
Empirical Software Engineering (2024) 29:66
https://doi.org/10.1007/s10664-024-10479-z

Hunting bugs: Towards an automated approach
to identifying which change caused a bug through regression
testing

Michel Maes-Bermejo1 · Alexander Serebrenik2 · Micael Gallego1 ·
Francisco Gortázar1 · Gregorio Robles3 · Jesús María González Barahona3

Accepted: 19 March 2024
© The Author(s) 2024

Abstract
Context Finding code changes that introduced bugs is important both for practitioners and
researchers, but doing it precisely is a manual, effort-intensive process. The perfect test
method is a theoretical construct aimed at detecting Bug-Introducing Changes (BIC) through
a theoretical perfect test. This perfect test always fails if the bug is present, and passes
otherwise.
Objective To explore a possible automatic operationalization of the perfect test method.
Method To use regression tests as substitutes for the perfect test. For this, we transplant
the regression tests to past snapshots of the code, and use them to identify the BIC, on a
well-known collection of bugs from the Defects4J dataset.
Results From 809 bugs in the dataset, when running our operationalization of the perfect
test method, for 95 of them the BIC was identified precisely and in the remaining 4 cases, a
list of candidates including the BIC was provided.
Conclusions We demonstrate that the operationalization of the perfect test method through
regression tests is feasible and can be completely automated in practice when tests can be
transplanted and run in past snapshots of the code. Given that implementing regression tests
when a bug is fixed is considered a good practice, when developers follow it, they can
detect effortlessly bug-introducing changes by using our operationalization of the perfect
test method.

Keywords Bug origins · Bug-introducing changes · First-failing change · SZZ algorithm ·
Software Testing · Regression Testing

Communicated by: Saurabh Sinha

B Michel Maes-Bermejo
michel.maes@urjc.es

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10479-z&domain=pdf
http://orcid.org/0000-0002-8138-9702

 66 Page 2 of 35 Empirical Software Engineering (2024) 29:66

1 Introduction

Bugs are one of the main sources of concern for software developers. Finding faulty code,
and fixing it to remove the bug consumes a lot of effort (Kim and Whitehead 2006; Weiss
et al. 2007). Learning about how bugs were introduced is both of academic and practical
importance. Practitioners would like to know which change introduced a bug when they try
to fix it, and which past versions are affected by it. Researchers want to study how bugs were
introduced, to find ways of preventing them. However, finding the source code change that
introduced the bug 1) is not easy.

Many methods for finding the change to the source code that introduced the bug (bug-
introducing change, BIC) assume that the change should touch some or all of the lines of code
that were touched to fix the bug. This is the case, e.g., for all SZZ-based algorithms (Śliwerski
et al. 2005). However, a recent work by F. Petrulio et al. (2022) has proven some limitations
of this approach. For a dataset with 5,348 bugs where the BIC was available, 1,176 bugs
could not be identified with an SZZ implementation (22% of the total). The main reasons of
the flaws are (1) changes with only new lines (that because of the way SZZ works cannot be
caught) and (2) bugs introduced in changes which are not in previous changes to the lines
touched in the fixing commits.

Insteadof relyingon this assumption, theperfect testmethodwas introducedbyRodríguez-
Pérez et al. to find what change introduced a given bug (Rodríguez-Pérez et al. 2020). The
perfect test for a bug is a theoretical construct that fails in any snapshot of the code history
affected by the bug, and succeeds in any other snapshot. The BIC, therefore, can be assumed
to be the change that produced the first snapshot (of a sequence of snapshots going from
the last commit where the test passed to the fix commit) that causes the test to fail. This
method provides a clear guideline to decide whether a change introduces a bug or not, but
operationalizing it requires having perfect tests.

In this paper we study to which extent regression tests can be used as perfect tests. Regres-
sion tests (Desikan and Ramesh 2006; Wahl 1999) are written to avoid regressions 2, by
detecting the reintroduction in future changes of an already fixed bug. Both in closed-source
projects from the industry (Ali et al. 2019; Onoma et al. 1998; Engström and Runeson 2010)
and open source ones (Schmidt and Porter 2001), regression tests are usually used for the
bugs that are fixed (Perscheid et al. 2017), which means that, in theory, if these tests can be
used as perfect tests, we have a way of automatically detecting when those bugs were intro-
duced. For example, the BICs in the two cases found by Petrulio et al. would be found using
the perfect test, since the BICs are not identified by some procedure depending on tracking
past changes, but by checking the behavior of the program after any change, determining this
way if the bug is present or not

To be useful as perfect tests, regression tests should be perfect detectors of the bug, and
be “transplantable” to past snapshots 3. By “transplantable” to a past snapshot we mean that
the test should be executed in that past snapshot. Regression tests are usually assumed to
be almost-perfect detectors, which is the whole idea of spending effort in writing them. For

1 In this paper, we will use the term “bug", widely used by practitioners, as synonym for “defect" or “fault",
which is more usual in academic literature (IEEE Standard Classification for Software Anomalies 2010;
Avizienis et al. 2004; Tan et al. 2014
2 In this paper, by “regression” we mean a change in the source code that breaks a functionality that was
working properly.
3 A snapshot is a version of the source code of a project, represented by the source code as it is after checking
out a commit of its git repository which is identified by the unique hash of the commit (Maes-Bermejo et al.
2022).

123

Empirical Software Engineering (2024) 29:66 Page 3 of 35 66

the rest of this paper, we will assume that regression tests are perfect detectors, and we will
focus on transplantability, which would be the only blocker to decide if they can be used. To
transplant a test to a past snapshot, the regression test should be built (compiled, in the case of
compiled languages), and run correctly (producing a “fail” or “success” output consistently).
We refer to these problems as the “compilability problem” and the “runnability problem” for
transplanting tests.

By the “compilability problem” we mean (a) snapshot compilability, or the set of issues
that prevent the building of the source code of a past snapshot of a software project, and (b)
transplant compilability, or the set of issues that prevent the transplanted test (in our case, the
regression test) from being built. The (a) part of this problem has been addressed previously
by researchers (Tufano et al. 2017; Maes-Bermejo et al. 2022). However, in our case we also
need to study (b), i.e., the compilability of the regression test that has been transplanted into
the commit under scrutiny.

By “runnability problem” we mean the set of issues that prevent the transplanted test (in
our case, the regression test) from being executed, and to the best of our knowledge this
problem has not been studied before.

Our research questions will be, therefore:

RQ1A: “How far can a test be transplanted into the past?” We will study the extent to
which we can build and run regression tests in the past. Given that we do not know how
far in the past is the BIC, the further we can transplant a test the more probably we could
detect the BIC with the perfect test method.
RQ1B: “How compilability and runnability problems impact the transplantation of the
regression tests to the past?” In this RQ we study the compilability of the source code of
past snapshots, the compilability of the transplanted tests code within the snapshots, and
the runnability of the transplanted tests in the context of the past snapshots.
RQ2: “Can the BIC for a given bug be found using its regression test?” We will study
whether regression tests are a real and practical operationalization of the theoretical
perfect test proposed by Rodríguez-Pérez et al. to detect the change that introduced the
bug.

To answer these questions we built a tool to implement the perfect test method, by auto-
matically compiling and executing regression tests in past snapshots. The tool traverses the
history of the code, which is usually not linear but a graph of different branches, transplanting
the test to the snapshots previous to the bug fixing change (BFC). We applied the tool on
a well-known bug dataset of 835 bugs and their corresponding BFCs, Defects4J (Just et al.
2014). SinceDefects4J does not identify the BICs corresponding to the bugs in the dataset, we
validated our results manually, by checking whether the identified BIC was really the change
that introduced the bug. As a result of this process, we created a new manually validated
dataset, based on Defects4J, which we will denominate BIC-RT (Bug Introducing Changes
detected by Regression Tests)

The rest of the paper is structured as follows: Section 2 discusses previous research.
Section 3 presents the methodology used in the studies and defines the terminology. The
results of applying the methodology are reported in Section 4. Section 5 discusses the results,
and explores threats to their validity. Finally, Section 6 draws conclusions and presents further
research.

123

 66 Page 4 of 35 Empirical Software Engineering (2024) 29:66

2 Related work

2.1 Transplanting code

Our proposal for identifying BICs is based on transplanting a test present in the snapshot that
fixed a bug to earlier snapshots of the same code. Techniques for transplanting pieces of code
were applied by ReDeBug (Jang et al. 2012) for fixing clones of a fixed bug, by transplant-
ing the fixing patch. In this respect, the plastic surgery hypothesis (Harman 2010), which
assumes that changes to source code can be constructed as combinations of other changes
already present in the code (grafts) was studied in detail by Barr et al. (2014), showing how in
fact patches could in many cases be transplanted to other areas of code. TransplantFix (Yang
et al. 2022) is a recent approach that lies in the scope of using transplantation to automati-
cally fix buggy programs. Automated software transplantation has been also used to transfer
functionality from one system to another (Barr et al. 2015; Sidiroglou-Douskos et al. 2017)
and to generate tests by reusing test code (Zhang and Kim 2017). However, further stud-
ies (Castelluccio et al. 2019) show how this practice can lead to regressions in the version
where the fix is applied.

To determine which specific piece of code of a change in a bug fix is the part actually fixes
the bug, BugBuilder (Jang et al. 2021) transplants each part to the previous versions of the
code. It then runs the regression test to check whether the bug is still present. This approach
is similar to ours, with the difference that the BugBuilder authors aim to find out which part
of a change is the fix, while we intend to find when the bug was introduced, and for that we
need to transplant not only to the previous version, but to many others in the past of the bug
fix.

2.2 Bug Introduction Changes

The problem of detecting the change that introduced a bug (bug-introducing change, BIC)
given the change that fixed it (bug fixing change, BFC) has been extensively studied (Sinha
et al. 2010; Davies et al. 2014; Śliwerski et al. 2005; Kim et al. 2006; Williams and Spacco
2008; Kamei et al. 2012; Tantithamthavorn et al. 2013). The usual approach has been to
assume that the change that introduced the bug touched the same lines of source code that
were touched to fix it. The SZZ algorithm (Śliwerski et al. 2005) was developed based on this
assumption. Using the source control management system, it identifies the lines that were
edited in the change that fixed a commit, and then which previous changes modified the same
lines before the bug was reported. Many variants of SZZ have been proposed, improving the
algorithm in different ways. Rodríguez-Pérez et al. (2018) surveyed 187 studies related to
SZZ, finding that 38% of them used the original algorithm, while the rest used a derivative.
It also found a very low reproducibility for the studies, with many of them not publishing
the implementation of the algorithms they used. Fortunately, this situation is changing, and
some years later we have several implementations of SZZ derivatives published (Borg et al.
2019; Lenarduzzi et al. 2020; Pokropiński et al. 2022; Rosa et al. 2021).

Another tool to consider for the same purpose is GitBisect 4, which through a binary
search, assists the developer to locate the commit that introduced the bug. This tool explores
the Git history of a project, asking the developer if the bug is in the current commit or not. It is
therefore up to the developer to perform all the build and testing stepsmanually.An automated

4 https://git-scm.com/docs/git-bisect

123

https://git-scm.com/docs/git-bisect

Empirical Software Engineering (2024) 29:66 Page 5 of 35 66

bisection over git bisect was proposed, called “git bisect run” 5, which allows the developer
to add a script or command to be executed at each step of the tool. As we will see below,
our approach proposes a fully automatic process that allows us to obtain much more detailed
results from the build and test steps of each commit. Our proposal also solves a limitation of
GitBisect: this tool does not consider the graph structure that the commit history of a project
may have, while our proposal navigates through the graph with an appropriate algorithm
(depth-first search). Some improvements on this technique have been proposed (Saha and
Gligoric 2017) by selecting commits and tests to save computational costs.

There are studies that reduce the cost for both bisection and SZZ-like blame models such
as (An and Yoo 2021), which filters commits using the coverage of regression tests for the
bug, thus reducing the search space for automated bisection.

