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Abstract Phreatophytes are important to the overall hydrologic water budget, providing pathways from the uptake
of groundwater with its nutrients and chemicals to subsequent discharge to the root zone through hydraulic lift and
to the atmosphere through evapotranspiration. An analytic mathematical model is developed to model groundwater
uptake by individual plants and fields of plant communities and the regional hydrology of communities of fields.
This model incorporates new plant functions developed through aid of Wirtinger calculus. Existing methodology for
area-sinks is extended to fields of phreatophytes, and Bell polynomials are employed to extend existing numerical
methods to calculate regional coefficients for area-sinks. This model is used to develop capture zones for individ-
ual phreatophytes and it is shown that the functional form of groundwater uptake impacts capture zone topology,
with groundwater being extracted from greater depths when root water uptake is focused about a taproot. While
individual plants siphon groundwater from near the phreatic surface, it is shown that communities of phreatophytes
may tap groundwater from greater depths and lateral extent as capture zones pass beneath those of upgradient
phreatophytes. Thus, biogeochemical pathways moving chemical inputs from aquifer to ecosystems are influenced
by both the distribution of groundwater root uptake and the proximity of neighboring phreatophytes. This provides
a computational platform to guide hypothesis testing and field instrumentation and interpretation of their data and
to understand the function of phreatophytes in water and nutrient uptake across plant to regional scales.

Keywords Analytic continuation · Analytic-element method · Bell polynomial · Capture zone · Cauchy integral ·
Phytoremediation

1 Introduction

“Water, the bloodstream of the biosphere, determines the sustainability of living systems” [1]. Groundwater extrac-
tion using modern mechanized hydraulics over the past 50 years and their implementation in developing nations over
the past 20 years [2], provides society with a water supply that is reliable through drought but often unsustainable
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through natural recharge [3]. This motivates studies of groundwater/surface water interactions to forecast future
outcomes and inform public authority and groundwater policy innovations [4].

Phreatophytes, plants that directly tap into groundwater resources, are important to the overall water budget in the
hydrologic cycle. Their presence is readily observed in diurnal water table fluctuations [5], whereby hydraulic lift
from groundwater influences not only the distribution and abundance of the species which use it but also the entire
hydrologic balance of the community [6]. Evapotranspiration from phreatophytes has been estimated to represent
most of the 20–50% of total long-term water budget depletions in large river systems that are ascribed to natural
vegetation [7], and survival of some species in arid systems has been shown to depend completely on a plant’s
ability to tap water from permanent water tables [8].

Phreatophytes provide a myriad of ecosystems goods and services. At a global scale, phreatophytes redistribute
soil water by drawing water upward and depositing it in drier surface layers, which significantly increases photo-
synthesis and evapotranspiration, and establishes a direct link between plant-root functioning and global climate
[9]. Within riparian corridors, phreatophytes impact flood intensity and channelization of stream networks, and
provide wildlife habitat and migratory routes for birds [10,11]. While phreatophytes do not directly tap surface
water [12], they may intercept groundwater and change the dynamics of groundwater-surface water interactions
with consequences to biomass production and species diversity [13]. Phreatophytes impact biogeochemical cycles
and initiate a pathway of chemical inputs from aquifers to ecosystems that typically do not exist in groundwater
recharge zones [14].

There is a clear need for investigative tools to understand and forecast ecosystem changes induced by human
activity, climate change, and changes in species composition. This premise is supported by many recent vision
papers on this topic, for example [15–19]. This investigation contributes to this endeavor by developing a new
analytic model of groundwater flow in the presence of phreatophytes that is applicable at plant, field and regional
scales. This model is used to examine the cumulative impact of diurnal water uptake by phreatophytes and identify
source areas for individual plants and plant communities.

2 Ecohydrology conceptual model

In [8] a comprehensive study of plant rooting depths across species and environments was conducted. While it
is known that water uptake is focused within the root zone in the soil column [6], the mathematical form of the
spatial distribution of deep-root distributions near groundwater and groundwater uptake is not known [20]. In fact,
the distribution of roots that tap groundwater vary significantly in authors’ pictorial depictions from concentrated
within the tree canopy [20] to the size of the canopy or larger [6,13,14,21].

A set of mathematically plausible and tractable forms for groundwater uptake by phreatophytes is adopted that
satisfy the following assumptions:

1. Groundwater uptake varies radially (in the r -direction) with the largest uptake occurring at r = 0.
2. Groundwater uptake is focused within the area of the canopy.
3. The net discharge of uptake by a phreatophyte is steady and of magnitude Q

p
.

This steady model and its variables illustrated in Fig. 1a and Table 1 will be used to investigate long-term water-
balance and sources/destinations of water.

