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Abstract The analytical solution is presented to the convection–diffusion equation describing the concentration
of solutes in a radial velocity field due to extracting groundwater from or injecting water into an aquifer with arbitrary
initial concentration data F(r), with r the radial distance, and an inhomogeneous mixed boundary condition G(t),
with t the time, at the well radius r = r0. The analytical solution is obtained with a generalized Hankel transforma-
tion or with a Laplace transformation. The Hankel transformation turns out to be easier for G = 0, F �= 0, while
the Laplace transformation is easier for F = 0, G �= 0. Both techniques can, however, deal with the full problem.
The representation found by the generalized Hankel transform can also be found by the Laplace transform, through
modification of the contour through the complex plane in the Bromwich integral for the inverse Laplace transform
to the real axis. In practice, the numerical evaluation of the integral representation is difficult, due to the oscillating
behavior of the integrands. A more appropriate numerical inversion procedure is also suggested, which circumvents
the integration of the oscillating integrands, by an alternative modification of the contour in the Bromwich integral
such that the new contour follows the steepest descent path starting from a saddle point at the real axis.

Keywords Airy function · Analytical solution · Convection–diffusion · Initial-boundary value problem ·
Mixed boundary condition · Radial flow field · Steepest descent path

1 Introduction

Various authors have studied the convection–diffusion equation in a radial flow field. Approximate solutions were
given by Hoopes and Harleman [1], Dagan [2], Gelhar and Collins [3], Bear [4, pp. 637–640], and Bachmat et al.
[5]. Bear [4] gives a summary of previous work. Pure analytical approaches were presented by Ogata [6], Bear [4,
pp. 635–637], Tang and Babu [7], Moench and Ogata [8], Hsieh [9], Chen [10], Chen and Woodside [11], Chen
et al. [12], and Bruggeman [13]. Huang et al. [14] discuss the problem of a single-well push–pull tracer test taking
into account the z-dependence and the solid phase. Directly related work was published by Chen [15], Chen [16],
Valocchi [17], Moench [18], Yates [19], Goltz and Oxley [20], Moench [21], Chen et al. [22], Chen et al. [23], and
Chen [24]. The paper by Chen et al. [25] studies a problem on a finite domain. The paper by Chen et al. [26] studies
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174 E. J. M. Veling

a problem without axial symmetry. The two last papers construct power series solutions. The paper by Leijnse et al.
[27] published results somewhat restricted as presented below. Their work was based on mathematical results by
M. Kopáčková published in an internal report [28].

In this article, we derive the analytical solution of the convection–diffusion equation in a radial flow field in full
generality with respect to the initial condition and an inhomogeneous mixed boundary condition at the well radius.
The mathematical expression of the solution of this problem has been published before in a conference proceedings
[29]. In this article, the derivation of this expression is given, together with a discussion of how one can solve
initial-boundary value problems using the Laplace transform with respect to the time variable and a generalized
Hankel transform with respect to the spatial variable. Application of the Laplace transform requires a number of
quite complicated mathematical manipulations to find the solution in the time domain, while application of the
generalized Hankel transform delivers the solution much more easily, once the corresponding Hankel inversion for-
mula has been found. We show how this Hankel inversion formula can be found and discuss the general technique
for finding appropriate transforms and their inverses with respect to the spatial variable.

Numerical evaluation of the presented analytical expression is quite difficult. It is possible, however, by using
appropriate numerical techniques. We compare the results of three different techniques. The first one is to evaluate
the analytical solution numerically by performing the integrations. For the other two, we specify first the Laplace
transform of the solution and apply two different numerical Laplace inversions. One is nowadays quite popular
and very reliable: the method by de Hoog et al. [30]. The other method is the application of the steepest descent
path through the complex p-plane (with p the Laplace variable). One has easier control over the precision in this
last method. Comparable methods have been discussed by Talbot [31], Evans [32], and Evans and Chung [33].
We found agreement between these three methods (direct explicit numerical integration, Laplace inversion by the
method of de Hoog et al. [30] and Laplace inversion by the method of the steepest descent path) up to the required
numerical precision.

2 Formulation analytical solution

At a well groundwater is extracted from or water is pumped into an aquifer (a horizontal layer below the surface,
made of porous material). We study the physical problem of the concentration c of a solute as function of the time
t and the radial distance r to the center of the well. Groundwater can be contaminated by such a solute in a natural
way or man-made. So, in this article, we solve the following problem (see Hoopes and Harleman [1] or Tang and
Babu [7] for a derivation)

∂c

∂t
= a |vr | ∂2c

∂r2 − vr
∂c

∂r
, r > r0, t > 0, vr = A/r,

(
γ ′c + δ′ ∂c

∂r

)∣∣∣∣
(r0,t)

= G(t), r = r0, t > 0,

c
∣∣
(r,0) = F(r), r ≥ r0, t = 0,

(1)

with the usual requirement of finite values of c for r → ∞. Here, c [ML−3] denotes the concentration, t [T] the
time, r [L] the radial distance to the center of the well, a [L] the dispersivity, vr [LT−1] the radial velocity, and
γ ′ [–] and δ′ [L] coefficients to specify the inhomogeneous mixed boundary data G(t) [ML−3], and F(r) [ML−3]
denotes the initial condition. Furthermore

vr = A/r, A = Q/(2π Hne) [L2T−1], (2)

with Q [L3T−1] the recharge, H [L] the thickness of the aquifer, and ne [–] the effective porosity. For an injec-
tion (Q > 0), we have vr > 0, and the opposite for an extraction. If one places at the well a condition on the
so-called flux concentration (see Kreft and Zuber [34]) cF = c− Dr/vr

∂c
∂r , with Dr = a|vr | [L2T−1] the dispersion
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Radial transport in a porous medium 175

coefficient, one has cF = c − a|vr |/vr
∂c
∂r = c − a sign(Q) ∂c

∂r . This means for an injection: γ ′ = 1, δ′ = −a, and
for an extraction: γ ′ = 1, δ′ = a.

