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Abstract A new analytic-element solution is presented for a well with a sinusoidal discharge pumping near
cylindrical inhomogeneities. Both the transmissivity and the storage coefficient may be different inside each
cylinder. The solution consists of separate series solutions inside and outside each cylinder; asymptotic expan-
sions are presented for cases where the sinusoidal period is small and the radius and transmissivity of the cylinder
are large. The complex coefficients in the series solutions are determined by requiring continuity of head and normal
flow across the boundary of each cylinder resulting in a linear system of complex equations that may be solved
with standard methods. The solution represents one of the few analytic solutions for two-dimensional transient
groundwater flow in an aquifer with inhomogeneities. Computer implementation requires truncation of the series;
machine accuracy may be reached when enough terms are used in the series solutions. The effect of cylindrical
inhomogeneities on the amplitude and phase of the head are investigated. The complex behavior suggests it may
be difficult to determine location and properties of cylindrical inhomogeneities from pump tests, which confirms
reported difficulties of interpreting pump test results from heterogeneous aquifers.

Keywords Analytic elements · Cylindrical inhomogeneities · Periodic flow

1 Introduction

The topic of this paper is the simulation of groundwater flow to wells with sinusoidal discharges in a porous-media
aquifer containing an arbitrary number of cylindrical inhomogeneities. Inside each cylinder, a different value of
both the transmissivity and storage coefficient may be specified. The solution consists of separate series solutions
for the inside and the outside of each cylinder and is obtained with the analytic-element method. The solution is
accurate up to machine accuracy provided that enough terms are used in the series solutions.

The analytic-element method has been applied successfully to solve several groundwater-flow problems with
cylindrical inhomogeneities; solutions for inhomogeneities of other shapes exist as well but are not reviewed here.
Strack [1] presented an analytic-element solution for steady confined and unconfined flow through cylindrical inho-
mogeneities. Barnes and Janković [2] extended this solution by providing expressions for the coefficients in the
solution in terms of Fourier integrals and developed an iterative solution procedure that allowed for the solution
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132 M. Bakker

of aquifers with many (>105) inhomogeneities. Furman et al. [3] applied the same solutions to model electrical
potentials in the subsurface for use with electrical-resistance tomography. Warrick and Knight [4] presented a solu-
tion for unsaturated flow through a single circular inhomogeneity in an otherwise uniform flow field. Bakker and
Nieber [5] extended this solution by including an arbitrary number of circular inhomogeneities and allowing the
water-retention parameters to differ between the inside and outside of the circles. Bakker [6] presented an analytic-
element solution for steady multi-aquifer flow through many cylindrical inhomogeneities. Butler and Liu [7] solved
the problem of a well that turns on at t = 0 near a single circular inhomogeneity; they obtained explicit equations
for the coefficients of the Laplace-domain solution, and transformed back to the physical domain with the Stehfest
algorithm. Furman and Neuman [8] and Kuhlman and Neuman [9] obtained analytic-element solutions for transient
flow in aquifers with multiple cylindrical inclusions by application of the analytic-element method in the Laplace
domain and using a numerical back-transformation.

Many of the analytic-element solutions mentioned above are exact solutions consisting of infinite series; coef-
ficients in the series are obtained with Fourier integrals or by truncating the series and solving a system of linear
equations. Only a few solutions may be written in closed form without a series of infinite terms, including a steady
well pumping near a single cylindrical inhomogeneity (e.g., [10] or [11, Eq. 370.04]), and uniform flow through a
single cylindrical inhomogeneity in either a single aquifer (e.g., [10] or [11, Eq. 370.05]) or a multi-aquifer sys-
tem [12]. Exact transient solutions for problems involving wells and inhomogeneities are limited. Sternberg [13],
Streltsova [14, Sect. 5.10] and Trefry [15] give solutions for radial flow, while Streltsova [14, Chap. 5] also provides
solutions for wells pumping near straight inhomogeneity boundaries. Chu and Grader [16] give an overview of
existing solutions in the Laplace domain for wells near inhomogeneities.

