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Abstract We consider the optimization of a chemical microchannel reactor by means of PDE-constrained opti-
mization techniques, using the example of the Sabatier reaction. To model the chemically reacting flow in the
microchannels, we introduce a three- and a one-dimensional model. As these are given by strongly coupled and
highly nonlinear systems of partial differential equations (PDEs), we present our software package cashocs which
implements the adjoint approach and facilitates the numerical solution of the subsequent optimization problems.
We solve a parameter identification problem numerically to determine necessary kinetic parameters for the models
from experimental data given in the literature. The obtained results show excellent agreement to the measurements.
Finally, we present two optimization problems for optimizing the reactor’s product yield. First, we use a tracking-
type cost functional to maximize the reactant conversion, keep the flow rate of the reactor fixed, and use its wall
temperature as optimization variable. Second, we consider the wall temperature and the inlet gas velocity as opti-
mization variables, use an objective functional for maximizing the flow rate in the reactor, and ensure the quality
of the product by means of a state constraint. The results obtained from solving these problems numerically show
great potential for improving the design of the microreactor.
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1 Introduction

The Sabatier process, named after the French chemists Paul Sabatier and Jean-Baptiste Senderens who reported it
in 1902 [1], is given by the reversible exothermic reaction

CO2 + 4H2 � CH4 + 2H2O, �H0 ≈ −165 kJ/mol (at 25◦C). (1.1)

This reaction has been investigated, e.g., in the context of in situ resource utilization on mars [2,3], for life-support
systems on the ISS [4], and it is also used for power-to-gas applications [5,6], and cogeneration systems [7,8].
An overview over these and various other applications can be found, e.g., in [9]. Microchannel geometries are
particularly interesting for chemical reactions as the large specific surface area of the microchannels allows for high
performance of catalytic reactions as well as precise temperature management by means of appropriate temperature
control systems. Such reactors have already been investigated for the Sabatier reaction, e.g., in [2,3,10,11].

The purpose of this paper is to investigate the optimization of such a microchannel reactor for the Sabatier
reaction using techniques from PDE-constrained optimization. Such methods are widely used in various physical
applications, e.g., for the optimization of chemical reactions in conventional sized reactors [12–14], the optimization
of semiconductors [15,16], glass cooling processes [17,18], or for the optimal shape design of microchannel
cooling systems [19,20], aircrafts [21,22], and polymer spin packs [23,24]. The optimization of microchannel
reactors has also been investigated previously using derivative-free approaches only, e.g., in [25–28]. To the best
of our knowledge, the derivative-based optimization of microchannel reactors with methods from PDE-constrained
optimization has not been considered in the literature so far.

Throughout this paper, we consider the same setting as in [11,29], where a microchannel reactor for the Sabatier
reaction is investigated by means of experiments and simulations. To model this reactor mathematically, we introduce
the following two models. First, we present a three-dimensional model that contains all important physical and
chemical effects of the reactor. Second, we derive a one-dimensional model from the first one using a homogenization
procedure similar to [19]. As both models are given by strongly coupled and highly nonlinear systems of PDEs,
we use our software package cashocs [30] for the numerical solution of the subsequent optimization problems. In
particular, cashocs is used to determine the relevant kinetic parameters for both models by solving a parameter
identification problem constrained by the one-dimensional reactor model. The obtained results show excellent
agreement with the experimental results reported in [11,29]. Subsequently, a numerical comparison of both models
shows that the one-dimensional model approximates the three-dimensional one very well, which validates our
approach of using the one-dimensional model as the PDE constraint for the parameter identification.

Finally, we consider the following two optimization problems for the reactor. First, we use a cost functional based
on the tracking of the CO2 conversion at the reactor outlet and treat the surrounding temperature of the reactor, i.e.,
its wall temperature, which can be influenced by means of appropriate temperature control systems, as optimization
variable while keeping the inlet flow rate fixed. In the second case, we consider the inlet gas velocity of the reactor
and its wall temperature as optimization variables and use a objective functional for maximizing the mass flow rate
in the reactor. In this case, the quality of the product is ensured by use of a state constraint for the CO2 conversion.
Both problems are solved numerically using our software cashocs, and the obtained results show great potential for
improving the design of microchannel reactors.

This paper is structured as follows. We begin with the introduction of our mathematical models and an inves-
tigation of the Sabatier reaction in Sect. 2. Afterwards, in Sect. 3, we give a brief description of our software
package cashocs which is used for the automated treatment of optimal control problems considered in the following
sections. The necessary kinetic reaction parameters are determined in Sect. 4, where we also compare both reactor
models numerically. Finally, we investigate the numerical optimization of the reactor and discuss the potential for
optimizing its design in Sect. 5.
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Fig. 1 Schematic of the problem setting with inlet part Ω in (blue) and catalytic reaction part Ω reac (orange). (Color figure online)

2 Model formulation

We first give some preliminary notations regarding our setting. Afterwards, we introduce a three- and a one-
dimensional model for the reactor and investigate the behavior of the Sabatier reaction. We conclude this section
by detailing the numerical solution procedure for both models.

2.1 Preliminary notations

For the modeling of the Sabatier process in a microchannel reactor, we consider the experimental setting from
[11,29], where such a reactor is investigated by experiments and simulations. The reactor consists of 80 identical
microchannels, each having a width of W = 450µm, a height of H = 150µm, and a length of L = 5 cm (cf.
Table 1). As in [11], we assume that the flow is distributed uniformly between the channels so that we can model
the behavior of the whole reactor by simulating a single channel, which is a well-established assumption in the
literature [11,31,32]. Additionally, we consider an inlet section, where we assume that no reaction occurs, with
a length of L/10 in front of the catalytic reaction part. Hence, throughout this paper, the geometry of the entire
reactor is denoted by Ω = (−L/10, L) × (0,W ) × (0, H) which is divided into the catalytic reactor domain
Ω reac = (0, L) × (0,W ) × (0, H) and the inlet domain Ω in = (−L/10, 0) × (0,W ) × (0, H), where we have no
catalyst and, hence, can neglect the chemical reaction. The boundary Γ = ∂Ω of the channel is divided into three
disjoint parts. The inlet Γ in at x = −L/10, where the fluid enters the domain, the wall boundary Γ wall, which bounds
the domain and encloses the flow, and the outlet Γ out at x = L , where the fluid leaves the domain. This setting is
schematically depicted in Fig. 1, where the geometry of the reactor is shown. For further details and schematics, we
refer to [11]. Finally, we remark that since the authors of [11,29] only considered stoichiometric inlet conditions,
i.e., mole fractions of 1/5 for CO2 and 4/5 for H2, we only consider these as inlet conditions throughout this paper.

2.2 Mathematical model

We assume that the chemically reacting gas mixture obeys the ideal gas law ρ = (ptotM)/(RT ), where ptot denotes
the total pressure of the gas, M is its average molar mass, T its temperature, and R is the universal gas constant.
Further, we assume that the flow is weakly compressible, which implies that ptot can be written as ptot = pref + p
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with a constant reference pressure pref and pressure variations p, so that p � pref and ∇ ptot = ∇ p, as in [33].
Hence, we can approximate the ideal gas law by

ρ = prefM

RT
(2.1)

as the contribution of the pressure variations towards the change in density of the gas is negligible. Moreover, for
the derivation of a general model for chemically reacting fluid flow, we assume that the reaction is described by the
following system of Nr elementary and reversible chemical reactions between Ns chemical species, denoted by the
symbol Mk for k = 1, . . . , Ns,

Ns∑

k=1

ν′
k, jMk �

Ns∑

k=1

ν′′
k, jMk, j = 1, . . . , Nr, (2.2)

where νk, j is the (non-negative) stoichiometric coefficient of species k in reaction j . Note, that the reaction also
affects the density of the gas mixture [cf. (2.1)] by changing its average molar mass M , which is defined as follows:

M =
(

Ns∑

k=1

Yk
Mk

)−1

,

where Yk is the mass fraction of species k, which are detailed below, and Mk is the average molar mass of species
k.

We describe the chemically reacting flow in the channel by the following system of PDEs:

⎧
⎪⎪⎨

⎪⎪⎩

∇ · (ρu) = 0 in Ω,

ρ (u · ∇) u + ∇ p − ∇ · (μ∇u) − ∇ (μ/3 ∇ · u) = 0 in Ω,

ρCp u · ∇T − ∇ · (κ∇T ) − ω̇T,r − ω̇T,d = 0 in Ω,

ρ u · ∇Yk + ∇ · (ρV cYk) − ∇ · (ρDk,mix∇Yk
)− ω̇k = 0 in Ω, k = 1, . . . , Ns,

(2.3)

where u denotes the gas mixture’s velocity, T its temperature, and ∇ p corresponds to the gradient of the pressure
(cf. the remarks above). Moreover, Yk denotes the mass fraction of species k, which are combined to the vector
Yvec = [Y1, . . . ,YNs ]�. Since the mass fractions sum to unity, we can get rid of, e.g., the last of the chemical
species and compute its mass fraction via YNs = 1 −∑Ns−1

k=1 Yk , which decreases the computational complexity of
the model. Further, ρ, μ, Cp, and κ denote the gas mixture’s density, viscosity, specific heat capacity, and thermal
conductivity, respectively, and Dk,mix denotes the mixture-averaged diffusion coefficients. Note, that the equations
of the PDE system (2.3) model the conservation of mass, momentum, enthalpy, and chemical species, respectively.