Three different functions that satisfy these assumptions will be used to develop understanding of the impact of
the functional form on water uptake. The first function is given by a uniform root uptake of R

p u (negative recharge)

over a radius r
p
:

R =
{−R

p u (r ≤ r
p
)

0 (r > r
p
)
. (1a)

123



Analytic solution for groundwater uptake by phreatophytes 87

a b
Fig. 1 Variables used to delineate groundwater flow associated with a phreatophyte, and three functional approximations for the specific
discharge of groundwater uptake by a phreatophyte presented in dimensionless form

The second function is given by the exponential expression associated with the normal probability density function,

R = −R
p ee

−a
p

r2

, (1b)

where R
p e and a

p
are coefficients. The third function provides flexibility in distributing the discharge Q

p
through

variation of the power n,

R = −R
p n

1(
b
p nr2 + 1

)n , (1c)

where R
p n and b

p n are coefficients. It may be shown that in the limit as n → ∞ this power series form reproduces

the exponential form with R
p e = R

p n and b
p n = a

p
/n, using er = lim

n→∞( r
n + 1)n [22].

The coefficients in these equations are determined by explicitly setting the net discharge of plant uptake from
groundwater equal to Q

p
:

Q
p

= −
∞∫

0

2πr R dr. (2)

A second condition is required to determine a
p

and b
p n for the exponential and power forms. Here, the condition that

a vast majority (99%) of root uptake occurs within a radius r
p

gives

0.99Q
p

= −
r
p∫

0

2πr R dr. (3)

These conditions lead to expressions for the coefficients in terms of Q
p

and r
p
:

R
p u =

Q
p

πr
p

2 , (4a)
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Table 1 Notation Symbol Dimensions Variable

Bk j Bell polynomial coefficients
Cnj – Far-field correction coefficients
Fnj – Far-field expansion coefficients
Q L3/T Discharge
r L Distance in radial direction
R L/T Recharge
−Re L/T Groundwater uptake for exponential distribution
−Rn L/T Groundwater uptake for power distribution
−Ru L/T Groundwater uptake for uniform distribution
s L Distance in streamwise direction of flow
Tm Chebyshev polynomial of the first kind
Tmn Chebyshev coefficients
w = vx + ivy L2/T Discharge per width in physical coordinates
W = VX + iVY – Discharge per width in local coordinates
x , y L Horizontal coordinate axes
x3 L Vertical coordinate axis
z = x + iy L Location in physical coordinates
Z = X + iY – Location in local coordinates
α – Orientation of a line element
λ L 1

2 length of a line element
µ L3/T Line-doublet strength
ν L3/T Line-dipole strength
φ L Head (groundwater elevation)
� L3/T Potential function
� L3/T Stream function
� = � + i� L3/T Complex potential
(·)

f
Variable (·) for field number f

(·)
l

Variable (·) for line number l

(·)
p

Variable (·) for phreatophyte number p

R
p e =

Q
p

log(100)

πr
p

2 , a
p

= log(100)

r
p

2 , (4b)

R
p n =

Q
p
(n − 1)

(
100

1
n−1 − 1

)
πr

p
2 , b

p n = 100
1

n−1 − 1

r
p

2 . (4c)

These functional forms for groundwater uptake are illustrated in Fig. 1b.

3 Plant-scale groundwater model

Groundwater flow is assumed to satisfy Darcy’s Law, conservation of mass and the Dupuit Assumption, and may
be represented using mathematical functions that satisfy the Laplace equation for steady flow without recharge
[23, Eqs. 17.8, 19.16]

∂2�

∂x2 + ∂2�

∂y2 = 0, (5)

where x and y are horizontal coordinate axes, the complex potential � is a function of z = x + iy and i = √−1.
This function may be separated into real and imaginary parts
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Analytic solution for groundwater uptake by phreatophytes 89

�(z) = �(z) + i�(z), (6)

where the groundwater flow is directed towards −∇�, the direction of maximal rate of decrease in the potential �,
and tangent to streamlines of constant Lagrange stream function �. The potential is related to groundwater head,
φ, [24]

� =

⎧⎪⎨
⎪⎩

1

2
k(φ − B)2 (φ − B) < D

k D(φ − B) − 1

2
k D2 (φ − B) ≥ D

, (7)

where k is the hydraulic conductivity, B is the elevation of the aquifer base, and D is the thickness of the aquifer.
The discharge per width, with components vx and vy , may be obtained from the complex conjugate of the derivative
of � with respect to z [25]

w(z) = vx (z) + ivy(z) = −d�

dz
. (8)

Note that w is defined as the complex conjugate of common notation [e.g. see w = vx − ivy in [23, Sect. 24]]. This
convention is adopted here so the kernel functions of the line elements presented later reproduce those in [25].

Wirtinger calculus [26,27] extends two-dimensional complex functions to divergent vector fields (i.e., recharge
or phreatophyte groundwater uptake) by expressing �(z, z) as functions of both z and its complex conjugate, z.
This real potential function satisfies [28]

∂2�

∂x2 + ∂2�

∂y2 = 4
∂2�

∂z∂z
= −2

∂w

∂z
= −R(z, z), (9)

where R is the divergence of the vector field, and the vector field is given by

w(z, z) = vx (z, z) + ivy(z, z) = −2
∂�

∂z
= −2

∂�

∂z
. (10)

This notation is consistent with the convention for w in (8) for divergent-free, irrotational flow. The vector field
and potential may be obtained for a vector field with given divergence (recharge) using integral forms of these
equations:

w(z, z) = 1

2

∫
Rdz + f (z) (11)

and

�(z, z) = −1

2

∫
wdz + g(z), (12)

where f and g are functions of z̄. Note that R must be real for the flow field to be irrotational and representable by
a scalar potential as per Helmholtz Theorem [R in the groundwater root-uptake functions (1) is real]. Due to the
linearity of the partial differential equations (5) and (9), the potential functions in (6) and (12) may be superimposed
to provide the groundwater elevation using (7) for functions with divergence (e.g. phreatophytes) and those without
(e.g. regional uniform flow).