In this paper, an analytic-element solution is presented for a periodic well in a field of many cylindrical inhomo-
geneities. Groundwater-flow solutions with periodic boundary conditions are useful for the modeling of aquifers
under the influence of tides, wells with sinusoidal discharges, or boundary conditions that may be represented as a
Fourier series through time. Aquifer parameters may be determined by measuring the damping and phase-shift of
tides (e.g., [17,18]) or through sinusoidal pump tests [19,20]. Many solutions exist for one-dimensional periodic
flow but they are not reviewed here. The number of solutions for two-dimensional periodic groundwater flow is
much smaller. Sun [21] and Tang and Jiao [22] published solutions where the boundary condition along the straight
coast is a damped Fourier series. Solutions for L-shaped aquifers were published in [23] and [24]. Jeng et al. [25]
developed a solution for the case where the shape of the coastal boundary is a sinusoidal function of space and
included the effect of capillarity. A general analytic-element approach using point sinks, line-sinks, and circular
area sinks was developed in [26]. While all referenced two-dimensional solutions are for homogeneous aquifers,
Trefry [15] presented one-dimensional solutions for sinusoidal flow in aquifers consisting of either linear or radial
strips with different aquifer properties. The analytic-element solution presented in this paper may be viewed as an
extension of the work of Trefry [15] to two-dimensions with cylindrical inhomogeneities. It is an accepted fact that
“the properties of heterogeneous media vary spatially in a manner that can seldom be described with certainty”
[27]. This paper will highlight this problem by showing the complex transient head variations due to sinusoidal
pumping near cylindrical inhomogeneities.

2 Problem description

Consider an arbitrary number of homogeneous, non-overlapping, cylindrical inclusions embedded in an otherwise
homogeneous, horizontal background aquifer. The inside of cylinder j is referred to as domain D j while the back-
ground aquifer is referred to as domain D0. The hydraulic conductivity and storage coefficient of cylinder j are
called k j and S j , respectively; the index j = 0 is used for the properties of the background aquifer. For confined
flow, the aquifer diffusivity is defined as

D j = k j Hj/S j = Tj/S j in D j , (1)
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Sinusoidal pumping of groundwater 133

where Hj is the aquifer thickness and Tj = k j Hj is the transmissivity in domain j . For unconfined flow, the aquifer
diffusivity is approximated as

D j = k j h̄ j/S j = Tj/S j in D j , (2)

where h̄ j is an approximation of the average saturated thickness in domain j and Tj = k j h̄ j is the average trans-
missivity. Note that flow in each domain is treated as either confined or unconfined; cylinders with confined flow
may be embedded in a background of unconfined flow or vice versa.

The Dupuit approximation is adopted so that the hydraulic head h is a function of the two horizontal coordinates
x and y only. The vertically integrated discharge vector �Q may be written as

�Q = −∇�, (3)

where � is the discharge potential defined as

� = Tj h in D j , (4)

where h is the hydraulic head. For transient flow, the discharge potential fulfills the standard heat equation (e.g.,
[28, Sect. 16])

∇2� = 1

D j

∂�

∂t
in D j , (5)

where ∇2 is the two-dimensional Laplacian and t is time. For unconfined flow, Eq. 5 is known as the linearized
Boussinesq equation. Although it is common practice to use solutions to (5) for the approximation of unconfined
flow, the author is not aware of any studies that assess the accuracy of these approximate solutions for transient
flow through piecewise homogeneous aquifers.

In this paper, all forcing functions vary sinusoidally through time which means that all heads and flows vary
sinusoidally and no initial conditions need to be specified. Flow in the aquifer is caused by one or more pumping
wells with a sinusoidal discharge. In the absence of sinusoidal wells, flow is at steady state and thus the solution
presented here is a deviation from the steady-state solution. Other features such as line-sinks with a sinusoidal
discharge or sinusoidal areal recharge are not included here but are described in [26]. It is noted that, for unconfined
flow, the potential may alternatively be defined in such a way that the dependence of the saturated thickness on
the hydraulic head is taken into account (e.g., [28, Sect. 7]), which results in the correct steady head inside the
well, even while taking into account the seepage face (e.g., [29, Eq. 9.13]). Definition (4) is a common and accurate
approximation when the head variation is small relative to the saturated thickness, and it facilitates evaluation of
the individual contribution of each periodic stress.

