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Abstract We consider the development of a mathematical model of water waves interacting with the mast of an
offshore wind turbine. A variational approach is used for which the starting point is an action functional describing a
dual system comprising a potential-flow fluid, a solid structure modelled with nonlinear elasticity, and the coupling
between them.We develop a linearized model of the fluid–structure or wave–mast coupling, which is a linearization
of the variational principle for the fully coupled nonlinear model. Our numerical results for the linear case indicate
that our variational approach yields a stable numerical discretization of a fully coupled model of water waves and
an elastic beam. The energy exchange between the subsystems is seen to be in balance, yielding a total energy that
shows only small and bounded oscillations amplitude of which tends to zero with the second-order convergence
as the timestep approaches zero. Similar second-order convergence is observed for spatial mesh refinement. The
linearized model so far developed can be extended to a nonlinear regime.

Keywords Computational fluid dynamics · Fluid–structure interaction · Hamiltonian mechanics · Potential flow ·
Variational principle · Water waves

1 Introduction

The search for alternative and effective sustainable energy sources that support balanced growth has led to an
increased focus on offshore wind energy. Both visibility issues and wind supply play major roles in the development
of this particular branch ofwind energy. There are twomain directions of active research in this field, namely offshore
floating platforms with wind turbines and fixed-bottom monopile wind farms in shallow water: a review is given
in [1]. The first branch is still in the prototype stage of development. The latter branch, i.e. concerning shallow and
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Fig. 1 Geometry of the fluid domain: a box with rest-state dimensions Lx × Ly × H0 and evolving free surface z = h(x, y, t). Here
η(x, y, t) is the free-surface perturbation from the rest state that first appears in (26)

intermediate-depth water, fixed-bottomwind turbines, already exists, e.g. in areas of the North Sea. It is accordingly
considered here.

Ultimately, we aim to develop a mathematical model of wave impact on a single beam/mast of a wind turbine,
with particular emphasis on breaking waves. Similar models were considered in [2,3]. One way to proceed is to
incorporate the water and air phases as a mixture that arises during wave breaking. We have earlier shown [4] that
this mixture model reduces to a standard potential-flow model in the event that the phases are separated and the
waves do not break. The latter, reduced case constitutes a developmental check since the potential-flow model for
water waves is an industrial and mathematical benchmark.

Themodel developed herein can also include the beam as an integral part of the coupled fluid–structure interaction
(FSI). The FSI problems are known to suffer from numerical instabilities [1]. Our method is based on reduction of
the whole system to an abstract Hamiltonian form, to which known stable discrete schemes can be applied. After
returning to the original variables, the scheme remains stable by construction; we shall show that it results in the
addition of novel regularization terms due to the fluid–beam coupling.

As a starting point, we therefore consider a variational principle (VP) for surface gravity waves coupled to
a nonlinear elastic beam, using [5–7]. The advantage of this approach is that the whole system is described by
a single VP that is discretized directly in both space and time. This ensures stability and overall energy conservation.
Variation of this algebraic VP yields the so-calledGalerkin finite-elementmodel, withmixed dis/continuous element
approximations [8]. The FSI is embedded in a single variational formulation with the associated conservative
properties akin to the ones in the parent continuum system. Our numerical results for the linearized system indicate
that our approach by construction yields, as anticipated, a stable numerical scheme.

The paper is organized as follows. Section2 describes the formulation of the model. First, the VP for the potential
flow is introduced. Second the same is shown for the nonlinear elastic beammodel, which is subsequently linearized.
Third, the model of a fully coupled fluid–beam system is presented. Finally, we proceed with its linearization. Sec-
tion3 describes the solution of the linear model. First, the Finite-Element Method (FEM) is used to discretize
the system in space. Second, the system is reduced to Hamiltonian form and temporal discretization is applied.
Section4 presents not only 2D results of the code written in plain python, but also 3D results obtained using the
FEM automation system Firedrake [9]. Section5 concludes the paper. Although some elements of nascent aspects
of this work have been presented in offshore-engineering conferences [10,11], this paper provides full details of
the derivation and implementation of the coupled linear beam–fluid system, and of the modelling of the coupled
non-linear beam–fluid system.
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2 Nonlinear variational formulation

2.1 Potential-flow water waves

We consider water as an incompressible fluid with density ρ. The vector velocity field u = u(x, y, z, t) has zero
divergence, ∇ · u = 0, with spatial coordinates x = (x, y, z)T and time coordinate t . Gravity acts in the negative
z-direction and the associated acceleration of gravity is g. The velocity is expressed in terms of a scalar potential
φ = φ(x, y, z, t) such that u = ∇φ. We consider flow in the 3D Cartesian domain Ω (see Fig. 1) bounded by solid
walls at x = 0, x = Lx , y = 0, y = Ly and the flat bottom at z = 0. The upper surface of Ω is given by the
single-valued evolving free surface z = h(x, y, t), and hence Ω = [0, Lx ]× [0, Ly]× [0, h(x, y, t)], within which
Luke’s [6] VP for potential-flow water waves reads

0 = δ

∫ T

0

∫∫∫
Ω

−ρ∂tφ dΩ − H dt

≡ δ

∫ T

0

∫ Lx

0

∫ Ly

0

∫ h(x,y,t)

0
−ρ

(
∂tφ + 1

2
|∇φ|2 + g(z − H0)

)
dz dy dx dt, (1)

in which H0 is the rest-state water level. The energy or Hamiltonian H consists of the sum of kinetic and
potential energies. We use integration by parts in time together with Gauss’ law with outward normal n =
(−∇⊥h, 1)T /

√
1 + |∇⊥h|2 at the free surface, in which ∇⊥ = (∂x , ∂y). The passive and constant air pressure

is denoted by pa . Then, variation of (1) yields

0 =
∫ T

0

∫ Lx

0

∫ Ly

0

∫ h(x,y,t)

0
ρ ∇2φ δφ dz dy dx −

∫
∂Ωw

ρ∇φ · n δφ dS

+
∫ Lx

0

∫ Ly

0
ρ(−∂zφ + ∂xφ ∂xh + ∂yφ ∂yh + ∂t h)|z=hδφ|z=h + (p − pa)z=h δh dy dx dt, (2)

in which the pressure difference p − pa here acts as a shorthand placeholder for the Bernoulli expression
−ρ(∂tφ + 1

2 |∇φ|2 + g(z − H0)).
The equations of motion emerge from relation (2), augmented by the following non-normal-flow boundary

conditions ∇φ · n = 0, with unit outward normal n at solid walls ∂Ωw

x ∈ [0, Lx ], y ∈ [0, Ly], z ∈ [0, h]; δφ : 0 = −ρ∇2φ = δH
δφ

,

x ∈ [0, Lx ], y ∈ [0, Ly], z = h(x, y, t); (δφ)h : ∂t h = −∂xφ ∂xh + ∂zφ = δH
(δφ)h

,

x ∈ [0, Lx ], y ∈ [0, Ly], z = h(x, y, t); δh : ρ∂tφ = −1

2
ρ|∇φ|2 − ρg(h − H0) = −δH

δh
. (3)

The above equations can be extended to include a wavemaker.

2.2 Geometrically nonlinear elastic mast

We consider a nonlinear hyperelastic model for an elastic material in which the geometric nonlinearity of the
displacements is also taken into account. The constitutive law is such that, after linearization, it satisfies a linear
Hooke’s law. The choice of this model is guided by our goal of coupling the potential-flow water-wave model to a
weakly nonlinear elastic model.