The algorithm Delta Debugging of Andreas Zeller (Zeller and Hildebrandt 2002; Zeller
2002) uses testing to simplify and isolate the failure in the execution trace of some failing
test case. Based on the idea of delta debugging and for the specific case of regression bugs,
there are also some techniques that have been proposed. For example, the difference between
the last version that worked well and the current version where the bug is present can be
used (Saha and Gligoric 2017), or a combination of the information in the issue tracking
system and source code management (Khattar et al. 2015).

Recently, the performance of SZZ has been studied (Bludau and Pretschner 2022;
Petrulio et al. 2022) in projects that follow the pull-based development model proposed
by GitHub (Gousios et al. 2014), showing that in this type of projects it is necessary to
consider sets of commits when detecting the change that introduced a bug.

None of these techniques deal with automatically transplanting tests to past versions of
the source code. Git bisect and its derivatives do not directly address transplanting code into
the past and is limited to a binary search that considers only a linear history model. SZZ and
derived techniques try to infer which changes could have introduced the bug by analyzing
the history of the source code.

One of the most disruptive studies in the area is that of Rodríguez-Pérez et al. (2020),
mentioned above. This study proposes a specific method for deciding if a snapshot has a
certain bug or not. For that, it introduces the “perfect test method”, a theoretical construct that
fails on any snapshot of the code affected by the bug and succeeds otherwise. It is important
to notice that this method does not define the BIC based on a method for tracking back
changes, but on studying the behavior of the program after a change is applied. Therefore, it
has resemblances to the bisection method presented above, but assuming that a perfect test
is available, which allows for the automation of the identification procedure. The method
determines if a certain snapshot has a bug or not, and therefore, the BIC is simply the first
snapshot that has the bug, or in other words, the first snapshot for which the perfect test fails.
Our proposal, aims to operationalize the perfect test method by running regression tests on
the change history of the project to detect the change that introduced the bug.

3 Methodology

To answer our research questions, we develop a tool that implements the perfect test method
to find the BIC corresponding to a BFC, by using regression tests as perfect tests. A regression
test for a bug checks if this bug reappears in changes following the bug fix. Our hypothesis
is that a regression test can be used as an approximation to the perfect test, which we will

5 https://lwn.net/Articles/317154/

123

https://lwn.net/Articles/317154/

 66 Page 6 of 35 Empirical Software Engineering (2024) 29:66

prove through our tool. Given a BFC and the regression test for its bug, the tool transplants
the test to past changes, and tries to execute them, determining if they succeeded or failed.
In order to learn how far the tests can be automatically transplanted to past snapshots of the
code (RQ1A) and what aspects prevent transplanting the regression test into the past(RQ1B),
we run this tool on a dataset consisting of several BFCs and their corresponding regression
tests. To learn in which cases the BIC could be found correctly (RQ2), the tool identifies the
BIC using the transplanted regression tests as the perfect test.

3.1 The perfect testmethod

As stated by Rodríguez-Pérez et al. (2020), the perfect test method to find the BIC corre-
sponding to a BFC assumes that data about changes to the source code (including the BFC
and all candidates to be a BIC) can be obtained from a source code management system
such as git, in which changes corresponding to fixing bugs can be identified, and related to
the description of the corresponding bugs. The perfect test method consists of the following
steps (Rodríguez-Pérez et al. 2020):

1. Identify a Bug-Fixing Change (BFC) and the description of the corresponding bug.
2. Using the change and the description of the bug, it describe the bug in terms of a perfect

test that would, with certainty, fail if the bug is present, or succeed if it is not (the perfect
test).

3. Identify, from the past history of the code, the first change for which the perfect test fails
(First Failing Change, FFC).

Rodríguez-Pérez et al. (2020) distinguish between intrinsic and extrinsic bugs. Intrinsic
bugs are bugs that have been introduced by a change in the code. In the case of intrinsic bugs,
there should be a BIC, and that will correspond to the FFC: before the BIC, the bug was not
present, and after it, it was present until fixed. Extrinsic bugs are not introduced by a change
to the source code but by an external factor, e.g., a change in an external API. In the case of
extrinsic bugs, Rodríguez-Pérez et al. indicate that there is a First-Failing Moment (FFM),
not present in the version control system and the FFC is the first change to the version control
system after the FFM. Rodríguez-Pérez et al. analyzed how 116 bugs were introduced in the
Nova and ElasticSearch projects, and created manually curated datasets for both projects.
From those 116 bugs, 60%-64% were intrinsic bugs caused by changes or omissions in the
source code of the project, and 9%-21% were extrinsic bugs caused by changes that are
not recorded in the source code (Rodríguez-Pérez et al. 2020). In another study using the
McIntosh and Kamei’s OpenStack dataset (McIntosh and Kamei 2018), out of 1,880 bugs
Rodríguez-Pérez et al. identified 1,120 intrinsic bugs (59.6%), 212 (11.3%) extrinsic bugs,
and 548 (29.1%) mislabeled bugs (Rodríguez-Pérez et al. 2020); only considering bugs, this
means 15.9% of the bugs were extrinsic.

In the current work we focus on intrinsic bugs, and therefore for us finding the FFC will
mean we found the BIC. We will not address the detection of FFC in extrinsic bugs since
regression tests cannot help us find that change and the bug dataset chosen to test our proposal
(to be described in the next section) only contains intrinsic bugs.

For describing the bug in terms of a perfect test (2), we use regression tests. Regression
tests are designed to detect if bugs are introduced in future changes, and we postulate that
they are also useful to detect them in past changes. Therefore, for (3) we run those tests in
snapshots of the source code after changes that are previous to the BFC in the history of
changes to the source code. Figure 1 illustrates the transplantation process, by showing a

123

Empirical Software Engineering (2024) 29:66 Page 7 of 35 66

X X ✓✓

Regression
Test

Transplant to past versions

BFCBIC

✓ X

Fig. 1 Simplified process leading to finding the First Failing Change (FFC), by running tests in past snapshots
of the project

simplified version of it: we will later discuss on this section how the BIC should be searched
considering that the git history is a graph rather than a line.

The paper presenting the perfect test method (Rodríguez-Pérez et al. 2020) states that one
of the main limitations of the perfect test is that being able to construct a perfect test requires
a deep knowledge of the bug, how it was fixed, and the project in which it was found. In
our case, we assume that developers writing regression tests have all this knowledge, and
therefore their tests will be close to the theoretical perfect test for the bugs they fix.

3.2 The bugs dataset

Defects4J (Just et al. 2014) is a well-known dataset with 835 bugs from 17 Java open source
software projects, including only bugs located in the source code, excluding those related to
the build system, configuration files, documentation or tests. It has been used as ground truth
in the evaluation of several implementations of SZZ-derived algorithms (Neto et al. 2019;
Pokropiński et al. 2022; Wen et al. 2019; An and Yoo 2021). Previous studies have identified
several issues that might threaten application of SZZ-derived algorithms: e.g., links to the
repositoriesmight have changed (Lawrence et al. 2001), repositoriesmight have been deleted,
moved, made private, or their history might have been altered (Bird et al. 2009). However,
Defects4J includes the whole source code management repositories of each project, avoiding
the problemsmentioned above.All but one of the repositories inDefects4J are git repositories,
which is the source code management we will target in our study.

Every bug included in Defects4J identifies the change (commit) fixing it (its BFC), and
refers to a publicly available bug report which details the nature of the bug. From here on we
refer to changes as commits, since we will focus on git repositories. This bug report will be
required when manually evaluating the detected BICs. Therefore, the dataset complies with
step (1) of the perfect test method. Associated with each bug there is also a regression test,
included in the BFC, that exposes the bug. The dataset also provides its own commands to
compile the code and execute the test in this commit. We will use this regression test as a
perfect test for the bug, therefore complying with step (2) of the perfect test method. The
authors of the Defects4J dataset have carefully reviewed the regression tests and explicitly
mentioned in their work that they have excluded any flaky test. However, we have run each
test 3 times in the BFC to verify that their results do not differ, avoiding the inclusion of
non-deterministic tests in our experiment.

123

 66 Page 8 of 35 Empirical Software Engineering (2024) 29:66

Table 1 Description of the projects used from Defects4J

Project # of bugs # of commits First Commit Last Commit

Cli 39 914 2002-06-10 2019-03-25

Closure 174 2,898 2009-11-03 2013-12-13

Codec 18 1,795 2003-04-25 2019-04-23

Collections 4 3,091 2001-04-14 2019-03-25

Compress 47 2,682 2003-11-23 2019-03-25

Csv 16 1,290 2005-12-17 2019-04-14

Gson 18 1,476 2008-09-01 2019-11-05

JacksonCore 26 1,724 2011-12-22 2019-04-24

JacksonDatabind 112 5,241 2011-12-22 2019-05-15

JacksonXml 6 949 2010-12-30 2019-05-05

Jsoup 93 1,261 2010-01-17 2019-07-04

JxPath 22 598 2001-08-23 2018-05-15

Lang 64 3,596 2002-07-19 2013-10-10

Math 106 4,913 2003-05-12 2013-10-16

Mockito 38 3,262 2007-11-15 2016-08-02

Time 26 1,718 2003-12-16 2013-12-04

The dataset does not include information about the commit that introduced the bug (if
any), which we would need to verify that the result of step (3) of the perfect test method
found the right change. However, the dataset provides a synthetic snapshot of the code (i.e.,
created by the authors of the dataset) which contains the same code as the fix snapshot, but
without the changes of the fix (i.e., it only contains the regression test added along with
the fix). In some of these synthetic snapshots it also includes additional changes such as,
for example, the removal of flaky tests. The purpose of this synthetic snapshot is to provide
a version where you can run the regression test without the fix and check its result. This
supports our assumption that the regression tests identified in the Defects4J dataset can be
used as perfect tests.

From the whole Defects4J collection of projects, we excluded project Chart because it
uses Subversion 6 as version control system, as we focus only on projects that use Git. As a
result, we included in our experiment 16 projects out of the 17 found in Defects4J, with a total
of 809 bugs of the initial 835 bugs. Table 1 shows a brief description of the selected projects:
the number of bugs it contains reported by the dataset, the number of stored commits, the
dates for the first commit of the project and the last one (the last commit does not correspond
to the last one in the official repository, since the projects in the dataset are stored as a copy of
the git repository at a specific point in time). It should be noted that this dataset was extended
in 2020, based on the original 2014 dataset (Just et al. 2014).

3.3 Transplanting the test to the past

Following the process shown in Fig. 1, we have designed and implemented a Python tool
that automates all the necessary tasks to transplant the regression test to the commits corre-

6 https://subversion.apache.org/

123

https://subversion.apache.org/

Empirical Software Engineering (2024) 29:66 Page 9 of 35 66

sponding to past changes, and run it to determine if it fails or succeeds. For each bug in our
subset of the dataset, it takes the following steps:

1. Extract information.By using the command-line tool provided by Defects4J, extract the
fix commit, bug report and regression test for the bug.

2. Set up the repository. By using the Defects4J command-line tool, obtain a copy of the
git repository of the project corresponding to the bug.

3. Execute the regression test on the fix commit. This will ensure that the test actually
succeeds for this snapshot, which means that it succeeds when the bug is fixed (if not, the
test would not check properly, as the perfect test method states). For this, the tool checks
out the snapshot corresponding to the bug fixing commit (BFC), and runs the regression
test on it. In this step, the file containing the test is stored, in order to be transplanted into
the previous snapshot (the test method, as well as the file name and the path where it is
located is provided by the dataset).

4. Execute regression test on all previous commits. This will allow us to find the first
failing change (FFC), which as we discussed, in the case of intrinsic bugs, will be the
BIC that we are looking for. For this, the tool checks out each of those past commits,
transplants the test to each of them, and runs it in each of them. The FFC will be the first
one that fails after the last one that succeeds.