Across the boundary of each cylinder there are two connecting conditions: the head is continuous and the
component of flow normal to the boundary is continuous. For cylinder j with radius R j this may be written as

T0�
+(r = R j ) = Tj�

−(r = R j ), Q+
r (r = R j ) = Q−

r (r = R j ), (6)

where r is the radial coordinate originating at the center of cylinder j , Qr is the component of the discharge vector in
this direction, and the superscripts + and − stand for evaluation just inside and just outside cylinder j , respectively.

3 Solution approach

A solution to the stated problem is obtained with the analytic-element method; a recent overview of the analytic-
element method is given in [30]. An analytic-element solution consists of the superposition of analytic solutions
to the differential equation. Each analytic solution has one or more degrees of freedom that are determined from
desired boundary conditions. A framework for analytic-element solutions for periodic flow is presented in [26].

A solution to the stated problem is derived for a single period p. The solution for multiple periods may be obtained
through superposition. Periodic flow solutions are commonly derived in complex form (e.g., [31,11,19,26]) where
the discharge potential � is written as the real part of a complex function �

� = Re �. (7)
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The complex function � is written in separated form

� = ωeiθ t , (8)

where ω is a complex function of the spatial coordinates only, and

θ = 2π/p, (9)

where p is the time period of oscillation. Substitution of � (8) for � in (5) and cancelling the exponential terms
results in the modified Helmholtz equation for ω

∇2ω = ωiθ/D j in D j . (10)

The solution for an aquifer with Nw wells and Mc cylindrical inclusions is obtained through superposition

ω =
Nw∑

n=1

ωw,n +
Mc∑

m=1

ωc,m, (11)

where ωw,n and ωc,m are the solutions for well n and cylinder m, respectively. The real and imaginary parts of the
complex function ω are written as φ and ψ , respectively

ω = φ + iψ. (12)

When ω is known, the potential at any point and any time may be computed with (7), (8) and (12) as

� = φ cos(θ t)− ψ sin(θ t). (13)

The head h in D j may be obtained through division of � by transmissivity Tj . It is often mainly of interest to
compute the amplitude, amp(h), and phase, arg(h), of the head, which may be written as

amp(h) =
√
φ2 + ψ2/Tj in D j (14)

and

arg(h) = arctan(ψ/φ). (15)

The solution for a single well or cylindrical inhomogeneity may both be written in local, cylindrical coordinates
r and α, with the origin either at the center of the well or the center of the cylindrical inhomogeneity. A general
solution to (10) for ω in cylindrical coordinates r and α is given by, e.g., [32, p. 16] as

ω =
∞∑

n=0

[
AnIn

(
r
√

iθ/D
)

+ BnKn

(
r
√

iθ/D
)]

[Pn cos(nα)+ Qn sin(nα)] , (16)

where An,Bn,Pn,Qn are complex constants, and In and Kn are modified Bessel functions of order n and of the
first and second kind, respectively.

The discharge vector �Q is obtained from (3) and (13) as

�Q = −∇φ cos(θ t)+ ∇ψ sin(θ t). (17)

The complex vector �w is introduced as

�w = −∇ω. (18)

The components of �w in the local r, α coordinate system are called u and v

�w = u�er + v�eα, (19)

where �er and �eα are unit vectors in the r and α directions, respectively, and, using (12),

u = −∂ω
∂r

= −∂φ
∂r

− i
∂ψ

∂r
, v = −1

r

∂ω

∂α
= −1

r

(
∂φ

∂α
+ i
∂ψ

∂α

)
. (20)
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The radial components of the discharge vector may now be written as