Solutions for (1) have been presented for different boundary and initial conditions:

1. Dirichlet condition at the well:
γ ′ = 1, δ′ = 0, and G(t) = c0, F(r) = 0:
Ogata [6], Bear [4, pp. 635–637], Tang and Babu [7], Moench and Ogata [8], Hsieh [9], Beneš et al. [28],
Leijnse et al. [27], Bruggeman [13, formula 820.01].

2. Mixed boundary condition at the well corresponding to an injection (flux concentration):
γ ′ = 1, δ′ = −a, and G(t) = c0, F(r) = 0:
Chen [10] (only the Laplace transform), Huang et al. [14] (only the Laplace transform and the Fourier transform
for a model with z-dependence and an extra ordinary differential equation for the solid phase).

3. Mixed boundary condition at the well corresponding to an injection (flux concentration):
γ ′ = 1, δ′ = −a, and G(t) = δ(t), the Dirac delta function, F(r) = 0, r0 = 0:
Bruggeman [13, formula 820.02].

4. Neumann condition at the well, extraction:
γ ′ = 0, δ′ = a, and G(t) = 0, F(r) �= 0:
Beneš et al. [28], Leijnse et al. [27], Chen and Woodside [11], Chen et al. [12] (only the Laplace transform),
Huang et al. [14] (only the Laplace transform and the Fourier transform for a model with z-dependence and
an extra ordinary differential equation for the solid phase).

Here we shall give the general solution without any restrictions on F(r), G(t), γ ′, and δ′. By means of the
following transformations:

τ = (|A| /a2)t, ρ = r/a, ρ0 = r0/a, (3)

the problem becomes dimensionless:

∂C

∂τ
= 1

ρ

(
∂2C

∂ρ2 ± ∂C

∂ρ

)
, ρ > ρ0, τ > 0,

(
γ C + δ

∂C

∂ρ

)∣∣∣∣
(ρ0,τ )

= g(τ ), ρ = ρ0, τ > 0,

C
∣∣
(ρ,0) = f (ρ), ρ ≥ ρ0, τ = 0,

(4)

with C = c/G0, γ = γ ′, δ = δ′/a, g(τ ) = G(t)/G0, f (ρ) = F(r)/G0, and G0 [ML−3] a normalization constant.
The upper (plus) sign represents an extraction (Q < 0), the lower (minus) sign an injection (Q > 0). The analytical
solution of the problem defined by (4) has been given by Eq. 5 in Veling [29] without derivation, and is expressed
in Airy functions (see Chap. 10.4 in Abramowitz and Stegun [35]) as

C(ρ, τ ) = e∓ρ/2

∞∫
0

{
s−1/3 Ai(z)B0(z0)−Bi(z)A0(z0)

A 2
0 (z0)+B 2

0 (z0)
e−sτ

×
∞∫

ρ0

ρ′e±ρ′/2 f (ρ′)
{

Ai(z′)B0(z0)−Bi(z′)A0(z0)
}

dρ′
⎫⎬
⎭ds

+ e∓(ρ−ρ0)/2

∞∫
0

⎧⎨
⎩

Ai(z)B0(z0) − Bi(z)A0(z0)

π(A 2
0 (z0) + B 2

0 (z0))

τ∫
0

g(τ − τ ′)e−sτ ′
dτ ′
⎫⎬
⎭ ds, (5)
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with

z′ = 1 − 4sρ′

4s2/3 , z0 = 1 − 4sρ0

4s2/3 , z = 1 − 4sρ

4s2/3 ,

A0(z0) = (γ ∓ 1
2δ)Ai(z0) − δs1/3 Ai ′(z0), B0(z0) = (γ ∓ 1

2δ)Bi(z0) − δs1/3 Bi ′(z0). (6)

Specifically, for Dirichlet boundary data, we have:

γ ′ = 1, δ′ = 0, so γ = 1, δ = 0, (7)

A0(z0) = Ai(z0), B0(z0) = Bi(z0),

for Neumann boundary data, see also Chen and Woodside [11], and Chen et al. [12]:

γ ′ = 0, δ′ = ±a, so γ = 0, δ = ±1, (8)

A0(z0) = − 1
2 Ai(z0) ∓ s1/3 Ai ′(z0), B0(z0) = − 1

2 Bi(z0) ∓ s1/3 Bi ′(z0),

and for mixed boundary data, see also Chen [10]:

γ ′ = 1, δ′ = ±a, so γ = 1, δ = ±1, (9)

A0(z0) = 1
2 Ai(z0) ∓ s1/3 Ai ′(z0), B0(z0) = 1

2 Bi(z0) ∓ s1/3 Bi ′(z0).

At first sight, the result (5) deviates from formula (36) in Chen and Woodside [11] , under the restrictions used
by these authors. However, by applying some elementary algebra their solution can be put in the more concise form
(5). Some authors do not use the presentation of the analytical solution in terms of Airy functions (e.g., Tang and
Babu [7], Beneš et al. [28]), but they use Bessel functions with index 1/3. Their expressions are somewhat more
complicated.

3 Generalized Hankel transform

In this section, we derive a generalized Hankel transform. First, the convection term will be removed by means of
the substitution

C(ρ, τ ) = D(ρ, τ )e∓ρ/2, (10)

then (4) becomes

∂ D

∂τ
= 1

ρ

(
∂2 D

∂ρ2 − 1
4 D

)
, ρ > ρ0, τ > 0,

(
αD + β

∂ D

∂ρ

)∣∣∣∣
(ρ0,τ )

= e±ρ0/2g(τ ), ρ = ρ0, τ > 0,

D
∣∣
(ρ,0) = e±ρ/2 f (ρ), ρ ≥ ρ0, τ = 0,

(11)

with α = γ ∓ 1
2δ, β = δ.

