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Abstract We consider the diffusion-limited evaporation of thin two-dimensional sessile droplets either singly
or in a pair. A conformal-mapping technique is used to calculate the vapour concentrations in the surrounding
atmosphere, and thus to obtain closed-form solutions for the evolution and the lifetimes of the droplets in various
modes of evaporation. These solutions demonstrate that, in contrast to in three dimensions, in large domains the
lifetimes of the droplets depend logarithmically on the size of the domain, and more weakly on the mode of
evaporation and the separation between the droplets. In particular, they allow us to quantify the shielding effect that
the droplets have on each other, and how it extends the lifetimes of the droplets.

Keywords Conformal mapping · Evaporation · Finite domain · Lifetimes · Sessile droplets · Shielding effect ·
Two-dimensional

1 Introduction

The evaporation of sessile droplets has been studied extensively in recent years [1]. Topics of particular interest
include particle transport during drying [2–4] and the resulting instabilities [5], nano-scale phenomena [6], and
droplet lifetimes [7–9].

A physically realisticmodel of droplet evaporationmust describe vapour transport in the surrounding atmosphere.
In the simplest setting, this requires us to solve Laplace’s equation for the vapour concentration ĉ in the atmosphere,
subject to a saturation condition ĉ = ĉsat on the surface of the droplet and a no-flux condition on the substrate
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[10,11]. The diffusive mass flux Ĵ from the free surface of the droplet then controls the evolution, and hence the
lifetime, of the droplet.

In the limit in which the droplet is thin [9,12,13], the problem simplifies further because the profile of the droplet
may be neglected when imposing the boundary conditions on ĉ. Thus, the mathematical problem typically becomes
that of solving for ĉ in a half-space or other large domain, subject to appropriate mixed boundary conditions.
Similar mixed boundary-value problems occur in physical contexts including elastostatics [14], electrostatics [15],
thermostatics [16], and hydrodynamics [17].

A range of mathematical techniques can be deployed to solve such problems [14,18]; contributions go back at
least as far as the work of Weber [19], who presented what is effectively the vapour concentration field induced by
a thin circular droplet. Subsequent work has employed methods including separation of variables [20], orthogonal
polynomial expansions [21], Fourier or Hankel transforms [22,23], and Green’s functions [24].

In two dimensions, additional techniques become available, notably conformal mapping [16,25]. This makes
two-dimensional analogues of droplet evaporation problems appealing from the modeller’s point of view: although
two-dimensional problems may be somewhat artificial, their greater tractability allows more thorough analysis to be
carried out. However, in two dimensions there is a fundamental difficulty concerning the specification of appropriate
boundary conditions [14], which we will overcome, in the spirit of the work of Yarin et al. [26], by considering a
suitably relaxed boundary condition.

In practice, droplets rarely occur in isolation, and so it is important to understand how droplets evaporate in
the presence of other evaporating droplets. Previous studies of the evaporation of multiple sessile droplets have
employed a variety of experimental, numerical and analytical approaches [27–38]. The critical difference between
the evaporation of single and of multiple droplets is the occurrence of the shielding effect, namely that the presence
of other evaporating droplets increases the local vapour concentration, and so each droplet evaporates more slowly
than it would in isolation.

Again, analogous problems have been studied in other physical contexts. The first relevant study by Greenwood
[39] examined the interaction of large numbers of microcontacts in electric contact theory, treating them as inde-
pendent at leading order, and introducing an interaction term at higher order. Similar approaches have since been
applied to elastic punches [40] and flow through pores [41], and have been put on a more rigorous asymptotic basis
[42–44]. All these studies essentially considered the equivalent of thin circular droplets in three dimensions; recent
work has used a variety of approaches to investigate the closely related problem of the dissolution of immersed
nanobubbles and nanodroplets [45–48].

In this study we consider the evaporation of thin two-dimensional sessile droplets. In Sect. 2 we consider the
one-droplet problem.We present the governing equations (Sect. 2.1), show that the most apparently natural problem
does not have a solution (Sect. 2.2), and then show that by considering a suitably relaxed boundary condition we
can obtain a physically acceptable solution via a conformal-mapping technique (Sect. 2.3). We validate this solution
against numerical simulations (Sect. 2.4), and use it to obtain closed-form solutions for the evolution and lifetimes of
the droplet in various modes of evaporation (Sect. 2.5). We then develop asymptotic expressions for these lifetimes
in a large domain (Sect. 2.5.4). In Sect. 3 we consider the two-droplet problem. We obtain a solution to this problem
(Sect. 3.1), which we again validate against numerical simulations (Sect. 3.2), before using it to obtain closed-form
solutions for the evolution and lifetimes of the droplets (Sect. 3.3). We develop asymptotic expressions for these
lifetimes (Sect. 3.3.3), and use these expressions to compare the lifetimes of a single droplet and a pair of droplets
in dimensional terms (Sect. 4).

2 One-droplet problem

2.1 Model

Consider a thin two-dimensional sessile droplet with constant surface tension σ̂ and density ρ̂, evaporating in
the diffusion-limited regime. (For simplicity, we shall refer to the fluid throughout as a droplet; viewed in three
dimensions it is more accurately described as a ridge or line.) Let it have semi-width R̂(t̂), contact angle θ̂ (t̂) and
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cross-sectional area Â(t̂). Using Cartesian co-ordinates (x̂, ŷ)with origin at the centre of the base of the droplet, the
droplet evaporates into a surrounding atmosphere with constant coefficient of vapour diffusion D̂, vapour saturation
concentration ĉ = ĉsat, and ambient vapour concentration ĉ = ĉ∞ (< ĉsat). The vapour concentration in the
atmosphere is denoted by ĉ(x̂, ŷ, t̂), and the diffusive mass flux from the surface of the droplet by Ĵ (x̂, t̂).