Qr = −∂�
∂r

= Re u cos(θ t)− Im u sin(θ t). (21)

The connecting conditions across the boundary of cylinder j (6) need to be fulfilled for all times. The potential
� (13) is a function of both the real part (φ) and the imaginary part (ψ) of ω. Similarly, the radial component of
flow (21) is a function of both the real and imaginary parts of u. Hence, conditions (6) will be fulfilled for all time
when the following conditions for the complex functions ω and u are met

T0ω
+(r = R j ) = Tjω

−
j (r = R j )

u+(r = R j ) = u−(r = R j ). (22)

Note that the tangent component v is discontinuous across an inhomogeneity boundary.

4 Solution for a well

Consider a fully penetrating well with a sinusoidal discharge with amplitude Q0

Q = Q0 cos(θ t). (23)

The solution for a well with an infinitesimal radius and no skin effect is given in, e.g., [14]; application of the pre-
sented solutions to a well with a finite radius and skin effect is outlined in Sect. 8. Well n is located in domain D j .
The solution is set to zero in the domains other than D j and is written in terms of ω

ωw,n = − Q0

2π
K0

(
ρ j

√
i
)

in D j ,
(24)

ωw,n = 0 in Dm, m �= j,

where ρ j is a scaled radial coordinate introduced for convenience

ρ j = r
√
θ/D j . (25)

The radial component u of �w for well n is

uw,n = − Q0

2π

√
iθ/D j K1

(
ρ j

√
i
)

in D j ,

uw,n = 0 in Dm,m �= j, (26)

while the tangential component vw,n is zero everywhere.
In a homogeneous aquifer, the amplitude decreases with distance from the pumping wells. This damping of the

amplitude is a function of the characteristic length λ j , which is defined in domain j as ([26,33])

λ j = √
D j/θ =

√
Tj p

2π S j
. (27)

Note that λ j is a function of both the aquifer parameters Tj and S j , and the period p. The ratio between the amplitude
at a distance r and the amplitude at a distance r = 0.1λ j is shown in Fig. 1 (solid line, left axis). Also shown in
Fig. 1 is the phase shift as compared to the phase of the discharge at the well (dashed line, right axis). Note that
relative to the amplitude at r = 0.1λ j , the amplitude has reduced to 10% at r = 1.782λ j , to 1% at r = 4.432λ j ,
and to 0.1% at r = 7.342λ j .

5 Solution for a cylindrical inhomogeneity

An equation for cylinder m is obtained from the general solution (16). Inside cylinder m, the diffusivity is D j , and
the potential is finite everywhere so that no functions Kn appear in the solution.

ωc,m = a0β0I0

(
ρ j

√
i
)

+
∞∑

n=1

[an cos(nα)+ bn sin(nα)]βnIn

(
ρ j

√
i
)

in D j , (28)
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Fig. 1 Damping of
amplitude (solid line, left
axis) and phase shift
(dashed line, right axis)
with distance from the well;
amplitude normalized by
value at r = 0.1λ0

where βn = 1/In(R
√

iθ/D j ) is a scaling parameter introduced for computational purposes, and an and bn are
complex coefficients to be determined from connecting conditions (22). In the background aquifer, the diffusivity
is D0, and the potential vanishes at infinity so that no functions In appear in the solution.

ωc,m = A0γ0K0

(
ρ0

√
i
)

+
∞∑

n=1

[An cos(nα)+ Bn sin(nα)] γnKn

(
ρ0

√
i
)

in D0, (29)

where γn = 1/Kn(R
√

iθ/D0) is a scaling parameter introduced for computational purposes, and An and Bn are
complex coefficients to be determined from the connecting conditions. Inside any of the other cylinders, the function
ω j is zero

ωc,m = 0 in Dn, n �= 0, j. (30)

Note that the radius R and the parameters βn , γn , an , bn , An , and Bn are, in general, different for each cylinder, but
double indices have not been introduced here to keep the notation simple.