In the steps that execute regression tests, the tool follows this procedure: (1) check out the
corresponding commit, (2) transplant the regression test, (3) compile the source code, (4)
compile the regression test, and (5) execute the regression test. For compiling and executing
we decided to use standard Maven and Ant commands, since the command provided by
Defects4J only works with some specific commits (in the BFC and in a synthetic commit
where the bug is present), andwe needed to build and run the test on any of them (see previous
discussion on finding the FFC at Section 3.1).

When the tool finishes all actions for a given bug, it reports the results of executing the
regression test (if that was possible) for all commits prior to theBFC. These results include the
success or failure of the different phases: building the source code, building the transplanted
test code, running the regression test, and the result (fail or success) of running the test. In
order to know the reasons for failures, the tool also keeps a log of the execution of each step.

In order to measure how far a test can be transplanted to the past and answeringRQ1A, it is
necessary to define a metric that allows us to measure how far we can transplant a regression
test. We propose the Transplantability metric. For a given bug for which we have a test that
detects it, we consider all commits that are ancestors of the BFC, in chronological order,
and from this ordering we will find a commit n which is the oldest at which the test can
be transplanted and executed. We define Transplantability (in days), Tdays as the number
of days between commit n and the BFC. In the same way, we define Transplantability (in
commits), Tcommmits as the number of commits between commit n and the BFC. The two
different ways of quantifying, together, are intended to give a more comprehensive view of
how far we can transplant a test into past commits. Commits and days can be very different
metrics for measuring distance of transplants. Both capture different information, depending
on how the project behaves, since the number of commits per unit of time can be very different
from project to project. The number of commits gives an idea of how many changes suffered
the code base, while the number of days gives an idea of how much “real time” passed by.
Since both changes to the source code and environmental changes due to the pass of time
are relevant, we need both metrics. According to previous work (Maes-Bermejo et al. 2022;
Tufano et al. 2017), as we go further in the past from the BFC, dependency errors are more
likely to appear. Similarly, the more commits we go into the past, the higher chance that

123

 66 Page 10 of 35 Empirical Software Engineering (2024) 29:66

the code might have changed in ways that make compilation impossible (due to refactoring,
for instance). The idea of using two different metrics to measure the same phenomenon
has also been explored by Zerouali et al. (2018). In their research, to calculate the distance
between two versions of a package (the one used by a project and the last one released), the
authors propose two metrics: time lag (time elapsed between the date of the used version of
a dependency and the date of the latest available version of this dependency) and version lag
(how many major, minor or patch versions the release of a required dependency is behind).

When designing our experiment, we envisioned three different challenges to trans-
plantability: source code compilability, transplanted regression test compilability, and
transplanted regression test execution. Indeed, previous literature (Tufano et al. 2017; Maes-
Bermejo et al. 2022) warns us that at least in the compilation of the source code we may
face problems that will prevent us from continuing with the experiment. We also consider
the likelihood that errors may also occur in the compilation of the regression test and in the
execution of the test itself (i.e., that the test does not generate a report indicating whether the
test passes or fails).

Problems related to compilability of source code, the compilability of the regression test
code (the transplanted test), and the runnability of the regression test will be studied in order
to answerRQ1B. To further understand these problems, we introduce three definitions: source
code compilability, transplanted test compilability, and transplanted test runnability.

Source code compilability is defined as the percentage of snapshots in the past history of
the BFC that could be successfully compiled. This metric was originally defined by Tufano
et al. (2017). Transplanted test compilability is similar, but for the transplanted test: the
percentage of snapshots in the past history of the BFC in which we could compile the
transplanted test. These parameters let us know how often the reason for not being able of
running the transplanted test was not being able to compile the test itself or compiling the
source code in each of the snapshots.

Transplanted test runnability is defined as the percentage of snapshots in the past history
of the BFC in which we could run (execute) the transplanted test without errors, producing
a “success” or “fail” result. The larger the test runnability, the more commits in which we
could run the test. If it is 100%, the perfect test method can be run for the whole history
before the BFC. When test runnability is not 100%, for some commits we cannot assess if
the test fails or succeeds (because it doesn’t run). Depending on the success or failure status
in other commits, we might have to add the commit to the list of candidate BICs without
being able to be more conclusive about it. Therefore, the transplanted test runnability shows
how successful is the transplantation of regression tests to past commits.

3.4 Identifying the Bug-Introducing Change

From the results obtained after transplanting the regression test on the commits prior to the
BFC we can seek to locate the BIC. At this point, we can revisit what “all previous commits”
from Step 4 mean. In Fig. 1 we present the history of commits as linear. However, in a
real git repository the commit history might not be linear: there are development models (as
GitFlow 7) with git in which development is done in parallel branches, which are merged
when convenient. Therefore, the history of a project can be considered as a directed graph.
The simplified model presented in Fig. 1 assumed a linear history of commits. We consider
the history of the source code as a graph, which allows us to better determine the BIC. The
consideration of the history as a graph to further refine the BIC search is a contribution of

7 https://nvie.com/posts/a-successful-git-branching-model/

123

https://nvie.com/posts/a-successful-git-branching-model/

Empirical Software Engineering (2024) 29:66 Page 11 of 35 66

this work. Each node represents a commit that will point to the commits that precede it (its
parents), which can be one or more.

With this inmind,we developedAlgorithm1 to detect theBIC in this graph. This algorithm
receives as parameters the graph, annotated with the result of running the tests (its status,
which can be success, fail or error), and the identification of the BFC in that graph, returning
the list of candidates to be the BIC. This algorithm traverses the graph using a depth-first
search (Cormen et al. 2001), startingwith an empty list of candidates, and trying to find the list
of candidates to be the BIC, according to the perfect test method. For that, the algorithm finds
the node n fulfilling the condition that the test fails for it, but succeeds for all its preceding
nodes, which would make n a candidate to be the BIC.

Since for some nodes we could not run the test (because it could not be compiled, it did
not run, or the source code could not be compiled), we must consider that in these nodes the
tests may or may not be executed successfully.

The algorithm operates under the following assumptions: (1) all the ancestors of the BIC
are success commits, until the beginning of the history of the project, or until the features
on which the test is built are introduced; (2) in the case of a commit with two or more
parents, which generate branches, the BIC can only be in one of these branches. The first
assumption is based on the definition of the BIC: the first commit where the bug manifests,
which following the perfect test method, means the first commit where the test fails. In other
words, in snapshots previous to the BIC the bug is not present, and therefore the test, if it can
be run, should succeed. The test may not run if it is designed on top of some feature (e.g.,
some function) that does not exist for some snapshot, because it was not yet implemented.
The second assumption is based on the unlikeness that the same bug (which is fixed by a
single fix commit) is introduced in two different branches.

Our algorithmhas as a precondition that the regression test canbe run andgives a successful
result in the BFC. If this precondition is fulfilled, we can run the algorithm, and come with
two different outcomes:

– The test succeeds in some preceding commit.We should find at least one parent commit
of the BFC for which the test fails (we should have at least one snapshot where the bug
is present). Following the ancestors of those commit that fail, we eventually find one that
succeeds. If we find a commit n where the test does not succeed, but it succeeds for all
its parents, then n should be considered the commit that introduced the bug. In this case,
the algorithm found a single candidate and returns it. If we find a commit n where the
test cannot be compiled, and it succeeds in all its parents, then all commits between n
and m, being m the first descendant of n where the test can be compiled and fails, are
considered candidates. We found several candidates, and we cannot decide which one is
exactly the BIC because we cannot run the test in them, but we know the BIC should be
one of them.

– The test does not succeed in any precedent commit. In this case, we should assume that
the bug was always in the code, since the functionality tested by the test was introduced
or that we cannot run the test for some reason (i.e., we are not able to compile the source
code). In any case, we cannot find the BIC: either it doesn’t exist, or it is hidden because
we cannot run the test, so the algorithm returns an empty list of candidates.

As an example of how the algorithm works, Fig. 2 represents the commit history for Bug
41 of the JacksonDatabind project from Defects4J dataset. The figure includes only commits
relevant to understanding how the algorithm finds the BIC, and consecutive commits (without
forks or merges) of the same color have been reduced to one. Each commit is identified with
a number, whose value simply indicates its chronological position with respect to the fix

123

 66 Page 12 of 35 Empirical Software Engineering (2024) 29:66

Algorithm 1 Algorithm to detect bug-introducing commits
Input : A graph (commit history) and the bfc
Output : A list of candidates for BIC
Precondition: The b f c status (the output of the regression test) must be success

1 candidates ← [];
2 queue ← [b f c];
3 visi ted ← [b f c];
4 temp_candidates ← [];
5 while Not Empty(queue) do
6 n ← Get First(queue);
7 if hasFailStatus(n) then
8 candidates ← [];
9 end

10 parents ← Get Parents(graph, n);
11 all ParentsSuccess ← True ; /* Control if all parents are success */
12 all ParentsError ← True ; /* Control if all parents are errors */
13 if isEmpty(parents); /* Reach first commit */
14 then
15 if size(queue) == 0 then
16 break;
17 else
18 continue;
19 end
20 end
21 for p ∈ parents do
22 all ParentsSuccess ← all ParentsSuccess and hasSuccessStatus(p);
23 if ¬hasSuccessStatus(p) then
24 if size(queue) == 0 then
25 if hasError Status(p) then
26 all ParentsError ← False;
27 end
28 if p /∈ visi ted then
29 Add I tem(queue, p);
30 Add I tem(visi ted, p);
31 end
32 else
33 all ParentsError ← False;
34 end
35 end
36 end
37 if all ParentsError then
38 Add I tem(candidates, n);
39 end
40 if all ParentsSuccess and ¬hasSuccessStatus(n) then
41 if hasFailStatus(n) then
42 return [n];
43 else
44 Add I tem(candidates, n);
45 if IsEmpty(queue) then
46 return candidates;
47 else
48 temp_candidates ← candidates;
49 end
50 end
51 end
52 end
53 return temp_candidates

123

Empirical Software Engineering (2024) 29:66 Page 13 of 35 66

08

5

611

BFC

3410
X

XXX

✓
X

✓
X✓

✓

BIC

✓X
12

9 7

Fig. 2 Visual representation of the results of the experiment for Bug 41 of JacksonDatabind project

commit (BFC) in order to be able to refer to them. Colors in the figure show if the regression
test succeeds (green �) or fails (red X).

In this figure we can see how Commit 2, although it has a green parent (Commit 6),
cannot be considered as BIC, since it has another parent (Commit 3) where the bug is present.
Following the ancestors chain, the algorithm will find at some point Commit 9, which is red,
but for which all parents are green (in this case, only Commit 10). Therefore, the candidate
list in this case will include only Commit 9.

3.5 Manual validation

To ensure that the results of our study can be considered as ground truth, we verified them by
performing a manual validation of the BICs detected for each analyzed bug. For this purpose,
one author performed the following steps for each BIC detected:

– Check and understand the bug report.
– Check and understand the fix in the BFC.
– Check and understand the changes to the code in the candidates to be the BIC.
– Check the output of the test run.

Following these steps, we categorized the BICs found in our study as true positives or
false positives, using only true positives as the ground truth in order to generate a validated
dataset of BICs.

4 Experimental Results

In this section we show the results of our study, answering the research questions presented in
the introduction. The following results are intended to determine the extent to which we can
operationalize the theoretical model proposed by Rodríguez-Pérez et al. We have considered
a total of 809 bugs in the Defects4J dataset, after filtering out bugs for the project we do
not consider as explained in Section 3.2. The results we found for each of those bugs are
summarized in Fig. 3. This figure differentiates the cases in which, out of the total number
of bugs, the regression test was found to pass again in some commit prior to the BFC from
those that did not. In turn, from this first group, we differentiate the bugs fromwhich we have
been able to obtain a single candidate to be the BIC or several of them.

123

 66 Page 14 of 35 Empirical Software Engineering (2024) 29:66

Fig. 3 Summary of results for each of the bugs considered in the study

4.1 RQ1A: “How far can a test be transplanted into the past?”

In Table 2 we show the values for each of the interpretations of Transplantability for each
bug. The values are aggregated by project, showing the mean and median for all bugs in
each project. Additionally, we add in the table the relative position (%) of commit n (1) with
respect to the total number of days elapsed between the BFC and the first commit of the
project and (2) with respect to the total number of commits between the BFC and the first
commit of the project. A value close to 0% in this relative position indicates that we have
barely been able to transplant the regression test, while values close to 100% indicate that
the test has been transplanted in most of the past commits (with respect to the BFC).