The discharge vector associated with a phreatophyte located at z
p

is obtained through the integration process in

(11). For a uniform groundwater uptake, this gives

ph
w =

⎧⎪⎪⎨
⎪⎪⎩

1

2

∫
−R

p u dz + f1(z̄) (r ≤ r
p
)

1

2

∫
0 dz + f2(z̄) (r > r

p
)

. (13)
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Integrating and choosing f1 such that w = 0 at z = z
p

and f2 such that w is continuous across |z − z
p
| = r

p
gives

ph
w =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
R
p u

2

(
z − z

p

)
(r ≤ r

p
)

−
R
p ur

p

2

2

1

z − z
p

(r > r
p
)

(14a)

with f1(z) = R
p uz

p
/2, and f2(z) = −R

p ur
p

2/[2(z − z
p
)]. Integrating for the exponential distribution of groundwater

uptake and setting w = 0 at the center of the phreatophyte gives

ph
w =

R
p e

2a
p

1

z − z
p

(
e
−a

p
r2

− 1

)
(14b)

with f (z) = −R
p e/[2a

p
(z − z

p
)]. Likewise, the power distribution gives

ph
w =

R
p n

2b
p n(n − 1)

1

z − z
p

⎡
⎢⎢⎢⎣ 1(

b
p nr2 + 1

)n−1 − 1

⎤
⎥⎥⎥⎦ (14c)

with f (z) = −R
p n/[2b

p n(n − 1)(z − z
p
)] using the integral (12.10b) in [29].

The potential for a phreatophyte is obtained by integrating the discharge vector, which gives for a uniform
groundwater uptake:

ph

� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1

2

∫
−

R
p u

2
z − z

p
dz + g1(z) (r ≤ r

p
)

−1

2

∫
−

R
p ur

p

2

2

1

z − z
p

dz + g2(z) (r > r
p
)

. (15)

Integrating and choosing g1 and g2 such that � = 0 at |z − z
p
| = r

p
gives

ph

� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R
p u

4

(
r2 − r

p

2
)

(r ≤ r
p
)

R
p ur

p

2

2
log

r

r
p

(r > r
p
)

(16a)

with g1(z) = −(R
p u/4)[z

p
(z − z

p
) + r

p
2], and g2(z) = (R

p ur
p

2/4) log[(z − z
p
)/r

p
2]. The exponential distribution of

groundwater uptake gives

ph

� =
R
p e

4a
p

⎡
⎣E1(ap r2) − E1(ap r

p

2) + 2 log
r

r
p

⎤
⎦, (16b)

on using the Exponential integral, [22,29]

E1(x) =
∞∫

x

e−t

t
dt

with g(z) = [R
p e/(4a

p
)][−E1(ap r

p
2) + log[(z − z

p
)/r

p
2]. Likewise, the power series distribution gives
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ph

� =
R
p n

4b
p n(n − 1)

⎧⎨
⎩log

b
p nr2 + 1

b
p nr

p

2 + 1
−

n−2∑
ν=1

1

ν

⎡
⎣ 1

(b
p nr2 + 1)ν

− 1

(b
p nr

p

2 + 1)ν

⎤
⎦
⎫⎬
⎭ , (16c)

on using an equation adapted from (12.9a)in [29],∫
dx

x (cx + 1)n−1 = − log
cx + 1

x
+

n−2∑
ν=1

1

ν (cx + 1)ν
(n ≥ 2) (17)

with g(z) = −{R
p n/[4b

p n(n − 1)]}{log(b
p nr

p
2 + 1) −∑n−2

ν=1 1/[ν(b
p nr

p
2 + 1)ν]}.

The potential and discharge vector for an isolated phreatophyte is illustrated in Fig. 2. Each plant has the far-field

behavior in the limit as r → ∞ of
ph

� = Q
p
/(2π) log r , which is a point-sink with discharge Q

p
located at the center

of the plant. In the near-field, the drawdown beneath the center of the plant is smallest for the uniform distribution
and largest for the power distribution where uptake is focused about r = 0.