The term ω̇k models the conversion between the species due to the chemical reaction (2.2) and is given by

ω̇k =
{

0 in Ω in,

Mk
∑Nr

j=1 νk, j Q j in Ω reac,

where we define νk, j = ν′′
k, j − ν′

k, j and Mk is the molar mass of species k. Further, Q j is the rate of progress of
reaction j , given by

Q j = kf,j

(
Ns∏

k=1

[Xk]ν
′
k, j −

∏Ns
k=1[Xk]ν

′′
k, j

keq,j

)
, (2.4)
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where [Xk] = (ρYk)/Mk denotes the molar concentration of species k and keq,j is the equilibrium constant of
reaction j , which is detailed in “Appendix A”. Further, kf,j is the forward rate constant of reaction j , which is
modeled by an Arrhenius law

kf,j = A j exp

(
− Ea,j

RT

)
,

where A j is the so-called pre-exponential factor and Ea,j is the activation energy for reaction j . Note, that the
reaction source term ω̇k vanishes in Ω in and is only active in Ω reac, as discussed in Sect. 2.1. Further, we remark
that (2.4) is only valid for elementary chemical reactions, hence our assumption for (2.2).

The correction velocity V c, which is defined as

V c =
Ns∑

k=1

Dk,mix∇Yk,

is used to ensure the consistency between the mass and species conservation equations for the mixture-averaged
diffusion model, as is explained in detail, e.g., in [33,34]. The heat generated by the reaction is modeled through
the source term ω̇T,r, which is given by

ω̇T,r = −
Ns∑

k=1

hk(T ) ω̇k,

where hk is the pure species specific enthalpy (cf. “Appendix A”). Finally, the heat generated due to the molecular
diffusion of the species is modeled by the term ω̇T,d, which reads

ω̇T,d = −
(

ρ

Ns∑

k=1

Cp,k
(
YkV c − Dk,mix∇Yk

)
)

· ∇T .

Note that all transport parameters for the model depend on the fluid’s chemical composition, represented by the
mass fractions Yvec, and on the fluid’s temperature T through constitutive relations. In particular, we have that

ρ = ρ(Yvec, T ), μ = μ(Yvec, T ), Cp = Cp(Yvec, T ), κ = κ(Yvec, T ), Dk,mix = Dk,mix(Yvec, T ),

which leads to a strong and highly nonlinear coupling between the individual equations of (2.3). The constitutive
relations detailing these dependencies are given in “Appendix A”.

The system (2.3) is supplemented with the following boundary conditions. On the inlet Γ in we use Dirichlet
conditions to prescribe the ingoing velocity, temperature, and mass fractions of the gas mixture, i.e., we use

⎧
⎨

⎩

u = uin on Γ in,

T = T in on Γ in,

Yk = Y in
k on Γ in, k = 1, . . . , Ns.

On the wall boundary Γ wall, we use the usual no-slip condition for the velocity, which is valid as the Knudsen
number of the flow is sufficiently small so that the continuum assumption holds. Additionally, we use a no-flux
condition for the chemical species, which models that the species do not leave the reactor over the wall boundary, and
a Dirichlet condition for the gas mixture’s temperature. The latter models that the wall temperature of the reactor can
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be influenced through appropriate temperature control systems (cf. Sect. 5.3). In summary, the boundary conditions
on Γ wall are given by

⎧
⎨

⎩

u = 0 on Γ wall,

T = Twall on Γ wall,

ρ
(
V cYk − Dk,mix∇Yk

) · n = 0 on Γ wall, k = 1, . . . , Ns,

(2.5)

where n denotes the unit outer normal vector on Γ .
Finally, the unimpeded flow of the gas out of the reactor at the outlet Γ out is modeled by a do-nothing condition

for the momentum equation and homogeneous Neumann conditions for the temperature and chemical species, i.e.,

⎧
⎨

⎩

μ∇u n + μ
3 (∇ · u) n − p n = 0 on Γ out,

κ∇T · n = 0 on Γ out,

ρ
(
V cYk − Dk,mix∇Yk

) · n = 0 on Γ out, k = 1, . . . , Ns.

2.3 The Sabatier reaction in microchannel reactors

The Sabatier reaction (1.1) is a reversible exothermic reaction used to convert CO2 and H2 into CH4 and H2O. For
most of its applications, it is desirable that the reaction proceeds as far as possible to the right, so that ideally all
of the CO2 would be consumed by the reaction. It is in this regard that we consider optimizing the microchannel
reactor under investigation (cf. Sect. 5). As a measure for how far the reaction has already proceeded, we use the
CO2 conversion, which is defined as follows:

χCO2 = 1 − YCO2

Y in
CO2

= 1 − nCO2

nin
CO2

, (2.6)

where nin
CO2

denotes the molar amount of CO2 entering the domain. In this paper, we only evaluate YCO2 and nCO2 ,

which is the molar amount of CO2 in the gas mixture, at the outlet of the reactor (cf. Sects. 4 and 5), so that χCO2

describes the total CO2 conversion of the reactor.
Let us now investigate the behavior of the Sabatier reaction. First of all, we mention that there is another possible

reaction between the reactants CO2 and H2, namely the reverse water gas shift (RWGS) reaction, given by

CO2 + H2 � CO + H2O, �H0 ≈ +41 kJ/mol (at 25◦C).

However, the RWGS reaction only becomes important for temperatures over approximately 550–600 ◦C and shows
negligible CO production at lower temperatures [35,36]. For these reasons, we proceed as in [35,36] and restrict
the temperatures under investigation to be below 600 ◦C and neglect the RWGS reaction, which only introduces a
limited error in our model.

The next point we need to address is that the Sabatier reaction is not an elementary reaction, which is required
for the formula of the rate of progress (2.4). However, we decided not to break down the Sabatier reaction into a
system of elementary reactions due to the following reasons. First, the Sabatier reaction is not fully understood
yet from the viewpoint of elementary reaction mechanisms, with two possibilities proposed [37]. Second, using
a system of elementary reactions would increase the computational complexity of the model significantly as this
would introduce additional variables for the intermediate chemical species. For these reasons, we use the following
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(a) (b) (c)

Fig. 2 Properties of the Sabatier reaction for stoichiometric inlet conditions

modified formula for the rate of progress (2.4) developed in [38–40]

Q = kf

⎛

⎝
(

Ns∏

k=1

[Xk]ν
′
k, j

)n

−
(∏Ns

k=1[Xk]ν
′′
k, j

keq

)n
⎞

⎠ , (2.7)

where n is an empirical exponent. Note, that (2.7) models the Sabatier process using a single chemical reaction, so
that we have Nr = 1 and, hence, drop the index j throughout the rest of the paper. This approach has been used
extensively in the literature to model the Sabatier reaction, e.g., in [6,10,11,29,35,41,42]. To model the forward
rate constant kf, we again use an Arrhenius law, i.e.,

kf = A exp

(
− Ea

RT

)
. (2.8)

It is straightforward to see that both formulations yield the same thermodynamic equilibrium as explained in [39],
which is a crucial feature of (2.7). Note, that even though this model for the Sabatier reaction is comparatively
simple, it still covers the most important effects of the reactor. Hence, it is feasible that we consider this model to
investigate the potential for improving the microchannel reactor. An investigation of more sophisticated reaction
mechanisms or the inclusion of the RWGS reaction into the reactor model is beyond the scope of this paper and
could be considered in future work.

Let us now take a look at some important properties of the Sabatier reaction which are depicted in Fig. 2
for stoichiometric inlet conditions (cf. Sect. 2.1). In Fig. 2a the temperature dependence of the equilibrium CO2

conversion is shown for pressures of 1 bar, 5 bar, and 10 bar, which resemble the operating pressures investigated in
[11,29]. We observe that the CO2 conversion decreases monotonically with temperature and increases monotonically
with pressure. Both effects are direct consequences of Le Chatelier’s principle [43] applied to the Sabatier reaction.
Hence, we only consider the case pref = 10 bar in this paper as the CO2 conversion is largest for this case. In Fig. 2b
we can see the influence of the temperature on the equilibrium composition at the operating pressure of 10 bar.
Again, we observe that the composition is more favorable for low temperatures of about 200 ◦C, where it consists
almost exclusively of the products CH4 and H2O. The equilibrium composition becomes increasingly worse with
higher temperatures as the amount of reactants increases considerably, mirroring our previous discussion regarding
the equilibrium CO2 conversion. Finally, Fig. 2c shows the dependence of the rate of progress and, hence, of the
reaction rate on the temperature at different levels of CO2 conversion, which we computed using the parameters
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determined later on (cf. Sect. 4). We see that the rate of progress increases strongly with temperature for low levels
of CO2 conversion. However, the greater the CO2 conversion, the lower the rate of progress becomes. For the highest
levels of CO2 conversion, we observe that the maximum rate of progress, highlighted by the markers on the graphs,
is obtained at progressively lower temperatures. Additionally, for sufficiently high levels of CO2 conversion and
temperatures, the rate of progress even becomes negative and, thus, reverses the direction of the reaction. These are
direct consequences of the thermodynamic equilibrium which pushes the reaction into the reverse direction under
such conditions.

Regarding the optimization of the reactor, these characteristics lead to the following considerations. To obtain
a high reaction rate, high temperatures are desirable, especially for low levels of CO2 conversion, as shown in
Fig. 2c. However, if the temperature is kept high throughout the entire reactor, the thermodynamic limitations of
the reaction severely constrain the maximum achievable CO2 conversion. On the other side, low temperatures are
thermodynamically favorable, but the corresponding low reaction rate only leads to low levels of CO2 conversion.
These considerations lead to the conclusion that, ideally, the reactor should have high temperatures near the inlet,
where we have low levels of CO2 conversion, so that we have a high reaction rate initially. Subsequently, the
temperature should decrease along the channel as this leads to more favorable equilibrium compositions and is also
beneficial for the rate of progress at higher levels of CO2 conversion, which are confirmed in Sect. 5, where we
investigate the optimization of the reactor. Finally, we note that the above deliberations regarding the influence of
the temperature on the reaction is inherent in all exothermic reactions, and not specific to our choice of the Sabatier
reaction, which is, again, a consequence of Le Chatelier’s principle [43].