Following the approach of [9,12,13], we nondimensionalise and scale according to

(x̂, ŷ) = R̂0(x, y), R̂ = R̂0R, θ̂ = θ̂0θ, Â = R̂2
0 θ̂0A,

ĉ = ĉ∞ + (ĉsat − ĉ∞)c, Ĵ = D̂
(
ĉsat − ĉ∞

)

R̂0
J, t̂ = ρ̂θ̂0 R̂2

0

D̂
(
ĉsat − ĉ∞

) t,
(1)

where R̂0 = R̂(0) and θ̂0 = θ̂ (0).
The vapour concentration is assumed to be quasi-steady, and so c satisfies Laplace’s equation

∇2c = 0, (2)

throughout the atmosphere.
Assuming that the droplet is sufficiently small, the Eötvös–Bond number Eo = ρ̂ ĝ R̂2

0/σ̂ will be small; under
these conditions the free surface of the droplet is approximately parabolic and its cross-sectional area is given by

A = 2

3
R2θ. (3)

The flux from the droplet is given by

J = − ∂c

∂y
for |x | ≤ R, (4)

which may be evaluated at y = 0 due to the thinness of the droplet. Similarly, the saturation condition, c = 1, on
the surface of the droplet may also be imposed on y = 0.

The saturation condition on the droplet and the no-flux condition on the substrate thus become

c(x, 0) = 1 for |x | < R,
∂c

∂y
(x, 0) = 0 for |x | > R, (5)

respectively. To complete the problem we require a suitable boundary condition to be imposed in the “far field”;
this turns out to be non-trivial to specify.

2.2 Absence of a solution in an infinite half-space

The simplest problem to specify is evaporation into an infinite half-space, so we aim to solve (2) subject to the
far-field condition

c → 0 as x2 + y2 → ∞ in y > 0, (6)

as well as to a mixed boundary condition on y = 0 of the form

c(x, 0) = f (x) (> 0) for |x | < R,
∂c

∂y
(x, 0) = 0 for |x | > R. (7)
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Applying a cosine transform to (2) and imposing the far-field condition (6) leads to a solution of the form

c =
∫ ∞

0
u−1A(u)e−uy cos(ux) du, (8)

where the function A(u) is to be determined. Imposing the boundary condition (7) requires that

∫ ∞

0
u−1A(u) cos(xu) du = f (x) for |x | < R, (9)

∫ ∞

0
A(u) cos(xu) du = 0 for |x | > R. (10)

The work of Sneddon [14, Sect. 4.5] shows that requiring regularity of c at the contact line x = R imposes the
condition

∫ R

0

f (x)√
R2 − x2

dx = 0, (11)

so specifying that the function f (x) is any positive constant is not an admissible boundary condition, and so, as could
have been anticipated from the behaviour of the fundamental solution of Laplace’s equation in two dimensions,
the problem specified by (2), (5) and (6) has no solution. We note that (11) precludes not only solutions to the
simplest problem in which the saturation concentration is constant on the droplet, but also solutions to more general
problems in which it varies along the droplet surface due, for example, to changes in temperature [11,49].

2.3 Solution in a finite domain via conformal mapping

Since the most apparently natural problem does not have a solution, we instead look for a closely related analogue
that does. We therefore consider a slightly modified problem in which the far-field condition (6) is replaced by a
similar Dirichlet condition at a distant, but finite, boundary. We therefore aim to solve

∇2c = 0 in y > 0, x2 + y2 < γ 2, (12)

subject to the standard boundary conditions on y = 0,

c(x, 0) = 1 for |x | < R,
∂c

∂y
(x, 0) = 0 for R < |x | < γ, (13)

and the relaxed boundary condition

c = 0 for y > 0, x2 + y2 = γ 2. (14)

While it is difficult to find an analytical solution in a domain that is exactly semi-circular, we can obtain a solution
in a semi-elliptical domain that approaches a semi-circular shape as it becomes large.

We proceed using conformal mapping. Let

z = x + iy, w = u + iv. (15)
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(a) (b)

v

u

S

1−1

y

x

Ψ

R−R−√
Ψ2+R2

√
Ψ2+R2

Fig. 1 a The rectangular domain in the w-plane and b the semi-elliptical domain in the z-plane for the one-droplet problem

Then the mapping

z = g(w) = −R cos
(π

2
(w + 1)

)
(16)

maps the semi-infinite strip (u, v) ∈ (−1, 1) × (0,∞) in the w-plane to the upper half of the z-plane. In particular,
the rectangle (−1, 1)×(0, S) shown in Fig. 1a is mapped to the semi-ellipse with semi-major axis length

√
Ψ 2 + R2

and semi-minor axis length Ψ shown in Fig. 1b and given by

z =
√

Ψ 2 + R2 cos(s) + iΨ sin(s) for 0 ≤ s ≤ π, (17)

where

Ψ = R sinh

(
π S

2

)
. (18)

An important point to note is that the shape of the semi-elliptical domain in the z-plane given by (17) depends on
R as well as on Ψ . Thus, in general, for a droplet whose semi-width changes as it evolves, the shape of the domain
also changes. However, in the regime of most interest, Ψ � R, in which the domain is large, Eq. (17) gives

z = Ψ eis
[
1 + O(Ψ −2)

]
, (19)

and so the domain is semi-circular with radius Ψ and independent of R up to O(Ψ −2) 	 1.
In the rectangular domain in the w-plane we seek a harmonic function Φ(u, v) satisfying

Φ(u, 0) = 1,
∂Φ

∂u
(−1, v) = 0 = ∂Φ

∂u
(1, v), Φ(u, S) = 0. (20)

Solving the problem for Φ in the rectangular domain immediately gives the corresponding solution for c in the
semi-elliptical domain.

By inspection, the solution in the rectangular domain is given by

Φ(u, v) = 1 − v

S
= 1 − I(w)

S
, (21)

so

c(x, y) = 1 − I
(
g−1(z)

)

S
= 1 − 1

arcsinh (Ψ/R)
I
[
arccos

(
− z

R

)]
, (22)
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and the flux is given by

J (x) = − ∂c

∂y
(x, 0) = 1

arcsinh (Ψ/R)

1√
R2 − x2

for |x | < R. (23)

In particular, the flux satisfies

J ∼ 1√
2R arcsinh (Ψ/R)

1√
R − x

as x → R−, (24)

and so it has the same (integrable) square-root singularity at the contact line x = R as in the corresponding
three-dimensional problem [10].