Table 2 Transplantability (in days and in number of commits) for each bug, aggregated by mean (x̄), by
median (x̃) and by the relative position of the oldest commit where the test could be transplanted (%)

Tdays Tcommmits
Project # bugs x̄ x̃ % x̄ x̃ %

Cli 39 913 1168 34.87 134 115 33.44

Closure 174 235 108 36.74 453 192 39.79

Codec 18 703 427 22.17 195 83 21.58

Collections 4 599 703 11.05 178 213 6.30

Compress 47 1,914 2,051 47.88 1,242 1,331 83.24

Csv 16 106 41 3.11 41 27 5.17

Gson 18 1,283 1,212 47.60 481 368 41.70

JacksonCore 26 444 450 32.98 262 258 34.00

JacksonDatabind 112 726 691 44.50 1,200 1,181 41.41

JacksonXml 6 890 939 40.78 263 239 41.58

Jsoup 93 437 240 26.95 142 76 18.33

JxPath 22 607 532 24.44 80 79 21.65

Lang 64 355 246 14.88 283 206 13.05

Math 106 197 120 8.14 295 194 10.75

Mockito 38 1,664 1,552 96.61 1,781 1,540 95.93

Time 26 502 483 15.44 109 94 6.68

All bugs 809 591 313 32.58 536 216 33.54

123

Empirical Software Engineering (2024) 29:66 Page 15 of 35 66

Table 3 Distribution of
Transplantability results for all
projects

bugs mean std min 25% 50% 75% max

Tdays 809 591 708 0 87 313 832 3,475

Tcommits 809 536 699 1 76 216 727 3,709

For a more comprehensive view of the Transplantability results, Table 3 provides in detail
the distribution of Tdays and Tcommits results. First, we found that both metrics offer very
similar results, showing that the average frequency with which a commit is added to these
repositories is approximately 1 day.

To check if the distances between the BIC and the BFCwe found are consistent with other
studies, we have used the datasets of Rosa et al. (2021) and Petrulio et al. (2022), computing
Tcommits and Tdays for the bugs on them.

Rosa et al. dataset contains 1,115 bugs from 887 different projects written in different
programming languages (C, C++, Python, JavaScript, Java, PHP, Ruby ...) and it offers the
BFC and BIC for each bug. We calculated the distance in days and in number of commits
between the BIC and the BFC for 1,040 bugs (for the rest of the bugs, it was not possible to
retrieve the code repository). The results can be seen in Table 4. It should be noted that there
are projects with a huge number of commits that disturb the mean.

Petrulio et al. dataset contains 5,348 bugs from Mozilla project, written in C++ and
JavaScript, and it also offers the BFC and BIC for each bug validated by the developers. In
this dataset, the links can contain N BFCs and M BICs, being N > 0 and M ≥ 0. We have
discarded 45 links that did not have a BIC associated, and 1,157 links where there was more
than one BFC (we consider that a bug can only be resolved in a single commit, given our
definition of BFC: the commit where the bug is no longer present due to a change in the
code). For the remaining 4,146 links we have calculated the distance in commits and days.
For those cases where there was more than one BIC, we calculated the average distance
between the BFC and each BIC. Finally, we discarded 90 links whose average distance in
days was negative (i.e., the BIC was later than the BFC), thus exposing some limitations of
this dataset. This results in a total of 4,056 links, whose distribution can be seen in Table 5.

Comparing Tables 4 with Table 3, we can see that, for example for the 75% percentile,
our transplantability distances are much larger (by about an order of magnitude) than the
distance between the BIC and the BFC in Rosa et al. That means that, if our projects behave
similar to those in the Rosa et al. dataset, at least for 75% of bugs we are very likely having
the capacity of transplanting the test well beyond the BIC.

Comparing Tables 5 with Table 3, if we consider the transplantability metric in days and
the distance in days, the results are similar to the comparison with the Rosa et al. dataset (i.e.,
one order of magnitude higher). It should be noted that theMozilla project has manymodules
that are developed at the same time, so the distance in number of commits is significantly
greater and is not directly comparable to other BIC datasets such as ours or that of Rosa et
al. in this metric.

Table 4 Distance between BFC and BIC in days and commits for the dataset of Rosa et al. (2021)

count mean std min 25% 50% 75% max

In # of days 1,040 106 367 0 1 9 51 6,778

In # commits 1,040 1,678 13,129 1 3 11 81 262,977

123

 66 Page 16 of 35 Empirical Software Engineering (2024) 29:66

Table 5 Distance between BFC and BIC in days and commits for the dataset of Petrulio et al. (2022)

count mean std min 25% 50% 75% max

In # of days 4,056 100 319 0 5 16.5 70 9,1954

In # commits 4,056 14,555 40,382 4 697 2,442 10,450 514,394

RQ1A: “How far can a test be transplanted into the past?”
For the dataset used, we have managed to transplant the regression test for a bug up to
591 days (536 commits) in the past on average. For 50%of the bugs, the regression test
could be transplanted up to at least 313 days (216 commits). On average, regression
tests can be transplanted to a 32.58% of the days (33.54% of the commits) between
the BFC and the initial commit of the project.

4.2 EQ1B “How compilability and runnability problems impact the transplantation
of the regression tests to the past?”

In Table 6 we show average and mean data for the three metrics defined in Section 3: source
compilability, transplanted test compilability and transplanted test runnability.

Table 7 provides in detail the distribution these metrics for a more comprehensive view
of the results.

Table 6 Source code compilability, transplanted test compilability, and transplanted test runnability for each
bug, aggregated by mean (x̄) and by median (x̃) per project

Project # bugs Source Compilability T.Test Compilability T.Test Runnability
x̄ x̃ x̄ x̃ x̄ x̃

Cli 39 55.66 62.61 28.19 30.88 28.19 30.88

Closure 174 59.40 54.36 34.47 17.82 34.47 17.82

Codec 18 23.74 14.29 20.44 8.84 20.44 8.84

Collections 4 97.94 98.98 5.73 7.46 5.61 7.37

Compress 47 32.29 23.60 22.90 17.02 21.07 10.92

Csv 16 19.07 17.38 5.26 3.51 5.21 3.51

Gson 18 42.00 35.98 40.73 34.68 40.73 34.68

JacksonCore 26 35.08 32.54 31.52 30.12 31.52 30.12

JacksonDatabind 112 85.18 85.59 21.97 16.02 21.97 16.02

JacksonXml 6 89.26 88.04 28.83 24.59 28.83 24.59

Jsoup 93 21.08 12.52 17.56 9.74 17.56 9.74

JxPath 22 92.25 100.00 21.93 23.57 21.93 23.57

Lang 64 74.08 66.08 11.61 8.50 11.61 8.50

Math 106 40.00 36.19 8.61 6.28 8.61 6.28

Mockito 38 30.69 30.06 23.83 25.22 23.83 25.22

Time 26 69.58 100.00 6.64 5.80 6.35 5.80

All 809 52.95 49.83 21.86 12.75 21.74 12.47

123

Empirical Software Engineering (2024) 29:66 Page 17 of 35 66

Table 7 Distribution of source compilability, transplanted test compilability and transplanted test runnability
results for all projects

bugs mean std min 25% 50% 75% max

Src compilability 809.0 52.95 31.87 1.58 24.88 49.83 82.5 100.00

T.Test compilability 809.0 21.86 24.37 0.10 4.36 12.75 30.5 99.66

T.Test runnability 809.0 21.74 24.39 0.10 4.36 12.47 30.4 99.66

The reasons that prevent transplanting the regression test are directly related to these
metrics and can be classified as follows:

– Compilability of the source code. If the source code cannot be built for the snapshot,
there is no way to build the regression test. Compilability of past snapshots has been
studied in detail by Tufano et al. (2017), whose experiment in 2014 showed an average
compilability of 100 Java projects of 37.74%. Maes-Bermejo et al. (2022) replicated this
experiment in 2020 and a decrease in compilability was observed due to the lapse of
time, obtaining a value of 25.09%. The compilability may vary largely from project to
project, and it will depend among other factors on the availability of third party modules
needed to build the code, on the availability of the building tools in the right version, and
on the complete automation of the building process. These factors are usually affected
by time, and a degradation of compilability as time passes has been observed in these
two previous studies. In our case, the mean compilability of the snapshots previous of
each bug is 52.95% (with a median of 49.83%). The value obtained is higher than that
obtained in previous studies due to a combination of good practices by the authors of
the Defects4J dataset; storing project dependencies and adapting their configuration files
to ensure high reproducibility in the experiments (although only in the BFCs), together
with additional adaptations made by the authors of this work, completing the adaptation
of the configuration of each project to each commit of its history.

– Compilability of the regression test. If the test cannot be built, it cannot be run. The
test is built on top of the snapshot, and it may not build because the code it expects in the
snapshot is not present. This may happen because that code was still not implemented
for a given snapshot. For example, this is the case if the test tests a certain function:
in some past snapshot the function may not be implemented yet. This may also happen
because the code was in the snapshot, but not in the way the test expects it. For example,
this may happen in case of refactoring between the snapshot we are trying to build and
the snapshot for which the test was designed. In general, these problems will become
more and more frequent for older commits with respect to the BFC, since more artifacts
(code files, libraries or configuration files) could change since those snapshots to the
one corresponding to the BFC, for which the regression test was designed. They will
also be frequent in branches which for some reason lack some code needed by the test.
The aggregate results for the transplanted test compilability (21.86% mean and 12.75%
median for all bugs) are strictly lower than source code compilability, since compiling the
source code is a necessary step to be able to compile and run the tests. To the best of our
knowledge, there is no large-scale study on the compilability of a test that is transplanted
to past commits, so we do not have a baseline on which to compare the results obtained
on this metric.

– Runnability of the regression test. Even if the regression test can be built, maybe its run
does not produce a result, but fails earlier due to some code not behaving as expected.

123

 66 Page 18 of 35 Empirical Software Engineering (2024) 29:66

When aggregating all bugs together, the mean for transplanted test runnability is 21.74%,
and themedian is 12.47%.Thismeans that in half of the bugs the test could be transplanted
successfully to about 12.5% of the commits (although the differencewith themean shows
how in some bugs, the transplant was successful in a much higher fraction of the cases).
These values are again slightly lower than the previous metric (the compilability of the
regression test) since we need to compile the test code in order to be able to run it. In
this case, the values are very close (or even equal) to those of the compilability of the
regression tests, so we can affirm that if the transplanted test is successfully compiled, it
can be executed. Again, to the best of our knowledge, the runnability of a test transplanted
to the past has not been addressed on a large scale.

We will discuss the problems of transplanting the tests in the past in more detail in
Section 5.4.

When examining the numbers for each project, we can see how, even when it varies from
project to project, transplanted test runnability is always very similar to transplanted test
compilability, which means that if the test compiles, usually it runs. In other words: the main
blocker for running a test is that the test does not compile. For compiling the test, we should
compile the source code. Again, by looking at this table, we can see how in some cases, the
blocker for compiling the transplanted test is that the snapshot does not compile (for example
for Gson, in almost all commits for which the snapshot compiled, the test also compiled).
But for most of them, even if the snapshot compiles, the test does not.

These results are relevant because they show that by improving the compilability of the
source code, and of the regression test, we could improve transplanted test runnability, and
therefore, the applicability of the perfect testmethod. They also show that some projects have
a very low compilability. This may be due to age (See Table 1) of those projects (maybe the
developers of those projects were using old practices that do not interact well with modern
tools), or to specific characteristics of those projects, that maybe could be fixed with more
knowledge about their building configuration.

Despite all these factors, the fact that for some projects transplanted test runnability is
high shows that at least in some cases the conditions to use the perfect test method with
regression tests hold.