2.4 A one-dimensional model of the reactor

The PDE system (2.3) of Sect. 2.2 completely models the behavior of chemically reacting fluid flow for a homoge-
neous reaction. However, a major drawback of the model is that it is three dimensional, which makes the numerical
simulation of the reactor comparatively costly and leads to a substantial bottleneck for the adjoint-based optimiza-
tion of the reactor we consider in Sects. 4 and 5. To remedy this, we now use ideas similar to [19] to derive a reduced
one-dimensional model of the reactor which is significantly easier to solve numerically.

As a first step, we interpret the geometry as a porous medium with porosity 1. While the boundary Γ wall is still
present from this point of view due to the geometrical constraints, it now only acts as a mathematical boundary of
the domain and does not interact physically with the fluid. To model the fluid velocity in such a porous medium,
we use a Brinkman equation with slip boundary conditions, in analogy to [19] and the references therein, given by
the system

⎧
⎨

⎩

ρ (u · ∇) u + ∇ p − ∇ · (μ∇u) − ∇ (μ/3 ∇ · u) + μK−1u = 0 in Ω,

u · n = 0 on Γ wall,

μ ∂nu × n = 0 on Γ wall,

where K denotes the permeability of the channel. Note that the permeability is a property of the geometry only.
It can be determined either analytically or numerically [44]. Its value for our setting can be found in Table 1. For
the porous medium model, the above equations replace the momentum equation in (2.3) as well as the boundary
condition for the velocity on Γ wall in (2.5).

Additionally, we have to modify the temperature equation as we can no longer incorporate the effect of the wall
temperature on the gas mixture via a Dirichlet boundary condition due to the previously mentioned reasons. Hence,
we proceed analogously to [19] and use the following equation:

{
ρCp u · ∇T − ∇ · (κ∇T ) + hf,s

(
T − Twall

)− ω̇T,r − ω̇T,d = 0 in Ω,

ρCp u · n − κ∇T · n = 0 on Γ wall,
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Table 1 Parameters for the reactor geometry and one-dimensional model (2.9)

Parameter (unit) Value

Length L (m) 5e−2

Width W (m) 4.5e−4

Height H (m) 1.5e−4

Permeability K (K m3) 1.48e−9

Interfacial heat transfer coefficient hf,s (W/K m3) 6.77e8

where hf,s is the so-called interfacial heat transfer coefficient which models the heat transfer between the gas mixture
and the wall. We computed the value of hf,s numerically, as described in [19] and the references therein, and the
result is shown in Table 1. The no-flux boundary condition for the temperature again models that the temperature
does not interact with the wall boundary.

Averaging the system with the modifications described above over the channel cross section yields a one-
dimensional model of the microchannel reactor, which is given by

⎧
⎪⎪⎨

⎪⎪⎩

∂x (ρ u) = 0 in Ω,

ρ (u ∂xu) + ∂x p − ∂x (μ ∂xu) − ∂x (μ/3 ∂xu) + μK−1u = 0 in Ω,

ρCp u ∂x T − ∂x (κ ∂x T ) + hf,s
(
T − Twall

)− ω̇T,r − ω̇T,d = 0 in Ω,

ρ u ∂xYk + ∂x (ρV cYk) − ∂x
(
ρDk,mix ∂xYk

)− ω̇k = 0 in Ω, k = 1, . . . , Ns,

(2.9)

supplemented with the boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u = uin on Γ in,

T = T in on Γ in,

Yk = Y in
k on Γ in, k = 1, . . . , Ns,

μ ∂xu + μ
3 ∂xu − p = 0 on Γ out,

κ ∂x T = 0 on Γ out,

ρ
(
V cYk − Dk,mix ∂xYk

) = 0 on Γ out, k = 1, . . . , Ns.

Note, that the wall boundary is not present in (2.9) anymore, its influence is only modeled through the additional
terms in the momentum and temperature equations, as discussed above. Additionally, for the sake of better readability
we do not distinguish between the three-dimensional and the one-dimensional domain and denote both of them by
Ω as it is obvious from the context to which we refer to.

Finally, we mention that for (2.9) only the form of the PDE system has changed slightly, all constitutive relations
remain the same as described in “Appendix A” and Sect. 2.3. Furthermore, except for the kinetic parameters
for the forward rate constant (2.8), all parameters for the model are obtained using the fits given in [45] and
[46] as discussed in “Appendix A”. We determine the missing parameters, namely the pre-exponential factor A,
the activation energy Ea, and the empirical exponent n, by solving a parameter identification problem in Sect. 4.
Further, we compare the one-dimensional model (2.9) numerically to the three-dimensional one (2.3) in Sect. 4.3 after
determining the aforementioned parameters. The corresponding results (cf. Fig. 5) show that the one-dimensional
model approximates the three-dimensional one very well, so that it is justified to use the former as model for the
reactor throughout the rest of this paper.
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2.5 Numerical solution of the models

To conclude this section, we briefly describe the methods used for solving the PDE systems (2.3) and (2.9). First, for
the one-dimensional model, we discretize the corresponding interval with a uniform mesh consisting of 1001 nodes,
corresponding to 1000 line segments. Second, for the three-dimensional model, we also use a uniform mesh with
44,040 nodes, corresponding to 178,200 tetrahedrons. We use the finite element software FEniCS, version 2018.1
[47,48] to discretize both systems with a mixed finite element method using the following finite elements. The
fluid’s pressure, temperature, and mass fractions for CO2, H2, and CH4 are discretized with continuous, piecewise
linear Lagrangian elements, and the fluid’s velocity is discretized with continuous, piecewise quadratic Lagrangian
elements. This yields the well-known Taylor–Hood finite element pair for velocity and pressure that is LBB stable
for the saddle point structure of the continuity and momentum equations. As explained earlier, we calculate the
mass fraction of H2O via the relation YH2O = 1 − (YCO2

+ YH2 + YCH4

)
. This discretization leads to a nonlinear

system of equations which has to be solved. To do so, we use iterative methods which are described below and
consider an initial guess given by zero velocity and pressure as well as a constant temperature and mass fractions
determined by the respective inlet conditions for both models.

As the discretization described above leads to a system with 7006 degrees of freedom (DoF’s) for the one-
dimensional system (2.9), we solve it monolithically using a damped Newton method with backtracking line search
based on the natural monotonicity criterion described in [49, Chap. 3.3]. The arising linear systems for the Newton
method are solved with the direct sparse linear solver MUMPS from the library PETSc [50].

The numerical solution of the resulting nonlinear system for the three-dimensional model (2.3) is more involved.
As the system is considerably larger than the previously considered one, we do not use a monolithic approach for
its solution. Instead we use a Picard-type fixed point iteration that consists of the following steps: first, we freeze
the temperature and mass fractions and solve the continuity and momentum equations to obtain values for the
velocity and pressure. In the second step, we freeze the velocity, pressure, and temperature, and solve the species
conservation equation for the mass fractions. The final step consists of freezing the velocity, pressure, and mass
fractions, and solving the temperature equation. This is repeated until the residual of the original system reaches
a relative tolerance of 1e−10. Note that in each of these steps, a nonlinear system of equations has to be solved.
This is done using the same damped Newton method as discussed above. In particular, the system of continuity and
momentum equations has 176,160 DoFs, the species conservation equation has 132,120 DoFs, and the temperature
equation has 44,040 DoFs. As before, all resulting linear systems are solved using the solver MUMPS since they
are sufficiently small to be solved by a direct method.

Since the size of the systems for the one-dimensional model is significantly smaller than the size of the ones for
the three-dimensional model, the numerical solution of the former is also considerably faster. In particular, a solve
of the one-dimensional model takes a few seconds, whereas it takes about an hour to solve the three-dimensional
model, i.e., we get a speedup of over two orders of magnitude. This enables the fast solution of the optimization
problems investigated subsequently in Sects. 4 and 5.

3 Automated derivation of adjoint equations for the numerical solution of PDE-constrained optimization
problems

The objective of this section is to briefly introduce our software package cashocs [30], which implements the
adjoint approach and is used to solve the PDE-constrained optimization problems considered in Sects. 4 and 5.
To do so, we briefly recall the adjoint approach for PDE-constrained optimization problems and then describe our
implementation of this in cashocs, which mirrors this approach.
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3.1 Recapitulation of the adjoint approach

Let us start by recalling the adjoint approach for PDE-constrained optimization problems. For a detailed introduction
to this topic, we refer the reader, e.g., to the textbooks [51,52]. The general form of a PDE-constrained optimization
or optimal control problem is the following equation:

min
y,u

J (y, u) s.t. e(y, u) = 0, u ∈ Uad, and y ∈ Yad, (3.1)

where u ∈ U and y ∈ Y are the so-called control and state variables that are part of appropriate Banach spaces
U and Y . Further, J : Y × U → R is the cost functional and e : Y × U → Z∗ is an operator between Banach
spaces that models the PDE constraint, where Z∗ denotes the topological dual space of some Banach space Z . In
particular, the so-called state equation e(y, u) = 0 is equivalent to

{
Find y ∈ Y such that

〈e(y, u), z〉Z∗,Z = 0 for all z ∈ Z ,
(3.2)

where 〈ϕ, x〉B∗,B denotes the duality pairing of ϕ ∈ B∗ and x ∈ B for a Banach space B, which we also write
as ϕ[x]. Note, that (3.2) often corresponds to a variational form of a PDE. Finally, Uad ⊂ U and Yad ⊂ Y are
the non-empty and closed sets of admissible controls and states, respectively. These are used to model control and
state constraints for the problem and can be treated by appropriate algorithms, such as projection methods for box
constraints on the control variable or regularization techniques for state constraints [51,52].