We first model the positionsX = X(a, b, c, t) = (X,Y, Z)T = (X1, X2, X3)
T of an infinitesimal 3D element of

solid material as a function of Lagrangian coordinates a = (a, b, c)T = (a1, a2, a3)T in the reference domain Ω0
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Fig. 2 Sketch of the beam geometry, depicting a cross-section in
the x–z plane, in which a = X(a, 0) is the Lagrangian coordinate
in the reference state (solid boundary). X(a, t) is the position of
a point in the shifted beam (dashed boundary) and X̃(a, t) its
deflection, ∂Ω0 denotes the structure boundary and ∂Ωb

0 its fixed
bottom

Fig. 3 Geometry of the linearized or rest system: fluid (hatched)
and elastic beam (cross-hatched). This 2D representation is in the
y = 0 plane, with the y-axis directed into the page, in which
direction the full 3D configuration has uniform depth Ly

with boundary ∂Ω0 and time t . At time t = 0, we take X(a, 0) = a, see Fig. 2. The displacements X̃ follow from
the positions as X̃ = X−a. The velocity of the displacements is ∂t X̃ = ∂tX = U = (U, V,W )T = (U1,U2,U3)

T ,
where the displacement velocity U = U(a, t) is again a function of Lagrangian coordinates a and time t . The
variational formulation of the elastic material follows closely the variational formulation of a linear elastic solid
obeying Hooke’s law, i.e., the constitutive model is linear. However, the geometry is nonlinear as the material is
Lagrangian with finite, rather than infinitesimal, displacements. The variational formulation then comprises the
kinetic and potential energies in the Lagrangian framework, so that the VP for the hyperelastic model from [12],
in a format adjusted to our present purposes, becomes

0 = δ

∫ T

0

∫∫∫
Ω0

ρ0∂tX · U − 1

2
ρ0|U|2 − ρ0gZ − 1

2
λ[tr(E)]2 − μ tr(E2) da db dc dt, (4)

in which ρ0 is the uniform material density, λ and μ are respectively the first and second Lamé constants, and E is
given by

E = 1

2
(FT · F − I), (5)

where I is the identity matrix and in which the matrix F, given by
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F = ∂X
∂a

= ∂(X,Y, Z)

∂(a, b, c)
, or equivalently Fi j = ∂Xi

∂a j
, for i, j = 1, 2, 3, (6)

yields the determinant J between the Eulerian and Lagrangian frameworks that accounts for the geometric nonlin-
earity. The determinant J is given explicitly by

J = det(F) ≡
∣∣∣∣∂(X, Y, Z)

∂(a, b, c)

∣∣∣∣
= XaYbZc + Ya ZbXc + Za XbYc − XcYbZa − YcZbXa − ZcXbYa, (7)

with subscripts denoting Xa ≡ ∂a X , et cetera. We model a beam fixed at the bottom ∂Ωb
0 , so that X(a, b, 0, t) = 0

andU(a, b, 0, t) = 0, which implies that δX|∂Ωb
0

= 0 and δU|∂Ωb
0

= 0. Thus, evaluation of the variation in (4) yields

0 = δ

∫ T

0

∫∫∫
Ω0

ρ0(∂tX − U) · δU − ρ0∂tU · δX − ρ0δl3δXl

+ ∂ai (λtr(E)Fli + 2μ Eki Flk)δXl da db dc

−
∫∫

∂Ω0\∂Ωb
0

ni (λ tr(E)Fli + 2μ Eki Flk)δXl dS dt, (8)

in which we have used the temporal end-point conditions δX(0) = δX(T ) = 0, as well as, from (5),

Ei j = 1

2
(Fki Fk j − δi j ) = E ji and δEi j = 1

2
(FkiδFkj + FkiδFkj ). (9)

Given the arbitrariness of the respective variations, the resulting equations of motion become

δU : ∂tX = U in Ω0, (10a)

δXl : ρ0∂tUl = −ρ0gδ3l + ∂ai
(
λtr(E)Fli + 2μEki Flk

)
= −ρ0gδ3l + ∂ai Tli in Ω0, (10b)

δXl : 0 = ni
(
λ tr(E)Fli + 2μ Eki Flk

) = ni Tli on ∂Ω0 \ ∂Ωb
0 (10c)

with stress tensor Tli = λ tr(E)Fli + 2μ Eki Flk .

2.3 Linearized elastic dynamics

We proceed with the linearization of (4), together with the transformation from a Lagrangian to an Eulerian descrip-
tion. Since we are ultimately interested in the dynamics of the fluid–structure interaction, we neglect the gravity
term. Given (see Fig. 2) that X = a + X̃, we find that (5) can be written as [13]

E = 1

2

⎛
⎝

(
∂X̃
∂a

)T

+
(

∂X̃
∂a

)⎞
⎠ + 1

2

(
∂X̃
∂a

)T

·
(

∂X̃
∂a

)
. (11)

The linearization entails assuming that the displacement gradient is small compared to unity, i.e., ‖ ∂X̃
∂a ‖ � 1, so

that second- and higher-order terms can be neglected. Therefore, the linearized version e of E is [13]
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e = 1

2

⎛
⎝

(
∂X̃
∂a

)T

+
(

∂X̃
∂a

)⎞
⎠ or ei j = 1

2

(
∂ X̃ j

∂ai
+ ∂ X̃i

∂a j

)
. (12)

Moreover, tr(E)2 = Eii E j j ≈ eii e j j and tr(E · E) = E2
i j ≈ e2i j , whence (4) becomes

0 = δ

∫ T

0

∫∫∫
Ω0

ρ0∂t X̃ · U − 1

2
ρ0|U|2 − 1

2
λeii e j j − μe2i j da db dc dt. (13)

Since the fluid is described in the Eulerian framework, it is useful to work in the same coordinates with the structure.
Therefore, we transform (13) to Eulerian coordinates. For clarity, functions in Eulerian coordinates are temporarily
annotatedwith a superscript (·)E so that f (a) = f E (x = X(a)). First, since x = X(a, t) andX = a+X̃, we note that

∂X̃
∂a

= ∂X
∂a

∂X̃
E

∂x
=

(
I + ∂X̃

∂a

)
∂X̃

E

∂x
, (14)

and hence

∂X̃
∂a

=
(
I − ∂X̃

E

∂x

)−1
∂X̃

E

∂x
≈ ∂X̃

E

∂x
(15)

and

e ≈ 1

2

⎛
⎝

(
∂X̃E

∂x

)T

+
(

∂X̃E

∂x

)⎞
⎠ = eE , (16)

in which only linear terms are retained. Then, since only quadratic terms remain in (13), its implied variation yields
linear equations of motion so that the Jacobian (7) of the transformation between Lagrangian and Eulerian frames
can be approximated by J ≈ 1. By this argument, the Eulerian form of VP (13) is

0 = δ

∫ T

0

∫∫∫
Ωt

ρ0∂t X̃E · UE − 1

2
ρ0|UE |2 − 1

2
λeEii e

E
j j − μ(eEi j )

2 dx dy dz dt, (17)

in which the integration is over the moving domain Ωt . The last step is to show that, in the limit of small displace-
ments, the integration can be performed over the fixed domain Ω0 as Ωt = Ω0 + X̃ , meaning that the deformed
domain is the reference one subject to deformation. Let us consider a small perturbation of a three-dimensional
domain on a length scale that is proportional to ε.We canwrite a general Taylor expansion of the integral in terms of ε

∫ x2+εξ2

x1+εξ1

∫ y2+εη2

y1+εη1

∫ z2+εζ2

z1+εζ1

f (x, y, z) dz dy dx

=
∫ x2

x1

∫ y2

y1

∫ z2

z1
f (x, y, z) dz dy dx + ε

(∫ y2

y1

∫ z2

z1
ξ2 f (x2, y, z) − ξ1 f (x1, y, z) dz dy

+
∫ x2

x1

∫ z2

z1
η2 f (x, y2, z) − η1 f (x, y1, z) dz dx +

∫ x2

x1

∫ y2

y1
ζ2 f (x, y, z2) − ζ1 f (x, y, z1) dy dx

)
+ O(ε2) .