RQ1B: “How compilability and runnability problems impact the transplantation
of the regression tests to the past?” The effectiveness of the transplant is limited by
compilability issues unrelated to the transplanted test (the snapshot does not compile
47.05% of the time) or by compilability of the transplanted test (the test does not
compile 78.14% of the time, essentially because of the limitation in compiling the
source code or because it relies on missing code). However, we found that when the
test compiles, in general, the test can be run. Therefore, compilability of the source
code is a blocker that, when improved, could improve the transplanted test runnability.

4.3 RQ2:“Can the BIC for a given bug be found using its regression test?”

Following on with the chart in Fig. 3, to answer RQ2 we will study in which cases the test
succeeded in some precedent commit, and in those cases, how many candidate BICs were
found. We consider the following scenarios as defined in our methodology.

123

Empirical Software Engineering (2024) 29:66 Page 19 of 35 66

The test does not succeed in any previous commit.
From the total 809 bugs, in 710 the regression test did not succeed in any commit previous

to it. In these cases, the perfect test method (using regression test as perfect tests) does not
allow us to identify candidates for being the BIC. Since the test never succeeds in commits
previous to the BFC, we cannot find the commit in which the bug was introduced. In the
snapshots corresponding to some of those commits this is because the test cannot be run (and
therefore we don’t know if the bug is present or not in them), and in some others because it
can be run, but fails (and then we know that the bug is present).

The reasons for the test not running (the test was not successfully transplanted) were
already explored in the previous section, and in many cases are related to compilability
problems.The fact that the tests are executed (successfully transplanted) but fail in all commits
prior to the BFC is a case contemplated and addressed by the perfect test method: it means
that the bug is present in those snapshots since the feature tested was introduced. However, if
we cannot find a previous commit for which the test succeeds, we have no evidence of where
the BIC is.

The test succeeds again in some past commit.
For the remaining 99 bugs, the test succeeds in at least one commit previous to the BFC,

and therefore we can provide more conclusive results by running the perfect test method.
For 95 bugs out of these 99, our algorithm produces a single candidate to be the BIC. The

regression test succeeds in snapshots previous to this BIC candidate, which means it is the
FFC (First-Failing Change), and following the perfect test method, the commit that introduce
the bug (BIC). In 8 of these cases, the BIC was found in a direct parent of the BFC, which
means the bug was detected and fixed very quickly after it was introduced. This is due to a
practice known as Backtracking (Yoon and Myers 2012, 2014), where the developer reverts
part or all of the change made when an issue is reported.

For the 4 remaining bugs, the algorithm finds multiple candidates. If n is the first commit
(going backwards from the BFC) in which the test succeeds, we have several candidates if
for one or more commits that are right before n (again, going backwards from the BFC) the
test could not be executed (we are not able to compile the code or the test). In those cases,
since the test could not be run, we do not know if the bug is present or not, and, according
to the definition provided by Rodríguez-Pérez et al., any of them could be the FFC (the first
failing change). So, all of them, including the last one that failed (again, in the same order),
are possible BICs.

RQ2: “Can the BIC for a given bug be found using its regression test?” Yes, at
least for those cases where a functionality no longer behaves as the regression test
expects it. The regression test can be transplanted to past commits, and using the
perfect test method with the regression test as perfect test, the BIC can be found. In
our case, for the 809 bugs for which we could assess the regression test detected the
bug, we could use the method to identify precisely the BIC in 95 bugs, and to provide
a list of candidates for other 4 bugs. The bugs for which the method did not work
were mainly due to not being able of running the test, because of compilability or
runnability problems, in addition to the contemplated case in which the tested feature
has always contained the bug. In general, when regression tests could be run, the
method worked.

123

 66 Page 20 of 35 Empirical Software Engineering (2024) 29:66

4.4 Validation of results

Once we have detected the BIC for 95 bugs through the perfect test method (as well as
detecting BIC candidates for 4 bugs), we want to ensure that the BIC found is actually the
BIC, the commit that introduced that bug. Following the steps already described in Section 3,
we checked manually all these cases, finding that all of them are true positives.

In addition, we also evaluated manually the 4 remaining bugs for which more than one
BIC candidate. For three out of the four bugs (JacksonDatabind 14,Math 2 andGson 7), there
are only two candidates, while in the remaining one (Closure 20) there are 17 candidates. In
the JacksonDatabind 14 bug, the first candidate (chronologically) only adds a test that does
not compile, while the second one adds new functionality so this second one is the candidate
to be the BIC. In theMath 2 bug, the first candidate (chronologically), adds a new feature, but
performing an import incorrectly and preventing it from compiling. The second candidate
fixes this import and does not add more code, so the first one is the candidate to be the BIC.
In the Gson 7 bug, the first candidate (chronologically), completely deletes the JsonReader
class (preventing the code from compiling). In the second candidate, the JsonReader2 class is
renamed to JsonReader, so the second candidate is the candidate BIC. Performing the same
manual validation as for the cases with only one candidate identified, we have determined
that the only candidates identified (after discarding the others), are the BIC, adding 3 BICs
to the total detected. Finally, for the Closure 20 bug, we found 17 candidates. In the first
candidate (chronologically) a completely different internal module (still under development)
is started to be used. The development takes 16 commits, during which the project cannot
compile, as classes required will be added in later commits. After finalizing the functionality,
the regression test starts to fail until the BFC. In this case, further analysis would be necessary,
with more domain knowledge, to find the BIC among the candidates.

Two conclusions can be drawn from the results of this manual validation:

– The perfect test method can be used to identify the bug-introducing change, with regres-
sion tests as perfect tests, at least for those cases where a functionality no longer behaves
as the regression test expects it.

– We have a ground truth dataset of 98 bugs for which we know the BFC and the BIC,
which can be used to evaluate methods for finding the BIC.

This manual analysis also allowed us to explore in some detail how those commits intro-
duced the bug. We found the following two cases:

(1) The bug is introduced in a commit marked as FIX. This means that the commit was
trying to fix another bug, but while doing that, it introduced a new one. For example,
Bug 24 of the JacksonDatabind project has a BIC which is the BFC of another bug. The
bug fixed in that BIC deals with date serialization, changing several classes for that. One
of those commits, which is reverted in the BFC for Bug 24, was the one introducing that
new bug. Previous studies (Guo et al. 2010; Purushothaman and Perry 2005; Yin et al.
2011) also state that bug-fixing commits are more likely to introduce a new bug in the
software.

(2) The bug is introduced as a refactoring or reimplementation. This case will be illus-
trated with Bug 23 of the Jsoup project (an HTML parser). The bug is that the special
entities that include numbers to display fractions in HTML do not recognize the num-
bers, so they do not work as expected (i.e., the string “½” should generate “ 12 ”).
In the commit marked as BIC by our tool, there is a refactoring of the parse functional-
ity, the main method of the library. This function goes from internally using the Parser

123

Empirical Software Engineering (2024) 29:66 Page 21 of 35 66

class to using TreeBuilder (a new class). When using the Parser class, the bug did not
manifest itself and the regression test passes. This refactoring brings with it the cre-
ation of new classes (that TreeBuilder needs to operate), among which we will highlight
Tokeniser and CharacterReader. Tokeniser uses CharacterReader to read characters from
the stream, one at a time, using the method consumeLetterSequence. In the BFC the
method consumeLetterThenDigitSequence, considering both letters and numbers for an
entity, is added to the CharacterReader class. Then the Tokeniser class is changed to call
these new method instead of the old one (consumeLetterSequence), that only considered
letters, hence solving the bug by considering numbers as well as part of an entity.

This manual validation shows one of the most important results of our study: a collection
of bugs with an identification of the BIC that introduced them can be produced automatically
from a collection of BFCs using the perfect test method, with regression tests as perfect tests.
These collections could be used to produce ground truth datasets for evaluation analysis,
as we do in this study, but also for any other study where a collection of BICs is needed,
such as those on how bugs are introduced. In this paper we provide BIC-RT as one of these
collections obtained from the Defects4J bug dataset, with a total of 98 identified BICs.

5 Discussion

In this section we will discuss in detail the implications for methods for finding bug-
introducing changes (Section 5.1) and the contribution of the generated dataset through
(1) an evaluation of SZZ-based tools on it (Section 5.2) and (2) a comparison of our BIC
dataset (BIC-RT) with a previous BICs dataset using Defects4J as bug dataset (Section 5.3).
We will also discuss the limitations of transplanting a test into the past (Section 5.4) and
the implications of our work for practitioners (Section 5.5) and researchers (Section 5.6).
Finally, we discuss the threats to validity of this paper (Section 5.7).

5.1 Implications for methods for finding bug-introducing changes

The work by Rodríguez-Pérez et al. (2020) already showed that BICs could be defined and
identified in terms of the “perfect test” method. We have made this approach practical, by
using regression tests as proxies for perfect tests. In our study, we have shown how a sensible
proportion of regression tests can be transplanted to past commits, and used to identify when
the bug fixed in a BFC was introduced. It is important to notice that, if we agree on the
definition of a BIC based on a perfect test, and regression tests can work as a proxy for that
perfect test, this way of identifying the BIC is “perfect”, in the sense that it should really be
the BIC.

Our study showed that the process can be automated (at least to some extent), and that
it works in a sensible fraction of BFCs, in a real project, with no specific considerations
for designing regression tests that can be used as perfect tests (for example, not specifically
designed towork in the past), andwith little adaption to the history of the project (for example,
by building more complex tools that can adapt the tests to past states of the system, so they
compile and run in more cases).

The study also showed that, when BICs can be identified this way, we have a very interest-
ing baseline to measure effectiveness of BIC-finding algorithms, such as SZZ and derivatives
(see Section 5.2 for details). Using this baseline, we have found BICs that are not found by
SZZ and their derivatives. It is interesting to notice that the reason why they are not finding

123

 66 Page 22 of 35 Empirical Software Engineering (2024) 29:66

them is because of their assumptions on how to find the BIC. Since they rely on relationships
between commits in the VCS graph, they cannot found those BICs that are not related to
the BFC that way, or they cannot decide which one is the real BIC when there are several
candidates with similar graph relationships.

Therefore, the regression test approach we propose is, more than a practical approach
to find BICs (which for now we didn’t prove in the general case, and we know could have
practical problems in the general case), a practical construct that, for the cases where it can be
applied (regression tests are available, transplantable to past commits, and runnable for them),
identifies the BIC with great certainty. The only limitation is to which extent the regression
test actually triggers the bug. However, these cases should be few, because regression tests
are precisely designed to trigger the bug.

Therefore, as we explain later in this section, it is a valuable tool for determining when
a BIC-finding algorithm works, and to which extent it can find the BIC for specific BFCs.
Since it can be automated at least in some cases, those algorithms could be run on those
specific BFCs to check for their accuracy. In fact, the dataset we provide as a result of our
study can be a resource for doing exactly that, helping to assess advances in finding commits
that introduced bugs.

5.2 Evaluation of SZZ derivatives

Thanks to our subset of theDefects4J dataset with 98 bugswith verifiedBICs, we can evaluate
the performance of the implementations of SZZ derivatives. We will use this dataset as the
ground truth, and will run the SZZ derivatives implementations to check to which extent they
correctly identify the right BIC for each bug. We will analyze in detail those bugs where the
implementations of SZZ derivatives are not able to find the BIC.

Several implementations of the SZZ algorithm and derivatives of it have been presented in
the literature. However, for many of them their implementation has not been published, which
has made it difficult to reproduce their results (Rodríguez-Pérez et al. 2018). Fortunately,
several recent studies (Borg et al. 2019; Lenarduzzi et al. 2020; Pokropiński et al. 2022;
Rosa et al. 2021) provide public implementations of their algorithms. We evaluate their
performance in finding the BIC, considering the manually validated results of our study as
the ground truth.

At the moment of writing there are seven publicly available implementations of SZZ
variants:

– OpenSZZ (Lenarduzzi et al. 2020). It is basedon the original version of theSZZ (Śliwerski
et al. 2005).