4 Field-scale model

A field-scale model of phyreatophytic groundwater uptake is obtained by summing the contributions of all plants
within a field. The study region, shown in Fig. 3, is located near the Larned test site in [5] with site characteristics
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Fig. 2 The functional forms used to approximate the potential and discharge associated with groundwater uptake by a phreatophyte
presented in dimensionless form, and contours of groundwater elevation (contoured at consistent intervals) and vectors pointing in the
direction of groundwater flow and scaled by its magnitude
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described there. The conceptual model of this region (Fig. 3b) was obtained by digitizing fields and plants, and
contains over 1,000 plants with radii r

p
that ranges between 2.4 and 12.7 m with average radius of 5.0 m. Note

that additional features may modify groundwater/surface water interactions (e.g. sloping land surface/roadways,
ephemeral streams and surface water) that have not been incorporated in this conceptual model. Such features could
be incorporated with the phreatophytes presented here using existing analytic elements, for example, using the line
and area elements implemented in NAGROM, the NAtional GROundwater Model of The Netherlands [30].

The potential and vector field are obtained by summing the contributions over all phreatophytes within a field,
giving

�
f

i (z) =

⎧⎪⎨
⎪⎩
∑
p

ph

�(z, z, z
p
, r

p
, Q

p
) z ∈ D

f

0 z /∈ D
f

, (18)

w
f

i (z) =

⎧⎪⎨
⎪⎩
∑
p

ph
w(z, z, z

p
, r

p
, Q

p
) z ∈ D

f

0 z /∈ D
f

, (19)

Fig. 3 Phreatophytes (cottonwoods) and fields along approximately 1km of the Arkansas River corridor in central Kansas, USA. The
northernmost field in the center of the conceptual model (with thicker border) is used to illustrate line elements in subsequent diagrams
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Fig. 4 The groundwater flow associated with phreatophytes that lie in a field, and the neighborhoods used to formulate mathematical
expressions associated with a field and the line elements that encircle it

where the function
ph

� is given by (16) and
ph
w is given by (14). Such superposition is possible due to linearity of the

governing partial differential equations. These functions are illustrated in Fig. 4a for the north field in Fig. 3b.
While these potential and discharge functions may be computed at any point z, they are only evaluated at locations

within the field in this figure as per [23, Sect. 37]. Outside the field, a simpler mathematical form is obtained by
extending the concept of an area-sink to a field of phreatophytes, a methodology that has previously been applied
to groundwater uptake with functional forms of polynomials [23, Sect. 37] and multi-quadrics [31]. An area-sink
utilizes line elements of Cauchy integrals along the boundary of the field to satisfy the conditions of continuity of
head and continuity of flow.

4.1 Mathematical expressions for line elements

The line elements that lie at the boundary of the field in Fig. 4a are illustrated in Fig. 4b, where 5 straight lines
connect the points z

l
. This figure shows a circle about each line element that delineates a near-field and far-field for

the line element, as well as a circle centered at z
f

with radius r
f

that encompasses the near field of all line elements.

As will be shown, the mathematical forms for a field are very numerically efficient outside this circle.
To simplify mathematical expressions, each straight line element (e.g. between end points z

l
and z

l+1
) is translated,

rotated and scaled to a standardized Z -plane, with end points at Z = −1 and Z = 1, using [23, p. 284]

Z
l
(z) =

⎛
⎝z −

z
l+1

+ z
l

2

⎞
⎠ 2

z
l+1

− z
l

. (20)

Cauchy integrals will be placed along each line, which represent a line-doublet (double layer) that generates a jump
in potential and a line-dipole that generates a jump in the normal component of flow. The strength of a line-doublet,
µ, and line-dipole, ν , is approximated using Chebyshev polynomials, following [32],
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µ(Z) =
M∑

m=0

µm Tm(Z), ν(Z) =
M∑

m=0

νm Tm(Z), (21)

where the mth Chebyshev polynomials of the first kind are given by [22]

T0(Z) = 1,

T1(Z) = Z , (22)

Tm(Z) = 2Z Tm−1(Z) − Tm−2(Z) (m ≥ 2).

It is convenient to gather the Chebyshev coefficients in the matrix Tmn ,

µ(Z) =
M∑

m=0

µm

M∑
n=0

Tmn Zn, ν(Z) =
M∑

m=0

νm

M∑
n=0

Tmn Zn, (23)

where

Tmn =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . . . . . . . 0
0 1 0 . . . . . . . . 0

−1 0 2 0 . . . . . . 0
0 −3 0 4 0 . . . . 0
1 0 −8 0 8 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (24)

The complex potential for the set of line-doublets and line-dipoles along the boundary of a field is obtained by
summing the contributions over all L line elements:

�(z) =
L∑

l=1

{
M∑

m=0

µ
l

m

m∑
n=0

Tmn
ldb
�n

[
Z
l

(z)

]
+

M∑
m=0

ν
l

m

m∑
n=0

Tmn

ldp

�n

[
Z
l

(z)

]}
, (25)

where the kernel functions
ldb
�n and

ldp

�n are a generalization of [23, Sect. 38] and are fully derived in [25] and take
on the following forms in the near-field and far-field of a line:

ldb
�n = −i

ldp

�n = i

2π

⎛
⎜⎝Zn log

Z + 1

Z − 1
−

int n+1
2∑

j=1

2

2 j − 1
Zn+1−2 j

⎞
⎟⎠ = i

2π

∞∑
j=int n+3

2

2

2 j − 1
Zn+1−2 j (|Z | > 1) (26)