Next, we will use a form of Hankel transform related to the spatial variable, in contrast to the usual Laplace
transform technique related to the time variable. Using the theory given in §§ 21.3, 21.4, 21.5 in Naimark [36], it
can be derived that for the following transformation

φ(s) = T [ f ] ≡
∞∫

ρ0

ρ f (ρ) {βD1(ρ, s) + αD2(ρ, s)} dρ, (12)

with

D1(ρ, s) = π(Ai(z)Bi ′(z0) − Bi(z)Ai ′(z0)), D2(ρ, s) = −πs−1/3(Ai(z)Bi(z0) − Bi(z)Ai(z0)),

z0 = 1 − 4sρ0

4s2/3 , z = 1 − 4sρ

4s2/3 , (13)
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Radial transport in a porous medium 177

the back-transformation reads (see Appendix A)

f (ρ) = T −1[φ] =
∞∫

0

φ(s)
βD1(ρ, s) + αD2(ρ, s)

π2(A 2
0 (z0) + B 2

0 (z0))
s1/3 ds, (14)

where A0(z0) and B0(z0) have been defined as (compare (6))

A0(z0) = αAi(z0) − βs1/3 Ai ′(z0), B0(z0) = αBi(z0) − βs1/3 Bi ′(z0). (15)

Note that

D1(ρ0, s) = 1,
∂ D1

∂ρ
(ρ0, s) = 0,

D2(ρ0, s) = 0,
∂ D2

∂ρ
(ρ0, s) = −1,

(16)

from the fact that Ai(z0)Bi ′(z0) − Bi(z0)Ai ′(z0) = 1/π , see formula (10.4.10) in Abramowitz and Stegun [35].
This Hankel transform has the operational property

T

[
1

ρ

(
∂2 f

∂ρ2 − 1

4
f

)]
= −sT [ f ] if f satisfies

(
α f + β

∂ f

∂ρ

)∣∣∣∣
(ρ=ρ0)

= 0. (17)

We remark that these transforms can also be written as

φ(s) = T [ f ] =
∞∫

ρ0

ρ f (ρ)
{
(−πs−1/3)(Ai(z)B0(z0) − Bi(z)A0(z0))

}
dρ, (18)

f (ρ) = T −1[φ] =
∞∫

0

φ(s)
(−Ai(z)B0(z0) + Bi(z)A0(z0))

π(A 2
0 (z0) + B 2

0 (z0))
ds, (19)

z0 = 1 − 4sρ0

4s2/3 , z = 1 − 4sρ

4s2/3 ,

since

βD1(ρ, s) + αD2(ρ, s) = (−πs−1/3)(Ai(z)B0(z0) − Bi(z)A0(z0)). (20)

If we accept the validity of these transforms for the moment, the derivation of the solution (5) reads as follows.
First, write D = Dh + D p, where Dh is the solution of (11) with g(τ ) = 0, and D p is a particular function which
satisfies the inhomogeneous boundary condition at ρ = ρ0. For α �= 1

2β, let

D p(ρ, τ ) = g(τ )e±ρ0/2+ρ0/2

α − 1
2β

e−ρ/2, (21)

and for α = 1
2β

D p(ρ, τ ) = g(τ )e±ρ0/2+ρ0/2

β
ρe−ρ/2, (22)

then D p satisfies(
αD p + β

∂ D p

∂ρ

)∣∣∣∣
(ρ0,τ )

= e±ρ0/2g(τ ). (23)

This implies that the function Dh has to satisfy

∂ Dh

∂τ
− 1

ρ

(
∂2 Dh

∂ρ2 − 1
4 Dh

)
= −∂ D p

∂τ
+ 1

ρ

(
∂2 D p

∂ρ2 − 1
4 D p

)
, ρ > ρ0, τ > 0,(

αDh + β
∂ Dh

∂ρ

)∣∣∣∣
(ρ0,τ )

= 0, τ > 0,

Dh
∣∣
(ρ,0) = e±ρ/2 f (ρ) − D p(ρ, 0), ρ > ρ0.

(24)
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We now apply the Hankel transform. Define T [Dh] = D̂(τ ; s). The function D̂(τ ; s) satisfies

d D̂

dτ
+ s D̂ = −dT [D p]

dτ
+ T

[
1

ρ

(
∂2 D p

∂ρ2 − 1

4
D p
)]

, τ > 0, (25)

D̂(0; s) = T
[
e±ρ/2 f (ρ) − D p(ρ, 0)

]
≡ D̂0(s).

First, we treat the case in which α �= 1
2β. Then, the last term in the ordinary differential equation above cancels and

by standard techniques it follows that

D̂(τ ; s) =
⎛
⎝D̂0(s) −

τ∫
0

d

dτ ′ T [D p](τ ′; s)esτ ′
dτ ′
⎞
⎠ e−sτ (26)

= T
[
e±ρ/2 f (ρ)

]
e−sτ − g(τ )e±ρ0/2+ρ0/2

α − 1
2β

T
[
e−ρ/2

]
+ T

[
e−ρ/2

] τ∫
0

g(τ − τ ′)e±ρ0/2+ρ0/2

α − 1
2β

se−sτ ′
dτ ′.

Applying the back-transformation, we find

D(ρ, τ ) = T −1[D̂] + D p(ρ, τ ) (27)

= T −1
[
e−sτ T

[
e±ρ/2 f (ρ)

]]
+ T −1

⎡
⎣T

[
e−ρ/2

] τ∫
0

g(τ − τ ′)e±ρ0/2+ρ0/2

α − 1
2β

se−sτ ′
dτ ′
⎤
⎦ .