The equations for the components of the vector �w are obtained from (18) through differentiation as

uc,m = a0β0I′0
(
ρ j

√
i
)

+
∞∑

n=1

[an cos(nα)+ bn sin(nα)]βnI′n
(
ρ j

√
i
)

in D j , (31)

vc,m =
∞∑

n=1

[−an sin(nα)+ bn cos(nα)]
n

r
βnIn

(
ρ j

√
i
)

in D j , (32)

uc,m = A0γ0K′
0

(
ρ0

√
i
)

+
∞∑

n=1

[An cos(nα)+ Bn sin(nα)] γnK′
n

(
ρ0

√
i
)

in D0, (33)

vc,m =
∞∑

n=1

[−An sin(nα)+ Bn cos(nα)]
n

r
γnKn

(
ρ0

√
i
)

in D0, (34)

uc,m = vc,m = 0 in Dn, n �= 0, j, (35)

where the prime stands for differentiation with respect to r (e.g., [34, Eq. 9.6.26])

I′n
(
ρ j

√
i
)

=
In−1

(
ρ j

√
i
)

+ In+1

(
ρ j

√
i
)

2

√
iθ/D j , (36)
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K′
n

(
ρ0

√
i
)

= −
Kn−1

(
ρ0

√
i
)

+ Kn+1

(
ρ0

√
i
)

2

√
iθ/D0. (37)

The complex coefficients An , Bn , an , and bn are obtained through application of the boundary conditions (22).
In practice the series are truncated after Nt terms so that there are Nt + 1 unknowns An and an and Nt unknowns
Bn and bn . Boundary conditions (22) are applied at 2Nt + 1 equally spaced collocation points along the boundary
of the cylinder, resulting is a system of 4Nt + 2 complex linear equations. The system of equations is solved using
a standard LDU decomposition routine (the linalg.solve routine in the Python package numpy [35]). The
effect of the number of terms Nt on the accuracy of the solution is evaluated in the next section.

It is noted that the expression for a cylindrical inhomogeneity in D0 (29) may also be used to model cylindrical
features with other boundary conditions, for example an impermeable object (by setting u = 0 at all control points),
or a circular lake with a constant but fluctuating level (by setting v = 0 at all control points) or a circular lake with
a constant level (by setting ω = 0 at all points) or a specified amplitude (by specifying the desired ω). The solution
for a well with infinitesimal radius may be combined with the solution for a cylindrical inhomogeneity to simulate
a finite radius well with wellbore storage. This may be achieved by centering the cylinder at the well, setting the
radius of the cylinder equal to the radius of the well, setting the storativity to one, and setting the transmissivity to
a large value (for example 6 orders of magnitude larger than outside) so that the head inside the well is flat. Skin
effect (resistance to inflow or outflow) may be added by replacing the connecting conditions along the boundary of
the cylinder (6) with Cauchy (third-type) boundary conditions.

Use of common routines for the computation of modified Bessel functions are not suited for larger arguments.
For example, K0(ρ

√
i) returns zero for values of ρ larger than 985. Such arguments may occur for circles with large

radii, short periods of the fluctuation, large transmissivities, or a combination thereof. Since only ratios of modified
Bessel functions occur in the solution for a cylindrical inhomogeneity, asymptotic expansions may be used for cases
where the common routines don’t work, as explained in the Appendix.