2.4 Numerical validation

In order to validate the solution obtained in Sect. 2.3 (i.e. in order to assess the accuracy of the solution and to
quantify the effect of the non-circularity of the domain), we solved the problem in the semi-circular domain using
COMSOL Multiphysics [50]. In Fig. 2 we compare these numerical solutions to the analytical solutions in the
semi-elliptical domain given by (22) and (23).

Figure 2a–c shows solutions for the vapour concentration along the x-axis, c(x, 0); d–f shows solutions for the
vapour concentration along the y-axis, c(0, y); g–i shows solutions for the flux, J (x). The first column [(a), (d),
(g)] shows results for Ψ = 2, the second column [(b), (e), (h)] shows results for Ψ = 10, and the third column
[(c), (f), (i)] shows results for Ψ = 100. In all cases the solid lines denote the analytical solutions in the semi-
elliptical domain, and the dashed lines denote the corresponding numerical solutions in the semi-circular domain.
Figure 2a–f shows that the vapour concentration c takes its saturation value c = 1 on the surface of the droplet
and decreases monotonically to its ambient value c = 0 at the edge of the domain, and Fig. 2g–i shows that the
flux J increases monotonically with distance from a minimum value at the centre of the droplet and is singular at
the contact line x = R. Figure 2 also shows that the analytical solutions accurately capture the behaviour of the
numerical solutions provided thatΨ is sufficiently large, which is exactly as expected since it is for smaller domains
that the semi-circular and semi-elliptical domains are most different.

2.5 Evolution and lifetime of the droplet

The rate of change of the cross-sectional area (3) is given by the flux (23) integrated over the surface of the droplet,

dA

dt
= 2

3

d

dt

[
R2(t)θ(t)

]
= −

∫ R

−R
J (x) dx = − π

arcsinh(Ψ/R)
. (25)

In order to integrate (25) to determine the evolution and lifetime of the droplet, we require additional information
about the behaviour of R(t) and θ(t), i.e. we need to specify the mode in which the droplet is evaporating. The works
by Stauber et al. [7,8] and Schofield et al. [9] describe various modes of evaporation for axisymmetric droplets.
In the present work, we consider the two-dimensional analogues of three of these modes: the constant-radius (CR)
mode, the constant-angle (CA) mode, and the stick–slide (SS) mode. (Throughout, for consistency with the three-
dimensional problem, we will refer to modes in which R is fixed as “constant-radius” modes, although strictly R is
not the radius but the semi-width of the two-dimensional droplet.)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

c c c

c c c

J J J

x x x

y y y

x x x

Fig. 2 The vapour concentration and flux for the one-droplet problem for R = 1 and Ψ = 2 [(a), (d), (g)], Ψ = 10 [(b), (e), (h)], and
Ψ = 100 [(c), (f), (i)]. a–c Solutions for the vapour concentration along the x-axis, c(x, 0); d–f Solutions for the vapour concentration
along the y-axis, c(0, y); g–i Solutions for the flux, J (x). Solid lines denote the analytical solutions in the semi-elliptical domain given
by (22) and (23), and dashed lines denote the corresponding numerical solutions in the semi-circular domain

2.5.1 Constant-radius (CR) mode

In the constant-radius (CR) mode, R(t) ≡ R0 = 1. Noting that θ(0) = θ0 = 1, we may immediately integrate (25)
to obtain

θ(t) = 1 − 3π

2 arcsinhΨ
t, A(t) = 2

3

[
1 − 3π

2 arcsinhΨ
t

]
. (26)
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(a) (b)

(c) (d)

θ R

A

tCA

tCR

t t

t Ψ

���������
Ψ Ψ

Ψ

Fig. 3 Evolution and lifetime of a single droplet evaporating in the CR and CA modes: a contact angle θ(t) in the CR mode given by
(26), b semi-width R(t) in the CAmode given by (28), and c areas A(t) given by (26) and (28), plotted as functions of t forΨ = 10, 100
and 1000 with the arrows indicating the direction of increasing Ψ ; d lifetimes tCR and tCA given by (27) and (29) plotted as functions
of Ψ . In c and d solid lines denote the CA mode and dashed lines denote the CR mode

Hence the lifetime of a single droplet evaporating in the CR mode is

tCR = 2

3π
arcsinhΨ. (27)

Figure 3a, c, d shows the evolution and lifetime of a single droplet evaporating in the CRmode. The contact angle
θ and the area A both decrease linearly with time t (Fig. 3a, c). As the size of the domain Ψ increases, the contact
angle θ and the area A decrease more slowly, and so the lifetime tCR increases monotonically with Ψ (Fig. 3d).
This is because in two dimensions the distance to the outer boundary sets the distance over which the concentration
decays to zero, and thus controls the concentration gradient close to the droplet, as seen in (23). This strong role
of the outer boundary is a fundamental difference from the corresponding three-dimensional problem, in which
the distance to the outer boundary becomes irrelevant for a sufficiently large domain, and so a far-field boundary
condition can be safely imposed “at infinity”.

2.5.2 Constant-angle (CA) mode

In the constant-angle (CA) mode, θ(t) ≡ θ0 = 1. Noting that R(0) = R0 = 1, we may integrate (25) implicitly to
obtain
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t = 2

3π

[
arcsinhΨ − R2(t) arcsinh

(
Ψ

R(t)

)
+ Ψ

(√
Ψ 2 + 1 −

√
Ψ 2 + R2(t)

)]
,

A(t) = 2R2(t)

3
. (28)

Hence the lifetime of a single droplet evaporating in the CA mode is

tCA = 2

3π

[
arcsinhΨ + Ψ

(√
Ψ 2 + 1 − Ψ

)]
, (29)

which can be re-written as

tCA = tCR + 2Ψ

3π

(√
Ψ 2 + 1 − Ψ

)
. (30)

Figure 3b–d shows the evolution and lifetime of a single droplet evaporating in the CA mode. In contrast to the
CR mode, the semi-width R and the area A now both decrease nonlinearly with time t (Fig. 3b, c). However, as
in the CR mode, the lifetime tCA increases monotonically with Ψ (Fig. 3d). Figure 3d also illustrates, as (30) also
shows, that due to its pinned contact lines, a droplet evaporating in the CR mode always has a larger surface area,
and hence a larger total flux and thus a shorter lifetime, than the same droplet evaporating in the CA mode, i.e.
tCR ≤ tCA for all Ψ .