The term D p(ρ, τ ) cancels with the second term in the second line of (26). We denote

R1(ρ, τ ) = T −1
[
e−sτ T

[
e±ρ/2 f (ρ)

]]
(28)

and

R2(ρ, τ ) = T −1

⎡
⎣T

[
e−ρ/2

] τ∫
0

g(τ − τ ′)e±ρ0/2+ρ0/2

α − 1
2β

se−sτ ′
dτ ′
⎤
⎦ . (29)

Now, R1(ρ, τ ) is written as

R1(ρ, τ ) =
∞∫

0

⎧⎨
⎩s−1/3 Ai(z)B0(z0) − Bi(z)A0(z0)

A 2
0 (z0) + B 2

0 (z0)
e−sτ (30)

×
∞∫

ρ0

ρ′e±ρ′/2 f (ρ′)
{

Ai(z′)B0(z0) − Bi(z′)A0(z0)
}

dρ′
⎫⎬
⎭ ds,

and R2(ρ, τ ) as

R2(ρ, τ ) = −
∞∫

0

⎧⎨
⎩

Ai(z)B0(z0) − Bi(z)A0(z0)

π(A 2
0 (z0) + B 2

0 (z0))
T
[
e−ρ/2

] τ∫
0

g(τ − τ ′)e±ρ0/2+ρ0/2

α − 1
2β

se−sτ ′
dτ ′
⎫⎬
⎭ ds, (31)

with the aid of the identities (see (20))

βD1(ρ, s) + αD2(ρ, s) = (−πs−1/3)(Ai(z)B0(z0) − Bi(z)A0(z0)),

βD1(ρ
′, s) + αD2(ρ

′, s) = (−πs−1/3)(Ai(z′)B0(z0) − Bi(z′)A0(z0)). (32)

The term T [e−ρ/2] remains to be evaluated, see Appendix B. There we find (see (71))

T
[
e−ρ/2

]
= −s−1e−ρ0/2(α − 1

2β). (33)
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Insertion of (33) delivers for (31)

R2(ρ, τ ) = e±ρ0/2

∞∫
0

⎧⎨
⎩

Ai(z)B0(z0) − Bi(z)A0(z0)

π(A 2
0 (z0) + B 2

0 (z0))

τ∫
0

g(τ − τ ′)e−sτ ′
dτ ′
⎫⎬
⎭ ds. (34)

Putting the pieces (10), (30) and (34) together, we find the result (5).
In the case α = 1

2β, the derivation follows the same lines. However, on the right-hand side of the ordinary
differential equation in (25) there is an extra term −D p/ρ2. The function D in (27) therefore becomes

D(ρ, τ ) = T −1[D̂] + D p(ρ, τ ) (35)

= T −1
[
e−sτ T

[
e±ρ/2 f (ρ)

]]
+ T −1

⎡
⎣T

[
ρe−ρ/2 − 1

ρ
s−1e−ρ/2

] τ∫
0

g(τ − τ ′)e±ρ0/2+ρ0/2

β
se−sτ ′

dτ ′
⎤
⎦ .

Then there remains the integral T
[
ρe−ρ/2 − 1

ρ
s−1e−ρ/2

]
, see Appendix B. There we find (see (76))

T

[
ρe−ρ/2 − 1

ρ
s−1e−ρ/2

]
= −s−1e−ρ0/2β. (36)

Putting together (10), (35) and (36) we find the same result as (5).

4 Laplace transform

Here, it will be sketched how one can arrive at the same result using the Laplace transform technique, defined as

L[ f ](p) = f̃ (p) =
∞∫

0

e−pt f (t) dt, p ∈ C. (37)

We start from (11). The function D̃(ρ; p) has to satisfy

d2 D̃

dρ2 − 1
4 D̃ = ρ

(
pD̃ − e±ρ/2 f (ρ)

)
, ρ > ρ0,

(
α D̃ + β

dD̃

dρ

)∣∣∣∣∣
(ρ0,p)

= e±ρ0/2 g̃(p), ρ = ρ0.

(38)

If one writes D̃(ρ; p) = D̃ f =0(ρ; p)+ D̃g=0(ρ; p), with D̃ f =0(ρ; p) the solution of (38) if f = 0, and D̃g=0(ρ; p)

the solution of (38) if g = 0, then it is easy to find

D̃ f =0(ρ; p) = e±ρ0/2 g̃(p)Ai(u)

Ā0(u0)
, (39)

with

u = 1 + 4pρ

4p2/3 , u0 = 1 + 4pρ0

4p2/3 , Ā0(u0) = αAi(u0) + βp1/3 Ai ′(u0), (40)

since the transformations in (40) transform (38) with D̃(ρ; p) = Ď(u; p) into

d2 Ď

du2 = u Ď − ρe±ρ/2 f (ρ), u > u0,

(
α Ď + βp1/3 dĎ

du

)∣∣∣∣∣
(u0,p)

= e±ρ0/2 g̃(p), u = u0,

(41)
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180 E. J. M. Veling

and since Ai(u) is the solution of d2 Ď
du2 = u Ď with the correct behaviour at u → ∞. The function D̃g=0(ρ; p) is

more difficult to find (by means of the method of variation of constants) as

D̃g=0(ρ; p) = π

Ā0(u0)

{ ρ∫
ρ0

ρ′e±ρ′/2 f (ρ′)p−1/3 {Ai(z)
(

Ā0(u0)Bi(z′) − B̄0(u0)Ai(z′)
)}

dρ′ (42)

+
∞∫

ρ

ρ′e±ρ′/2 f (ρ′)p−1/3 {Ai(z′)
(

Ā0(u0)Bi(z) − B̄0(u0)Ai(z)
)}

dρ′
}
,

with additionally

u′ = 1 + 4pρ′

4p2/3 , B̄0(u0) = αBi(u0) + βp1/3 Bi ′(u0). (43)

To find the analytical solution by inverting these transforms to the τ -domain one has to deform the Bromwich
contour (see Sect. 6, (45)) through the complex p-domain such that the singularity at p = 0 is excluded. This will
be done by integration along the negative real axis approaching from above and from below in the usual way and
circling around p = 0, clockwise. The calculations become quite cumbersome, but in the end one finds again (5).