The vector field for the line-doublets and line-dipoles along a field is given by

w (z) =
L∑

l=1

⎧⎨
⎩

M∑
m=0

µ
l

m

m∑
n=0

Tmn
ldb
W n

[
Z
l

(z)

]
2

z
l+1

− z
l

+
M∑

m=0

ν
l

m

m∑
n=0

Tmn

ldp

W n

[
Z
l

(z)

]
2

z
l+1

− z
l

⎫⎬
⎭ , (27)

where the derivatives of the kernel functions in the near-field an far-field are [25]:

ldb
W n = i

ldp

W n = i

2π

⎡
⎣nZn−1 log

Z + 1

Z − 1
+ (−1)n

Z + 1
− 1

Z − 1
− n

int n
2∑

j=1

2

2 j − 1
Zn−2 j

⎤
⎦

= i

2π

∞∑
j=int n+3

2

2(n + 1 − 2 j)

2 j − 1
Zn−2 j (|Z | > 1). (28)

4.2 The strength of line elements

The strengths of the line-doublets and line-dipoles are adjusted to satisfy continuity of head and continuity of flow
conditions [23, Sect. 37]. The strength of a line-doublet is equal to the jump in potential across the element

µ(X) = 
�(X), (29)
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where X = ReZ . The coefficients µ
l

m are obtained by satisfying this condition at a set of K control points uniformly

distributed along the lth line-doublet located at

Xk = −1 + 2k − 1

K
, z

l
k = Xk

z
l+1

− z
l

2
+

z
l+1

+ z
l

2
(k = 1, K ). (30)

This leads to a system of K equations for the M + 1 coefficients

M∑
m=0

(
M∑

n=0

Xk
nTnm

)
µ
l

m = ±�
f

i (z
l
k) (k = 1, K ), (31)

where the ± sign is positive for line-doublets that encircle the field in the clockwise direction. Results are found in
Fig. 5a, where M = 10, K = 4(M + 1) and the system of equations is satisfied in a least-squares sense [32].

The strength of a line-dipole is related to the jump in stream function and the normal component of the vector
field across the element by

ν(X) = 
�(X),
1

λ

dν

dX
(X) = 
vn(X), (32)

where an element is of length 2λ and orientation α, which may be written for the lth line element as

λ
l

=

∣∣∣∣ z
l+1

− z
l

∣∣∣∣
2

, α
l

= arg

(
z

l+1
− z

l

)
. (33)

This leads to a system of K equations for M coefficients

1

λ
l

M∑
m=1

(
M∑

n=1

nXk
n−1Tnm

)
ν
l

m = ±Im

[
w
f

i (z
l
k)e

−iα
l

]
(k = 1, K ). (34)

Following [31], the coefficients ν
l

0 are chosen such that 
� is continuous across adjacent line elements. Setting


� = 0 at z
L+1

leads to

ν
l

0 =

⎧⎪⎪⎨
⎪⎪⎩

0 −
M∑

m=1
ν
l

m

m∑
n=0

Tmn (l = L),

M∑
m=0

ν
l+1

m

m∑
n=0

Tmn(−1)n −
M∑

m=1
ν
l

m

m∑
n=0

Tmn (l �=L).

(35)
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Fig. 5 Complex potential and vector field for an area-sink

123



96 D. R. Steward, T. S. Ahring

Following [23, Sect. 37], a point-sink of strength Q
f

is placed at the first point z
1

� =
Q
f

2π
log(z − z

1
), (36)

where Q
f

is equal to the net jump in stream function created by the line-dipoles

Q
f

=
M∑

m=0

ν
1

m

m∑
n=0

Tmn(−1)n . (37)

Figure 5b illustrates the vector field generated by the line-dipoles and point-sink.

4.3 Numerically efficient computation of � and w

The complex potential for the phreatophytes within a field is obtained by summing the complex potentials for all
plants within the field (18) for the line elements along the fields (25) and for a point-sink (36). This is illustrated in
Fig. 5c.

The complex potential for lth line element contains nested summations in the near-field of the line

�
l
(z) = 1

2π

M∑
m=0

(
iµ

l
m − ν

l
m

)
m∑

n=0

Tmn

⎛
⎜⎝
[

Z
l
(z)

]n

log
Z
l
(z) + 1

Z
l
(z) − 1

−
int n+1

2∑
j=1

2

2 j − 1

[
Z
l
(z)

]n+1−2 j

⎞
⎟⎠ (38)

and in the far-field outside r
l

> 1

�
l
(z) = 1

2π

M∑
m=0

(
iµ

l
m − ν

l
m

)
M∑

n=0

Tmn

int n+3
2 + J

2 −1∑
j=int n+3

2

2

2 j − 1

[
Z
l

(z)

]n+1−2 j

(|Z | > r
l
), (39)

where the upper limit of the far-field expansion is chosen such that the truncated series contains numerically signifi-
cant terms. These equations may be rearranged for elements with known strength coefficients to provide numerically
tractable forms.