2.5.3 Stick–slide (SS) mode

In the stick–slide (SS) mode, the contact line is initially pinned, while the contact angle decreases until it reaches
its critical de-pinning (receding) value θ = θ∗ (0 ≤ θ∗ ≤ 1) at the de-pinning time t = t∗. After de-pinning, the
contact angle remains at its critical value, while the semi-width decreases until it reaches zero. Thus we have

R(t) ≡ 1 for 0 < t < t∗, θ(t) ≡ θ∗ for t∗ < t < tSS. (31)

In the pinned (i.e. the CR) phase, 0 < t < t∗, the droplet evolves according to (26), so that

t∗ = 2(1 − θ∗) arcsinhΨ

3π
, (32)

while in the de-pinned (i.e. the CA) phase, t∗ < t < tSS, the droplet evolves according to

t = t∗ + 2θ∗

3π

[
arcsinhΨ − R2(t) arcsinh

(
Ψ

R(t)

)
+ Ψ

(√
Ψ 2 + 1 −

√
Ψ 2 + R2(t)

)]
. (33)

Combining (32) and (33), the lifetime of a single droplet evaporating in the SS mode is

tSS = 2

3π

[
arcsinhΨ + θ∗Ψ

(√
Ψ 2 + 1 − Ψ

)]
, (34)

which can be re-written as

tSS = tCR + 2θ∗Ψ
3π

(√
Ψ 2 + 1 − Ψ

)
. (35)

Figure 4 shows the evolution and lifetime of a single droplet evaporating in the SS mode. The de-pinning time
t∗ decreases linearly with θ∗, while the lifetime tSS increases linearly with θ∗ (Fig. 4d). Comparing (27), (30) and
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(a) (b)

(c) (d)

R θ

A

tSS

t∗

t t

t θ ∗

������

�

�

θ ∗

θ ∗

θ ∗

Fig. 4 Evolution and lifetime of a single droplet evaporating in the SS mode: a semi-width R(t), b contact angle θ(t), and c area A(t)
given by (31)–(33), plotted as functions of t for θ∗ = 0, θ∗ = 1/4, θ∗ = 1/2, θ∗ = 3/4 and θ∗ = 1 with the arrows indicating the
direction of increasing θ∗; d de-pinning time t∗ given by (32) (dashed line) and lifetime tSS given by (34) (solid line) plotted as functions
of θ∗. In all cases Ψ = 100

(35) shows that, as might have been anticipated, the lifetime of a droplet evaporating in the SS mode always lies
between those of the same droplet in the CR and CA modes, i.e. tCR ≤ tSS ≤ tCA for all Ψ and θ∗. In the limit
θ∗ → 1− the SS mode approaches the CA mode and thus tSS → tCA−, while in the limit θ∗ → 0+ the SS mode
approaches the CR mode and thus tSS → tCR+.

We note that in Fig. 4a all of the curves for which θ∗ = 0 intersect at t = tCR, and from (27), (32) and (33), the
semi-width of the droplet at this time, R(tCR), satisfies

R2(tCR) arcsinh

(
Ψ

R(tCR)

)
= Ψ

(√
Ψ 2 + 1 −

√
Ψ 2 + R2(tCR)

)
. (36)

Note that R(tCR) is a monotonically decreasing function of Ψ which takes its maximum value R(tCR) = 1/2 in the
limit Ψ → 0+ and satisfies R(tCR) → 0+ as Ψ → ∞.

2.5.4 Asymptotic behaviour of the lifetimes in a large domain, Ψ � R

Consider the regime of most interest, Ψ � R, in which the domain is large and approximately semi-circular, and
the condition at the outer boundary corresponds most closely to a far-field condition. From (27), (29) and (34) we
obtain
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Fig. 5 The
quasi-semi-elliptical
domain in the ζ -plane for
the two-droplet problem

ξ

η
I Ω−I−Ω

√
Ψ2 − I2

−√
Ψ 2+Ω2

√
Ψ2+Ω2

tCR = 2

3π
ln(2Ψ ) + O

(
1

Ψ 2

)
, (37)

tCA = 2

3π
ln(2Ψ ) + 1

3π
+ O

(
1

Ψ 2

)
, (38)

tSS = 2

3π
ln(2Ψ ) + θ∗

3π
+ O

(
1

Ψ 2

)
, (39)

respectively. Equations (37)–(39) show that the lifetimes of the droplets all depend logarithmically on the size of the
domain, and differ by an amount of O(1) which depends on the mode of evaporation. The corrections at O(Ψ −2)

are of the same order as the deviation of the domain from circularity.

3 Two-droplet problem

We now consider the analogous two-droplet problem in the ζ -plane, where ζ = η + iξ . We assume that the
droplets are identical, and use the initial semi-width of the droplets as the characteristic length scale in the non-
dimensionalisation. The droplets are located so that they have inner contact lines at η = ± I and outer contact lines
at η = ±Ω , where Ω > I , as shown in Fig. 5. The cross-sectional area of each droplet is then given by

A = (Ω − I )2 θ

6
. (40)

3.1 Solution in a finite domain via conformal mapping

Consider the conformal map

ζ = Γ (z) =
√
I 2 + z2 (41)

from the z-plane to the ζ -plane. Thismaps the real interval (0, R) in the z-plane to the real interval (I,Ω)whereΩ =√
I 2 + R2 in the ζ -plane, preserving the saturation condition on the droplet. Itmaps the real interval (R,