5 Discussion of transform techniques

The advantage of the generalized Hankel transform is that it may be applied to find the solution of problem (4)
in cases where f �= 0, g = 0 in a very easy way. Even when g �= 0, and taking the validity of the generalized
Hankel transform for granted, the derivation of the full solution is rather straightforward, albeit somewhat involved
as shown above. When one applies the Laplace transform technique however, it turns out that the case f �= 0, g = 0
is the most complicated one. For the somewhat special case γ ′ = 1, δ′ = 0 (so γ = 1, δ = 0) this has been
performed by Chen and Woodside [11], see the remark in Sect. 2. But the derivation of the solution of problem
(4 ) with f = 0, g �= 0 runs rather smoothly, although one has to do some calculations with Airy functions with
complex arguments. Those kind of calculations have their counterpart in the derivation of the generalized Hankel
transform itself.

Summarizing, the easiest way to solve problem (4) is to write the solution as C = C f =0 + Cg=0, where C f =0

is the solution if f = 0, and Cg=0 if g = 0. C f =0 may be found easily by the Laplace transform, and Cg=0 by the
generalized Hankel transform.

In general, this strategy applies to analogous problems. When one is interested in the closed form expression of
the solution it might therefore be more advantageous to derive a transform with respect to the spatial variable in line
with the generalized Hankel transform presented here (using the theory supplied in §§ 21.3, 21.4, 21.5 in Naimark
[36] and Appendix A) than to apply the Laplace transform for all possible boundary and initial conditions.

In practical situations one also wants to evaluate the solution. The most efficient way to calculate (5) is to find
the transformed solution and to perform a numerical inversion as explained in the next section. In any case, the
closed form expression exhibits the dependency of the solution on the parameters.

6 Numerical considerations

Numerical evaluation of solution (5) yields quite a few problems, since the integrands exhibit oscillatory behaviour
which can become a nightmare for the numerical analyst. See the discussion in Sect. 7.1. Numerical inversion of
the Laplace transformed solution may be applied with the algorithms of the Stehfest method (see Stehfest [37], and
Ogata and Moench [8]), the Talbot method (see Talbot [31], and Moench [18]) and, used most effectively in the
past 25 years, the algorithm by de Hoog et al. [30], see also Moench [21]. For a unified framework for a number of
Laplace inversion methods we refer to Abate and Whitt [38] and Avdis and Whitt [39].
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Here, we present an alternative technique which performs the integration along the steepest descent path through
the complex plane, see Chapter II.4, “Method of Steepest Descents” in Wong [40]. This method stems from theoret-
ical work to derive asymptotic formulae for integrals. This method has received little attention, probably rooted in
the fact that this method requires additional function evaluations. In the literature on Laplace inversion, comparable
methods have been discussed by Talbot [31], Evans [32], and Evans and Chung [33]. These authors construct a
suitable contour, although it is not the steepest descent path. For all methods which enter the complex plane, one has
to evaluate the Laplace transformed solution for complex arguments and one needs thus complex versions of the
mathematical functions. Moreover, all the calculations require complex arithmetic. Nowadays, complex versions
for the standard mathematical functions are easily available, and for the Bessel-type functions one can exploit the
impressive library of Amos (see [41–43]). This library includes the Airy-functions. Separate algorithms for real
and complex Airy functions have been published by Gordon [44], and Schulten et al. [45], respectively.

The starting point to find the steepest descent path is the well-known Bromwich integral for the inversion of the
Laplace transform. One writes the Laplace transform of f as

L[ f ](p) = f̃ (p) =
∞∫

0

e−pt f (t) dt , p ∈ C. (44)

Depending on the properties of f , the function f̃ (p) exists for Rep > p0 (e.g. if f is piecewise continuous on
(0, t0), for all t0 > 0, and | f (t)| ≤ Ceαt for all t > 0, and some C > 0, α > 0). Then the Bromwich integral
formula reads

f (t) = 1

2π i

∫
L

ept f̃ (p) dp, t > 0, (45)

where the contour L is defined by

L = {p = p1 + iq, p1 > p0, p1 fixed, q ∈ R} . (46)

Here, the contour L will be deformed to the steepest descent path L ′ going through a saddle point p = p0 at the
real axis. This saddle point will be found by solving d

dp ( ept f̃ (p)) = 0. One of the two important properties of

the steepest descent path L ′ is that along this contour Phase(ept f̃ (p)) is constant. If Phase(ept f̃ (p)) = 0, for
p = p0 ∈ R, which is in general the case, then Phase(ept f̃ (p)) = 0, for all p ∈ L ′. This means that the integrand
ept f̃ (p) along L ′ stays real and positive, which is an important numerical advantage. The other property of the

steepest descent path is that along L ′
∣∣∣ept f̃ (p)

∣∣∣ (= Re(ept f̃ (p)) decreases the fastest, which ensures the fastest

convergence of the integral.
The steepest descent path can be found numerically by calculating the tangent to the curve L by taking the

numerical derivative of G(p; τ) = ept f̃ (p). Let G(p; τ) = u(p; τ)+ iw(p; τ). We parametrize the integration
curve by x = x(λ), y = y(λ), for real λ. So L ′ = {p = x(λ)+ iy(λ)|λ > 0}. The curve is normalized by the
requirement that(

dx

dλ

)2

+
(

dy

dλ

)2

= 1, (47)

then define θ (counter-clockwise with respect to the positive x-axis) by

cos θ = dx

dλ
, sin θ = dy

dλ
. (48)