(18)
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The displacement X̃ can be treated as a small perturbation and linear terms in ε in (18) translate to cubic terms in X̃, Ũ
and ∂i X̃ j in (17). Therefore, leaving only quadratic terms and omitting for brevity the (·)E superscript, (17) becomes

0 = δ

∫ T

0

∫∫∫
Ω0

ρ0∂t X̃ · U − 1

2
ρ0|U|2 − 1

2
λeii e j j − μe2i j dx dy dz dt . (19)

In the limit of small displacement gradients, the following approximations hold:

tr(E)Fli = E j j Fli ≈ e j jδli , Eki Flk ≈ eikδlk = eil . (20)

By either linearizing (10), neglecting the gravity term and using (20) or taking the variation of (13) (or (19)), the
classical linearized equations of motion emerge as

δU : ∂t X̃ = U, (21a)

δ X̃l : ρ0∂tUl = ∂xi (λe j jδl j + 2μeil) in Ω0, (21b)

δ X̃l : 0 = ni (λe j jδl j + 2μeil) on ∂Ω0 \ ∂Ωb
0 , (21c)

in which Ω0 denotes the fixed domain after linearization, with associated boundary ∂Ω0 and fixed bottom ∂Ωb
0 .

2.4 Coupled model

The current domain occupied by the fluid is denoted by Ω and the reference domain occupied by the hyperelastic
material by Ω0. For simplicity, we consider a block shape of hyperelastic material. The interface between the fluid
and solid domains is parameterized by Xs = X(Ls, b, c, t) and, at rest, X = a for Cartesian a ∈ [Ls, Lx ], b ∈
[0, Ly], c ∈ [0, Lz], while the fluid domain at rest is x ∈ [0, Ls], y ∈ [0, Ly], z ∈ [0, H0]. The (outward-from-
fluid) unit normal at this interface X(Ls, b, c, t), with b ∈ [0, Ly], c ∈ [0, Lz], is n = ∂bX × ∂cX/|∂bX × ∂cX|.
A schematic diagram of the domain at rest is given in Fig. 3, and hence the above expression is for the outward
normal to the fluid domain at the fluid–structure interface.

The moving fluid and elastic domains are defined by

Ω : z ∈ (0, h(x, y, t)), y ∈ (0, Ly), x ∈ (0, xs(y, z, t)); (22)

Ω0 : a ∈ (Ls, Lx ), b ∈ (0, Ly), c ∈ (0, Lz), (23)

in which xs is a new variable that describes the position of the moving fluid boundary. Since it is at the struc-
ture surface, we use a Lagrange multiplier γ = γ (b, c, t) to equate xs(y = Y (Ls, b, c, t), z = Z(Ls, b, c, t))
to X (Ls, b, c, t). As the coupled fluid–structure VP, we take the sum of the two VPs, and augment it with the
Lagrange-multiplier term as follows:

0 = δ

∫ T

0

∫∫∫
Ω

−ρ
(
∂tφ + 1

2
|∇φ|2 + g(z − H0)

)
dx dy dz

+
∫ Ly

0

∫ Lz

0
ργ

(
xs

(
Y (Ls, b, c, t), Z(Ls, b, c, t), t

)
− X (Ls, b, c, t)

)
dc db

+
∫∫∫

Ω0

ρ0∂tX · U − 1

2
ρ0|U|2 − ρ0gZ − 1

2
λ[tr(E)]2 − μtr(E2) da db dc dt . (24)
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x
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Fig. 4 Definition of the variables used in the VP transformation.
Here xs(y, z, t) denotes the position of the fluid–structure inter-
face, and χ = Ls x/xs(y, z, t) denotes the transformation of the
domain to one, dimension of which is fixed in the x-direction. A
cross-section perpendicular to the y-direction is shown

Fig. 5 Flow chart schematically depicting the solution method.
The subscript (·)h denotes a spatially discretized function and
superscript (·)n the timestep counter

Note that the waterline height z at the fluid–beam interface is implicitly defined by z = h(xs(y, z, t), y, t), even
for the non-breaking waves considered. To avoid the implicit definition, and because it is here easier to work in
a fixed domain, we introduce a new horizontal coordinate χ = Lsx/xs(y, z, t) and apply the coordinate transfor-
mation x → χ , y → y, z → z such that the fluid domain Ω is now redefined as χ ∈ (0, Ls), y ∈ (0, Ly), z ∈
(0, h(χ, y, t)). Both xs and χ are indicated in Fig. 4. In this new coordinate system, VP (24) becomes
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0 = δ

∫ T

0

∫ Ls

0

∫ Ly

0

∫ h(χ,y,t)

0
−ρ

(
− χ

Ls
∂t xs∂χφ + xs

Ls
∂tφ (25a)

+1

2

Ls

xs
(∂χφ)2 + 1

2

xs
Ls

(
− χ

xs
∂yxs∂χφ + ∂yφ

)2

(25b)

+1

2

xs
Ls

(
− χ

xs
∂z xs∂χφ + ∂zφ

)2

+ g(z − H0)
xs
Ls

)
dz dy dχ (25c)

+
∫ Ly

0

∫ Lz

0
ργ

(
xs

(
Y (Ls, b, c, t), Z(Ls, b, c, t), t

)
− X (Ls, b, c, t)

)
dc db (25d)

+
∫ Lx

Ls

∫ Ly

0

∫ Lz

0
ρ0∂tX · U − 1

2
ρ0|U|2 − ρ0gZ − 1

2
λ[tr(E)]2 − μtr(E2) dc db da dt. (25e)

2.5 Linearized wave–beam dynamics for FSI

We linearize (25) around a state of rest. Small-amplitude perturbations around this rest state are introduced as follows:

xs = Ls + x̃s, φ = 0 + φ, h = H0 + η, X = x + X̃, U = 0 + U, γ = 0 + γ. (26)

After some manipulations (described in detail in “Appendix A”), one arrives at the following linearized VP:

0 = δ

∫ T

0

∫ Ls

0

∫ Ly

0
ρ∂tηφ f − 1

2
ρgη2 −

∫ H0

0

1

2
ρ|∇φ|2 dz dy dx (27a)

+
∫ Ly

0

∫ H0

0
ρ∂t X̃sφs dz dy (27b)

+
∫ Lx

Ls

∫ Ly

0

∫ Lz

0
ρ0∂t X̃ · U − 1

2
ρ0|U|2 − 1

2
λeii e j j − μe2i j dz dy dx dt. (27c)

We used the definitions of the velocity potentials φs = φ(Ls, y, z, t) and φ f = φ(x, y, h(x, y, t), t), at the
beam interface and the free surface, respectively. The coupling term (27b), derived here, is equivalent to the
ad hoc one proposed in [11]. After using the temporal endpoint conditions δX̃(x, 0) = δX̃(x, T ) = 0 and
δη(x, y, 0) = δη(x, y, T ) = 0, the variation in (27) yields

δφs : ∂t X̃s = ∂xφ at x = Ls, (28a)

δ X̃ j (Ls, y, z, t) : −δ1 jρ∂tφs = T1 j at x = Ls, (28b)

δφ f : ∂tη = ∂zφ at z = H0, (28c)

δη : ∂tφ f = −gη at z = H0, (28d)

δφ : ∇2φ = 0 in Ω, (28e)

δU : ∂t X̃ = U in Ω0, (28f)

δ X̃ j : ρ0∂tU j = ∇kTjk in Ω0 (28g)

with Ω0 : x ∈ [Ls, Lx ], y ∈ [0, Ly], z ∈ [0, Lz] , Ω : χ ∈ [0, Ls], y ∈ [0, Ly], z ∈ [0, H0] and linear stress
tensor Ti j = λδi j ekk + 2μei j .