– PySZZ (Rosa et al. 2021). Includes five implementations of SZZ-derived algorithms: ag,
l, r, ma and ra. SZZ-agwas proposed byKim et al. (2006) and is based on the original SZZ
algorithm (Śliwerski et al. 2005), solving some limitations related to cosmetic changes
in the code, such as moving a bracket to another line. SZZ-l and SZZ-r were proposed
by Davies et al. (2014) and is based on SZZ-ag, using two different criteria to select the
BIC among the candidates: SZZ-l uses the largest candidate (the commit with the highest
number of changes), while SZZ-r uses the most recent candidate. SZZ-ma was proposed
by Da Costa et al. (2016) and is based on SZZ-ag, excluding from the BIC candidates
all commits that do not include changes to the source code, including merges between
branches. SZZ-ra was proposed by Neto et al. (2018) and is based on SZZ-ma, excluding
from the BIC candidates those commits that include refactoring operations.

123

Empirical Software Engineering (2024) 29:66 Page 23 of 35 66

Table 8 Results of SZZ algorithms on our BIC dataset

SZZ Implementation Correct BICs Hit rate Candidates (avg)

OPENSZZ 17 17.35 1.05

SZZ UNLEASHED 6 6.12 17.37

PYSZZ-ag 39 39.80 1.21

PYSZZ-l 15 15.31 0.68

PYSZZ-r 22 22.45 0.68

PYSZZ-ma 52 53.06 2.45

PYSZZ-ra 39 39.80 1.44

– SZZ Unleashed (Borg et al. 2019). This variant partially implements an algorithm
proposed by Williams and Spacco (2008) based on SZZ-ag, improving it by using a
line-number mapping approach (Williams and Spacco 2008) and DiffJ 8 (a java syntax-
aware diff tool). We emphasize that it only partially implements it since it does not use
DiffJ.

For our work, we have selected these seven implementations of the SZZ to examine their
results on the BICs detected by our tool. These implementations will identify, for each bug,
a list of commits that are candidates to be the BIC, starting from the BFC for that bug. For
evaluating each implementation,we have computed the number of commits that they included
in the list of candidates for each bug, and the number of bugs forwhich the correct BIC is in the
list of candidates. We have then aggregated the numbers for each implementation, computing
the total number of bugs for which it correctly included the BIC within the list of candidates,
its percentage over the total number of bugs (98), or hit rate, and the average number of
BIC candidates per bug (including those bugs for which the implementation produced zero
candidates). These results are shown in Table 8.

The results show a great variability in the ability of the implementations we have evaluated
to identify the correct BIC, for the bugs inBIC-RT. It is remarkable that the hit rate is relatively
low, except for the most advanced implementations of PySZZ (ag, ma and ra), which obtain
an acceptable hit rate despite not having the information on whether the bug is present or not
that the perfect test method provides.

There is also great variability in the number of BIC candidates produced per bug, from0.68
to 17.37. However, for most implementations (all of them but one) the number of candidates
per bug is relatively low (less than 2, in average). This means that they are reasonably precise,
given that they only use limited information.

In addition, for 40 bugs none of the SZZ implementations included the right BIC in the
list of candidates. These 40 bugs have in common that the BFC does not fix the same lines
that were introduced in the BIC, so the main premise of the SZZ fails, with the result that it
cannot find the BIC. This evidences a known limitation of SZZ-based approaches. Our tool
contributes to the state of the art to correctly identify BICs for this kind of bugs.

With this evaluation we have also shown that BIC-RT can provide ground truth for evalu-
ating SZZ derivatives, and other algorithms for automatically finding the BIC that introduced
a certain bug. Since BIC-RT was produced following an automatic procedure (we validated
it manually, but the BICs were first identified in a completely automated way), we expect that

8 https://github.com/jpace/diffj

123

https://github.com/jpace/diffj

 66 Page 24 of 35 Empirical Software Engineering (2024) 29:66

larger ground truths can be obtained in the future to better evaluate any proposed algorithm
to solve the problem of finding the BIC.

5.3 Comparing BIC-RT with InduceBenchmark

An important result of our study is a dataset of BICs (BIC-RT), automatically found from
their BFC, and manually validated, extracted from the Defects4J dataset. Based also on
Defects4J, InduceBenchmark (Wen et al. 2019), a dataset with 91 BICs, was created to
evaluate SZZ implementations. We compare the results of our technique on 82 of the bugs
in InduceBenchmark (the remaining 9 bugs correspond to the project we filtered out in
Section 3.2). Our technique found automatically the BIC for 30 of those 82 bugs. In 25 of
these cases, we found exactly the same BIC identified in InduceBenchmark. For the 5 bugs
where we do not get the same BICs as in InduceBenchmark (all of them belonging to the
Closure project), we have analyzed the results of both datasets. For bugs 90 and 114, we found
that in the commits reported by InduceBenchmark as BICs, the regression test provided by
Defects4J that reveals the bug gives a success result. In fact, in these commits reported as
BICs there is no real change in the application code, just changes in the comments (90) and
file permissions (114). For bugs 12, 82 and 131, the test fails on the commit marked as BIC.
Reviewing these commits we find that there are no real changes in functionality that could
cause the bugs to be introduced. These commits only change author names (12), modify
toString() methods (82) and delete whitespace (131).

Summarizing this discussion, BIC-RT adds 68 newBICs to those offered by InduceBench-
mark, our tool offers a method to obtain new project BICs automatically and can also be used
as an automatic method to validate BIC datasets. In addition, we detected 5 BICs that were
misidentified by InduceBenchmark.

5.4 Transplanting tests to the past

One of the main reasons for proposing the operationalization of the perfect test method using
regression tests is that these (regression tests) are present in many modern projects. This
means that the technique could be used in many of them, if those tests can be transplanted
successfully to past commits. However, in Section 4.2 we showed how inmany cases this was
not possible, and howmuch successwe had in the different phases of the process (compilation
of the snapshot, compilation of the test, and execution of the test). These problems clearly
limit the effectiveness of the technique.

5.4.1 Improving the transplantability of the regression tests

In fact, studies on the compilability of past commits (Tufano et al. 2017; Maes-Bermejo
et al. 2022) show that it is relatively usual that a considerable fraction of past commits in a
project are not automatically compilable as such. However, those studies also show that some
reasons for those problems (such as the availability of dependencies or the suitability of build
configurations) can be mitigated. To mitigate these problems, our tool allows to include a
script in which the user can define fixes to be applied to each commit in which the regression
test is executed. The authors of the Defects4J dataset follow a similar approach (from which
we draw our inspiration). They provide manually generated configuration files so that the
tests can be run on the BFC and on a synthetic version of the BFC without the fix code (with
the aim of providing a commit where the bug is revealed). These configuration files resolve

123

Empirical Software Engineering (2024) 29:66 Page 25 of 35 66

some dependency issues by providing these dependencies as part of theDefects4J framework.
For 502 bugs out of 809, we have taken advantage of these configuration files, making some
modifications to them, in order to transplant them together with the regression test and ensure
high compilability of past commits. The resolution of dependencies fromexternal repositories
is one of the main causes of failure in the build of Java projects (Tufano et al. 2017; Maes-
Bermejo et al. 2022). One of the main advantages offered by these configuration files is that
the project dependencies are obtained as local files (which are part of Defects4J) instead of
downloading them from a remote repository, solving the above-mentioned problem.

In the following we discuss other relevant modifications and fixes included, based on
the suggestions proposed in the literature (Maes-Bermejo et al. 2022). We found references
to dependencies (not included in Defects4J) that include the suffix “-SNAPSHOT”, which
indicates that this is a volatile development version and is sometimes removed from the
dependency repositories (causing the impossibility to compile a project that depends on them).
For 15 bugs we found that this dependency was included in the BFC, and the compilation of
the BFC failed due to it, thus preventing our method from being able to work (the compilation
and test execution at the BFC, with a success result, is a precondition for the method). The
removal of this suffix, forcing it to use the stable version of that dependency, has allowed
us to compile the BFC of these 15 bugs, allowing our method to start finding the BIC for
them. This fix on dependency issues has been used on a total of 44 bugs (including the 15
mentioned above). In 144 bugs from 6 projects we faced problems with source code parsing
(due to the inclusion of unrecognized characters in strings or comments). Two different types
of fixes have been used to solve this problem: (1) modify the encoding in the configuration
file that is transplanted to the past along with the regression test or (2) modify the snapshot
configuration file to include the new encoding. We have also had to consider, in one project
(Joda Time), that the code directories may change location (be placed in subfolders) in older
commits, so it has been necessary to automate their re-structuring so that it can be compiled.

Building transplanted tests was also a problem. First, the standard way of building tests in
Java requires building all of them together. This means that if there is a problem compiling
just a single test, the test compilation fails, and therefore we cannot run the transplanted test
(even if it compiled successfully). This effect could be mitigated by ensuring that only the
transplanted test is compiled, with the risk, maybe, of having dependencies on some test
classes that are not run (e.g., inheritance of a parent class). Fortunately, we also observed
that once the test was compiled, it almost always runs successfully. In any case, for 17 bugs,
we have automatically removed in the past commits some problematic tests (that did not
compile) and were not related to the regression test. For 25 bugs, it has been necessary not
only to take the regression test to past commits, but also to take a file on which the test
depends (auxiliary classes created specifically for that test or modified parent classes in the
BFC that include code required by the regression test).

5.4.2 Limitations on regression test transplantability

Despite all our efforts to transplant as many regression tests as possible, we still found severe
limitations in transplanting them. For the 710 bugs for which their corresponding test did
not succeed in any previous commit snapshot, only in 55 cases we did not encounter any
limitations to the transplant: the test could be transplanted, including execution, up to the
initial project commit. This is because the first commit of the project includes code developed
in another repository. In the remaining 655 cases, we detected, by checking the execution
logs, several errors that limit transplantability. In Table 9 we show the errors that limit the
transplantability found along with occurrence, divided in two categories: when the source

123

 66 Page 26 of 35 Empirical Software Engineering (2024) 29:66

Table 9 Errors that limit of the transplantability of regression tests. Capitalized errors are a group of very
similar errors, while non-capitalized errors correspond to the exact message returned in the log

Category Error Count

Source code build error No pom.xml file 35

File or directory not exist 25

Java version error 19

Other source build error 3

Subtotal 82

Test code not compatible with source code cannot find symbol 352

cannot be applied to given types 51

package X does not exist 40

Java version error 33

duplicate class 27

no suitable method found 21

incompatible types 11

no suitable constructor found 10

has private access 5

unreported exception 5

class X is not abstract and does not
override abstract method Y

4

non-static method cannot be refer-
enced from a static context

3

method X in class Y cannot be applied
to given types

2

method does not override or imple-
ment a method from a supertype

2

type StringEncoderAbstractTest does
not take parameters

2

clone() has protected access in Object 1

annotation type not applicable to this
kind of declaration

1

class or method has private access 1

reference to X is ambiguous 1

try-with-resources not applicable to
variable type

1

‘void’ type not allowed here 1

Subtotal 573

Total 655

code is not compilable and when the test code is not compatible with the source code. This
categorization is based on whether the error limiting the transplantability of the regression
test is in the source code building phase or in the regression test building phase.

In the Source code build error category, we found that the number of errors (82) barely
represents 12% of the total number of errors. This is mainly due to our efforts in fixing the
most common bugs in the build, as described in Section 5.4.1. The errors are mainly due to a

123

Empirical Software Engineering (2024) 29:66 Page 27 of 35 66

change in the build system in older commits (affecting only a single project), due a directory
restructuring (preventing the configuration file from finding the right directories or files) and
our use of Java 8, while the code was expecting an earlier version of Java (very old versions
of the code use “enum” as a variable name: from version 5 onwards it is a reserved word of
the language).

