Empirical Software Engineering (2024) 29:61
https://doi.org/10.1007/510664-024-10461-9

®

Check for
updates

An empirical study into the effects of transpilation
on quantum circuit smells

Manuel De Stefano'(® - Dario Di Nucci® - Fabio Palomba' - Andrea De Lucia'

Accepted: 13 February 2024
© The Author(s) 2024

Abstract

Quantum computing is a promising field that can solve complex problems beyond tra-
ditional computers’ capabilities. Developing high-quality quantum software applications,
called quantum software engineering, has recently gained attention. However, quantum soft-
ware development faces challenges related to code quality. A recent study found that many
open-source quantum programs are affected by quantum-specific code smells, with long cir-
cuit being the most common. While the study provided relevant insights into the prevalence
of code smells in quantum circuits, it did not explore the potential effect of transpilation, a
necessary step for executing quantum computer programs, on the emergence of code smells.
Indeed, transpilation might alter those characteristics employed to detect the presence of a
smell on a circuit. To address this limitation, we present a new study investigating the impact
of transpilation on quantum-specific code smells and how different target gate sets affect
the results. We conducted experiments on 17 open-source quantum programs alongside a
set of 100 synthetic circuits. We found that transpilation can significantly alter the metrics
that are used to detect code smells, even into previously smell-free circuits, with the long
circuit smell being the most susceptible to transpilation. Furthermore, the choice of the gate
set significantly influences the presence and severity of code smells in transpiled circuits,
highlighting the need for careful gate set selection to mitigate their impact. These findings
have implications for circuit optimization and high-quality quantum software development.
Further research is needed to understand the consequences of code smells and their potential
impact on quantum computations, considering the characteristics and constraints of different
gate sets and hardware platforms.

Communicated by: Shaukat Ali

B<X Manuel De Stefano
madestefano @unisa.it

Dario Di Nucci
ddinucci @unisa.it

Fabio Palomba
fpalomba@unisa.it

Andrea De Lucia
adelucia@unisa.it

Software Engineering (SeSa) Lab - University of Salerno, Salerno, Italy

Published online: 02 May 2024 9\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10461-9&domain=pdf
http://orcid.org/0000-0001-6038-4171

61 Page2of34 Empirical Software Engineering (2024) 29:61

Keywords Empirical software engineering - Quantum computing - -
Quantum software engineering Quantum software quality - Code smells

1 Introduction

Quantum computing has recently gained much attention due to its ability to solve problems
that traditional computers cannot (Hoare and Milner 2005; Knight 2018). To make this
potential available to all, the field of quantum software engineering has emerged (Moguel
etal. 2020; Piattini etal. 2021, 2020a, b). Researchers have been designing and implementing
high-quality quantum software applications to exploit the quantum computer’s computational
speed since the Talavera Manifesto was published (Ahmad et al. 2022; Awan et al. 2022;
Garcia de la Barrera et al. 2021; Shi et al. 2020; Yarkoni et al. 2022). However, the field is still
in its early stages, and more research is needed to address the maintenance, evolution, and
overall quality aspects of quantum software development (El Aoun et al. 2021; De Stefano
et al. 2023; De Stefano et al. 2022).

A recent study revealed that quantum software development faces challenges similar to
traditional software development, such as code smells affecting the program’s quality (Chen
et al. 2023). This study investigated the prevalence of these code smells in 15 open-source
quantum programs using QSMELL, which detected eight quantum-specific smells. The results
showed that 73.33% of the programs contained at least one smell, the most common being
the Long Circuit smell.

However, the study did not investigate the effects of transpilation on the presence of these
code smells, which might be a limitation. Indeed, transpiling a quantum circuit involves
converting a high-level quantum program into a form suitable for specific quantum hardware.
It optimizes the circuit by decomposing complex gates, rearranging qubits to match hardware
connectivity, minimizing gate count, and managing available resources. The process ensures
the circuit retains functionality while maximizing performance and compatibility with the
target hardware platform. Hence, it is a necessary step to execute the program on a quantum
computer. However, it can alter the circuit’s characteristics, such as the width, the depth, and
the gates. Characteristics that QSMELL uses to detect quantum code smells.

To address this limitation, we present a new study investigating whether the quantum-
specific code smells detected in the original circuit persisted after transpilation. We also
investigated whether different target gate sets affect the results. The experiment was con-
ducted on the same set of circuits employed by the original study (Chen et al. 2023).