To further simplify computations, we introduce non-dimensional variables. We choose a length scale D, e.g.,
beam length; thereafter other units are nondimensionalized using
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V = √
gD, T = D

V
, M = ρD3. (29)

Then, we transform coordinates and variables to non-dimensional ones using

x → Dx y → Dy z → Dz η → Dη,

ρ → M

D3 ρ ρ0 → M

D3 ρ0 φ → V Dφ,

X → DX λ → M

DT 2 λ μ → M

DT 2μ.

(30)

Using (30) enables transformation of the whole Lagrangian to the non-dimensional one L → MV 2L, whence the
final simplified Lagrangian from the VP (27) becomes

L =
∫ Ls

0

∫ Ly

0

[
∂tηφ f − 1

2
η2 −

∫ H0

0

1

2
|∇φ|2dz

]
dy dx +

∫ Ly

0

∫ H0

0
∂t Xsφs dz dy

+
∫ Lx

Ls

∫ Ly

0

∫ Lz

0
ρ0∂tX · U − 1

2
ρ0|U|2 − 1

2
λeii e j j − μe2i j dz dy dx (31)

with, we recall, ei j = 1
2 (∂i X j + ∂ j Xi ). Hereafter, although the tilde over the X has been dropped for simplicity of

notation, it still denotes the displacement rather than the actual beam position.

3 Solution method for the linear system

In Fig. 5, we portray the discretization procedure of the VP with Lagrangian (31). We reduce the system to Hamil-
tonian form, in which a known stable time discretization scheme can be applied. Though ultimately we seek
a space-time discrete system of equations, it is much easier to work with the space-discretized system than with the
continuous one, as it invites the use of matrix inverses and partial derivatives instead of functional ones. Therefore,
we first proceed with spatial discretization by using continuous C0–Galerkin finite-element expansions directly
substituted into the VP. Since the variable X is conjugated through coupling to both U and φ, the first step is to
find its single conjugate momentum P. It transpires that the interior φ degrees of freedom are not independent, and
can be expressed in terms of the free-surface ones φ f and P at the common boundary. The resulting system has
a standard Hamiltonian structure with Lagrangian L = P dQ/dt − H(P,Q, t), where Q = Q(t) and P = P(t)
are the conjugate vectors of unknowns, see Fig. 5. For such a system, stable, second-order, conservative temporal
schemes such as the Störmer–Verlet method are known. One is thus left with a fully discretized VP and the resulting
algebraic equations of motion follow. To avoid computing full-system matrix inverses, we reintroduce φ in the
interior, together with U instead of P at properly determined time levels. Details are provided next.

3.1 FEM space discretization

To find a spatial discretization, C0-Galerkin finite-element expansions of the variables are, given an appropriate
mesh tessellation of the fixed fluid and beam domains, substituted directly into the VP. The basis functions are
ϕ̃i (x, y, z) in the fluid domain with the limiting basis function ϕ̃α(x, y) = ϕ̃α(x, y, z = H0) at the free sur-
face z = H0, and X̃k(x, y, z) in the structural domain. Both the fixed fluid and beam domains have coordinates
x = (x, y, z) = (x1, x2, x3). At the common interface x = Ls (see Fig. 3), we assume that the respective meshes
join up with common nodes. However, since there are two meshes, these nodes are denoted by indices m and n
on the fluid mesh and by m̃ and ñ on the solid mesh. There is a mapping between these two node sets, namely
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m = m(m̃). Here, i and j denote nodes in the fluid domain, α and β nodes at its surface, m and n or m̃ and ñ nodes
at the common fluid–structure boundary, and k and l nodes in the structure domain. Primed indices refer to the
nodes below the water surface, and αn denotes the surface nodes at the common boundary. Indices a, b = 1, 2, 3
are the coordinate indices used for X and x. The Einstein summation convention is assumed for all indices. Finally,
with the subscript h denoting the numerical approximations, the expansions are

φh(x, t) = φi (t)ϕ̃i (x), φ f h(x, y, t) = φα(t)ϕ̃α(x, y), ηh(x, y, t) = ηα(t)ϕ̃α(x, y),

Xa
h(x, t) = Xa

k (t)X̃k(x), Ua
h (x, t) = Ua

k (t)X̃k(x).
(32)

Substitution of (32) into (31) yields the spatially discrete Lagrangian function

L = η̇αMαβφβ + Ẋa
k NklU

a
l + Ẋ1

m̃Wm̃nφn − H(η, φ, X,U ), (33)

with Hamiltonian

H(η, φ, X,U ) = 1

2
ηαMαβηβ + 1

2
φi Ai jφ j + 1

2
Ua
k NklU

a
l − 1

2
Xa
k E

ab
kl X

b
l , (34)

wherein a superscript dot indicates a time derivative, and in which the matrices are given by

Mαβ =
∫
x

∫
y
ϕ̃αϕ̃β dy dx, Ai j =

∫
Ω

∇ϕ̃i · ∇ϕ̃ j dV,

Wm̃n =
∫
y

∫ H0

0
X̃m̃ ϕ̃n dzdy, Nkl = ρ0

∫
Ω0

X̃k X̃l dV,

Bab
kl =

∫
Ω0

∂ X̃k

∂xa

∂ X̃l

∂xb
dV, Eab

kl = λBab
kl + μ

(
Bcc
kl δab + Bba

kl

)
.

(35)

Given that in both fluid and beam domains the basis functions come from the same function space, we can identify
X̃m̃ ≡ φ̃m(m̃). In other words, if the numbering is taken into account, at the fluid–beam inferface, basis functions
are the same in both the fluid and the beam. The matrices in (35) are symmetric; in particular, we highlight that

Bab
kl = Bba

lk and Eab
kl = Eba

lk . (36)

Unlike in the continuous case, cf. remarks after (4), the Dirichlet boundary condition can be incorporated directly
into the Lagrangian, i.e., by imposing Xa

kb
= 0 and Ua

kb
= 0, with (·)kb denoting the structure–base nodes. Then

(33) becomes

L = η̇αMαβφβ + Ẋa
k′Nk′l ′U

a
l ′ + Ẋ1

m̃′Wm̃′nφn − H(η, φ, X,U ),

H(η, φ, X,U ) = 1

2
ηαMαβηβ + 1

2
φi Ai jφ j + 1

2
Ua
k′Nk′l ′U

a
l ′ − 1

2
Xa
k′Eab

k′l ′ X
b
l ′ ,

(37)

with primed structural indices denoting nodes excluding those at the beam bottom. The next step is to compute the
momentum conjugate to Xa

k′ ,

Ra
k′ = ∂L

∂ Ẋa
k′

= Nk′l ′U
a
l ′ + δa1δk′m̃′Wm̃′nφn , (38)

in which δ is the Kronecker delta symbol. Rearrangement of (38) yields
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Ua
k′ = N−1

k′l ′ R
a
l ′ − δa1N

−1
k′l ′δl ′m̃′Wm̃′nφn, (39)

in which it is to be noted that N−1
k′l ′ is the inverse not of the full matrix Nkl , but of the system excluding the nodes

at the beam bottom. Therefore, after using Ra
k′ instead of Ua

k′ , the Lagrangian takes the form

L = η̇αMαβφβ + Ẋa
k′ Ra

k′ − H(φα, ηα, Xa
k′ , Ra

k′), (40)

in which the Hamiltonian (computed using the Lagrangian L in (33) and (39)) is given by