√
Ψ 2 + R2)

in the z-plane to the real interval (Ω,
√

Ψ 2 + Ω2) in the ζ -plane, preserving the no-flux condition on the substrate.
It maps the imaginary interval (0, iI ) in the z-plane to the real interval (0, I ) in the ζ -plane: the symmetry condition
on the imaginary axis in the z-plane now becomes a no-flux condition on the real interval (0, I ) in the ζ -plane. With
a suitable choice of branch cut, the equivalent regions in the left half of the z-plane are mapped into corresponding
regions in the left half of the ζ -plane. The outer boundary of the domain, given by the rectangle in the z-plane and
the semi-ellipse (17) in the z-plane, is mapped to the quasi-semi-elliptical curve shown in Fig. 5 and given by
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(a) (b)
c= 0.55

c = 0.7

y ξ

x η

Fig. 6 Contours of the vapour concentration a c(x, y) for the one-droplet problem given by (22) when R = 1, and b c(η, ξ) for the
two-droplet problem given by (44) when I = 1 and Ω = 3. In both cases Ψ = 100 and the contours are shown with increments of 0.05

ζ =
[
I 2 +

(√
Ψ 2 + Ω2 − I 2 cos(s) + iΨ sin(s)

)2]1/2
for 0 ≤ s ≤ π. (42)

However, as in the one-droplet problem, in the regime of most interest, Ψ � I , in which the domain is large, Eq.
(42) gives

ζ = Ψ eis
[
1 + O(Ψ −2)

]
, (43)

and so the domain is again semi-circular with radius Ψ and independent of I and Ω up to O(Ψ −2) 	 1.
The solution in the quasi-semi-elliptical domain is given by

c(η, ξ) = c(ζ ) = c(w(z(ζ ))) = 1 − 1

arcsinh
(
Ψ/

√
Ω2 − I 2

)I

⎡

⎣arccos

⎛

⎝−
√

ζ 2 − I 2

Ω2 − I 2

⎞

⎠

⎤

⎦ . (44)

Figure 6 shows the contours of the vapour concentration c(η, ξ) for the two-droplet problem given by (44) and the
corresponding contours of c(x, y) for the one-droplet problem given by (22). In both cases, far from the droplet(s)
the contours approach the (semi-elliptical or quasi-semi-elliptical) shape of the outer boundary, and near to the
droplet(s) the contours approach the flat shape(s) of the droplet(s). For the two-droplet problem the concentration
in the region between the droplets is increased relative to that in the one-droplet problem, and near to the droplets
the concentration falls away more gradually than it does in the one-droplet problem, resulting in the shielding effect
described in Sect. 1.

The flux is given by

J (η) = − ∂c

∂ξ
(η, 0) = 1

arcsinh
(
Ψ/

√
Ω2 − I 2

)
η

√
Ω2 − η2

√
η2 − I 2

. (45)

In particular, the flux satisfies

J ∼ 1
√
2(Ω2 − I 2) arcsinh

(
Ψ/

√
Ω2 − I 2

) ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
I

η − I
as η → I+,

√
Ω

Ω − η
as η → Ω−,

(46)

confirming that it again has square-root singularities at both contact lines.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

c c c

c c c

J J J

η η η

ξ ξ ξ

η η η
Fig. 7 The vapour concentration and flux for the two-droplet problem for I = 1, Ω = 3 and Ψ = 4 [(a), (d), (g)], Ψ = 10 [(b),
(e), (h)], and Ψ = 100 [(c), (f), (i)]. a–c Solutions for the vapour concentration along the η-axis, c(η, 0); d–f Solutions for the vapour
concentration along the ξ -axis, c(0, ξ); g–i Solutions for the flux, J (η). Solid lines denote the analytical solutions in the quasi-semi-
elliptical domain given by (44) and (45), and dashed lines denote the corresponding numerical solutions in the semi-circular domain

3.2 Numerical validation

Aswe did in the one-droplet problem, in order to validate the solution obtained in Sect. 3.1, we solved the two-droplet
problem in the semi-circular domain using COMSOL Multiphysics [50]. In Fig. 7 we compare these numerical
solutions to the analytical solutions in the quasi-semi-elliptical domain given by (44) and (45).

Figure 7a–c shows solutions for the vapour concentration along the η-axis, c(η, 0); d–f shows solutions for the
vapour concentration along the ξ -axis, c(0, ξ); g–i shows solutions for the flux, J (η). The first column [(a), (d),
(g)] shows results for Ψ = 4, the second column [(b), (e), (h)] shows the corresponding results for Ψ = 10, and
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the final column [(c), (f), (i)] shows the corresponding results for Ψ = 100. In all cases the solid lines denote the
analytical solutions in the quasi-semi-elliptical domain, and the dashed lines denote the corresponding numerical
solutions in the semi-circular domain. As in the one-droplet problem, Fig. 7 shows that c takes its saturation value
on the surface of the droplets and decreases monotonically to its ambient value at the edge of the domain, that J is
singular at the contact lines x = I and x = Ω , and that the analytical solutions accurately capture the behaviour of
the numerical solutions provided that Ψ is sufficiently large.

However, Fig. 7a–f also shows that c decreases monotonically to an (unsaturated) minimum value between the
droplets, and that this value is an increasing function of Ψ : this latter behaviour reflects the smaller concentration
gradients, and thus the higher concentrations, which occur near to the droplets in larger domains. In addition, Fig.
7g–i clearly illustrate the shielding effect that the droplets have on each other. In particular, as (46) shows, the flux
near to the outer contact line is suppressed less by the presence of the other droplet, and so remains larger than
the flux near to the inner contact line, resulting in the skewed flux profiles shown in Fig. 7g–i. In particular, the
minimum value of the flux no longer occurs at the centre of each droplet (as it does in the one-droplet problem).

3.3 Evolution and lifetime of the droplets

Using the solution for the flux given by (45), the evolution and lifetime of the droplets are determined by

dA

dt
= 1

6

d

dt

[
(Ω(t) − I (t))2 θ(t)

]
= −

∫ Ω

I
J (η) dη = − π

2 arcsinh
(
Ψ/

√
Ω2 − I 2

) . (47)

In the one-droplet problem we investigated three modes of evaporation (namely the CR, CA and SS modes), but
in the two-droplet problem there is a much richer variety of possible behaviours because any of the four contact lines
may, in principle, move independently of the other three. In the present work, we consider four canonical behaviours,
in each of which the droplets remain symmetric about the ξ -axis. Specifically, we consider the following modes of
evaporation:

1. The constant-inner-and-outer-contact-line (CIO) mode: the inner and outer contact lines of both droplets are
pinned at η = ± I (0) = ± I0 and η = ±Ω(0) = ±Ω0 as the droplets evaporate.