We assume that the state equation (3.2) has a unique solution y(u) for every u ∈ U so that e(y(u), u) = 0 for
all u ∈ U . This assumption allows us to define the so-called reduced cost functional Ĵ : U → R by

Ĵ (u) = J (y(u), u). (3.3)

In this way, we have formally eliminated the PDE constraint and can consider the following reduced optimization
problem that is equivalent to (3.1)

min
u

Ĵ (u) s.t. u ∈ Uad and y(u) ∈ Yad.

Our goal is to efficiently compute the gradient of the reduced cost functional Ĵ ′(u) which is to be used as part
of derivative-based optimization algorithms for solving (3.1). To do so, we assume that J and e are continuously
Fréchet differentiable, and that ey(y(u), u), i.e., the Fréchet derivative of e w.r.t. y, is continuously invertible, so that
the implicit function theorem [51] ensures that y(u) is continuously differentiable in a neighborhood of a solution
of (3.2). To calculate the gradient of the reduced cost functional, we now derive the necessary adjoint and gradient
equations using a Lagrange approach. We introduce an adjoint variable p ∈ Z for the state equation (3.2) and set
up a Lagrangian function L : Y ×U × Z → R corresponding to (3.1) as follows:

L(y, u, p) = J (y, u) + 〈e(y, u), p〉Z∗,Z . (3.4)

If we insert y = y(u) into the Lagrangian, the PDE constraint vanishes and we have

L(y(u), u, p) = J (y(u), u) + 〈e(y(u), u), p〉Z∗,Z = Ĵ (u) for all p ∈ Z .
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Hence, differentiating the Lagrangian at (y(u), u, p) w.r.t. u yields

〈
Ĵ ′(u), h

〉

U∗,U
=
〈

d

du
L(y(u), u, p), h

〉

U∗,U
= 〈Ly(y(u), u, p), y′(u)[h]〉Y ∗,Y + 〈Lu(y(u), u, p), h〉U∗,U . (3.5)

The main idea of the adjoint approach is now to choose p = p(u) ∈ Z so that Ly(y(u), u, p) = 0, i.e.,

〈
Ly(y(u), u, p), q

〉
Y ∗,Y = 0 for all q ∈ Y.

This equation can be rewritten as follows:

0 = 〈Ly(y(u), u, p), z
〉
Y ∗,Y = 〈Jy(y(u), u), z

〉
Y ∗,Y + 〈ey(y(u), u)[z], p〉Z∗,Z

=
〈
Jy(y(u), u) + e∗

y(y(u), u)[p], z
〉

Y ∗,Y
,

and we note that the use of the adjoint operator e∗
y gives the adjoint approach its name. In particular, the above

equation can be interpreted as

⎧
⎨

⎩

Find p ∈ Z such that
〈
e∗
y(y(u), u)[p], z

〉

Y ∗,Y
= − 〈Jy(y(u), u), z

〉
Y ∗,Y .

(3.6)

As for the state equation, we assume that the adjoint equation (3.6) is well posed, and the corresponding solution
p = p(u) is called the adjoint state w.r.t. u. Furthermore, it is worth noticing that the adjoint equation (3.6) is always
a linear equation, usually simplifying its numerical solution significantly compared to the possibly nonlinear state
equation. Inserting p = p(u) into (3.5) reveals

〈
Ĵ ′(u), h

〉

U∗,U
= 〈Ly(y(u), u, p(u)), y′(u)[h]〉Y ∗,Y + 〈Lu(y(u), u, p(u)), h〉U∗,U

= 〈Lu(y(u), u, p(u)), h〉U∗,U
= 〈Ju(y(u), u), h〉U∗,U + 〈eu(y(u), u)[h], p(u)〉Z∗,Z
= 〈Ju(y(u), u) + e∗

u(y(u), u)[p(u)], h〉U∗,U .

(3.7)

However, (3.7) only specifies the derivative of the reduced cost functional, i.e., an element of U∗. In case that U is
a Hilbert space, we can use the Riesz representation theorem to identify this with the gradient of the reduced cost
functional, which is then given by

Ĵ ′(u) = Ju(y(u), u) + e∗
u(y(u), u)[p(u)] ∈ U.

In summary, to compute the gradient of the reduced cost functional (3.3) for a given u ∈ U , we solve the state
equation (3.2) to obtain the state variable y(u) and then solve the adjoint equation (3.6) to determine the adjoint
variable p(u). If U is a Hilbert space, we compute the gradient Ĵ ′(u) using a Riesz projection as discussed above.

3.2 Automated derivation of adjoint and gradient equations

From our recapitulation of the adjoint approach, we see that to derive the adjoint and gradient equations (3.6)
and (3.7), we need to differentiate the cost functional and state equation w.r.t. the state y and the control u and
to calculate the corresponding adjoint operators. For many optimization problems with complex, coupled, and
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nonlinear PDE constraints, it is often impossible to verify all of the necessary assumptions of the adjoint approach.
Moreover, even assuming that all objects are sufficiently smooth and calculating the adjoint and gradient equations
in a formal manner is not feasible for very complex PDE constraints as it involves extremely tedious and error-prone
calculations [53]. Our reactor models from Sect. 2 certainly belong to this category of PDE constraint. For these
reasons, we use our software package cashocs [30], which offers a numerical implementation of the continuous
adjoint approach based on the finite element software FEniCS [47,48]. In particular, it uses the built-in automatic
differentiation capabilities of FEniCS to derive the corresponding adjoint and gradient equations.

In FEniCS, the cost functional and the PDE constraint of many optimization problems can be represented as
variational forms in the so-called Unified Form Language (UFL). These forms can be differentiated automatically
and symbolically with respect to their arguments, as explained in [48, Chap. 17]. To derive the corresponding
variational forms of the adjoint and gradient equations, cashocs sets up a UFL form for the Lagrangian as in (3.4)
which is subsequently differentiated symbolically w.r.t. the state and control variables [30]. Finally, the gradient
g ∈ U of the reduced cost functional w.r.t. some Hilbert space U is computed numerically by solving the Riesz
problem

⎧
⎨

⎩

Find g ∈ U such that

(g, h)U =
(
Ĵ ′(u), h

)

U
= (Lu(y(u), u, p(u)), h)U for all h ∈ U,

where (·, ·)U denotes the scalar product of U . Throughout this paper, we only consider the case U = L2(Ω) or
U = L2(Γ out), in particular, we use the L2 scalar product to identify the gradients of the cost functionals.

We remark that the two differentiation operations described above are the only places where automatic dif-
ferentiation is used in cashocs, the rest of the package, which manages the optimization problem, as well as the
optimization algorithms do not rely on automatic differentiation or pre-existing implementations. Note, that if we
discretize the state problem with a Galerkin method that uses the continuous variational formulation, as we do for
the models considered in this paper, our software cashocs computes the corresponding continuous variational forms
of the adjoint and gradient equations, which are only discretized at a later stage. In this case, cashocs consistently
discretizes the continuous adjoint approach we recalled previously [30]. Finally, we note that there are software
packages that use similar ideas to derive adjoint equations utilizing the AD capabilities of the UFL, e.g., dolfin-
adjoint [54] or firedrake [55,56]. However, we do not use these packages as our own approach can be tailored better
to our needs and gives us complete control over the optimization algorithms used for solving the corresponding
problems.

4 Identification of kinetic reaction parameters

In this section, we determine the kinetic parameters needed to complete our models of the reactor (cf. Sect. 2.4)
from the experimental results reported in [11,29]. We introduce a parameter identification problem based on our
one-dimensional reactor model which is solved numerically utilizing our software package cashocs described in
Sect. 3. Finally, we compare our two reactor models from Sect. 2 numerically and see that both yield nearly identical
results.

4.1 Description of the parameter identification problem

In [11,29], the authors consider a different model for the reactor with the following major variations to our models
from Sect. 2. They consider a heterogeneous reaction only occurring in a porous catalyst located close to the channel
wall, whereas we consider a homogeneous reaction. Moreover, they assume that the reaction starts immediately at
the inlet of the computational domain, whereas we include the inlet section Ω in where no reaction occurs. For these
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reasons, we cannot use the kinetic parameters reported in [11,29] but have to determine appropriate ones for our
models ourselves.

As remarked in Sect. 2.3, we restrict our investigation to the case of 10 bar for the operating pressure of the
reactor. For this setting, a total of 21 experiments, considering 7 different reactor temperatures Twall (250−400 ◦C
with increments of 25 ◦C) and 3 different inlet flow rates (50 mL/min, 100 mL/min, and 150 mL/min), were carried
out in [11,29]. Note, that here and throughout the rest of this paper, when we specify flow rates of the gas, we
always assume normal conditions given by a pressure of 1 atm and a temperature of 273.15 K so that we can
compare them regardless of the physical conditions. We remark that the experimental results of [11,29] are given
by measurements of the achieved CO2 conversion, and that we extracted the corresponding numerical values using
the software Webplot Digitizer [57].

To determine the kinetic parameters, we consider the following parameter identification problem:

min
y,uc

J (y, uc) =
21∑

l=1

1

2

∫

Γ out

(
χ

CO2
sim,l − χ

CO2
exp,l

)2
ds s.t. e(y, uc) = 0 and uc ∈ Uad, (4.1)

where the state variables are combined in the vector y = [p, u, T,Yvec]� and the control variables are combined
in the vector uc = [Ea, log(A), n]�. Note, that we use the logarithm of the pre-exponential factor, i.e., log(A),
instead of A as control variable since this ensures a better scaling of the parameters and, additionally, guarantees
that the computed pre-exponential factor is positive. Moreover, we assume that uc is constant in Ω , i.e., that the
kinetic parameters do not vary spatially. This yields a finite-dimensional optimization problem, so that we do not

require additional regularization for the cost functional. Furthermore, χCO2
exp,l denotes the CO2 conversion measured

in experiment l, and χ
CO2
sim,l is the CO2 conversion of the lth simulation, which are calculated via (2.6). The operator

for the state system e(y, uc) is given by

e(y, uc) = [e1(y, uc), . . . , e21(y, uc)]�,

where el(y, uc) = 0 is the weak form of the state system (2.9) with appropriate values for uin and Twall corresponding
to the lth experiment, as discussed above. Finally, the set of admissible controls is given by

Uad = {[Ea, log(A), n]� ∈ R
3|n ≥ 0},

which models that the empirical exponent is supposed to be non-negative. Note, that the cost functional in (4.1)
corresponds to a least-squares problem for fitting the CO2 conversion to the experimental results.