The change of w along the curve can be represented by
dw

dθ
= wx cos θ + wy sin θ, (49)

which is required to be zero, so that w = w(p1; τ) remains zero along the integration curve. Then, by the Cauchy–
Riemann equations, we have
dw

dλ
= wx cos θ + ux sin θ = Im(G ′) cos θ + Re(G ′) sin θ = 0, (50)
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so

θ = arctan

(
− Im(G ′)

Re(G ′)

)
. (51)

This value for θ gives the tangent to the integration curve. Therefore, once we know a point of the curve, say point
1, the next point, point 2 will lie on the arc segment of a circle with center point 1, with some radius R and bounded
by angles θ1 = θ − θ, θ2 = θ + θ . The derivative G ′ will be found through numerical differentiation, using an
infinitesimal p = ε|p|. The choices for R,θ and ε depend on the problem at hand.

7 Application

For the case with F(r) = 0, we apply the three different numerical techniques as described above:

Method 1. Integration according to the analytical solution (third line in (5)), where we first determine the zeros of
the integrand, then integrate from zero to zero and finally sum all contributions using the Euler summa-
tion technique (see among others van Wijngaarden [46] and the source text in Algol as Example 1, p.
447 in Naur [47].

Method 2. Application of the Laplace inversion technique by de Hoog et al. [30]. We used a MATLAB-script by
Hollenbeck [48].

Method 3. Application of the steepest descent path through the complex p-plane as described in Sect. 6.

Method 1 is the most time consuming one. The other two methods require calculation times of the same order, but
Method 2 turned out to be the fastest, since there is no need to find the steepest descent path. However, execution
times could not be compared properly, since for Method 1 and 3 we have written FORTRAN-programs, while for
Method 2 we use a MATLAB-script. Except for Method 2 we have full control on the relative and absolute precision
of our results. For Method 2 we can modify some parameters to increase the accuracy, but there is not some kind of
error criterium. All three methods applied to the examples below gave the same results up to the required precision.

7.1 Constant boundary conditon

Here, we shall treat the example of a Dirichlet boundary condition at the well (γ ′ = 1, δ′ = 0, so γ = 1, δ = 0 and
thus also α = 1, β = 0) with F(r) = 0, G(t) = G0, so f (ρ) = 0, g(τ ) = 1. We assume an injection, so we use
the lower sign in the formulae, where appropriate. The function which has to be evaluated (see the third line of (5))
reads

C(ρ, τ ) = e∓(ρ−ρ0)/2

∞∫
0

1 − e−sτ

s

Ai(z)B0(z0) − Bi(z)A0(z0)

π(A 2
0 (z0) + B 2

0 (z0))
ds. (52)

Integrals of this type have the following properties. The first factor in the integrand is a slowly decreasing function,
which behaves like 1/s, s → ∞; the second one is an oscillating function of which the absolute size remains
constant. Using the asymptotic behaviour of the Airy functions for large negative arguments one can find that the
zeros of the second factor are approximatively sn = 9

4 n2π2(ρ3/2 − ρ
3/2
0 )−2 for n → ∞. For values of ρ close to

ρ0 the zeros are far away from each other, while for large values of ρ with respect to ρ0 the zeros are lying close
to each other. In that case one encounters easily loss of digits by adding up contributions for the integral of almost
equal size but with opposite sign. It is clear that such an integrand gives rise to numerical problems. In Fig. 1a, the
integrand has been shown for the values α = 1, β = 0, g(τ ) = 1, ρ = 8, ρ0 = 1, and τ = 2. Methods 2 and 3 give
easily and quickly the same result C(8, 2) = 1.006867846 × 10−11, while Method 1 can not find more than five
digits of accuracy (relative precision 1 × 10−4), since the contributions from zero to the next zero of the integrand
in the integral (52) are of the order of 1 × 10−1, slowly decreasing to order 1 × 10−2 for the 40th term. That means
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Fig. 1 a Integrand of the analytical representation (52) for the case α = 1, β = 0, ρ0 = 1, ρ = 8, τ = 2. The factor in front of
(52), exp((ρ − ρ0)/2) is taken into account. This integrand is slowly decreasing and highly oscillatory. b Integrand of the analytical
representation (52) for the case α = 1, β = 0, ρ0 = 10, ρ = 10.3, τ = 0.06. The factor in front of (52), exp((ρ − ρ0)/2) is taken into
account. The scaling of the horizontal axis is logarithmic to base 10. This integrand is slowly decreasing and oscillating
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Fig. 2 a Steepest descent path through the complex p plane to find the inverse of the Laplace transform for the case α = 1, β = 0, ρ0 =
10, ρ = 10.3, τ = 0.06. The path starts in the saddle point at (93.792, 0). b Integrand along the steepest descent path through the
complex p plane to find the inverse of the Laplace transform for the case α = 1, β = 0, ρ0 = 10, ρ = 10.3, τ = 0.06. The integrand
along this path is an exponentially decreasing function

that for d digits of accuracy, the relative error in these contributions should be smaller than 1 × 10−10−(d−1), which
gives d ∼ 5 for the limits of the standard floating point system. For larger values of ρ, the performance of Method
1 becomes worse. In such cases one needs to apply Method 2 or Method 3.

Next we choose ρ0 = 10. For τ = 0.06 and ρ = 10.3 the integrand of (52) is shown in Fig. 1b, where the
exponential factor e∓(ρ−ρ0)/2 in front of this integral is taken into account; we show the steepest descent path
through the complex p plane (see Fig. 2a) and the corresponding integrand along that path (see Fig. 2b) is indeed an
exponentially decreasing function, which is numerically favourable (see Sect. 6). For these particular parameters,
the numerical result is C(10.3, 0.06) = 6.6774197000 × 10−3 for all the three numerical techniques (Methods 1,
2 and 3) up to all the digits shown. We present graphs of C(ρ, τ ) as a function of τ ∈ [0.01, 2] for fixed ρ = 10.3
(see Fig. 3a) and as a function of ρ ∈ [10, 12] for fixed τ = 1 (see Fig. 3b). These graphs have been obtained by
Method 2. The other two methods gave the same results.