H(φα, ηα, Xa
k′ , Ra

k′) = η̇αMαβφβ + Ẋa
k′ Ra

k′ − L = 1

2
ηαMαβηβ + 1

2
φi Ai jφ j + 1

2
φm M̃mnφn

− R1
k′N−1

k′l ′δl ′m̃′Wm̃′nφn + 1

2
Ra
k′N−1

k′l ′ R
a
l ′ + 1

2
Xa
k′Eab

k′l ′ X
b
l ′ ,

(41)

in which

M̃mn = (N−1)m̃′ñ′Wm̃′mWñ′n . (42)

To facilitate the computations, we introduce the vector P defined by

Ra
k′ = Nk′l ′ P

a
l ′ , (43)

which obviates the need to compute the inverse of the full matrix N , instead requiring only the part in the definition
of M̃mn . The inverse (N−1)m̃′ñ′ in (42) is the submatrix of the inverse of Nk′l ′ including interface but excluding
beam-bottom nodes. Therefore, the substitution of (43) into (40) using (41) yields

L = η̇αMαβφβ + Ẋa
k′Nk′l ′ P

a
l ′ − H(φα, ηα, Xa

k′ , Pa
k′), (44)

with the Hamiltonian

H(φα, ηα, Xa
k′ , Pa

k′) = 1

2
ηαMαβηβ + 1

2
φi Ai jφ j + 1

2
φm M̃mnφn

− P1
m̃′Wm̃′nφn + 1

2
Pa
k′Nk′l ′ P

a
l ′ + 1

2
Xa
k′Eab

k′l ′ X
b
l ′ .

(45)

The fact that not all terms in (45) are positive definite will be discussed in more detail later. Note that the Hamilto-
nian depends explicitly on only the surface degrees of freedom φα . Therefore, we are able to eliminate the interior
degrees of freedom φi ′ , with the primed index i ′ denoting the nodes in the interior of the fluid excluding those on the
free surface, in order to reduce the system to the general Hamiltonian form. Therefore, we derive the equations of
motion by applying the VP to the Lagrangian (44); after rearranging and using arbitrariness of respective variations
as well as suitable end-point conditions, we obtain

0 =
∫ t1

0
L dt

=
∫ t1

0

{
η̇αMαβδφβ − Mαβφ̇βδηα − ηαMαβδηβ − φi Ai jδφ j − φm M̃mnδφn

+
(
Wm̃′n φn δP1

m̃′ + P1
m̃′ Wm̃′n δφn

)

+ (
Ẋa
k′ Nk′l ′ δP

a
l ′ − Nk′l ′ Ṗ

a
l ′ δXa

k′ − Pa
k′ Nk′l ′ δP

a
l ′
) − Xa

k′Eab
k′l ′δX

b
l ′

}
dt. (46)
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Hence, by renaming certain indices, the following equations are obtained

δηβ : φ̇α = −ηα, (47a)

δφα: Mαβη̇β = φi Aiα + (φm M̃mn − P1
m̃′ Wm̃′n)δαn, (47b)

δφ j ′ : φi Ai j ′ = (−φm M̃mn + P1
m̃′Wm̃′n)δnj ′, (47c)

δPa
k′ : Nk′l ′ Ẋ

a
l ′ = Nk′l ′ P

a
l ′ −δa1δk′m̃′Wm̃′nφn, (47d)

δXa
k′ : Nk′l ′ Ṗ

a
l ′ = −Eab

k′l ′ X
b
l ′ , (47e)

in which the new coupling terms introduced by the present formulation are underlined. If we define the matrix

Ci ′ j ′ = Ai ′ j ′ + δi ′m M̃mnδnj ′, (48)

(47c) can be split into internal and surface degrees of freedom and inverted to express internal ones in terms of
surface ones and P at the interface

φi ′ = C−1
i ′ j ′

(
−φαAα j ′+P1

m̃′Wm̃′nδnj ′ − φαδαm M̃mnδnj ′
)

. (49)

The interior degrees of freedom are removed from the Lagrangian by substituting (49) into (40) to obtain

L = η̇αMαβφβ − 1

2
ηαMαβηβ − 1

2
φαDαβφβ + Pa

k′Ga
k′αφα + Pa

k′Nk′l ′ Ẋ
a
l ′ − 1

2
Pa
k′Fab

k′l ′ P
b
l ′ − 1

2
Xa
k′Eab

k′l ′ X
b
l ′ , (50)

where Schur decomposition matrices B, F and G have been introduced; their explicit forms are omitted. The struc-
ture of (50) is as follows: the first line describes the fluid, the second the coupling, and the third the beam. In a more
visual matrix notation, (50) has the structure

L = (η̇, Ẋ)

(
M φ

N P

)
− 1

2
(η,X)

(
M 0
0 E

) (
η

X

)
− 1

2
(φ,P)

(
D −GT

−G F

) (
φ

P

)
. (51)

The classical Hamilton’s equations of an abstract system emerge when we introduce a generalized coordinate vector
and its conjugate vector, i.e.

Q = (
η1, . . . , ηN f , X

1
1, . . . , X

1
Nb

, X2
1, . . . , X

2
Nb

, X3
1, . . . , X

3
Nb

)
,

P = (
M1αφα, . . . , MN f αφα, N1k′ P1

k′ , . . . , NNbk′ P1
k′ , N1k′ P2

k′ , . . . , NNbk′ P2
k′ , N1k′ P3

k′ , . . . , NNbk′ P3
k′
)
,

(52)

with N f degrees of freedom at the free surface and Nb degrees of freedom in the beam (recall, fixed-bottom nodes
are excluded), using which the Lagrangian can be written in the form:

L = dQ
dt

· P − H(Q,P) (53)

with Hamiltonian H(P,Q). After introducing the following (symmetric) matrices

MQ =
(
M 0
0 E

)
,

MP =
(

M−1DM−1 −M−1GT N−1

−N−1GM−1 N−1FN−1

)
,

(54)
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we can write the Hamiltonian in (53) as

H(Q,P) = 1
2
QTMQQ + 1

2
PTMPP. (55)

3.2 Time discretization

The Störmer–Verlet scheme (see [14] for a definition, and [15] for a variational derivation) is used to discretize (53)
to second-order accuracy in time. The resulting difference equations are

Pn+1/2 = Pn − 1

2
Δt

∂H(Qn,Pn+1/2)

∂Qn
,

Qn+1 = Qn + 1

2
Δt

(
∂H(Qn,Pn+1/2)

∂Pn+1/2 + ∂H(Qn+1,Pn+1/2)

∂Pn+1/2

)
,

Pn+1 = Pn+1/2 − 1

2
Δt

∂H(Qn+1,Pn+1/2)

∂Qn+1 .

(56)

In the linear case considered, for which the Hamiltonian is given by (55), (56) yields the explicit scheme

Pn+1/2 = Pn − 1

2
ΔtMQQ

n,

Qn+1 = Qn + ΔtMPP
n+1/2,

Pn+1 = Pn+1/2 − 1

2
ΔtMQQ

n+1.