2. The constant-angle-centred (CAC)mode: both droplets evaporatewith constant contact angle and remain centred
at η = ± (I + Ω)/2 = ± (I0 + Ω0)/2.

3. The constant-angle and constant-inner-contact-lines (CAI) mode: both droplets again evaporate with constant
contact angle, but now their inner contact lines are pinned at η = ± I0.

4. The constant-angle and constant-outer-contact-line (CAO) mode: both droplets again evaporate with constant
contact angle, but now their outer contact lines are pinned at η = ±Ω0.

3.3.1 Constant-inner-and-outer-contact-line (CIO) mode

In the CIO mode, the inner and outer contact lines of both droplets are pinned, I ≡ I0 and Ω ≡ Ω0 = I0 + 2. We
may then immediately integrate (47) to obtain

θ(t) = 1 − 3π

4 arcsinh

(
Ψ/

√
Ω2

0 − I 20

) t, A = (Ω0 − I0)2

6

⎡

⎢⎢
⎣1 − 3π

4 arcsinh

(
Ψ/

√
Ω2

0 − I 20

) t

⎤

⎥⎥
⎦ . (48)

Hence the lifetime of a pair of droplets evaporating in the CIO mode is

tCIO =
4 arcsinh

(
Ψ/

√
Ω2

0 − I 20

)

3π
. (49)
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(a) (b)

(c) (d)

θ A

tCIO tCIO

t t

Ψ I0

�������
�������Ψ

Ψ

Fig. 8 Evolution and the lifetime of a pair of droplets evaporating in the CIO mode: a contact angle θ(t) and b area A(t) given by (48)
plotted as functions of t for Ψ = 10, Ψ = 100 and Ψ = 1000 with the arrows indicating the direction of increasing Ψ ; lifetime tCIO
given by (49) plotted c as a function of Ψ and d as a function of I0 when Ψ = 100. In a–c all curves are for I0 = 1 and Ω0 = 3

Figure 8 shows the evolution and the lifetime of a pair of droplets evaporating in the CIO mode. As for a single
droplet in the CR mode, the contact angle θ and the area A both decrease linearly with time t (Fig. 8a, b) and the
lifetime tCIO increases monotonically with Ψ (Fig. 8c). In addition, since the shielding effect is weaker, and hence
evaporation is faster, when the droplets are more widely separated, the lifetime tCIO decreases monotonically with
the separation between the droplets, 2I0 (Fig. 8d).

3.3.2 Constant-angle (CAC, CAI, CAO) modes

In the CAC, CAI and CAO modes, the contact angle remains constant, θ(t) ≡ θ0 = 1. The three modes are
distinguished by the different behaviours of the contact lines.

In the constant-angle-centred (CAC) mode, the droplets remain centred at η = ± (I + Ω)/2 = ± (I0 + Ω0)/2.
It is therefore convenient to write

I (t) = Γ − Δ(t), Ω(t) = Γ + Δ(t), (50)
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where Γ = (I0 + Ω0)/2 is the position of the centre of the right-hand droplet and Δ(t) = (Ω − I )/2 is its
semi-width. We may then integrate (47) implicitly to obtain

18πΓ 2t = 24Γ 2
(
arcsinh

(
Ψ

2
√

Γ

)
− Δ2 arcsinh

(
Ψ

2
√

Γ Δ

))

+
√
4Γ Δ + Ψ 2

(
Ψ 2 − 2Γ Δ

)
Ψ −

√
4Γ + Ψ 2

(
Ψ 2 − 2Γ

)
Ψ. (51)

Hence the lifetime of a pair of droplets evaporating in the CAC mode is

tCAC = 1

18πΓ 2

[
24Γ 2 arcsinh

(
Ψ

2
√

Γ

)
+ Ψ 4 −

√
4Γ + Ψ 2

(
Ψ 2 − 2Γ

)
Ψ

]
. (52)

In the constant-angle-and-inner-contact-line (CAI) mode, the inner contact line is pinned, I ≡ I0. We may then
integrate (47) implicitly to obtain

FCAI(Ω) = FCAI(Ω0) + 3π

2
t, (53)

where

FCAI(Ω) = I 20
4

⎡

⎣3 arctanh

⎛

⎝ Ψ 2 − Ω I0 − I 20

Ψ

√
Ψ 2 + Ω2 − I 20

⎞

⎠− arctanh

⎛

⎝ Ψ 2 + Ω I0 − I 20

Ψ

√
Ψ 2 + Ω2 − I 20

⎞

⎠

⎤

⎦

+ Ω

2
(2I0 − Ω) arcsinh

⎛

⎝ Ψ
√

Ω2 − I 20

⎞

⎠− Ψ

2

√
Ψ 2 + Ω2 − I 20

+ Ψ I0 ln

(
Ω +

√
Ψ 2 + Ω2 − I 20

)
. (54)

Hence the lifetime of a pair of droplets evaporating in the CAI mode is

tCAI = 2

3π
[FCAI(I0) − FCAI(Ω0)] . (55)

In the constant-angle-and-outer-contact-line (CAO) mode, the outer contact line is pinned, Ω ≡ Ω0. We may
then integrate (47) implicitly to obtain

FCAO(I ) = FCAO(I0) + 3π

2
t, (56)

where1

FCAO(I ) = Ω2
0

4

⎡

⎣3 arctanh

⎛

⎝ Ψ 2 + Ω0 I + Ω2
0

Ψ

√
Ψ 2 + Ω2

0 − I 2

⎞

⎠− arctanh

⎛

⎝ Ψ 2 − Ω0 I + Ω2
0

Ψ

√
Ψ 2 + Ω2

0 − I 2

⎞

⎠

⎤

⎦

1 Note that, as a check on the correctness of (54) and (57), we may (up to an unimportant additive constant) recover FCAO from FCAI
by replacing Ω with I , I0 with Ω0 and Ψ with iΨ in (54), and FCAI from FCAO by replacing I with Ω , Ω0 with I0 and Ψ with iΨ in
(57).
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(a) (b)