4.2 Numerical results

We solve the parameter identification problem (4.1) numerically using our software cashocs described in Sect. 3.
For the discretization of the adjoint system, we choose analogous finite elements as for the discretization of the
state system (cf. Sect. 2.5). Moreover, we use a projected limited memory BFGS (L-BFGS) method with a memory
of 5 vectors as optimization algorithm. For the computation of the step size, we use an Armijo line search with
initial guess one for the step size. Moreover, we restart the algorithm with a gradient step in case the respective
curvature condition for the BFGS method is not satisfied. The optimization algorithm is terminated once a relative
tolerance of 1e−6 for the stationarity measure is reached. Our initial guess for the kinetic parameters is based on
the parameters computed in [11,29] and is given by Ea = 65 kJ/mol, log(A) = 12, and n = 0.222. We refer the
reader, e.g., to [58,59] for a detailed description of the algorithm and to [60] for its application in the context of
PDE-constrained optimization.
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(a) (b)

Fig. 3 History of the numerical optimization

Fig. 4 Simulated and measured CO2 conversion for the experiments from [11,29]

The history of the cost functional and the relative stationarity measure over the course of the optimization are
shown in Fig. 3. We observe that the algorithm terminates successfully after 48 iterations, suggesting that we find
a local minimizer (or stationary point) of (4.1). Since one solve of the state system requires 21 solves of (2.9),
one for each experiment, this amounts to a total of 1113 solves for (2.9), and 1008 solves for the corresponding
adjoint system over the course of the optimization. Note that the additional solves needed for the state system are
a consequence of the Armijo line search. In Fig. 4, the simulated and measured CO2 conversions are depicted for
all 21 experimental settings for the identified kinetic parameters. We see that our model shows excellent agreement
to the experimental results. The largest difference between simulated and measured CO2 conversion is about 7%,
and the mean error is around 1.9%, which is well within the reproducibility of the experiment of 5% from [11,29]
and closer than the original fit proposed there. For these reasons, we conclude that our model is able to simulate
the physical and chemical processes in the reactor sufficiently well so that we can use it in Sect. 5 to optimize the
reactor.

We also remark that for the parameters identified above, the solution shows a nearly isothermal behavior, in
particular, the difference between the simulated gas temperature and the wall temperature is well below 1 ◦C at all
points in the reactor. Hence, we could also use an isothermal model for the reactor, where the temperature is not
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Table 2 Kinetic parameters determined by the parameter identification

Parameter (unit) Value

Empirical exponent n 0.0581

Pre-exponential factor A [1/s(mol/m3)1−5n] 4.744e5

Activation energy Ea (kJ/mol) 52.141

Fig. 5 Relative errors between the 1D and 3D model

treated as a state variable, but directly prescribed as the wall temperature, simplifying the numerical simulations.
However, as this behavior cannot be known before the determination of the kinetic parameters and since other sets
of parameters could yield a non-isothermal behavior, we keep the temperature as a state variable.

Finally, the identified parameters are shown in Table 2. We remark that they are in a good agreement with the
kinetic parameters found in [6], where the empirical exponent n and the activation energy Ea were found to be
0.076 and 65.2 kJ/mol. Since we consider a higher operating pressure, a different type of catalyst, and also use a
slightly different model to the ones in [6], the minor deviations for the identified parameters are justified.

4.3 Numerical comparison of the reactor models

To conclude this section, we briefly compare the one-dimensional model (2.9) to the three-dimensional model (2.3).
For this, we simulate all of the 21 test cases of [11,29], using the kinetic parameters obtained previously, with
both models and compute the corresponding relative errors between the models in the L∞(Ω), L2(Ω), and L1(Ω)

norms.
To compare the models to each other, we average the results of the three-dimensional model over the channel

cross section, which can then be directly compared to the results of the one-dimensional model. The arising errors
are shown in Fig. 5 in the form of a box plot. We see that the relative error between both models is well below 1%
for all test cases and variables. The highest relative errors are obtained for the pressure with about 0.2%, all other
variables have relative errors even below 1 ‰. This is the case since the physical and chemical behavior in a single
channel of the reactor is basically one dimensional, with variations along the channel length being significantly
larger than variations along its cross section. Finally, we note that the relative errors for the temperature are very
small even compared to the small errors of the other variables. This is due to fact that we use the Kelvin scale to
compute the relative errors for the temperature as this is a ratio scale. These results validate our approach to use
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the 1D porous medium model for computing the necessary kinetic parameters for the models instead of the more
costly three-dimensional one since both yield basically identical results.

5 Optimization of the microreactor

In this section, we discuss the optimization of the microchannel reactor under consideration by means of solving
PDE-constrained optimal control problems. Throughout this section, we use the one-dimensional model (2.9),
which models the behavior of the reactor as validated in the previous section, as corresponding state system for the
optimization problems. We consider two optimization problems for improving the reactor’s performance which we
solve numerically using our software package cashocs described in Sect. 3. We discuss the obtained results as well
as their applicability and realizability.

5.1 Optimization with fixed flow rates

For the first problem, we keep the inlet flow rate fixed at the respective values considered in [11,29]. Our goal is
to maximize the CO2 conversion of the reactor, since this corresponds to maximizing the product yield for a fixed
flow rate, by using the wall temperature Twall as optimization variable, which is detailed below. To model this, we
consider the following optimization problem:

min
y,Twall

J (y, Twall) = 1

2

∫

Γ out

(
χCO2 − 1

)2
ds s.t. e(y, Twall) = 0 and Twall ∈ Uad. (5.1)

As in Sect. 4, the state variables are combined into the vector y = [p, u, T,Yvec]� and the CO2 conversion χCO2

is defined as in (2.6). Moreover, the wall temperature Twall now plays the role of the control variable, and the state
system e(y, Twall) = 0 is given by the corresponding weak form of (2.9), with the respective inlet conditions for
the velocity. Note, that we use a tracking-type cost functional which aims at bringing the CO2 conversion as close
as possible to 1 on Γ out. Note, that this case, i.e., χCO2 = 1, corresponds to the total conversion of CO2 and,
therefore, to the maximum product yield. We remark that we tested several alternative cost functions that also have
the goal of maximizing the reactor’s yield and found that all of them gave nearly identical results in practice. Hence,
it is justified that we restrict ourselves to the cost functional given in (5.1). Finally, the set of admissible controls
Uad is given by

Uad = {Twall ∈ L2(Ω)|180 ◦C ≤ Twall ≤ 600 ◦C a.e. in Ω},

i.e., we have box constraints for the wall temperature. Due to these box constraints, we do not require additional
regularization terms for the optimization problem (5.1). Since the model is quasi-isothermal (cf. Sect. 4.2), this
constraint also restricts the temperature of the gas mixture. Note, that the lower bound of 180 ◦C corresponds to the
boiling point of water at a pressure of 10 bar, so that we do not have to consider any phase change effects. The upper
bound for the temperature is chosen so that we can neglect the effect of the RWGS reaction and the corresponding
CO production (cf. Sect. 2.3).

For the wall temperature, we consider the following four models. First, we use a constant value for Twall

throughout the entire reactor, which corresponds to an isothermal reactor. Second, we divide Ω reac into two halves
along its length and restrict Twall to be constant in each half, which models a reactor consisting of two isothermal
stages. Third, we proceed analogously to before, but now divide Ω reac into thirds, which corresponds to a three-stage
isothermal reactor. For the final model, we do not specify any sort of profile and consider Twall to be an arbitrary
function in L2(Ω), which we discretize with piecewise linear Lagrangian finite elements. We refer to these models
as constant, two-stage, three-stage, and distributed model, respectively, throughout the rest of this paper. These
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Table 3 Number of solves for state/adjoint system for problem (5.1)

Inlet flow rate (mL/min) Constant Two stages Three stages Distributed

50 6/6 8/8 12/12 13/13

100 9/9 10/10 12/12 18/18

150 8/8 8/8 10/10 16/15

(b)(a)

(d)(c)

Fig. 6 Optimized temperature profiles for problem (5.1)

models exhibit different levels of complexity, particularly regarding their realizability and capability of controlling
the reaction, which we discuss in Sect. 5.3. In particular, we note that while these models may only be approximately
realizable in practice, they still serve as benchmark for the optimization by showcasing the theoretical limitations
of the reactor.