6 Well pumping near a single cylinder

The effect of a single cylinder on the amplitude of a pumping well is investigated. The transmissivity in heteroge-
neous aquifers may vary over several orders of magnitude. A reduction of the storage coefficient by several orders
indicates a change from unconfined to confined conditions. Six cases are considered. For all cases, the well and
the center of the cylinder lie on the same horizontal line. The edge of the cylinder is a distance 0.5λ0 from the
well, and the radius of the cylinder is λ0. The aquifer properties on the inside of the cylinder are listed in Table 1
for all six cases. Table 1 has four columns listing the values of T1, S1, λ1, and D1; only two of these values may
be chosen independently. Contour plots of the amplitude are shown in Fig. 2 and are normalized through division
by the amplitude at a distance of 0.1λ0 from the well in the absence of the cylinder. In Fig. 3, the variation of the
amplitude is shown as a function of distance from the well along the horizontal line that goes through the center of
the well and the cylinder. At each point, the amplitude is divided by the amplitude at the same point corresponding
to the case without the cylinder. Hence, a value of 2 means that the amplitude is twice as large for the case with the
inhomogeneity as for the case without the inhomogeneity. In Fig. 4, the phase is shown along the same horizontal
line; for comparison purposes, the phase for the homogeneous case is shown in the top graph of Fig. 4. For each
case, 41 terms are used in the series solution.

For cases 1 and 2 the transmissivity inside the cylinder is changed while the storage coefficient is kept the same
as the background. For case 1, the transmissivity of the cylinder is 100 times larger than the background. This
results in a strong damping between the well and the edge of the cylinder. Inside the cylinder, the amplitude is fairly
constant, and thus increases with respect to the homogeneous case, so that at the back of the cylinder the amplitude
is more than 2.5 times larger than for the homogeneous case. Inside the cylinder, the phase is almost constant. For
case 2, the transmissivity of the cylinder is 100 times lower than the background, and the opposite happens from
case 1. The amplitude dampens less between the well and the edge of the cylinder than in the homogeneous case, but
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138 M. Bakker

Table 1 Aquifer properties
used in Figs. 2–4

Case T1 S1 λ1 D1

1 100T0 S0 10λ0 100D0
2 0.01T0 S0 0.1λ0 0.01D0
3 T0 100S0 0.1λ0 0.01D0
4 T0 0.01S0 10λ0 100D0
5 100T0 100S0 λ0 D0
6 0.01T0 0.01S0 λ0 D0

Fig. 2 Contour plots of amplitude of head for six cases of a well pumping near a cylindrical inhomogeneity; amplitude normalized by
value at 0.1λ0 from well for homogeneous case. The value along contour farthest away from the well is 0.05; the contour interval is 0.05

dampens very quickly inside the cylinder; near the back of the cylinder there is a small recovery of the amplitude.
The phase also changes quickly inside the cylinder, going through approximately four cycles.

For cases 3 and 4 the storage coefficient inside the cylinder is changed while the transmissivity is kept the same
as the background. For case 3 the storage coefficient is increased 100 times as compared to the background. This
has a very strong damping effect on the amplitude, resulting in almost no amplitude beyond a sliver of the cylinder
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Sinusoidal pumping of groundwater 139

Fig. 3 Amplitude of head along x-axis normalized by homo-
geneous case versus distance from the well along line through
center of cylinder

Fig. 4 Phase of head along x-axis versus distance from the well
along line through center of cylinder

closest to the well. A hundred-fold decrease in the storage coefficient from the background (case 4) has the opposite
effect, but is much less pronounced. The amplitude is slightly larger than for the homogeneous case and the phase
changes over a slightly larger distance, but the deviations from the homogeneous case are minor. Note that for both
cases 3 and 4, the tangential derivative of the contour lines of the amplitude are continuous across the boundary of
the cylinder, as the transmissivity inside the cylinder is the same as the background.

For cases 5 and 6, the aquifer diffusivity (and thus the characteristic length λ) inside the cylinder is the same as
the background. For case 5, both the transmissivity and the storage coefficient are increased by a factor 100 from
the background. This results in the strongest damping between the well and the edge of the cylinder. Inside the
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Table 2 Accuracy of case 1
Nt |ε1| |ε2| Max|ε1| Max|ε2|
10 1.8 × 10−4 1.3 × 10−3 1.4 × 10−3 1.1 × 10−2