(c) (d)
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Fig. 9 Evolution and lifetime of a pair of droplets evaporating in the CAC (solid lines), CAI (dotted lines), and CAO (dashed lines)
modes: a contact line positions I (t), Ω(t) and b area A(t) given by (40), (51), (53) and (56) plotted as functions of t for Ψ = 10,
Ψ = 100 and Ψ = 1000 with the arrows indicating the direction of increasing Ψ ; lifetimes tCAC, tCAI and tCAO given by (52), (55)
and (58) plotted c as functions of Ψ and d as functions of I0 for Ψ = 100. In a–c all curves are for I0 = 1 and Ω0 = 3, while d also
includes the leading-order behaviour in the asymptotic regime 1 	 I0 	 Ψ given by 4/(3π) ln(Ψ/

√
I0) (dot-dashed line)

+ I

2
(2Ω0 − I ) arcsinh

⎛

⎝ Ψ
√

Ω2
0 − I 2

⎞

⎠+ Ψ

2

√
Ψ 2 + Ω2

0 − I 2

+ Ψ Ω0 arctan

⎛

⎝ I
√

Ψ 2 + Ω2
0 − I 2

⎞

⎠ . (57)

Hence the lifetime of a pair of droplets evaporating in the CAO mode is

tCAO = 2

3π
[FCAO(Ω0) − FCAO(I0)] . (58)

Figure 9 shows the evolution and the lifetime of a pair of droplets evaporating in the three constant-angle modes.
The difference between the modes is most clearly seen in Fig. 9a, which shows the inner and outer contact lines
moving towards the centre of the droplet in the CAC mode, the outer contact line moving inward in the CAI mode,
and the inner contact line moving outward in the CAOmode. Despite these differences, the evolution of the area A,
which decreases nonlinearly with t , is similar for all three modes (Fig. 9b). As in the CAI mode, the lifetimes tCAC,

123



106 F. G. H. Schofield et al.

Fig. 10 Lifetimes of a pair
of droplets evaporating in
the CAI (top curve in each
set), CAC, CAO and CIO
(bottom curve in each set)
modes given by (49), (52),
(55) and (58) plotted as
functions of Ψ when I0 = 0
(top set of curves), I0 = 10
and I0 = 100 (bottom set of
curves)

tCAI

tCAC

tCAO

tCIO

Ψ

CAI, CAC, CAO
CIO

CAI, CAC, CAO
CIO

tCAI and tCAO increase monotonically with Ψ (Fig. 9c) and decrease monotonically with the separation between
the droplets, 2I0 (Fig. 9d).

As Fig. 9c, d shows, the lifetimes of the three constant-angle modes are very similar, and it is only when the
separation between the droplets is small that the difference between them becomes important. Specifically, Fig.
9d shows that the difference between tCAC, tCAI and tCAO becomes negligible when I0 � 5 (i.e. when the droplet
separation is several times the width of the droplets). As the droplets evaporate, the droplet separation is smallest in
the CAI mode and largest in the CAO mode, resulting in the slowest evaporation, and hence the longest lifetime, in
the CAI mode and the fastest evaporation, and hence the shortest lifetime, in the CAO mode. This point is further
illustrated in Fig. 10, which shows the lifetimes tCAI, tCAC, tCAO and tCIO plotted as functions of Ψ . In particular,
Fig. 10 shows that as the droplet separation increases the lifetimes of the three constant-angle modes (but not that
of CIO mode) become virtually indistinguishable. We will discuss the latter behaviour in more detail in Sect. 3.3.3
below.

3.3.3 Asymptotic behaviour of the lifetimes in a large domain, Ψ � I

The results shown in Fig. 10 motivate us to derive asymptotic expressions for the lifetimes of the droplets when
Ψ � I . Noting the difference between closely-spaced and widely-separated droplets, we consider the regimes
I0 	 1 and I0 � 1 separately.

In the regime I0 	 1 	 Ψ , the initial droplet separation is much less than the initial droplet semi-width.
Equations (49), (52), (55) and (58) then yield

tCIO = 4

3π
ln(Ψ ) − 2I0

3π
+ O

(
I0

2,
1

Ψ 2

)
, (59)

tCAC = 4

3π
ln(Ψ ) + 1

3π
− 2I0

3π
+ O

(
I0

2,
1

Ψ 2

)
, (60)

tCAI = 4

3π
ln(Ψ ) + 2

3π
− 4I0

3π
+ O

(
I0

2 log I0,
1

Ψ 2

)
, (61)

tCAO = 4

3π
ln(Ψ ) + 2

π

(
1 − 4

3
ln 2

)
+ 4I0

3π
(1 − 2 ln 2) + O

(
I0

2,
1

Ψ 2

)
, (62)

respectively.
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On the other hand, in the regime 1 	 I0 	 Ψ , the initial droplet separation is much greater than the initial
droplet semi-width. Equations (49), (52), (55) and (58) then yield

tCIO = 4

3π
ln

(
Ψ√
I0

)
− 2

3π I0
+ O

(
1

I 20
,

I0
Ψ 2

)

, (63)

tCAC = 4

3π
ln

(
Ψ√
I0

)
+ 1

3π
− 2

3π I0
+ O

(
1

I 20
,

I0
Ψ 2

)

, (64)

tCAI = 4

3π
ln

(
Ψ√
I0

)
+ 1

3π
− 4

9π I0
+ O

(
1

I 20
,

I0
Ψ 2

)

, (65)

tCAO = 4

3π
ln

(
Ψ√
I0

)
+ 1

3π
− 8

9π I0
+ O

(
1

I 20
,

I0
Ψ 2

)

, (66)

respectively.
Equations (59)–(66) show that, as in the one-droplet problem, in the regime Ψ � I , the lifetimes of all four

modes depend logarithmically on the size of the domain.
When I0 	 1, Eqs. (59)–(62) show that the lifetimes depend on the mode of evaporation at O(1). The lifetime

of the CIO mode is the shortest because, due to their pinned contact lines, the droplets in this mode have the largest
surface area, and hence evaporate the fastest. Of the three constant-angle modes, the CAO mode has the shortest
lifetime and the CAI mode the longest lifetime. This is because when the inner contact lines are pinned the droplets
remain closer together and hence evaporate more slowly than in the CAC mode due to a stronger shielding effect,
whereas when the outer contact lines are pinned the droplets move further apart and hence evaporate more quickly
than in the CAC mode due to a weaker shielding effect.