We solve the optimization problem (5.1) numerically for all four models and the three inlet flow rates of 50
mL/min, 100 mL/min, and 150 mL/min, as considered in [11,29], using our software package cashocs (cf. Sect. 3).
For the corresponding adjoint system we use an analogous discretization to the one for the state system (cf. Sect. 2.5).
As optimization algorithm we again use the projected L-BFGS method described in Sect. 4.2, which is terminated
once the relative stationarity measure reaches a tolerance of 1e−4. The required amount of PDE solves for the state
and adjoint systems for the optimization algorithm are tabulated in Table 3. Note, that the number of iterations
of the algorithm corresponds to the number of solves for the adjoint system minus one, as we need an additional
gradient computation for the termination criterion. We observe that the algorithm is very efficient as it needs less
than 20 iterations to reach the desired tolerance for the stationarity measure in all cases. Since the number of solves
for the state system exceeds the ones for the adjoint system only for one case and one additional solve, we observe
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Table 4 Molar product yield in (mol/s) for problem (5.1)

Inlet flow rate (mL/min) Constant Two stages Three stages Distributed

50 2.131e−05 2.171e−05 2.180e−05 2.189e−05

100 4.119e−05 4.225e−05 4.250e−05 4.275e−05

150 5.988e−05 6.166e−05 6.210e−05 6.251e−05

that the initial step length is almost always accepted by the algorithm. We note that with increasing complexity of
the models, we need slightly more iterations to reach the desired tolerance which is, however, to be expected.

The optimized wall temperatures are depicted in Fig. 6 together with the corresponding CO2 conversions.
Comparing the CO2 conversions with the ones from the experiments (cf. Sect. 4) we recognize that we achieve
considerably higher levels of CO2 conversion for all flow rates by optimizing the wall temperature. Moreover, by
comparing the achieved CO2 conversions with the equilibrium conversions (cf. Fig. 2a), we can also conclude
that the thermodynamic equilibrium is a limiting factor in all cases as the difference between the obtained and
the equilibrium CO2 conversions are only about 1–2% for the respective outlet temperatures. We observe that the
optimized wall temperatures are at their largest near the inlet of the channel and then decrease monotonically along
its length. This yields a large reaction rate at the beginning of the reactor as well as more favorable thermodynamic
equilibria towards its end, which are actually limiting the reaction as discussed above. Moreover, note that the
optimized wall temperatures increase monotonically with the flow rate, due to the following. As a higher flow rate
corresponds to a lower residence time of the gas in the reactor, a higher reaction rate is needed to increase the CO2

conversion, which can be achieved through a higher wall temperature (cf. Fig. 2c). This confirms our deliberations
from Sect. 2.3 regarding the dependence of the thermodynamic equilibrium and the reaction rate on the temperature
w.r.t. the optimization of the reactor.

Analyzing the obtained CO2 conversions more closely, we first observe that the CO2 conversion increases
monotonically with the complexity of the wall temperature models, i.e., the constant model performs worst for all
flow rates, the two- and three-stage models perform increasingly better, and the distributed model has the highest
conversion of all profile types for each flow rate. In particular, the increase in conversion is roughly 2% between the
constant and two level profiles and then only about 0.5% each for the successive models. Hence, we conclude that
the ability to use a lower temperature towards the end of the reactor can have an important effect on the quality of the
reaction, but using more sophisticated temperature profiles does not add a great amount of additional improvements
on top of this. Moreover, we observe that the optimized conversion also decreases monotonically with increasing
flow rate. This is due to the fact that for higher flow rates, a larger temperature has to be used to obtain a sufficiently
high reaction rate, as mentioned previously. This then leads to worse thermodynamic equilibria and explains the
overall lower CO2 conversion.

Finally, let us investigate the obtained product yield which is shown in Table 4. There, we consider the total
amount of product, i.e., CH4 and H2O that is generated by the reactor and, due to the stoichiometry of the reaction,
1/3 of this amount is CH4 and 2/3 is H2O. Obviously, for a fixed flow rate a higher conversion leads to a higher molar
product yield, so that the yield increases monotonically with the model complexity. Moreover, for the conditions
under consideration, we observe that the molar yield is almost linear in the flow rate for all models. This can be
explained by the fact that the achieved conversions are all rather close to each other for all models and flow rates.
Therefore, the slightly lower CO2 conversion obtained at higher flow rates is compensated by the higher resulting
throughput, leading to overall higher product yields for higher flow rates. These results indicate that one should try
to use the highest possible flow rate so that the resulting quality of the product, measured by the CO2 conversion, is
still sufficiently high. We take a more detailed look at this problem of balancing the molar yield and product quality
of the reactor in the following section.
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5.2 Optimization with variable flow rates and state constraints

As indicated above, our goal is now to maximize the molar yield of the reaction by considering the wall temperature
and the inlet flow rate as control variables, where the product quality is ensured by means of a state constraint on
the CO2 conversion. In particular, we consider the following optimization problem:

min
y,uc

J (y, uc) = −
∫

Γ out
ρu · n ds s.t. e(y, uc) = 0, y ∈ Yad, and uc ∈ Uad. (5.2)

Analogously to before, the vector of state variables is given by y = [p, u, T,Yvec]� and the vector of control
variables is given by uc = [uin, Twall]�, i.e., now both the inlet flow rate and the wall temperature act as control
variables. The state system e(y, uc) = 0 is, again, given by the corresponding weak form of the one-dimensional
porous medium model (2.9). The cost functional J measures the negative outgoing mass flow rate at the outlet of
the reactor. Note, that thanks to the sign in J , the minimization of this cost functional is equivalent to maximizing
the outgoing mass flow rate. The set of admissible controls is defined as follows:

Uad = {[uin, Twall]� ∈ R × L2(Ω)|ua ≤ uin ≤ ub on Γ in and 180 ◦C ≤ Twall ≤ 600 ◦C a.e. in Ω},

where the box constraints for Twall are the same as in the previous section. The constraints for the inlet flow rate
are motivated by the physical limitations of the reactor, i.e., we cannot prescribe arbitrarily small or large flow
rates as the reactor is not stable for such conditions. Note, that the particular choice of ua and ub is detailed below.
Additionally, as we use the one-dimensional model of the reactor, the inlet velocity uin corresponds to the averaged
inlet flow rate, and is, thus, a scalar quantity. The state constraint is modeled by the set of admissible states Yad

which is given by

Yad =
{

[p, u, T,Yvec]�|χCO2 = 1 − YCO2

Y in
CO2

≥ χdes on Γ

}
,

i.e., the state constraint is given by the requirement that the CO2 conversion is larger than a given desired conversion
0 ≤ χdes < 1. Obviously, this can be easily transformed into a more classical form of a state constraint, namely
YCO2 ≤ C for some appropriate constant C ∈ (0, 1). As we have seen in Sect. 5.1, the maximum achievable CO2

conversion decreases monotonically with the flow rate. Therefore, we conclude that for the maximum possible flow
rate, the state constraint is satisfied with equality. Since the molar product yield of the reactor solely depends on
the mass flow rate ρu and the gas composition, which is restricted to the desired conversion as just discussed, the
solution of problem (5.2) maximizes the product yield of the reactor for a given CO2 conversion χdes.

Finally, we note that problem (5.2) is a Dirichlet boundary control problem for the control variable uin. For
the numerical solution of this problem, we proceed analogously to [61, Chap. 10.6], i.e., we treat the Dirichlet
boundary condition with the help of an appropriately chosen Lagrange multiplier that consists of terms involving
the respective adjoint variables. These terms correspond to the ones arising from the integration by parts carried out
for the derivation of the variational formulation of the PDE. This allows us to include the boundary condition in
the variational form of the problem, so that we can solve it with our software cashocs. For more details regarding
Dirichlet boundary control problems we refer the reader, e.g., to [51].

For the numerical solution of problem (5.2), we treat the state constraint with a Moreau–Yosida regularization
[51] which leads to the following regularized optimization problem:

min
uc

Jγ (y, uc) = −
∫

Γ out
ρu · n ds + 1

2γ

∫

Γ out
max

(
0, μ̂ + γ

(
χdes − χCO2

))2
ds

s.t. e(y, uc) = 0 and uc ∈ Uad.

(5.3)
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Here, the state and control variables as well as the state system andUad are defined exactly as for problem (5.2). The
cost functional Jγ now includes the Moreau–Yosida regularization of the state constraint with penalty parameter
γ > 0 and shift function μ̂. However, we only consider the case μ̂ = 0 in this paper. The idea of the Moreau–Yosida
regularization is to solve a sequence of regularized optimization problems (5.3) with increasing values of γ with
γ → ∞ so that we obtain a solution of the state constrained problem (5.2) in the limit.

For the wall temperature, we consider the same four models as in the previous section, i.e., the constant, two-
and three-stage, and distributed model. Again, the models might only be approximately realizable in practice but
still act as benchmark for the optimization. For the state constraint, we use the following values for the desired CO2

conversion:

χdes ∈ {0.85, 0.875, 0.9, 0.925, 0.95}.

Additionally, the box constraints for the velocity are always chosen with ua corresponding to 50 mL/min, i.e., the
lowest flow rate considered in the experiments in [11,29], and with ub corresponding to a flow rate of at least 150
mL/min, which is explained more detailedly below. Note, that for a flow rate of 50 mL/min, the obtained optimized
temperature profiles from Sect, 5.1 all have CO2 conversions of over 95% (cf. Fig. 6), which directly makes the
corresponding controls and states feasible for problem (5.2) for all considered values of χdes, so that Uad and Yad

are, in fact, non-empty and we do not minimize over the empty set.
For the numerical solution of (5.2), we use a homotopy approach, i.e., we solve (5.3) for one value of γ and then

use the obtained solution as initial guess for (5.3) with the next higher value of γ . In particular, for all three piecewise
constant temperature models, we use the sequence γl = 10l , l = 0, . . . , 6, and for the distributed temperature model
we use the sequence γl = 7l , l = 0, . . . , 7, as the corresponding problem is slightly harder to solve numerically. We
solve the subproblems (5.3) by means of a projected L-BFGS method with memory size 5 and a stopping tolerance
of 1e−2 for the relative stationarity measure, as discussed in Sect. 4.2. Again, the adjoint system is discretized
analogously to the state system (cf. Sect. 2.5). The value of the upper bound for the inlet velocity ub is chosen as
follows. We start with a value of ub corresponding to 150 mL/min and solve the optimization problem (5.2) as
discussed above. If the resulting optimized inlet velocity is located at the upper bound ub, we increase the bound
by 50 mL/min and repeat this procedure, until the optimized flow rate is not at the upper bound anymore. Since
the maximum possible CO2 conversion decreases monotonically with the flow rate as discussed previously, it is
straightforward to see that this indeed yields the maximum flow rate. Note that we do not use a fixed and sufficiently
large value for ub for all settings as we cannot solve all of the corresponding problems numerically due to the
following. For the initial low values of γ , the solution to (5.3) is given by uin = ub as the regularization term for
the state constraint has only a minor influence on the problem. The higher the value of γ , the larger this influence
becomes and the smaller the flow rate has to be to satisfy the state constraint. This, however, leads to very bad initial
guesses for the subsequent problem with a larger penalty parameter, making the numerical solution of (5.3) very
hard or even impossible, so that the whole approach of regularizing the state constraint becomes pointless in this
case.