20 1.7 × 10−6 2.2 × 10−5 1.3 × 10−5 1.9 × 10−4

30 1.9 × 10−8 3.8 × 10−7 1.6 × 10−7 3.3 × 10−6

40 2.5 × 10−10 6.5 × 10−9 2.1 × 10−9 5.8 × 10−8

50 3.3 × 10−12 1.0 × 10−10 3.0 × 10−11 1.0 × 10−9

60 5.1 × 10−14 2.0 × 10−12 4.4 × 10−13 1.7 × 10−11

cylinder there is a minor recovery; the phase change is not very different from the homogeneous case. For case 6,
both the transmissivity and the storage coefficient are decreased by a factor 100 from the background. This results
in a decreased damping between the well and the edge of the cylinder (comparable to case 2). Inside the cylinder,
there is more damping, but it is still not as significant as for case 2. The phase change is spread out over a somewhat
larger distance than the homogeneous case, but the difference is small.

A finite number of Nt terms is used in the series solution. The accuracy of the solution as a function of Nt is
investigated by considering case 1. The error in the connecting conditions (22) is computed at 1,000 equally spaced
points along the boundary of the cylinder for different values of Nt . The mean absolute error and the maximum
absolute error are reported in Table 2; ε1 refers to the error in ω and ε2 refers to the error in u. It may be seen from
Table 2 that 10 additional terms in the series solution results in approximately an increase in accuracy of two orders
of magnitude until machine accuracy is reached.

7 Multiple cylinders

A case with multiple cylinders is solved to demonstrate the capabilities of the solution. For cases with many cylin-
drical inhomogeneities, it may not be possible to build one large matrix to solve for the complex coefficients of all
cylinders simultaneously because of the computer memory required to store and solve the system of equations. For
such cases, an iterative solution approach was developed in [2], where it was proposed to solve for the coefficients
of one cylinder at a time while keeping the coefficients of the other cylinders fixed. A solution is obtained by going
through all cylinders multiple times until the values of the coefficients stop changing. A similar approach is applied
to solve for the problem presented here.

Consider a field with 36 cylindrical inhomogeneities; the order of each cylinder is 40. The radius of each cylinder
is equal to λ0, while the distance between each cylinder is 0.2λ0. The transmissivity inside each cylinder is 100
times less than the background transmissivity and the storage coefficient is the same as the background aquifer. The
well is located at the center of Fig. 5. The contour lines of the amplitude in Fig. 5 are again divided by the value at
a distance of 0.1λ0 from the well for the homogeneous case.

8 Conclusions and discussion

An analytic-element solution has been presented for periodic flow in confined and unconfined aquifers with multiple
cylindrical inhomogeneities in both the transmissivity and the storage coefficient; the flow may be confined inside
a cylinder while it is unconfined outside, or vice versa. The flow in the aquifer is caused by a well with a sinusoidal
discharge but other features such as line-sinks may be added following the approach described in [26]. Separate
series solutions were used for the inside and the outside of each cylinder. A system of linear equations needs to
be solved to obtain the complex coefficients in the series. Asymptotic expressions have been presented to evaluate
the ratio of modified Bessel functions in the series solution for cylinders with a large dimensionless radius. The
connecting condition across the boundary of the inhomogeneity is met up to machine accuracy provided that enough
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Sinusoidal pumping of groundwater 141

Fig. 5 Contour lines of
normalized amplitude for a
well in a field of 36
inhomogeneities with
Tj = 0.01T0. The value
along contour farthest from
well is 0.05; the contour
interval is 0.05

terms are used in the series. The amplitude and phase of the head may vary in a complicated fashion even for a well
near a single cylindrical inhomogeneity, which may make it a challenge to analyze sinusoidal pumping tests with
only a few observations and an imprecise idea of the location of the inhomogeneities. Arbitrary discharge functions
may be represented with Fourier series; block-shaped discharge functions may be approximated with Fourier series
in combination with Cesaro summation [36].