On the other hand, when I0 � 1, Eqs. (63)–(66) show that the influence of the different behaviours of the contact
lines on the three constant-angle modes is very weak and at O(1) the lifetimes of the CAC, CAI and CAO modes
all coincide with each other, but differ from the lifetime of the CIO mode by 1/(3π).

4 Comparison between the lifetimes of a single droplet and a pair of droplets

To provide further insight into the shielding effect the droplets have on each other, we compare the lifetimes of
a single droplet and a pair of droplets in dimensional terms. For simplicity, we consider only the leading-order
behaviour of the lifetimes in the regime of most interest in which the domain is large and approximately semi-
circular with radius Ψ̂ .

Our reference point is the lifetime of a single droplet with initial semi-width R̂0, which from (1), (37) and (38)
is given by

t̂single ∼ 2

3π
ln

(
2Ψ̂

R̂0

)

T̂ , where T̂ = ρ̂θ̂0 R̂2
0

D̂(ĉsat − ĉ∞)
. (67)

A first natural comparison is with a pair of droplets, each with initial semi-width R̂0/2, which together have
the same total surface area as the single droplet (i.e. their initial separation is 2 Î0 = 0). In this case the vapour
concentration and flux are identical in the two problems. However, the lifetimes are not the same, because the
cross-sectional area of the single droplet is twice the total cross-sectional area of the two droplets. Specifically, from
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(59)–(62) we obtain

t̂area ∼ 4

3π

ρ̂θ̂0(R̂0/2)2

D̂(ĉsat − ĉ∞)
ln

(
Ψ̂

R̂0/2

)

= 1

3π
ln

(
2Ψ̂

R̂0

)

T̂ , (68)

so that, as expected, the lifetime of the pair of droplets is half that of the single droplet, i.e. t̂area ∼ t̂single/2.
Alternatively, we can consider the same total cross-sectional area of fluid, arranged either as two closely-spaced

or two widely-separated droplets. In both cases the droplets have initial semi-width R̂0/
√
2. If the droplets are

closely spaced then from (59)–(62) we obtain

t̂close ∼ 4

3π

ρ̂θ̂0(R̂0/
√
2)2

D̂(ĉsat − ĉ∞)
ln

(
Ψ̂

R̂0/
√
2

)

= 2

3π

[

ln

(
2Ψ̂

R̂0

)

− 1

2
ln 2

]

T̂ . (69)

At leading order the lifetime of the pair of droplets is the same as that of the single droplet, but there is a negative
O(1) correction because the two droplets have a larger total surface area than the single droplet. On the other hand,
if the droplets are widely separated then from (63)–(66) we obtain

t̂wide ∼ 4

3π

ρ̂θ̂0(R̂0/
√
2)2

D̂(ĉsat − ĉ∞)
ln

⎛

⎝ Ψ̂

R̂0/
√
2

√
R̂0/

√
2

Î0

⎞

⎠ = 2

3π

[

ln

(
2Ψ̂

R̂0

)

− 1

2
ln

(

23/2
Î0

R̂0

)]

T̂ . (70)

At leading order the lifetime of the pair of droplets is again the same as that of the single droplet, but now there is
a larger negative O(ln( Î0/R̂0)) correction due to a weaker shielding effect when the droplets are widely separated.

To illustrate these results we take the representative parameter values ρ̂ = 998kgm−3, D̂ = 2.44×10−5 m2 s−1,
ĉsat = 1.94 × 10−2 kgm−3 and ĉ∞ = 7.76 × 10−3 kgm−3, corresponding to water at 295K, evaporating into
an environment with ambient vapour concentration ĉ∞ = 0.4 ĉsat [11]. We further take Ψ̂ = 1m together with
θ̂0 = 0.1 and R̂0 = 1mm, so that the droplet has a cross-sectional area of approximately 6.7 × 10−8 m2.

With these parameter values, the timescale T̂ ≈ 351s and the lifetime of a single droplet is t̂single ≈ 567s. The
lifetime of a pair of droplets with the same total surface area as the single droplet is t̂area ≈ 283s. The lifetime
of two closely-spaced droplets with the same total cross-sectional area as the single droplet is t̂close ≈ 541s,
whereas the lifetime of two widely-separated droplets with the same total cross-sectional area as the single droplet
is t̂wide ≈ 442 s if the droplets are separated by 2 Î0 = 2cm, and t̂wide ≈ 356s if the droplets are separated by
2 Î0 = 20 cm.

5 Discussion and conclusion

In this contribution, we considered the diffusion-limited evaporation of thin two-dimensional sessile droplets either
singly or in a pair. This two-dimensional problem is qualitatively different from the corresponding three-dimensional
problem because, in contrast to in three dimensions, in two dimensions the size of the domain remains important
even when it is much larger than the width of the droplets; it is therefore not possible to obtain a solution to
the two-dimensional problem with a far-field boundary condition imposed “at infinity”. We therefore formulated
a slightly modified problem in which the far-field condition was replaced by a relaxed condition at a distant,
but finite, boundary. We then showed how a conformal-mapping technique may be used to calculate the vapour
concentrations, and hence obtain closed-form solutions for the evolution and the lifetimes of the droplets in various
modes of evaporation. These solutions demonstrate that in large domains the lifetimes of the droplets depend
logarithmically on the size of the domain, and more weakly on the mode of evaporation and the separation between
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the droplets. In particular, they allowed us to quantify the shielding effect that the droplets have on each other, and
how it extends the lifetimes of the droplets.

Although the present two-dimensional problem may be somewhat artificial, it has direct practical applications,
for example to the inkjet printing of circuits [26], and may be realisable experimentally using a Hele-Shaw cell
geometry. More fundamentally, it provides a rare opportunity to obtain a closed-form description of the behaviour
of interacting droplets and to quantify the shielding effect. It therefore permits asymptotic and analytical insight
into a class of problems of increasing scientific and industrial interest.
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