Our research suggests that transpilation can significantly alter the metrics indicating the
presence of smells even in circuits that previously showed non-troublesome metrics values.
The long circuit and initialization of quibits smell are particularly vulnerable to transpilation.
The gate set plays a significant role in detecting code smells in transpiled circuits. Therefore,
it is important to envision and develop detection techniques considering the target gate set on
which the circuit will be transpiled. Further research is necessary to fully understand the con-
sequences of code smells and their potential impact on quantum computations, considering
the specific characteristics and limitations of different gate sets and hardware platforms.

The remainder of the paper is organized as follows. Section 2 presents all the necessary
background information and the relevant related work. Section 3 describes the experimental
procedure in all stages, and its limitations. Section 4 describes the achieved results, while
Section 5 discusses them. Section 6 wraps up and proposes future research directions.

@ Springer

Empirical Software Engineering (2024) 29:61 Page3of34 61

2 Background and Related Work
2.1 Quantum Computing and Transpilation

Quantum computing utilizes principles from quantum mechanics to perform computations
(Hoare and Milner 2005; Knight 2018). Unlike classical computing, which uses bits with
values of zero or one, quantum computing uses qubits that can exist in superpositions of
the zero and one states. Quantum information is manipulated using quantum gates, which
are unitary transformations. Quantum programming languages store classical and quantum
information in registers and express quantum programs as quantum circuits, where gates are
applied in a specific order. Quantum circuits can be executed on real quantum devices or
simulators, and the output is measured and stored in classical registers. A fault occurs if the
observed probability distribution from running the circuit multiple times does not match the
expected distribution.

Transpiling a quantum circuit refers to transforming a quantum circuit written in one
quantum programming language or representation into another, often to optimize the circuit
for a specific quantum hardware platform. Quantum circuits are typically expressed using a
high-level quantum programming language, such as Qiskit, Cirq, or Quil. These languages
provide a convenient way for researchers and developers to describe quantum algorithms
and operations. However, quantum hardware platforms often have specific requirements and
constraints, such as limitations on gate connectivity, gate set availability, and gate execution
times. Transpiling bridges the gap between the high-level quantum programming language
and the specific hardware platform. It involves converting the circuit into a form compatible
with the target hardware while preserving the functionality of the original circuit. The tran-
spiler performs a series of optimizations and transformations to achieve this goal (Transpiler
(qiskit.transpiler)—Qiskit 0.43.1 documentation 2024):

Gate Synthesis. Converting gates or gate sequences into an equivalent set of gates supported
by the target hardware. This operation may involve decomposing complex gates into a com-
bination of simpler gates from the hardware’s gate set.

Gate Mapping. Rearranging the qubits in the circuit to match the connectivity constraints of
the target hardware. Different hardware platforms have different qubit connectivity layouts,
and the transpiler aims to find an optimal mapping that minimizes the number of required
additional gates (e.g., SWAP gates) for connecting qubits that are not directly connected.
Gate Optimization. Applying techniques to minimize the overall number of gates in the
circuit, reduce gate depth, or optimize other metrics. This optimization can improve the
circuit’s performance by reducing the potential for errors and minimizing the time required
for execution.

Resource Allocation. Ensuring that the circuit does not exceed the resources available on the
target hardware, e.g., the number of qubits.

By transpiling a quantum circuit, developers can make their quantum algorithms compat-
ible with specific quantum hardware, improve the circuit’s performance, and take advantage
of different platforms’ unique features and constraints.

In quantum computing, a basis gate set is a specific set of quantum gates that are the
building blocks for creating and describing quantum circuits (Williams 2011). These gates
are carefully chosen for basic quantum operations such as rotation and phase shift (Williams
2011). A set of universal quantum gates refers to any set of gates that can be used to build
any quantum operation possible on a quantum computer. Any other unitary operation can

@ Springer

61 Page4of34 Empirical Software Engineering (2024) 29:61

do — H —

a1

2 0 1

Fig. 1 Quantum circuit representing the Bell state before transpilation

be expressed as a finite sequence of gates from the set (Williams 2011). However, since the
number of possible quantum gates is uncountable, whereas the number of finite sequences
from a finite set is countable, it is technically impossible to have anything less than an
uncountable set of gates (Williams 2011). To solve this problem, it is only required that any
quantum operation can be approximated by a sequence of gates from this finite set (Williams
2011). One universal gate set commonly used in quantum computing includes the rotation
operators Ry (0), Ry(6), R;(6), the phase shift gate P(¢), and CNOT. When a circuit is
transpiled, it is transpiled in the basis gate set that is supported by the target machine (Qiskit
0.43.0 documentation 2024).