It is convenient to express the innermost summation in matrix form, which gives the following for the near-field:

int n+1
2∑

j=1

2

2 j − 1
Zn+1−2 j =

M−1∑
j=0

Cnj

[
Z
l

(z)

]− j

, (40)

where

Cnj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . . . . . . . . 0
2
1 0 . . . . . . . . . . . 0
0 2

1 0 . . . . . . . . . 0
2
3 0 2

1 0 . . . . . . 0
0 2

3 0 2
1 0 . . . . 0

2
5 0 2

3 0 2
1 0 . . . 0

. . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

This gives

�
l
(z) =

{
M∑

n=0
a
l

n

[
Z
l

(z)

]n}
log

Z
l
(z)+1

Z
l
(z)−1 −

M−1∑
j=0

b
l

j

[
Z
l

(z)

] j

,

a
l

n = 1
2π

M∑
m=0

(
iµ

l
m − ν

l
m

)
Tmn, b

l
j = 1

2π

M∑
m=0

(
iµ

l
m − ν

l
m

)
M∑

n=0
TmnCnj .

(42)
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Likewise, the summation in the far-field may be expressed in matrix form as

int n+3
2 + J

2 −1∑
j=int n+3

2

2

2 j − 1

[
Z
l

(z)

]n+1−2 j

=
J∑

j = 1

Fnj

[
Z
l

(z)

]− j

, (43)

where

Fnj =

⎡
⎢⎢⎢⎢⎢⎣

2 0 2
3 0 2

5 0 . . . 2
j 0 . . .

0 2
3 0 2

5 0 2
7 . . . 0 2

j+1 . . .
2
3 0 2

5 0 2
7 0 . . . 2

j+2 0 . . .

0 2
5 0 2

7 0 2
9 . . . 0 2

j+3 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦ . (44)

This gives

�
l
(z) =

J∑
j=1

c
l

j

[
Z
l

(z)

]− j

, c
l

j = 1

2π

M∑
m=0

(
iµ

l
m − ν

l
m

)
M∑

n=0

TmnFnj (|Z | > r
l
). (45)

The discharge vector is obtained from the gradient of these series. Note that the far-field series was truncated at
J = 30 with r

l
= 1.1 for each line in Fig. 5.

5 Regional-scale model

The complex potential for the family of analytic elements associated with a field has the following form in the
far-field:

�(z) =
Q
f

2π
log(z − z

1
) +

L∑
l=1

J∑
j=1

c
l

j

⎛
⎝ z

l+1
− z

l

2

⎞
⎠

j ⎛
⎝ 1

z − z
l
c

⎞
⎠

j

, (46)

where z
l
c = ( z

l+1
+ z

l
)/2 is the center of each line segment. This expansion is valid in a neighborhood |z − z

f
| > r

f
,

where

r
f

= max
l

(∣∣∣∣zf − z
l
c

∣∣∣∣+ r
l

)
(47)

as illustrated in Fig. 4b. Following the superblock approach [33], these terms may be gathered into a point-sink and
series expansion about z

f

�
f

(z) =
Q
f

2π
log(z − z

f
) +

K∑
k=1

d
f

k

[
Z
f

(z)

]−k

, Z
f

(z) =
z − z

f

r
f

, (48)

where K is chosen to contain numerically significant terms in the Laurent series. Note that the point z
f

with the

smallest radius r
f

may be found iteratively by stepping a short distance towards the center of the element l that

maximizes this radius.
It is shown next how to explicitly compute the coefficients d

f
k in the far-field expansion, extending the numerical

methods to evaluate coefficients presented by [33]. The logarithm term for the point-sink may be written as

log(z − z
1
) = log(z − z

f
) + log

⎛
⎝1 −

z
1

− z
f

r
f

r
f

z − z
f

⎞
⎠ (49)
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and the last term is expanded as a Taylor series [22] to give

Q
f

2π
log(z − z

1
) =

Q
f

2π
log(z − z

f
) −

Q
f

2π

∞∑
k=1

1

k

[
Z
f
(z

1
)

]k [
Z
f

(z)

]−k

. (50)

The term associated with the j th power for line elements may be written as⎛
⎝ 1

z − z
l
c

⎞
⎠

j

=
⎡
⎣1

r
f

1

Z
f
(z) − Z

f
(z

l
c)

⎤
⎦

j

= 1

r
f

j

⎧⎪⎨
⎪⎩

∞∑
i=1

[
Z
f
(z

l
c)

]i−1
⎡
⎣ 1

Z
f
(z)

⎤
⎦

i
⎫⎪⎬
⎪⎭

j

(51)

using [34, p. 210]. Bell polynomials [35] provide a means to gather common terms for powers of series. Following
[36, p. 133],(

I∑
i=1

ai

i ! xi

) j

= j !
I j∑

k= j

1

k!Bk j (ai )xk ( j = 0, 1, . . .). (52)

The values of the coefficients Bk j (ai ) may be computed recursively for specified values of ai following [25] using

B0 j =
{

1 ( j = 0)

0 ( j > 0)
(53a)

and, for k ≥ 1

Bk j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ( j = 0)

ak ( j = 1)

1

j

k−1∑
q= j−1

(
k

q

)
ak−qBq( j−1) (1 < j < k)

