularity could have applications in biomedical
science because it corresponds to a point torque. If utilised in the correct way it could potentially capture angular
momentum of cylindrical or aspherical dust particles close to boundaries in dilute gas flows (relevant for studying
inhalation of particulates and droplets) [30]. The next step in that endeavour would be to derive the velocity fields
when a Grad rotlet is placed close to a flat no-slip boundary in a rarefied gas flow (as mentioned earlier, a no-slip
boundary condition might still be a good approximation for certain microscale rarefied gas flows). It would be
desirable for realistic modelling purposes to derive the velocity fields associated to a Grad rotlet close to a slip
surface in a rarefied gas flow, but we have already shown that this is an intractable problem even for the simpler
case of a point forcing perpendicular to a slip surface.

7 Conclusions

In summary, we have studied some of the classical exact solutions and techniques from potential theory for Stokes
flow (in particular, the method of images) and investigated the extent to which these carry over to rarefied microscale
gas flows and heat flows modelled by the linearised Grad equations. As a result we arrive at a number of new exact
solutions which could be applied to the study of these flows in idealised geometries or used in numerical schemes for
modelling purposes [37]. In particular, the integral solution for a thermal Gradlet close to a temperature jump surface
could be employed in boundary integral techniques for numerical solution of linear PDEs, where one computes
flow and pressure fields by solving for distributions of singularities of the flow [25]. These numerical techniques
are very familiar for Stokes flow calculations in physics and engineering and it might be interesting to use them for
rarefied gas flow and heat flow calculations. We have also derived several other solutions which could be employed
in boundary integral techniques for rarefied gas flow computations (and in fact, the derivation of the pressure field
even for the Stokeslet perpendicular to a slip surface is new as far as we know). In some important respects, the
techniques do not carry over completely and it is impossible to obtain an analogous solution for a point forcing
placed in a rarefied gas flow close to a slip surface or a solution for the unsteady Grad equations in dimension
higher than one. As mentioned, the time-dependent solution to the unsteady Grad equations with a heat source
could be employed to study very simple one-dimensional heat flow problems [28] or it could be employed in a
time-dependent mesh-free numerical method [27,45]. It also seems possible that the Grad rotlet which we derived
could find applications in biomedical science via the study of aspherical particles and droplets which move in dilute
gas flows close to flat walls and have non-negligible angular momenta.
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