Before we discuss the numerical results, we remark that the absolute difference between the CO2 conversion
obtained by solving (5.2) numerically and the desired conversion χdes is less than 0.01% in all considered cases,
which is sufficiently accurate for our purposes and shows that we indeed compute feasible solutions to the original
problem (5.2). The required amount of solves for the state and adjoint system for the numerical solution of (5.2)
is shown in Table 5. Since we now solve a sequence of optimization problems, the required number of PDE solves
obviously increases compared to the problems investigated in Sect. 5.1. We also observe that we need significantly
more solves for the state system than for the adjoint system which indicates that the step size computation via the
Armijo rule takes more effort. On average, we need about two to three times as many solves for the state system
compared to the number of solves for the adjoint system. As before (cf. Table 3), we observe that we need roughly
the same amount of iterations to solve problems with the piecewise constant temperature models, and that we need
considerably more iterations to solve the problems for the distributed model. Finally, we note that the number of PDE
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Table 5 Number of solves for state/adjoint system for problem (5.2)

CO2 conversion (%) Constant Two stages Three stages Distributed

85.0 159/71 147/59 126/48 247/152

87.5 163/83 152/61 145/67 265/149

90.0 166/78 164/67 146/66 295/182

92.5 182/90 249/103 186/89 331/198

95.0 215/124 201/97 194/105 254/141

(b)(a)

(d)(c)

Fig. 7 Optimized temperature profiles for problem (5.2) with χdes = 0.9 and χdes = 0.95

solves increases with increasing χdes for almost all cases, which indicates that the problems become increasingly
harder to solve for higher values of χdes.

Let us first investigate the qualitative behavior of the temperature profiles and flow rates, which are depicted in
Fig. 7 for a desired conversion of χdes = 0.9 and χdes = 0.95. We observe that the optimized temperature profiles
look very similar to the ones investigated in the previous section (cf. Fig. 6). Again, the temperature is higher at
the beginning of the reactor and then decreases monotonically along its length for all cases. As expected after
our previous investigation, the optimized flow rate increases considerably when using more complex temperature
profiles. Moreover, we observe that the largest increase in flow rate happens between the constant and two stage
temperature models, whereas increasing the model complexity further has only a smaller influence on the obtained
flow rate. For all models, the optimized temperature profiles and flow rates are lower for a higher desired conversion
χdes. This can be explained through the thermodynamically favorable conditions at lower temperatures and the
higher residence times induced by lower flow rates which both lead to an increase in CO2 conversion (cf. Sect. 2.3).
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Table 6 Numerical results for the optimization problem (5.2)

CO2 conversion (%) Constant Two stages Three stages Distributed

(a) Optimized flow rate in (mL/min)

85.0 239.74 306.03 320.89 329.42

87.5 188.01 247.08 265.08 273.80

90.0 140.52 193.49 208.08 220.45

92.5 97.20 142.71 155.83 168.65

95.0 57.89 94.12 104.86 117.21

(b) Molar product yield in (mol/s)

85.0 9.092e−05 1.161e−04 1.217e−04 1.249e−04

87.5 7.340e−05 9.646e−05 1.035e−04 1.069e−04

90.0 5.642e−05 7.769e−05 8.355e−05 8.852e−05

92.5 4.011e−05 5.889e−05 6.431e−05 6.960e−05

95.0 2.454e−05 3.989e−05 4.444e−05 4.968e−05

The optimized flow rates and absolute product yields for all choices of χdes are listed in Table 6. Table 6a
confirms our previous findings, as we see that the optimized flow rate increases with increasing complexity of the
temperature models in all cases. As before, we also observe that the biggest difference is between the constant and
the two stage model, where the flow rate increases by about 50 mL/min, and additional improvements from the three-
stage and distributed model are smaller, with about 10 mL/min each. Furthermore, we observe that the optimized
flow rate decreases rapidly when the CO2 conversion is increased. This indicates that higher CO2 conversions are
considerably harder to achieve than lower ones. Considering the total molar product yield, which is depicted in
Table 6b, we obviously have a similar behavior regarding the complexity of the temperature models as for the flow
rate, since the CO2 conversion is restricted by the state constraint for all models. Finally, concerning the influence
of the state constraint, it is interesting to observe that the molar product yield decreases with an increase of the
desired conversion χdes. In particular, the higher achieved level of CO2 conversion cannot compensate the necessary
reduction in the flow rate, so that overall less product is formed. This implies that one should consider optimizing
the flow rate for a desired conversion χdes as closely as possible to the actual desired product quality since using
higher values of χdes than necessary leads to lower product yields.

5.3 Realizability of our results in practice

Usually, chemical reactors are equipped with heat exchanger or cooling systems to control the temperature in the
reactor. Regarding the realization of the optimized temperature profiles shown in Figs. 6 and 7 with such systems,
we have the following remarks. For a microchannel reactor, an obvious heat exchanger system is one which is based
on microchannels, too, as they have large heat transfer coefficients due to their high specific surface area. Moreover,
they already have the appropriate dimensions to be coupled to a microchannel reactor. We refer the reader to, e.g.,
[62,63] for an overview of such temperature control systems, as well as to our previous work [19,20], where we
considered the shape optimization of such systems. Naturally, for these systems, the question arises, how to align
the flow of the coolant with the flow of the chemically reacting gas mixture. Popular choices are given by setups
that use co-current, counter-current, or cross-flow configurations [64–66].

Let us start by investigating the counter-current configuration. In this setup, the coolant enters the domain around
the area where the gas leaves it. It is at its lowest temperature there since it did not absorb a large amount of heat yet.
As the coolant traverses its channel, it is constantly heated up by the reaction and becomes warmest near the reactor
inlet. Looking at this from the view of the reactor channel, the gas temperature is at its highest point at the inlet
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and then gets cooled down progressively as it passes through the reactor. From our results (cf. Figs. 6 and 7), we
can see that this behavior is desirable, so that a suitably chosen counter-current flow configuration could potentially
approximate the temperature profiles from the distributed model. These deliberations also directly imply that the
co-current flow configuration should be avoided if possible as this would cool the gas right at the inlet and heat it
up as it passes through the reactor, achieving the opposite of our goal.

Finally, the cross-flow configuration could also be used to achieve the desired temperatures in the reactor: by using
different coolant temperatures in the channels, corresponding to different sections of the reactor, one can achieve
high temperatures around the reactor inlet and low temperatures around its outlet. In particular, if a sufficient
amount of cooling channels are used, temperature profiles similar to those obtained by the distributed model
could potentially be achieved. Moreover, also the piecewise constant temperature profiles could be, approximately,
realizable using a cross-flow configuration by dividing the cooling channels into distinct groups, each with the
same coolant temperature. In particular, these deliberations show that our choice of the temperature models for
the considered optimization problems is sensible as they can be approximately realized in practice by means of
appropriate temperature control systems.

In conclusion, we have seen that optimizing a microchannel reactor with methods from PDE-constrained opti-
mization shows clear potential for considerable improvements of the reactor’s design. In particular, all of our results
indicate that optimizing the temperature profile and flow rate of the reactor can increase the obtained product yields
considerably. As the considered temperature models are realizable in practice, our results can be readily transferred
to the actual application in order to optimize its design. However, we remark that, for this transfer, one also has to
consider additional factors, such as energy and cost efficiency, for the particular application at hand.

6 Conclusion and outlook

In this work, we have introduced two mathematical models for chemically reacting fluid flow. First, a three-
dimensional model that resolves all quantities over the channel cross section, and second, a one-dimensional model
we derived using a homogenization of the reactor over its cross section. We used these to model the Sabatier
reaction in a microchannel reactor. The necessary kinetic parameters to compute the reaction rate for these models
were determined by means of solving a parameter identification problem constrained by the one-dimensional
model using our software package cashocs [30] which implements and automates the adjoint approach for solving
PDE-constrained optimization problems. The obtained results show excellent agreement with the corresponding
experimental data published in [11,29]. We compared both models numerically and found that the one-dimensional
model is a very good approximation to the three-dimensional one, with relative errors well below 1%. Finally,
we investigated two types of optimal control problems aimed at improving the quality of the reactor. First, we
considered the wall temperature of the reactor as optimization variable and maximized the CO2 conversion for a
fixed flow rate. Second, we considered the inlet flow velocity as additional control variable and maximized the mass
flow rate of the reactor subject to a state constraint for the CO2 conversion that ensures a desired quality of the
product. The results we obtained for both problems show great potential for optimizing the design of the reactor.