In the Test code not compatible with source code category, we find a wide variety of errors.
Themain error (352, 53% of the total), cannot find symbol, is due to the fact that somemethod
or class used by the test does not exist as of a certain commit in the source code (the one
prior to its implementation). The error package X does not exist (40) is similar, but applied to
a package that no longer exists. The errors cannot be applied to given types (51), no suitable
method found (21) and no suitable constructor found (10) are due to method or constructor
headers that have changed and are no longer compatible. The incompatible types error is due
to the fact that in the test code, a method does not return an object of the expected class. As in
the source code problems, we found errors due to the Java version used (Java 8), for example,
that the use of generics in the regression test is not supported in versions of the code prior to
Java 5. The remaining errors involved less frequent cases but also related to the compatibility
of the regression test with the rest of the source code of the project in previous versions.

These limitations of transplanting regression tests to past snapshots can be mitigated
by rewriting them, focusing on the functionality tested, and having into account that they
may be transplanted to past snapshots. We will discuss later how developers can improve
transplantability when writing these regression tests. However, in many cases these tests are
limited by the natural development of the project, and it will not be possible to make changes
to ensure compatibility with all previous versions.

5.5 Implications for practitioners

In open-source projects, such as those of the Apache Foundation (Iida andMatsumoto 2016),
is a common practice to include a test that reveals the bug in the bug report (available before
the bug is fixed) and then include it in the bug-fixing change. In some others, practitioners
start by building that test before trying to fix the bug. In both cases, these regression tests
are available before starting to fix the bug. The operationalization of the perfect test method
with these tests allows to automatically find the BIC for a bug, assuming that the project took
care of facilitating transplanting tests to the past (something that they can do by maintaining
some rules on how to compile the source code as the project evolves). Despite the fact that
the perfect test method defines the BFC as a starting condition, in fact only the regression
test is required. Therefore, when starting the process to fix a bug, a developer would have a
hint about how the bug was introduced, which may be invaluable for speeding up the fixing
process. This is an advantage over methods based on the SZZ algorithm (Śliwerski et al.
2005) that require the BFC to operate.

Although it is a recommendedpractice to add a test that detects the bug in afix change, some
studies (Levin and Yehudai 2017) reveal that developers usually fix bugs without performing
complementary test maintenance in the same commit. Nevertheless, the study conducted by
Pinto et al. (2012) on a collection of open source software projects shows that 14% of the
tests added to the code were included in a fix change.

In addition, to have more evidence about the use of regression testing, we have studied
the frequency of regression tests in a dataset other than Defect4J. Again, we will use the
dataset of Rosa et al. (2021), which contains 1,115 bugs from 887 different projects written
in different languages where each bug has its BFC identified. Through an automatic search,

123

 66 Page 28 of 35 Empirical Software Engineering (2024) 29:66

we have detected that 108 bugs have modified test code in their BFC. We have manually
evaluated these tests, obtaining that in 55 cases the test added (or modified) is a regression
test. In the remaining cases, the change in the test did not detect the fixed bug (50) or the
original repository was not available (3). Therefore, for this dataset, we find that only 5%
of the BFCs have test code added to prevent future regressions. This is a low number for
a practice that is usually recommended in modern software development, which came as a
surprise to us. From this, we can only conclude that more studies are needed to know to which
extent the practice of writing regression tests is common in software projects nowadays. In
any case, our method would work only in projects in which regression tests are common
when fixing bugs.

Assuming that regression tests in a certain project are common, a practitioner aiming to use
ourmethodwould have to dealwith two challenges: i) compiling the source code into previous
snapshots of the code and ii) compiling the regression test code into previous snapshots of the
code. The first challenge has already been addressed in previous studies (Tufano et al. 2017;
Maes-Bermejo et al. 2022) and involves dealing mainly with the resolution of dependencies
(always trying to use dependencies in stable versions). The second problem is more complex.
The compilability of the regression test is limited by how the project is developed: the further
back we transplant the test, the more likely it is that changes in the code will be reverted
that prevent the test from being compiled (for example, a function called in the test has
been refactored over time). To mitigate this problem, practitioners are encouraged to make
their regression tests as black box as possible. Tests should also be, as far as possible, self-
contained: do not rely on utilities of other classes or use inheritance. This would not only
make it easier to transplant to old snapshots of the project, but also make it more maintainable
as a test that detects that the bug is not reintroduced in the future.

5.6 Implications for researchers

We have found an automatic method for producing a reliable collection of BICs, given their
BFCs and their regression tests. This may be quite important for producing much larger
datasets with BFC and their BICs, which could be used by researchers not only to evaluate
algorithms for finding BICs, but also for other research purposes, such as training models
of analyzing how bugs are introduced. Maybe those datasets could be biased, because they
would only include bugs for which our method worked. But by improving compilability of
past commits and transplanted tests, we think that the bias can be severely reduced, at least
for some projects.

5.7 Threats to validity

Construct Validity. Our work is the first attempt to operationalize the perfect test method
for identifying the change that introduced a bug (BIC), using regression tests. The method is
based on the tests signaling the moment at which the bug was introduced, that is, we rely on
regression tests as perfect detectors of the bug. Therefore, our proposal is subject to construct
validity threats because it depends on the quality of the regression test, so its results when
transplanted to the past could be less or more conclusive. To mitigate this, a bug dataset has
been chosen where the regression tests have been previously checked and validated, ensuring
that they are tests able to detect the existence of the reported bugs. Also, since there are bugs
that are extrinsic (according to the definition by Rodríguez-Pérez et al. (2020)), these bugs

123

Empirical Software Engineering (2024) 29:66 Page 29 of 35 66

do not have a BIC, so the perfect test method cannot find it. Therefore, our method, based
on it, also can’t.

Internal Validity. For our results, it is crucial that the reproduction of the execution of
each snapshot is accurate, and exact as it would have executed at themoment the snapshot was
produced. The Defects4J dataset tries to provide the libraries, commands and configurations
needed to compile and execute the snapshot, but the environment provided by the dataset is
not exactly the original one, which may produce differences in behavior.

External Validity. To conduct our study, we are limited to a dataset that provides all
the prerequisites needed by the method: for each bug, the BFC, a regression test, the Git
repository, etc. Thus, we only experimented with 809 bugs from 16 projects, all written in
Java. It could happen that any conclusion is not directly translatable to other projects, to other
languages, or to projects with different characteristics.

6 Conclusions and future work

In this paper we operationalize the theoretical method, called perfect test, to detect the change
that introduced a bug (BIC), by using a regression test as perfect test. We show, using a well-
known bugs dataset, that the method works for those bugs where we are able to transplant
the regression test in the past and find a commit where this test passes again, by using our
tool to automatically detect the BIC and then validating the results. However, we also find
that our method is limited by the transplantability of regression tests to past snapshots, and
in particular by the compilability of past snapshots.

As a result of applying our method, we produce, by a completely automated procedure,
a dataset of BICs (BIC-RT), that can be used as ground truth for evaluating methods for
detecting BICs.We apply it to some SZZ derivatives, proposing a method for evaluating their
relative performance, and verifying a well-known limitation of them. This method could be
exploited for producing, automatically, much larger collections of BICs.We also propose our
method for automatically providing developers fixing a bug with detailed information about
the BIC that introduced it.

Future lines of work can extend this study by exploring the application of the method on
datasets of projects in other programming languages than Java (Python, JavaScript, C, C++
...), of other types of projects (not only libraries), and in general to projects with different
testing practices. Another line of research of major interest would be to study those bugs
introduced along with the functionality. These bugs cannot be detected directly by our tool
because it cannot automatically distinguish whether the regression test fails because the
change that introduced the functionality that introduced the bug was found or because of a
refactoring.

Author Contributions All authors contributed to the study conception and design. Material preparation, data
collection and analysis were performed byMichelMaes-Bermejo. The first draft of the manuscript was written
by Michel Maes-Bermejo and all authors commented on previous versions of the manuscript. All authors read
and approved the final manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The
research presented in this paper has been supported in part by the Government of Spain, through project
Dependentium (PID2022-139551NB-I00).

Data Availability A documented reproduction package is public available in GitHub (https://github.com/
codeurjc/BugHunter). It includes a link to an extra package in Zenodo (https://zenodo.org/record/8274835)
(due to size limitations), with raw and processed results.

123

https://github.com/codeurjc/BugHunter
https://github.com/codeurjc/BugHunter
https://zenodo.org/record/8274835

 66 Page 30 of 35 Empirical Software Engineering (2024) 29:66

Declarations

Compliance with Ethical Standards This research has not involved human participants and/or animals.

Conflict of Interest The authors declared that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ali NB, Engström E, Taromirad M, Mousavi MR, Minhas NM, Helgesson D, Kunze S, Varshosaz M (2019)
On the search for industry-relevant regression testing research. Empir Softw Eng 24(4):2020–2055

AnG,Yoo S (2021) Reducing the search space of bug inducing commits using failure coverage. In: Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1459–1462

Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and Secure Computing 1(1):11–33. https://doi.
org/10.1109/TDSC.2004.2

Barr ET, Brun Y, Devanbu P, HarmanM, Sarro F (2014) The plastic surgery hypothesis. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 306–317

Barr ET, Harman M, Jia Y, Marginean A, Petke J (2015) Automated software transplantation. In: Proceedings
of the 2015 International Symposium on Software Testing and Analysis, pp. 257–269

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises and perils of mining
git. In: 2009 6th IEEE International Working Conference on Mining Software Repositories, pp. 1–10.
IEEE

Bludau P, Pretschner A (2022) PR-SZZ: How pull requests can support the tracing of defects in software
repositories. In: 2022 IEEE International Conference on Software Analysis, Evolution andReengineering
(SANER), pp. 1–12. IEEE

Borg M, Svensson O, Berg K, Hansson D (2019) SZZ Unleashed: An open implementation of the SZZ
algorithm-featuring example usage in a study of just-in-time bug prediction for the jenkins project. In:
Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for
Software Quality Evaluation, pp. 7–12

Castelluccio M, An L, Khomh F (2019) An empirical study of patch uplift in rapid release development
pipelines. Empir Softw Eng 24(5):3008–3044

Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. p. 540-549. MIT press
Da Costa DA, McIntosh S, ShangW, Kulesza U, Coelho R, Hassan AE (2016) A framework for evaluating the

results of the SZZ approach for identifying bug-introducing changes. IEEE Trans Softw Eng 43(7):641–
657

Davies S, Roper M,WoodM (2014) Comparing text-based and dependence-based approaches for determining
the origins of bugs. Journal of Software: Evolution and Process 26(1):107–139

Desikan S, Ramesh G (2006) Software testing: principles and practice. pp. 193–208. Pearson Education India
EngströmE,Runeson P (2010)Aqualitative survey of regression testing practices. In: International Conference

on Product Focused Software Process Improvement, pp. 3–16. Springer
Gousios G, Pinzger M, Deursen Av (2014) An exploratory study of the pull-based software development

model. In: Proceedings of the 36th international conference on software engineering, pp. 345–355
Guo PJ, ZimmermannT,NagappanN,MurphyB (2010) Characterizing and predictingwhich bugs get fixed: an

empirical study of microsoft windows. In: Proceedings of the 32NdACM/IEEE International Conference
on Software Engineering-Volume 1, pp. 495–504

Harman M (2010) Automated patching techniques: the fix is in: technical perspective. Communications of the
ACM 53(5), 108–108

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2

Empirical Software Engineering (2024) 29:66 Page 31 of 35 66

IEEE Standard Classification for Software Anomalies (2010) IEEE Std 1044-2009 (Revision of IEEE Std
1044-1993) pp. 1–23. https://doi.org/10.1109/IEEESTD.2010.5399061

Iida H, Matsumoto K (2016) Improving the High-Impact Bug Reports: A Case Study of Apache Projects
Jang J, Agrawal A, Brumley D (2012) ReDeBug: finding unpatched code clones in entire OS distributions. In:

2012 IEEE Symposium on Security and Privacy, pp. 48–62. IEEE
Jiang Y, Liu H, Niu N, Zhang L, Hu Y (2021) Extracting concise bug-fixing patches from human-written

patches in version control systems. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pp. 686–698. IEEE