(57)

After some manipulations (described in detail in “Appendix B”), in terms of original physical variables, the dis-
cretization to be implemented is

φn+1/2
α = φn

α − 1

2
Δtηnα, (58a)

Nk′l ′(U
a
l ′ )

n+1/2 +δa1δk′m̃′Wm̃′nδni ′φ
n+1/2
i ′ = Nk′l ′(U

a
l ′ )

n − 1

2
Δt Eab

k′l ′(X
b
l ′)

n,

+ δa1δk′m̃′Wm̃′nφ
n
n − δa1δk′m̃′Wm̃′nδnαφn+1/2

α , (58b)

Ai ′ j ′φ
n+1/2
i ′ −(U 1

m̃′)n+1/2Wm̃′nδnj ′ = −Aα j ′φ
n+1/2
α , (58c)

Mαβηn+1
β = Mαβηnβ + Δt Aαiφ

n+1/2
i −Δt (U 1

m̃′)n+1/2Wm̃′nδnα, (58d)

(Xa
k′)n+1 = (Xa

k′)n + Δt (Ua
k′)n+1/2, (58e)

φn+1
α = φn+1/2

α − 1

2
Δtηn+1

α , (58f)

Nk′l ′(U
a
l ′ )

n+1+δa1δk′m̃′Wm̃′nδni ′φ
n+1
i ′ = Nk′l ′(U

a
l ′ )

n+1/2 − 1

2
Δt Eab

k′l ′(X
b
l ′)

n+1

+ δa1δk′m̃′Wm̃′nφ
n+1/2
n − δa1δk′m̃′Wm̃′nδnαφn+1

α (58g)

Ai ′ j ′φ
n+1
i ′ −(U 1

m̃′)n+1Wm̃′nδnj ′ = −Aα j ′φ
n+1
α . (58h)

We remark that Eqs. (58a), (58d), (58e) and (58f) can be solved in the separate fluid and structure domains, while
(58b), (58c), (58g) and (58h) have to be solved in both domains simultaneously. Therefore, the scheme is a variant
of the mixed partitioned-monolithic approach, see e.g., [16].
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Table 1 Parameter values
used in the 2D computations

Parameter Value Comment

g 9.8m/s2 Gravitational acceleration

Lx × H0 20m × 10m Water domain

LB
x × LB

z 2m × 20m Beam domain

ρ 1000 kg/m2 Water density

ρ0 7700 kg/m2 Beam density (steel)

λ 1 × 107 N/m First Lamé constant

μ 1 × 107 N/m Second Lamé constant

NW
x × NW

z 20 × 10 No. of elements in water

NB
x × N B

z 4 × 20 No. of elements in beam

Fig. 6 Energy apportionment (in J) in the 2D system. From top to bottom (see key), curves represent energies of the total system
(medium, horizontal), total water (thick, wavy), potential/kinetic water (thick dotted/dashed oscillatory), total beam (thin, wavy) and
potential/kinetic beam (thin dotted/dashed oscillatory)

The Firedrake software (see start of Sect. 4) used to obtain 3D results accepts equations in the weak form as an
input. Therefore, the weak-form equivalent of (58), with more general structural geometry, is

∫
vφn+1/2 dS f =

∫
v(φn − 1

2
Δtηn) dS f , (59a)

∫
ρ0v · Un+1/2 dVS +

∫
n · v φn+1/2 dSs

= ρ0

∫
v · Un dVS − 1

2
Δt

∫ (
λ∇ · v∇ · Xn + μ∂a X

n
b (∂avb + ∂bva)

)
dVS +

∫
n · v φn dSs, (59b)

∫
∇v · ∇φn+1/2 dVF −

∫
vn · Un+1/2 dSs = 0, (59c)

∫
vηn+1 dS f =

∫
vηn dS f + Δt

∫
∇v · ∇φn+1/2 dVF −Δt

∫
vn · Un+1/2 dSs, (59d)
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Fig. 7 Convergence of the temporal energy as a function of timestep in 2D: relative-error curves for timesteps Δt (upper curve) and
Δt/2 (lower curve) have amplitudes in the ratio four to one, confirming second-order convergence

Fig. 8 Rate of convergence, s in (60), of φ against time, computed using 3 regularly refined meshes and two norms: L2 (solid line) and
L∞ (dashed line). As the mesh size tends to zero, the theoretical limit of Aitken acceleration yields s = 2

∫
v · Xn+1 dVS =

∫
v · (Xn + ΔtUn+1/2) dVS, (59e)

∫
vφn+1 dS f =

∫
v(φn+1/2 − 1

2
Δtηn+1) dS f (59f)

∫
ρ0v · Un+1 dVS +

∫
n · vφn+1 dSs = ρ0

∫
v · Un+1/2 dVS,
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Fig. 9 Temporal snapshots
of the 2D water–beam
geometry during flow
evolution. Although the
computational domain is
fixed, results have been
post-processed into physical
space to visualize the
deformations. Initial
condition of no flow (top)
with motion initiated by
free-surface displacement.
Solutions after 3 s (middle)
and 5s (bottom)
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Table 2 Parameter values
used in the 3D computations

Parameter Value Comment

g 9.8m/s2 Gravitational acceleration

Lx × Ly × H0 10m × 10m × 4m Water domain

Ri 0.6m Beam inner radius

Ro 0.8m Beam outer radius

H 12m Beam height

ρ 1000 kg/m3 Water density

ρ0 7700 kg/m3 Beam density (steel)

λ 1 × 107 N/m2 First Lamé constant

μ 1 × 107 N/m2 Second Lamé constant

NW
z 4 No. of layers in water

NB
z 12 No. of layers in beam

− 1

2
Δt

∫ (
λ∇ · v∇ · Xn+1 + μ∂a X

n+1
b (∂avb + ∂bva)

)
dVS +

∫
n · v φn+1/2 dSs, (59g)

∫
∇v · ∇φn+1 dVF −

∫
vn · Un+1 dSs = 0, (59h)

in which dS f denotes integration over the free surface, dSs the fluid–structure interface, dVF the fluid domain,
dVS the structure domain, and n is, as before, the unit outward-normal vector of the fluid domain. In general, the
quantities on left-hand side are unknowns. The procedure for solving equations (59) is summarized as follows. The
result of (59a) is φn+1/2 at the free surface. It is used as a Dirichlet boundary condition in (59b) and (59c), which are
solved simultaneously to getφn+1/2 in thewhole fluid domain andUn+1/2. Next, η is updated in (59d) andX in (59e).
Then (59f) yields φn+1 at the free surface. Again, it is used as a Dirichlet boundary condition in the simultaneously
solved (59g) and (59h) for the final update of the full φ and U. In addition, the beam-bottom no-motion boundary
condition is applied, i.e., X(0, y, z, t) = 0 in (59e) and U(0, y, z, t) = 0 in (59b), (59c), (59g) and (59h).

The results obtained via the described approach are now presented and discussed.

4 Results

Firedrake [9] is an open-source FEM automation package written in python, that uses PETSc for numerical com-
putations. It accepts equations in weak form and automatically assembles the system matrices. Therefore, in this
case the scheme in the form (59) was used, with linear continuous Galerkin test functions. For the purposes of
illustration and validation, computations were performed first in two dimensions (no y-dependence), with bespoke
code (no use of Firedrake for automation), constructing directly the matrices in (58). Later, the two-dimensional
code in Firedrake gave the same results. Once the scheme was verified to yield a stable solution, computations in
three dimensions using Firedrake software were performed.

4.1 2D results

Parameter values used in this case are shown in Table1. In order to render visible the beam deformations, Lamé con-
stants are taken to be approximately 104 times smaller than those for the steel used to make wind-turbine masts. As
previously mentioned, Dirichlet boundary conditions were assumed for the beam, which is fixed (zero displacement
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Fig. 10 Energy apportionment (in J) in the 3D system: water (top) and beam (bottom). Curves represent total (continuous), potential
(dotted) and kinetic (dashed) energies. Note from the disparate vertical scales in the two plots that the total beam energy is much less
than that of the water

and velocity) at its base z = 0, whereas other boundaries can move freely. We present a solution with zero initial
movement and displacement in the beam, and, in the fluid, the first mode of an analytical solution, with deflected
initial free surface and no fluid velocity, the natural period of which is T = 5.3s. The energy in the system is
presented in Fig. 6, in which it is clear that, although there is always an energy exchange between the water and
beam, the total energy remains constant. As expected, the method is second-order accurate in time, i.e., halving
the timestep decreases the difference between the numerically computed energy and the exact one by a factor of
four; see Fig. 7 for validation of this convergence. The method is also expected to be second-order accurate in
space, as linear basis functions are used in the finite-element expansion. To verify this, we use the formula for the
convergence rate derived for the regularly refined-by-halving meshes from Aitken extrapolation:

s = log2
‖φf − φm‖
‖φm − φc‖ , (60)
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Fig. 11 Convergence of the method as a function of the timestep in 3D: the full timestep (upper curve, grey) and half timestep (lower
curve, black) relative-error curves have amplitudes in the ratio four to one, confirming second-order convergence

in which φc, φm and φf are the solutions on coarse, medium and finemeshes, respectively; and ‖·‖ denotes either the
L2 or L∞ norm. The convergence rate s computed by (60) is shown in Fig. 8, which shows an oscillatory behaviour
around the value of s = 1.7. Snapshots of the initial condition (no flow, free surface deflected) and evolved state
are shown in Fig. 9.