For future work, we propose the extension of our reactor model to include, e.g., more sophisticated reaction
mechanisms for the Sabatier process or the RWGS reaction, which would yield a more accurate model. Additionally,
it could be worthwhile to investigate other aspects of the reactor, e.g., by considering not only a single channel, but
the entire reactor, or by coupling an appropriate temperature control system to the reactor, and to investigate similar
optimization problems to the ones in this work in these settings. Another interesting possibility for future research
would be to transfer our results into practice and to test them in reality. Finally, it is also of interest to transfer our
setting to other reactions or more complex reactor settings, where, e.g., multiple reactions occur consecutively or
in parallel, and to investigate their optimization using similar methods to the ones considered in this paper.
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Appendix A: Constitutive relations

In this Appendix, we detail the constitutive relations needed to complete the PDE systems (2.3) and (2.9). The first
constitutive relation is given by the ideal gas law in its form (2.1), i.e.,

ρ = prefM

RT
.

To calculate the average molar mass M , we use the relation

M =
(

Ns∑

k=1

Yk
Mk

)−1

,

where Mk is the molar mass of species k, which can be found, e.g., in [45].
We calculate the specific heat capacity Cp, specific enthalpy h, and specific entropy s of the gas mixture as mass

averages [33] via

Cp(Yvec, T ) =
Ns∑

k=1

YkCp,k(T ), h(Yvec, T ) =
Ns∑

k=1

Ykhk(T ), s(Yvec, T ) =
Ns∑

k=1

Yksk(T ),

where the corresponding quantities for pure species Cp,k, hk , and sk are determined using the polynomial fits from
[45]

Cp,k(T ) Mk

R
= a1T

−2 + a2T
−1 + a3 + a4T + a5T

2 + a6T
3 + a7T

4,

hk(T ) Mk

R
= −a1T

−1 + a2 log(T ) + a3T + a4

2
T 2 + a5

3
T 3 + a6

4
T 4 + a7

5
T 5 + b1,

sk(T ) Mk

R
= −a1

2
T−2 − a2T

−1 + a3 log(T ) + a4T + a5

2
T 2 + a6

3
T 3 + a7

4
T 4 + b2.

This reflects that the specific enthalpy and specific entropy are defined as follows:

h(Yvec, T ) =
∫ T

T0

Cp(Yvec, θ) dθ + �h0
f , and s(Yvec, T ) =

∫ T

T0

Cp(Yvec, θ)

θ
dθ + �s0

f ,

with specific standard enthalpy of formation �h0
f and specific standard entropy of formation �s0

f .
For the viscosity μ, we have the following. The pure species viscosities μk are calculated via the fit given in [46]

μk(T ) = exp
(
Av log(T ) + BvT

−1 + CvT
−2 + Dv

)
.
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The mixture-averaged viscosity is then given by [34] as

μ(Yvec, T ) =
Ns∑

k=1

Xkμk(T )
∑Ns

j=1 X jΦk, j

,

where Xk = (Yk M)/Mk is the mole fraction of species k, and the weights Φk, j are given by

Φk, j =

(
1 +

(
μk (T )
μ j (T )

)1/2 (Mj
Mk

)1/4
)2

(
8
(

1 + Mk
Mj

))1/2
.

Similarly to the viscosity, the thermal conductivity κ of the gas mixture is calculated from the pure species
thermal conductivities κk , which are given by the analogous fit from [46]

κk(T ) = exp
(
Ac log(T ) + BcT

−1 + CcT
−2 + Dc

)
,

with the following averaging rule:

κ(Yvec, T ) = 1

2

⎛

⎝
Ns∑

k=1

Xkκk(T ) +
(

Ns∑

k=1

Xk

κk(T )

)−1⎞

⎠ .

To model the molecular diffusion in the gas, we use the Chapman–Enskog theory and approximate the mul-
ticomponent diffusion by mixture-averaged diffusion coefficients which are defined via the following averaging
procedure from [34, Chap. 11]

Dk,mix(Yvec, T ) =

⎛

⎜⎜⎝
Ns∑

j=1
j �=k

X j

Dk, j (T )
+ Xk

1 − Yk

Ns∑

j=1
j �=k

Y j

Dk, j (T )

⎞

⎟⎟⎠

−1

.

Here, the Dk, j ’s are the binary diffusion coefficients that can be computed via the formulas given, e.g., in [34].
The equilibrium constant keq,j is calculated from thermodynamic relations as follows [33,34]:

keq,j = exp

(
�S0

r,j(T )

R
− �H0

r,j(T )

RT

)( patm

RT

)∑Ns
k=1 νk, j

,

where patm denotes the atmospheric pressure and the argument of the exponential function corresponds to the
change in Gibbs free energy for reaction j , which is calculated from

�S0
r,j(T ) =

Ns∑

k=1

νk, j Mksk(T ), and �H0
r,j(T ) =

Ns∑

k=1

νk, j Mkhk(T ).
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37. Baraj E, Vagaskỳ S, Hlinčík T, Ciahotnỳ K, Tekáč V (2016) Reaction mechanisms of carbon dioxide methanation. Chem Pap
70(4):395–403

38. Lunde PJ, Kester FL (1973) Rates of methane formation from carbon dioxide and hydrogen over a ruthenium catalyst. J Catal
30(3):423–429

39. Lunde PJ, Kester FL (1974) Carbon dioxide methanation on a ruthenium catalyst. Ind Eng Chem Process Des Dev 13(1):27–33
40. Lunde PJ (1974) Modeling, simulation, and operation of a Sabatier reactor. Ind Eng Chem Process Des Dev 13(3):226–233
41. Pérez S, Del Molino E, Barrio VL (2019) Modeling and testing of a Milli-structured reactor for carbon dioxide methanation. Int J

Chem React Eng 17(11):20180238
42. Moioli E, Gallandat N, Züttel A (2019) Model based determination of the optimal reactor concept for Sabatier reaction in small-scale

applications over Ru/Al2O3. Chem Eng J 375:121954
43. Atkins PW, De Paula J (2017) Elements of physical chemistry. Oxford University Press, Oxford
44. Bruus H (2007) Theoretical microfluidics. Oxford University Press, Oxford
45. McBride BJ, Zehe MJ, Gordon S (2002) NASA Glenn coefficients for calculating thermodynamic properties of individual species.

Technical report. NASA Glenn Research Center
46. Svehla RA (1995) Transport coefficients for the NASA Lewis chemical equilibrium program. Technical report. NASA Lewis

Research Center
47. Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FEniCS

project version 1.5. Arch Num Software, 3(100)
48. Logg A, Mardal KA, Wells GN (2012) Automated solution of differential equations by the finite element method. Springer,

Heidelberg
49. Deuflhard P (2011) Newton methods for nonlinear problems. Springer, Heidelberg
50. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Karpeyev D,

Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang
H (2020) PETSc users manual. Technical Report ANL-95/11-Revision 3.13. Argonne National Laboratory

51. Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer, New York
52. Tröltzsch F (2010) Optimal control of partial differential equations. American Mathematical Society, Providence
53. Farrell PE, Ham DA, Funke SW, Rognes ME (2013) Automated derivation of the adjoint of high-level transient finite element

programs. SIAM J Sci Comput 35(4):C369–C393
54. Mitusch SK, Funke SW, Dokken JS (2019) dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake. J Open Source

Softw 4(38):1292
55. Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, McRae ATT, Bercea G-T, Markall GR, Kelly PHJ (2017) Firedrake:

automating the finite element method by composing abstractions. ACM Trans Math Softw 43(3):24
56. Ham DA, Mitchell L, Paganini A, Wechsung F (2019) Automated shape differentiation in the Unified Form Language. Struct

Multidiscip Optim 60(5):1813–1820
57. Rohatgi A (2019) WebPlotDigitizer: Version 4.2
58. Kelley CT (1999) Iterative methods for optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia
59. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York
60. Andres M, Blauth S, Leithäuser C, Siedow N (2020) Identification of the blood perfusion rate for laser-induced thermotherapy in

the liver. J Math Ind 10:17
61. Delfour MC, Zolésio JP (2011) Shapes and geometries, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadel-

phia
62. Khan MG, Fartaj A (2011) A review on microchannel heat exchangers and potential applications. Int J Energy Res 35(7):553–582
63. Naqiuddin NH, Saw LH, Yew MC, Yusof F, Ng TC, Yew MK (2018) Overview of micro-channel design for high heat flux

application. Renew Sustain Energy Rev 82:901–914
64. Zanfir M, Baldea M, Daoutidis P (2011) Optimizing the catalyst distribution for countercurrent methane steam reforming in plate

reactors. AIChE J 57(9):2518–2528
65. Park S, Jung I, Lee Y, Kshetrimayum KS, Na J, Park S, Shin S, Ha D, Lee Y, Chung J, Lee C-J, Han C (2016) Design of microchannel

Fischer–Tropsch reactor using cell-coupling method: effect of flow configurations and distribution. Chem Eng Sci 143:63–75
66. Engelbrecht N, Everson RC, Bessarabov D, Kolb G (2020) Microchannel reactor heat-exchangers: a review of design strategies

for the effective thermal coupling of gas phase reactions. Chem Eng Process 157:108164

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

123


	Optimal control of the Sabatier process in microchannel reactors
	Abstract
	1 Introduction
	2 Model formulation
	2.1 Preliminary notations
	2.2 Mathematical model
	2.3 The Sabatier reaction in microchannel reactors
	2.4 A one-dimensional model of the reactor
	2.5 Numerical solution of the models

	3 Automated derivation of adjoint equations for the numerical solution of PDE-constrained optimization problems
	3.1 Recapitulation of the adjoint approach
	3.2 Automated derivation of adjoint and gradient equations

	4 Identification of kinetic reaction parameters
	4.1 Description of the parameter identification problem
	4.2 Numerical results
	4.3 Numerical comparison of the reactor models

	5 Optimization of the microreactor
	5.1 Optimization with fixed flow rates
	5.2 Optimization with variable flow rates and state constraints
	5.3 Realizability of our results in practice

	6 Conclusion and outlook
	Acknowledgements
	Appendix A: Constitutive relations
	References