7.2 Delta boundary condition

Here, we take as boundary condition g(τ ) = δ(τ ), the Dirac delta function. All parameters are the same as for the
second example in 7.1. We present graphs of C(ρ, τ ) as a function of τ ∈ [0.01, 2] for fixed ρ = 10.3 (see Fig. 4a)
and as a function of ρ ∈ [10, 12] for fixed τ = 1 (see Fig. 4b). Again, these graphs have been made by Method 2.
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Fig. 3 a Example 7.1: concentration C(ρ, τ ) as a function of τ for g(τ ) = 1, f (ρ) = 0, ρ = 10.3, for the case γ = α =
1, δ = β = 0, ρ0 = 10. b Example 7.1: concentration C(ρ, τ ) as a function of ρ for g(τ ) = 1, f (ρ) = 0, τ = 1, for the case
γ = α = 1, δ = β = 0, ρ0 = 10
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Fig. 4 a Example 7.2: concentration C(ρ, τ ) as a function of τ for g(τ ) = δ(τ ), f (ρ) = 0, ρ = 10.3, for the case γ = α =
1, δ = β = 0, ρ0 = 10. b Example 7.2: concentration C(ρ, τ ) as a function of ρ for g(τ ) = δ(τ ), f (ρ) = 0, τ = 1, for the case
γ = α = 1, δ = β = 0, ρ0 = 10
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Fig. 5 a Example 7.3: concentration C(ρ, τ ) as a function of τ for g(τ ) = exp(s0τ), s0 = −9, f (ρ) = 0, ρ = 10.3, for the case
γ = 1, δ = −1 (so α = 1/2, β = −1), ρ0 = 10. b Example 7.3: concentration C(ρ, τ ) as a function of ρ for g(τ ) = exp(s0τ), s0 =
−9, f (ρ) = 0, τ = 1, for the case γ = 1, δ = −1 (so α = 1/2, β = −1), ρ0 = 10. For ρ = ρ0 = 10 the boundary condition
C − ∂C/∂ρ = exp(−9) has been satisfied

7.3 Exponentially decreasing boundary condition

As a final example, we apply a flux concentration boundary condition with an injection, so γ ′ = 1, δ′ = −a, which
gives γ = 1, δ = −1, and α = 1/2, β = −1, and we take as boundary condition g(τ ) = exp(s0τ), with s0 = −9.
We present graphs of C(ρ, τ ) as a function of τ ∈ [0.01, 2] for fixed ρ = 10.3 (see Fig. 5a) and as a function
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of ρ ∈ [10, 12] for fixed τ = 1 (see Fig. 5b). In Fig. 5b, the boundary condition C − ∂C/∂ρ = exp(−9), for
ρ = ρ0 = 10 has been satisfied. This time, Fig. 5a and b have been obtained by Method 3.
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Appendix A: Derivation of the Hankel transform

In this Appendix, we outline the derivation of the Hankel transform. The theory for the construction of these
transforms has been supplied by Naimark [36] (in §§ 21.3, 21.4, 21.5). First, we study the eigenvalue problem

1

ρ

(
∂2 f

∂ρ2 − 1

4
f

)
= −s f, ρ0 < ρ < ∞, (53)

(
α f + β

∂ f

∂ρ

)∣∣∣∣
ρ0

= 0.

A set of independent solutions is given by {D1(ρ, s), D2(ρ, s)}, see (16). By taking a linear combination of D1, D2,
namely u = D1 + α/βD2, we arrive at a solution to (53). Like Naimark, we introduce the transform

φN (s) = TN [ f ] ≡
∞∫

ρ0

ρ f (ρ)u(ρ, s) dρ, (54)

such that

TN

[
1

ρ

(
∂2 f

∂ρ2 − 1

4
f

)]
= −sTN [ f ]. (55)

The back-transformation reads

f (ρ) = T −1
N [φN ] =

∞∫
0

φN (s)
1

π
Im M(s) ds, (56)

where the coefficient M(s) is a function of s such that for Im(s) > 0, v(ρ, s) + M(s)u(ρ, s) ∈ L2(ρ0,∞) as a
function of ρ. The space L2(ρ0,∞) contains all functions f (ρ) defined on (ρ0,∞) with

∫∞
ρ0

| f (ρ)|2 dρ < ∞.
Here, the function v equals D2. To fulfill this requirement, we study the asymptotic behaviour of D1 and D2 (see
formulae (10.4.60) and (10.4.64) in Abramowitz and Stegun [35])

Ai(z) ∼ π−1/2(−z)−1/4 sin(ζ − π/4), ζ = 2
3 (−z)3/2, z → ∞, (57)

Bi(z) ∼ π−1/2(−z)−1/4 cos(ζ − π/4), ζ = 2
3 (−z)3/2, z → ∞. (58)

For Im(s) > 0, we have

z ∼ −ρs1/3, ρ → ∞, (59)

ζ = 2

3
(−z)3/2 ∼ 2

3
ρ3/2s1/2 = 2

3
ρ3/2(a + ib), b > 0,

and so

e−iζ ∼ e− 2
3 ρ3/2(ia−b) = e− 2

3 ρ3/2aie
2
3 ρ3/2b → ∞, ρ → ∞. (60)
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This means that the coefficient for e−iζ in the asymptotic expansion of u should be equal to zero, because the
function e−iζ(ρ) /∈ L2(ρ0,∞). Using (57) and (58), we find

Ai(z) ∼ π−1/2(ρs1/3)−1/4
(−e−iπ/4

2i

)
e−iζ

= π−1/2(ρs1/3)−1/4
(

e−iπ/4

2

)
ie−iζ ≡ A(z∞)e−iζ , ρ → ∞,

(61)

Bi(z) ∼ π−1/2(ρs1/3)−1/4
(

e−iπ/4

2

)
e−iζ ≡ B(z∞)e−iζ , ρ → ∞.