(a1)
k ( j = k)

0 ( j > k)

. (53b)

In matrix form, this gives

Bk j (a1, a2, . . .) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 a1 0 0 0 0
0 a2 (a1)

2 0 0 0
0 a3 3a1a2 (a1)

3 0 0
0 a4 4a1a3 + 3a2

2 6a1
2a2 (a1)

4 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ak . . . . . . . . . . . . . . . . . . . . . . . . . (a1)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (54)

Application to the following term for line elements gives⎛
⎝ 1

z − z
l
c

⎞
⎠

j

= j !
r
f

j

I j∑
k= j

1

k!Bk j

{
i !
[

Z
f
(z

l
c)

]i−1
}⎡
⎣ 1

Z
f
(z)

⎤
⎦

k

. (55)

Combining the far-field expansion for the family of all line elements and the point-sink gives the coefficients in the
series expansion for a field

d
f

k = −
Q
f

2π

1

k

[
Z
f
(z

1
)

]k

+
L∑

l=1

J∑
j=1

c
l

j

⎛
⎝ z

l+1
− z

l

2

⎞
⎠

j

j !
r
f

j

1

k!Bk j

{
i !
[

Z
f
(z

l
c)

]i−1
}

. (56)

The number of terms used in the far-field expansion for the family of elements in (48) is K = 20 in the next section.
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6 Hydrologic paths from recharge to phreatophyte uptake

This section investigates the sources of water for phreatophytes and communities of phreatophytes. Pathlines are
obtained by tracing water particles from the groundwater table (phreatic surface) beneath the root zone of a plant
backwards in time. A particle tracking approach is employed to identify three-dimensional points (x , y, x3) that
lie along these pathlines. The horizontal components, z = x + iy, are obtained using the 2nd-order Runge-Kutta
method [23, Eq. 26.12] to solve

dz

ds
= w

|w| , (57a)

where s is the horizontal distance along the pathline. The groundwater elevation along a pathline, x3, is obtained
for unconfined flow from [23, Eq. 27.25],

d

ds

(
x3 − B

φ − B

)
= −

(
x3 − B

φ − B

)
R

|w| (57b)

using finite differences. Pathlines terminate in the backwards direction with respect to time when their elevation,
x3, intercept the phreatic surface where x3 = φ.

Published values for yearly evapotranspiration by cottonwoods are summarized in Table 2. Hydraulic lift of
groundwater has been estimated to account for nearly 25% of the total daily water use of the tree [21], and may
move as much as 30–40% of the water transpired during the day [37]. Near the study region, [5] calculated average
groundwater uptake of 4.2 mm/d in August when plants were maximally uptaking groundwater. For this investiga-
tion, it is assumed that the average annual groundwater root uptake is 40 cm/yr and an ambient background recharge
of R = 5 cm/yr occurs throughout the region.

Groundwater pathlines are constructed in Fig. 6 with endpoints that lie on a circle at the elevation of the phreatic
surface beneath each phreatophyte. Inside this circle, groundwater uptake is greater than the ambient rate of recharge
and pathlines will go downwards when traveling backwards in time; outside the circle, the net recharge and plant
uptake result in pathlines directed upwards for decreasing time. These pathlines lie on the stream surface that forms
the boundary of the capture zone for a phreatophyte in a uniform flow, and is analogous to the three-dimensional
capture zone for a well [40–42].

Mass balance dictates that the horizontal extent at the top of the groundwater is 8πr
p

2 for the uniform distri-

bution in Fig. 6a, since the average groundwater uptake is 8 times larger than the ambient recharge. Thus, the
horizontal extent of the capture zone over which water is captured is 8 times larger than the surface area over which
groundwater uptake occurs. It is observed that the geometry of a capture zone is influenced by the functional form
of groundwater uptake, where groundwater is captured from vertical elevations nearest the phreatic surface for a
uniform distribution (Fig. 6a) and deepest within groundwater for a power distribution (Fig. 6c).

The source of groundwater for a community of phreatophytes is illustrated in Fig. 7 for the study region in Fig. 3.
Pathlines are constructed that end at the center of a set of 10% of the cottonwoods that were randomly selected, but
the same set was used to illustrate the three distributions of groundwater uptake. It is observed that pathlines for
individual phreatophytes travel beneath the capture zones for upgradient plants; when tracing backwards in time
in the negative x-direction, pathlines increase in elevation when under locations with no phreatophytes and travel
deeper into groundwater when under plants with large groundwater uptake.

Table 2 Published water use (average yearly evapotranspiration over the horizontal canopy area) for cottonwood phreatophytes

Species Evapotranspiration (m/yr) Canopy radius (m) Source

Populus deltoides 0.95–1.34 [7]
Populus fremontii 0.48–0.97 12–18 [38]
Populus fremontii 1.2 1.5–1.7 [39]
Populus spp. 1.0–3.3 [11]
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Fig. 6 Capture zones for a single isolated phreatophyte with specified groundwater uptake function, shown in plan (top), section
(middle) and three-dimensional (bottom) views

This illustrates that capture zones may extend for significant upgradient distances and that phreatophytes have the
capacity to siphon groundwater from the upper regions of an aquifer. It is observed that groundwater is removed from
deeper portions of the aquifer as the groundwater-uptake function changes from a uniform distribution (Fig. 7a)
to focus uptake about the taproot of a phreatophyte (Fig. 7b and c). This suggests pathways for phytoremedia-
tion (uptake of nutrients or chemicals), whereby more recent groundwater that overlies older and possibly fossil
groundwater is preferentially withdrawn.