4.2 3D results

Parameter values for this case are shown in Table 2. The mesh consists of layers of tetrahedra in the z-direction,
and the fluid domain is asymmetric in the xy plane. The beam is represented by a hollow cylinder, which is meshed
with layers of 8 blocks comprising 4 tetrahedra each. Snapshots of the system evolution are shown in Fig. 12. The
applied initial condition is one of a beam in equilibrium adjacent to a fluid, free-surface elevation of which is the
first mode of a harmonic analytical solution (without the beam) with oscillation period of 4s. Figure 10 presents
the energy transfer in the system. The convergence of the results with decreasing time step is shown in Fig. 11.

5 Discussion and conclusion

We have formulated a fully coupled nonlinear variational model of a free-surface fluid–structure interaction. The
main benefit is the incorporation of a complex multi-domain, evolving-geometry, single-valued free-surface, tran-
sient problemwithin a unifying and computationally tractable framework with a novel approach to use the Lagrange
multiplier γ to constrain the beam and fluid common boundary. After elimination of the Lagrange multiplier and
the hydrostatic term, the system (28) of linearized water-wave dynamics coupled to an elastic beam, i.e., a system
of linearized fluid–structure interaction (FSI) equations, is equivalent to the FSI with the ad hoc coupling derived
in [11]. The linear equations have been discretized using a dis/continuous variational FEM, employing techniques
from [15], leading to a fully coupled and stable linear FSI with overall energy conservation, i.e., without any energy
loss between the subsystems. In the final scheme (58), there appears an extra coupling term in the equation (58d)
for the free-surface deviation at the fluid–structure boundary that is not obvious from the continuous equation (28c).
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-0.08

-0.04

0

0.04

0.08

phi

-0.0983

0.103

Fig. 12 Temporal snapshots of the 3D water–beam geometry during flow evolution. Although the computational domain is fixed,
results have been post-processed into physical space to visualize the deformations. (Top left) Initial condition; no flow; motion initiated
by free-surface displacement. Physical flow geometries after 1.1 s (bottom left), 3.8 s (top right) and 5.9 s (bottom right). Colours, white
to black, indicate flow-potential values. A beam deflection is clearly evident

This is a novel aspect that emerges from the variational approach. The numerical extension of these FSI to the
nonlinear realm is planned as future research.

The next extension of the model will be to allow for rotational flow to model wave breaking where the free
surface can overturn. Non-potential flow and the mixture theory [1,4] of the water–air phase can be used for this
purpose. An alternative, which we aim to exploit, is to propose a compressible, Van der Waals-like potential-flow
fluid model, that enables the modelling of wave-breaking without actually introducing rotational flow. It is also
industrially relevant to look at different models of beam-bottom fixtures, e.g., a flexible spring system instead of
a Dirichlet boundary condition. These will comprise future work.

The code used in the 3D computation is available here: https://doi.org/10.5281/zenodo.816221. A simplified
2D version is also published as a tutorial on Firedrake website: http://firedrakeproject.org/demos/linear_fluid_
structure_interaction.py.html.
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Appendix A: Linearization of the variational principle

In this appendix, the details of the linearization of the VP (25) are presented. Some of the terms in (25) can be
simplified as follows. First, we consider the term in (25a)

∫ Ls

0

∫ Ly

0

∫ H0+η

0
ρ

χ

Ls
∂t x̃s ∂χφ − ρ

Ls + x̃s
Ls

∂tφ dz dy dχ dt (61a)

=
∫ Ls

0

∫ Ly

0

∫ H0+η

0
− ρ

Ls
∂t x̃s ∂χφ + ρ

Ls
∂t x̃s ∂χφ

+ ρ

Ls
∂χ (χφ) ∂t x̃s − ρ

Ls
∂t

(
(Ls + x̃s)φ

)
dz dy dχ (61b)

=
∫ Ly

0

∫ H0+η

0
ρφs ∂t x̃s dz dy +

∫ Ls

0

∫ Ly

0

ρ

Ls
(Ls + x̃s)φ f ∂tη dy dχ

− d

dt

∫ Ls

0

∫ Ly

0

∫ H0+η

0

ρ

Ls
xsφ dz dy dχ, (61c)

in which Leibniz’ rule has been used to yield the time derivative of the integral, and then we take the integral of the
derivative with respect to χ , thereby obtaining the final term in (61c) as a total time derivative, temporal integration
of which, upon using the conditions δφ(0) = δφ(T ) = 0 and δxs(0) = δxs(T ) = 0, yields a variation in (25) of
zero. Therefore, we can neglect this term. We now linearize the remaining two terms in (61c), i.e. neglect terms
of the third and higher orders, as quadratic terms in the VP give linear terms in the equations of motion. Thus, the
second term in (61c) becomes

∫ Ls

0

∫ Ly

0

ρ

Ls
(Ls + x̃s)φ f ∂tη dy dχ ≈

∫ Ls

0

∫ Ly

0
ρφ f ∂tη dy dχ. (62)

For the first term in (61c), we Taylor-expand around H0 to obtain

∫ Ly

0

∫ H0+η

0
ρφs ∂t x̃s dz dy ≈

∫ Ly

0

∫ H0

0
ρφs ∂t x̃s dz dy. (63)

The zeroth order of the expansion is sufficient, as the first order already contains cubic terms.We used the definitions
of the velocity potentials φs = φ(Ls, y, z, t) and φ f = φ(χ, y, h(χ, y, t), t), at the beam interface and the free
surface, respectively. The first term in (25b) linearizes to

1

2

Ls

xs
(∂χφ)2 = 1

2

1

1 + x̃s/Ls
(∂χφ)2 ≈ 1

2

(
1 − x̃s

Ls

)
(∂χφ)2 ≈ 1

2
(∂χφ)2. (64)

The second term in (25b) linearizes to

1

2

xs
Ls

(
− χ

xs
∂yxs ∂χφ + ∂yφ

)2

= 1

2

(
χ2

Lsxs
(∂y x̃s)

2(∂χφ)2 + xs
Ls

(∂yφ)2 − 2
χ

Ls
∂y x̃s ∂zφ ∂yφ

)

≈ 1

2

χ2

L2
s
(∂y x̃s)

2(∂zφ)2 + 1

2
(∂yφ)2 − χ

Ls
∂y x̃s ∂zφ ∂yφ ≈ 1

2
(∂yφ)2, (65)
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upon dropping the higher-order terms; a similar linearization occurs for the first term in (25c). The second term in
(25c) linearizes to
∫ Ls

0

∫ Ly

0

∫ H0+η

0
ρg(z − H0)

(
1 + x̃s

Ls

)
dz dy dχ (66a)

=
∫ Ls

0

∫ Ly

0

1

2
ρgη2 dy dχ − 1

2
ρgLs L yH

2
0 +

∫ Ls

0

∫ Ly

0

∫ H0+η

0
ρg(z − H0)

x̃s
Ls

dz dy dχ (66b)

≈
∫ Ls

0

∫ Ly

0

1

2
ρgη2 dy dχ − 1

2
ρgLs L yH

2
0 +

∫ Ly

0

∫ H0

0
ρg(z − H0)x̃s dz dy, (66c)

in which third- and higher-order terms have been omitted. The second term in (66c) is a constant and can be
dropped, as its variation vanishes. The −ρg(z − H0)x̃s term in (66c) represents the hydrostatic pressure. Since we
are interested in the dynamics of the mutual fluid–structure interaction, we assume that the linearization occurs
around an equilibrium state and hence omit the hydrostatic term hereafter. In a similar way, we omit the gravity
force term ρ0gZ in (25e), and we use the relations in Sect. 2.3 to simplify the beam expressions. We neglect the
subtlety that, in the equilibrium (hydrostatic and lithostatic) state, all λ, μ and ρ0 vary slightly along the structure;
we assume that they are constant.