It was outlined how the presented solution for a well and a cylindrical inhomogeneity may be combined to
simulate flow to a finite-radius well with wellbore storage and skin effect. The solutions for the outside of a cylinder
may also be used to model impermeable cylinders or cylinders with other boundary conditions such as a specified
head fluctuation. The solution for periodic flow through cylindrical inhomogeneities in semi-confined aquifers or
multi-aquifer systems consists of a similar series of geometric functions multiplied by modified Bessel functions
as (28) and (29). The solution approach may also be applied to two-dimensional periodic unsaturated flow and
three-dimensional periodic flow.
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Appendix: Evaluation of functions for large radii

When the argument of the modified Bessel functions becomes large, they cannot be evaluated with common imple-
mentations in computer libraries, but asymptotic expansions need to be used. This occurs when the dimensionless
radius R = R j

√
iθ/D j is large. Asymptotic expansions of the modified Bessel functions may be written using

Hankel symbols defined as (e.g., [37, p. 238])

(ν, n) = (4ν2 − 1)(4ν2 − 32) . . . [4ν2 − (2n − 1)2]
n!4n

(38)

with (ν, 0) defined as (ν, 0) = 1 For the modified Bessel functions, the asymptotic expansions are [34, Eqs. 9.7.1
and 9.7.2]
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In(z) = ez

√
2π z

∞∑

k=0

(−)k (n, k)

(2z)k
, (39)

Kn(z) =
√
π

2z
e−z

∞∑

k=0

(n, k)

(2z)k
. (40)

The derivatives of the modified Bessel functions are compiled from [34, Eqs. 9.7.3 and 9.7.4 with Eqs. 9.2.15 and
9.2.16]

I′n(z) = ez

√
2π z

[ ∞∑

k=0

µk
(n, 2k)

(2z)2k
−

∞∑

k=0

νk
(n, 2k + 1)

(2z)2k+1

]
, (41)

K′
n(z) = −

√
π

2z
e−z

[ ∞∑

k=0

µk
(n, 2k)

(2z)2k
+

∞∑

k=0

νk
(n, 2k + 1)

(2z)2k+1

]
, (42)

where

µk = 4n2 + 16k2 − 1

4n2 − (4k − 1)2
, νk = 4n2 + 4(2k + 1)2 − 1

4n2 − (4k + 1)2
. (43)

The Bessel functions and their derivatives always appear in scaled form in (28) through (35). Note that shorthand
is used in these equations, such as βnIn(ρ

√
i). A finite number of M terms is used in the asymptotic expansions.

Four types of ratios appear in the formulas, and may be approximated as

In(ρ
√

i)

In(R
√

i)
≈

∑M
k=0(−)k (n,k)

(2ρ
√

i)k∑M
k=0(−)k (n,k)

(2R
√

i)k

√
R

ρ
e(ρ−R)

√
i, R � 1, (44)

Kn(ρ
√

i)

Kn(R
√

i)
≈

∑M
k=0

(n,k)
(2z)k∑M

k=0
(n,k)

(2R
√

i)k

√
R

ρ
e(R−ρ)

√
i, R � 1, (45)

I′n(ρ
√

i)

In(R
√

i)
≈

∑M
k=0 µk

(n,2k)
(2z)2k − ∑M

k=0 νk
(n,2k+1)
(2z)2k+1

∑M
k=0(−)k (n,k)

(2R
√

i)k

√
R

ρ
e(ρ−R)

√
i, R � 1, (46)

K′
n(ρ

√
i)

Kn(R
√

i)
≈

∑M
k=0 µk

(n,2k)
(2z)2k + ∑M

k=0 νk
(n,2k+1)
(2z)2k+1

∑M
k=0

(n,k)

(2R
√

i)k

√
R

ρ
e(R−ρ)

√
i, R � 1. (47)

As an indication, for (45) and R = 200, 8 significant digits are obtained for order n = 0 using M = 1 terms,
while for order 20, 9 terms are needed and for order 40, 17 terms. It is noted that these expressions only need to be
used within a certain distance from the boundary of the circle. For (45) and R = 200, the ratio has reduced from 1
on the boundary to an absolute value less than 10−4 at ρ = 214 for all orders up to 40.
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