That means that

v + Mu ∼
{
−πs−1/3(A(z∞)Bi(z0) − B(z∞)Ai(z0)) + M

{
π(A(z∞)Bi ′(z0) − B(z∞)Ai ′(z0)) (62)

+α/β
(
−πs−1/3

)
(A(z∞)Bi(z0) − B(z∞)Ai(z0))

}}
e−iζ , ρ → ∞.

To fulfill the requirement for Im(s) > 0, v + Mu ∈ L2(ρ0,∞) we need that the factor for e−iζ equals zero, and
so, by the fact that A(z∞)/B(z∞) = i,

M(s) =
[
πs−1/3(A(z∞)Bi(z0) − B(z∞)Ai(z0))

]/
[
π(A(z∞)Bi ′(z0) − B(z∞)Ai ′(z0)) + α/β

(
−πs−1/3(A(z∞)Bi(z0) − B(z∞)Ai(z0))

)]

= s−1/3(iBi(z0) − Ai(z0))

(iBi ′(z0) − Ai ′(z0)) + α/β
(−s−1/3(iBi(z0) − Ai(z0))

)
= − β(Ai(z0) − iBi(z0))

αAi(z0) − βs1/3 Ai ′(z0) − i
(
αBi(z0) − βs1/3 Bi ′(z0)

)
= −β(Ai(z0) − iBi(z0))

A0(z0) − iB0(z0)
. (63)

See (6) for the definition of A0(z0) and B0(z0). Then

Im M(s) = Im {−β (Ai(z0) − iBi(z0)) (A0(z0) + iB0(z0))}
A2

0(z0) + B2
0 (z0)

= −β Ai(z0)B0(z0) + βBi(z0)A0(z0)

A2
0(z0) + B2

0 (z0)

= −β Ai(z0)
(
αBi(z0) − βs1/3 Bi ′(z0)

)
A2

0(z0) + B2
0 (z0)

+ βBi(z0)
(
αAi(z0) − βs1/3 Ai ′(z0)

)
A2

0(z0) + B2
0 (z0)

= β2s1/3/π

A2
0(z0) + B2

0 (z0)
, (64)

so that

f (ρ) = T −1
N [φN ] =

∞∫
0

φN (s)u(ρ, s)
β2s1/3

π2
(

A2
0(z0) + B2

0 (z0)
) ds. (65)

If we compare (54) with (12), we see that (since u(ρ, s) = 1/β {βD1(ρ, s) + αD2(ρ, s)})
TN [ f ] = 1

β
T [ f ], and so φN (s) = 1

β
φ(s), (66)

and so

f (ρ) = T −1[φ] = 1

β
T −1

N [φ] = 1

β

∞∫
0

φ(s)
D1(ρ, s) + α/βD2(ρ, s)

π2
(

A2
0(z0) + B2

0 (z0)
) β2s1/3 ds. (67)

This equals Eq. 14.
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Appendix B: Hankel transform of e−ρ/2 and ρe−ρ/2

The evaluation of the integral T
[
e−ρ/2

]
runs as follows.

T
[
e−ρ/2

]
=

∞∫
ρ0

ρ′e−ρ′/2 {βD1(ρ, s) + αD2(ρ, s)} dρ′ (68)

=
∞∫

ρ0

ρ′e−ρ′/2(−πs−1/3)
{

Ai(z′)B0(z0) − Bi(z′)A0(z0)
}

dρ′

=
−∞∫
z0

( 1
4 s−1 − z′s−1/3)e−1/(8s)+1/(2s1/3)z′

πs−2/3 {Ai(z′)B0(z0) − Bi(z′)A0(z0)
}

dz′

= πs−2/3e−1/(8s)
{

1
4 s−1 J0 − s−1/3 J1

}
,

with, i = 0, 1, 2,

Ji =
−∞∫
z0

(z′)i eθ z′ {
Ai(z′)B0(z0) − Bi(z′)A0(z0)

}
dz′, θ = 1

2 s−1/3. (69)

Integration by parts gives for J1

J1 = eθ z0
(α − 1

2β)

π
+ θ2 J0. (70)

Insertion of (70) into (68) gives

T
[
e−ρ/2

]
= −s−1e−ρ0/2(α − 1

2β). (71)

Along the same lines it is possible to derive

T
[
ρe−ρ/2

]
= πs−2/3e−1/(8s)

{
1
16 s−2 J0 − 1

2 s−4/3 J1 + s−2/3 J2

}
. (72)

Integration by parts gives for J2

J2 = (z0 + 1
4 s−2/3)eθ z0

(α − 1
2β)

π
− β

π
s1/3eθ z0 + 2θ J0 + θ4 J0, (73)

where we used (70). Since we need to know T [ρe−ρ/2] only if α = 1
2β, we find by substituting (70) and (73) into

(72)

T
[
ρe−ρ/2

]
= −s−1e−ρ0/2β + πs−2/3e−1/(8s)s−1 J0. (74)

Evaluation of T
[

1
ρ

s−1e−ρ/2
]

is easy and gives

T

[
1

ρ
s−1e−ρ/2

]
= πs−2/3e−1/(8s)s−1 J0. (75)

This means that

T

[
ρe−ρ/2 − 1

ρ
s−1e−ρ/2

]
= −s−1e−ρ0/2β. (76)
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