This model employs the Dupuit assumption that head is uniform in the vertical direction [43]. It is known that
aquifer features that do not fully penetrate an aquifer (such as phreatophytes which remove groundwater from the
top of the aquifer at the phreatic surface) may generate a three-dimensional flow that requires more sophisticated
mathematical development in the vicinity of the feature [44, Chap. 4]. A three-dimensional model that is similar
to a phreatophyte with uniform root uptake (as in Fig. 7a) was developed by [45] who examined uniform recharge
over a circular disk. Results indicate that Dupuit predictions underestimate the horizontal width of the capture zone
but approach the three-dimensional results as the size of the circular disk increases. This is consistent with the
findings by [41] who examined withdrawal along a horizontal line at the top of the aquifer and found that withdraw
which is small compared to the discharge of groundwater flowing beneath the line (as is the case for phreatophytes
in the study region) produces three-dimensional streamlines with similar topology to Fig. 6a. Phreatophytes with
withdrawal focused about a taproot (Fig. 7c), approach the limiting case of a three-dimensional point-sink located
at the top of the aquifer. This three-dimensional flow was compared to the Dupuit approximation by [46] who found
that differences in head between the two models become small as the discharge of withdrawn water decreases.
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Fig. 7 The source of groundwater for a community of phreatophyte (shown in plan and section views): pathlines are traced backwards
in time from the center of 10% of randomly selected plants using the same random set for each distribution of groundwater uptake

7 Conclusions

Mathematical expressions were developed for the specific discharge of groundwater uptake by a phreatophyte, −R,
based upon uniform, exponential, and power distributions, (1). Their coefficients, (4), are expressed as a function
of the discharge of groundwater uptake by a plant, Q

p
, and the horizontal radius of the plant canopy, r

p
. Wirtinger

calculus was employed to develop expressions for the groundwater discharge per width, w in (14), and potential,
� in (16). The groundwater-uptake functions are illustrated in Fig. 1, and the potential and discharge are shown
in Fig. 2. These distributions reflect the ability of phreatophytes to extract groundwater which is dependent on the
plant’s age, where adult trees with roots distributed continuously throughout the soil profile have the most active
water absorption in deeper soil layers [12].

Field scale models were developed that summed the mathematical expressions for all phreatophytes within a
field, (18) and (19). Groundwater flow is illustrated for phreatophytes within a field (Fig. 4a) in a study region located
near the Larned test site of [5] in Fig. 3. The concept of an area-sink was extended from existing implementations for
polynomial [23, Sect. 37] and multi-quadrics [31] distributions using higher-order Chebyshev strength distributions
[32]. The complex potential, (25), and discharge vector, (27), for Cauchy integrals were used to satisfy conditions
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of continuity of head, (31), and continuity of flow, (34), at the boundary of the field. The jumps in potential and
normal components of flow, as well as the comprehensive flow generated by a field, are illustrated in Fig. 5.

A regional scale model was obtained by first developing Taylor, (42), and Laurent, (45), series for Cauchy
integrals with known coefficients. These series were rearranged using Bell polynomials, (53), to achieve a single
Laurent series plus a point-sink, (48), with coefficients in Eq. (56). This extends the numerical method used to
compute coefficients in the superblock approach [33]. This formulation is valid in the far-field of the family of
analytic elements associated with a field (Fig. 4b), and provides a computational efficient method to incorporate
fields of phreatophytes within a single model.

Hydrologic pathways from recharge to groundwater uptake were investigated by tracing groundwater particles
backwards in time from groundwater beneath the root zone. Capture zones were constructed for an isolated phre-
atophyte in a uniform flow in Fig. 6. This illustrates the horizontal regions over which a plant extracts groundwater
and shows the impact of the functional form of groundwater uptake, where groundwater is captured nearest the
groundwater surface for a uniform distribution and deepest in the groundwater column for a power distribution.
Investigation of pathways for communities of phreatophytes in Fig. 7 indicates that plant communities siphon
source water from the uppermost groundwater regions. Groundwater pathlines extend to greater horizontal depths
and lateral extent as they pass beneath the capture zones of upgradient phreatophytes.

Considerable spatial variation in phreatophyte groundwater uptake has been observed [5], and may vary with
depth to groundwater and intermittency of surface water [13,20,38]. Human activities (e.g. pumping), climatic
change (e.g. drought), and species composition may impact a phreatophytic community’s ability to tap ground-
water. This mathematical and computational model supports a wide-range of hypothesis testing and exploration
with field instrumentation and interpretation of their data to understand the function of phreatophytes in water and
nutrient uptake across plant to regional scales.
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