Finally, we linearize the Lagrangemultiplier γ term (25d) by observing that xs−X = Ls+ x̃s−Ls− X̃ = x̃s− X̃
and

x̃s(y = Y (Ls, b, c, t), z = Z(Ls, b, c, t), t) = x̃s(y = b + Ỹ (Ls, b, c, t), z = c + Z̃(Ls, b, c, t), t)

= x̃s(b, c, t) + (Ỹ , Z̃) · ∂ x̃s
∂(y, z)

|y=b,z=c + · · · (67)

In the manipulations in (67), we Taylor-expanded X̃ at the interface around the equilibrium position. X̃ is multiplied
by γ , which, on the other hand, is expanded around zero, since γ = 0 at equilibrium when the hydrostatic pressure
is neglected. Therefore, retaining only quadratic terms, the γ term (25d) becomes
∫ Ly

0

∫ Lz

0
ργ (xs(Y (Ls, b, c, t), Z(Ls , b, c, t), t) − X (Ls, b, c, t)) dc db (68a)

≈
∫ Ly

0

∫ Lz

0
ργ (x̃s(b, c, t) − X̃(Ls, b, c, t)) dc db (68b)

≈
∫ Ly

0

∫ H0

0
ργ (x̃s(y, z, t) − X̃(Ls, y, z, t)) dz dy. (68c)

In (68c), we transformed from Lagrangian to Eulerian coordinates in the linear approximation, as in Sect. 2.3, and
the integration in z has been limited to the water height at the structural interface. Higher-order terms arising from
the integration from H0 to H0 + η have been neglected. For simplicity of notation, χ is renamed as x to yield, after
incorporating all assumptions, the linearized VP

0 = δ

∫ T

0

∫ Ls

0

∫ Ly

0
ρ∂tηφ f − 1

2
ρgη2 −

∫ H0

0

1

2
ρ|∇φ|2 dz dy dx (69a)

+
∫ Ly

0

∫ H0

0
ρ∂t x̃sφs + ργ (x̃s(y, z, t) − X̃(Ls, y, z, t)) dz dy (69b)

+
∫ Lx

Ls

∫ Ly

0

∫ Lz

0
ρ0∂t X̃ · U − 1

2
ρ0|U|2 − 1

2
λeii e j j − μe2i j dz dy dx dt. (69c)

Due to the linearization, the domain is fixed, and the full system is formulated in Eulerian coordinates. More-
over, the term containing the Lagrange multiplier can be easily removed from (69b) by replacing x̃s(y, z, t) with
X̃s = X̃(Ls, y, z, t) elsewhere to obtain the VP without γ in the form (27).
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Appendix B: Derivation of temporal discretization

In this appendix, the details of the derivation of temporal scheme are presented. Given Eq. (57), in terms of original
variables, the interim equations of motion arising from the VP for (50) become

φn+1/2
α = φn

α − 1

2
Δtηnα,

Nk′l ′ (P
a
l ′ )

n+1/2 = Nk′l ′ (P
a
l ′ )

n − 1

2
Δt Eab

k′l ′(X
b
l ′)

n,

Mαβ ηn+1
β = Mαβ ηnβ + Δt

(
Bαβ φ

n+1/2
β −Ua

k′α(Pa
k′)n+1/2

)
,

Nk′l ′ (X
a
l ′)

n+1 = Nk′l ′ (X
a
l ′)

n + Δt
(
−Ua

k′α φn+1/2
α + Fab

k′l ′(P
b
l ′ )

n+1/2
)

,

φn+1
α = φn+1/2

α − 1

2
Δtηn+1

α ,

Nk′l ′ (P
a
l ′ )

n+1 = Nk′l ′ (P
a
l ′ )

n+1/2 − 1

2
Δt Eab

k′l ′(X
b
l ′)

n+1.

(70)

The matrices B, F and U , appearing in (70) contain the inverse of matrix C which was introduced both to remove
the interior φ degrees of freedom and to reduce the system to the Hamiltonian form. However, once the temporal
scheme is obtained, we would like to avoid the costly computation of the inverse of C . Therefore, guided by (49),
see also [17], we re-introduce φi ′ in the interior as

Ci ′ j ′φ
n+1/2
i ′ = − Aα j ′φ

n+1/2
α + (P1

m̃′)n+1/2Wm̃′nδnj ′ − δmαφn+1/2
α m̃mnδnj ′ . (71)

After some manipulations, we find that the final discrete spatiotemporal, fluid–structure interaction equations (cf.
(47)) are

φn+1/2
α = φn

α − 1

2
Δtηnα (72a)

Nk′l ′(P
a
l ′ )

n+1/2 = Nk′l ′(P
a
l ′ )

n − 1

2
Δt Eab

k′l ′(X
b
l ′)

n, (72b)

(Ai ′ j ′ + δi ′m M̃mnδ j ′n)φ
n+1/2
i ′ = −Aα j ′φ

n+1/2
α + ((P1

m̃′)n+1/2Wm̃′n − M̃mnφ
n+1/2
α δαm)δnj ′, (72c)

Mαβηn+1
β = Mαβηnβ + Δt Aαiφ

n+1/2
i

+Δt (φn+1/2
m M̃mn − (P1

m̃′)n+1/2)Wm̃′nδnα, (72d)

Nk′l ′(X
a
l ′)

n+1 = Nk′l ′(X
a
l ′)

n + Δt Nk′l ′(P
a
l ′ )

n+1/2 − Δtδa1δk′m̃′Wm̃′nφ
n+1/2
n , (72e)

φn+1
α = φn+1/2

α − 1

2
Δtηn+1

α , (72f)

Nk′l ′(P
a
l ′ )

n+1 = Nk′l ′(P
a
l ′ )

n+1/2 − 1

2
Δt Eab

k′l ′(X
b
l ′)

n+1, (72g)

in which, as in (47), the newly derived coupling terms are underlined.
Implementation of the above formulation leads to a system that conserves energy to second order in the timestep,

in keeping with Störmer–Verlet theory. However, using P is inconvenient, as it does not directly represent a physical
variable. Moreover, the time evolution of the separate components of (45) reveals an equal and opposite monotonic
increase in three terms that involve coupling, which annihilate each other when composed to form the physical
energy. This behaviour is possibly related to the fact that not all terms in (45) are positive definite. As a result of this
observation, we are motivated to reformulate (72) in terms of the original physical variable (structural velocity),

Ua
k′ = Pa

k′ − δa1N
−1
k′m̃′Wm̃′nφn, (73)
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which is itself motivated by (38) and (43). When this approach is used, the Hamiltonian (45) once more becomes
the positive definite (37). Equation (72) is, as a result, amended to the form of (58).
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