Just R, Jalali D, ErnstMD (2014)Defects4j: A database of existing faults to enable controlled testing studies for
java programs. In: Proceedings of the 2014 International Symposium on Software Testing and Analysis,
pp. 437–440

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2012) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Khattar M, Lamba Y, Sureka A (2015) Sarathi: Characterization study on regression bugs and identification
of regression bug inducing changes: A case-study on Google Chromium project. In: Proceedings of the
8th India Software Engineering Conference, pp. 50–59

Kim S, Whitehead Jr EJ (2006) How long did it take to fix bugs? In: Proceedings of the 2006 international
workshop on Mining software repositories, pp. 173–174

Kim S, Zimmermann T, Pan K, James Jr E et al (2006) Automatic identification of bug-introducing changes.
In: 21st IEEE/ACM international conference on automated software engineering (ASE’06), pp. 81–90.
IEEE

Lawrence S, Pennock DM, Flake GW, Krovetz R, Coetzee FM, Glover E, Nielsen FA, Kruger A, Giles CL
(2001) Persistence of web references in scientific research. Computer 34(2):26–31

Lenarduzzi V, Palomba F, Taibi D, Tamburri DA (2020) Openszz: A free, open-source, web-accessible
implementation of the SZZ algorithm. In: Proceedings of the 28th international conference on program
comprehension, pp. 446–450

Levin S, Yehudai A (2017) The co-evolution of test maintenance and code maintenance through the lens of
fine-grained semantic changes. In: 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 35–46. IEEE

Maes-Bermejo M, Gallego M, Gortázar F, Robles G, Gonzalez-Barahona JM (2022) Revisiting the building
of past snapshots — a replication and reproduction study. Empir Softw Eng 27(3)

McIntosh S, Kamei Y (2018) Are fix-inducing changes a moving target? a longitudinal case study of just-in-
time defect prediction. IEEE Trans Softw Eng 44(5):412–428

Neto EC, Da Costa DA, Kulesza U (2018) The impact of refactoring changes on the SZZ algorithm: An
empirical study. In: 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 380–390. IEEE

NetoEC,DaCostaDA,KuleszaU (2019)Revisiting and improvingSZZ implementations. In: 2019ACM/IEEE
International Symposium on Empirical Software Engineering andMeasurement (ESEM), pp. 1–12. IEEE

Onoma AK, Tsai WT, Poonawala M, Suganuma H (1998) Regression testing in an industrial environment.
Commun ACM 41(5):81–86

Perscheid M, Siegmund B, Taeumel M, Hirschfeld R (2017) Studying the advancement in debugging practice
of professional software developers. Software Quality Journal 25(1):83–110

Petrulio F, Ackermann D, Fregnan E, Çalikli G, Castelluccio M, Ledru S, Denizet C, Humphries E, Bacchelli
A (2022) SZZ in the time of Pull Requests. IEEE Trans Softw Eng

Pinto LS, Sinha S, Orso A (2012) Understanding myths and realities of test-suite evolution. In: Proceedings of
the ACM SIGSOFT 20th international symposium on the foundations of software engineering, pp. 1–11

Pokropiński, J., Gasiorek, J., Kramarczyk, P., Madeyski, L.: SZZ Unleashed-RA-C: An Improved Imple-
mentation of the SZZ Algorithm and Empirical Comparison with Existing Open Source Solutions.
In: Developments in Information & Knowledge Management for Business Applications, pp. 181–199.
Springer (2022)

Purushothaman R, Perry DE (2005) Toward understanding the rhetoric of small source code changes. IEEE
Transactions on Software Engineering 31(6):511–526

Rodríguez-Pérez G, Nagappan M, Robles G (2020) Watch out for extrinsic bugs! a case study of their impact
in just-in-time bug prediction models on the OpenStack project. IEEE Trans Softw Eng

Rodríguez-Pérez G, Robles G, González-Barahona JM (2018) Reproducibility and credibility in empirical
software engineering:A case study based on a systematic literature review of the use of the SZZ algorithm.
Inf Softw Technol 99:164–176

Rodríguez-Pérez G, Robles G, Serebrenik A, Zaidman A, Germán DM, Gonzalez-Barahona JM (2020) How
bugs are born: a model to identify how bugs are introduced in software components. Empir Softw Eng
25(2):1294–1340

123

https://doi.org/10.1109/IEEESTD.2010.5399061

 66 Page 32 of 35 Empirical Software Engineering (2024) 29:66

Rosa G, Pascarella L, Scalabrino S, Tufano R, Bavota G, Lanza M, Oliveto R (2021) Evaluating SZZ imple-
mentations through a developer-informed oracle. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pp. 436–447. IEEE

Saha R, Gligoric M (2017) Selective bisection debugging. In: International Conference on Fundamental
Approaches to Software Engineering, pp. 60–77. Springer

Schmidt DC, Porter A (2001) Leveraging open-source communities to improve the quality & performance
of open-source software. In: Proceedings of the 1st Workshop on Open Source Software Engineering,
vol. 1. Citeseer

Sidiroglou-Douskos S, Lahtinen E, Eden A, Long F, Rinard M (2017) Codecarboncopy. In: Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, pp. 95–105

Sinha VS, Sinha S, Rao S (2010) Buginnings: identifying the origins of a bug. In: Proceedings of the 3rd India
software engineering conference, pp. 3–12

Śliwerski J, ZimmermannT, ZellerA (2005)When do changes induce fixes?ACMsigsoft software engineering
notes 30(4):1–5

Tan L, Liu C, Li Z, Wang X, Zhou Y, Zhai C (2014) Bug characteristics in open source software. Empirical
Softw Eng 19(6):1665–1705

TantithamthavornC, TeekavanichR, IharaA,MatsumotoKi (2013)Mining a change history to quickly identify
bug locations: A case study of the eclipse project. In: 2013 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 108–113. IEEE

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2017) There and back
again: Can you compile that snapshot? Journal of Software: Evolution and Process 29(4):e1838

Wahl NJ (1999) An overview of regression testing. ACM SIGSOFT Software Engineering Notes 24(1):69–73
Weiss C, Premraj R, Zimmermann T, Zeller A (2007) How long will it take to fix this bug? In: Fourth

International Workshop on Mining Software Repositories (MSR’07: ICSE Workshops 2007), pp. 1–1.
IEEE

WenM,WuR, LiuY, TianY,XieX, Cheung SC, SuZ (2019) Exploring and exploiting the correlations between
bug-inducing and bug-fixing commits. In: Proceedings of the 2019 27th ACM JointMeeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM

WilliamsC, Spacco J (2008) Branching andmerging in the repository. In: Proceedings of the 2008 international
working conference on Mining software repositories, pp. 19–22

Williams C, Spacco J (2008) SZZ revisited: verifying when changes induce fixes. In: Proceedings of the 2008
workshop on Defects in large software systems, pp. 32–36

Yang D, Mao X, Chen L, Xu X, Lei Y, Lo D, He J (2022) Transplantfix: Graph differencing-based code trans-
plantation for automated program repair. In: Proceedings of the 37th IEEE/ACMInternational Conference
on Automated Software Engineering, pp. 1–13

Yin Z, Yuan D, Zhou Y, Pasupathy S, Bairavasundaram L (2011) How do fixes become bugs? In: Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software
engineering, pp. 26–36

Yoon YS, Myers,BA (2012) An exploratory study of backtracking strategies used by developers. In: 2012 5th
International Workshop on Co-operative and Human Aspects of Software Engineering (CHASE), pp.
138–144. IEEE

Yoon YS, Myers BA (2014) A longitudinal study of programmers’ backtracking. In: 2014 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), pp. 101–108. IEEE

Zeller A (2002) Isolating cause-effect chains from computer programs. ACMSIGSOFT Software Engineering
Notes 27(6):1–10

Zeller A, Hildebrandt R (2002) Simplifying and isolating failure-inducing input. IEEE Trans Softw Eng
28(2):183–200

Zerouali A, Constantinou E,Mens T, RoblesG,González-Barahona J (2018)An empirical analysis of technical
lag in npm package dependencies. In: International Conference on Software Reuse, pp. 95–110. Springer

Zhang T, Kim M (2017) Automated transplantation and differential testing for clones. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), pp. 665–676. IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Empirical Software Engineering (2024) 29:66 Page 33 of 35 66

Michel Maes-Bermejo is a post-doc researcher in the Computing Sci-
ence Department at University Rey Juan Carlos, Móstoles, Madrid,
Spain. His research interests include bug introducing changes, empir-
ical software engineering, software maintenance and evolution and
mining software repositories

Alexander Serebrenik is a Full Professor of software evolution at the
Eindhoven University of Technology, The Netherlands. His research
interests include a wide range of software maintenance and evolution
topics, from source-code analysis to collaborative and human aspects
of software engineering.

Micael Gallego is an Associated Professor in the Computing Science
Department at University Rey Juan Carlos, Móstoles, Madrid, Spain.
His main research activities are related to software engineering and
software testing.

123

 66 Page 34 of 35 Empirical Software Engineering (2024) 29:66

Francisco Gortázar is an Associated Professor in the Computing Sci-
ence Department at University Rey Juan Carlos, Móstoles, Madrid,
Spain. His main research activities are related to software engineering
and software testing.

Gregorio Robles is a Full Professor at the Universidad Rey Juan Car-
los, Madrid, Spain. He mainly does research in the following two
fields: a) mining software repositories (socio-technical issues such as
community metrics, software evolution, and development effort esti-
mation of F/OSS); and b) computational thinking (with evaluation
tools such as DrScratch).

Jesús María González Barahona is a Full Professor in Telematics Engi-
neering at Universidad Rey Juan Carlos (Móstoles, Madrid). With
over 20 years of teaching experience, he specializes in computer
networks, data transmission, and telematic services and protocols.
His research interests revolve around the empirical study of software
development, quantitative methods for activity and process analysis,
and data visualization in extended reality (VR and AR).

123

Empirical Software Engineering (2024) 29:66 Page 35 of 35 66

Authors and Affiliations

Michel Maes-Bermejo1 · Alexander Serebrenik2 · Micael Gallego1 ·
Francisco Gortázar1 · Gregorio Robles3 · Jesús María González Barahona3

Alexander Serebrenik
a.serebrenik@tue.nl

Micael Gallego
micael.gallego@urjc.es

Francisco Gortázar
francisco.gortazar@urjc.es

Gregorio Robles
gregorio.robles@urjc.es

Jesús María González Barahona
jesus.gonzalez.barahona@urjc.es

1 Department of Computer Science, Universidad Rey Juan Carlos, Madrid, Spain
2 Department of Mathematics and Computer Science, Eindhoven University of Technology,

Eindhoven, Netherlands
3 Department of Telematic and Computational Systems Engineering, Universidad Rey Juan Carlos,

Madrid, Spain

123

http://orcid.org/0000-0002-8138-9702

	Hunting bugs: Towards an automated approach to identifying which change caused a bug through regression testing
	Abstract
	1 Introduction
	2 Related work
	2.1 Transplanting code
	2.2 Bug Introduction Changes

	3 Methodology
	3.1 The perfect test method
	3.2 The bugs dataset
	3.3 Transplanting the test to the past
	3.4 Identifying the Bug-Introducing Change
	3.5 Manual validation

	4 Experimental Results
	4.1 RQ1A: ``How far can a test be transplanted into the past?''
	4.2 EQ1B ``How compilability and runnability problems impact the transplantation of the regression tests to the past?''
	4.3 RQ2:``Can the BIC for a given bug be found using its regression test?''
	4.4 Validation of results

	5 Discussion
	5.1 Implications for methods for finding bug-introducing changes
	5.2 Evaluation of SZZ derivatives
	5.3 Comparing BIC-RT with InduceBenchmark
	5.4 Transplanting tests to the past
	5.4.1 Improving the transplantability of the regression tests
	5.4.2 Limitations on regression test transplantability

	5.5 Implications for practitioners
	5.6 Implications for researchers
	5.7 Threats to validity

	6 Conclusions and future work
	References