I from giskit import QuantumCircuit

> gc = QuantumCircuit (2, 2)
3 gc.h(0)

i gc.cx (0, 1)

5 gc.measure ([0, 11, [0, 11)

Listing 1 Python example

Listing 1 represents a simple quantum circuit designed to create the renowned Bell state
(Nielsen and Chuang 2010). Visualizing this circuit without any transpilation, it appears as
illustrated in Fig. 1. This circuit is relatively straightforward, employing only Hadamard and
C-NOT gates. However, when we transpile this uncomplicated circuit into the basis gate
set supported by the IBM quantum machine ’ibm_perth,” the circuit undergoes significant
transformations, as depicted in Fig. 2. Notably, two RZ gates and an SX gate (represented as
VX in the figure) are required to achieve the same quantum effect as a Hadamard gate.

Global Phase: n/4

R R
e m om

a1

Fig.2 Quantum circuit representing the Bell state transpiled for the ’ibm_perth’ gate set

@ Springer

Empirical Software Engineering (2024) 29:61 Page50f34 61

2.2 Quantum Software Engineering

Research in quantum software engineering (QSE) is still in its early stages. The “Talav-
era Manifesto” was proposed during the first International Workshop on Quantum Software
Engineering, outlining the fundamental principles of QSE (Piattini et al. 2020b). Subsequent
studies have discussed various challenges and directions in QSE research. Zhao 2020 pro-
vided a comprehensive overview of the quantum software life cycle, including requirements
analysis, design, implementation, and testing. They highlighted the need for a comprehensive
software engineering discipline for quantum software development.

Piattini et al. (2021) emphasized four priority areas: software design of quantum hybrid
systems, testing techniques for quantum programming, quantum program quality, and re-
engineering and modernization of classical-quantum information systems. They suggested
that researchers should consider the lack of software engineering knowledge among quan-
tum computer scientists and should not wait for stable quantum programming languages to
develop software engineering techniques.

Developing quantum programs presents various challenges that must be overcome for
effective design and development. El Aoun et al. (2021) conducted an empirical investiga-
tion to understand these challenges from a developer’s perspective. They analyzed popular
forums and platforms like Stack Exchange and GitHub to identify frequently asked questions
and concerns about quantum software engineering. Their findings revealed that developers
often inquire about the theory behind quantum programming, specific data structures and
algorithms, the implementation of quantum-related tasks, and the lack of learning resources.
These challenges highlight the need for a better understanding of quantum theory and the
development of appropriate techniques and tools for quantum programming.

De Stefano et al. (2022) emphasized the importance of systematic investigations into
the state of quantum programming. They conducted a mining analysis of popular quantum
programming frameworks on GitHub and surveyed the contributors of these repositories. The
study revealed that the adoption of quantum programming still needs to be improved, and
various challenges must be addressed. These challenges extend beyond technical concerns
and encompass socio-technical matters as well. The research community must pay attention
to these challenges and work towards advancing the field of quantum software engineering.
Researchers and practitioners can facilitate knowledge transfer and contribute to the growth
and development of quantum programming and its associated disciplines by conducting
systematic investigations and addressing the identified challenges.

Afterward, they conducted a systematic mapping study (De Stefano et al. 2023) of QSE
research to identify the most investigated topics and the types of studies conducted. They
found that most research has primarily focused on software testing. In contrast, other areas,
such as software engineering management or quantum software maintenance and quality,
have received less attention. This lack of research in quantum software maintenance and
quality indicates a gap in understanding and addressing the challenges associated with these
aspects. It emphasizes the need for further investigations to develop effective methods and
techniques for maintaining and ensuring the quality of quantum software.

2.3 Code Smells
Developing and maintaining software code is time-consuming and puts developers under

constant pressure. This pressure makes developers prioritize tasks to release software quickly,
sometimes sacrificing quality, introducing technical debt (Cunningham 1992). One common

@ Springer

61 Page6of34 Empirical Software Engineering (2024) 29:61

form of technical debt is code smells, i.e., developers’ poor design or implementation choices
during software development and maintenance (Fowler and Beck 1999).

In recent years, researchers have extensively studied code smells, examining their causes,
evolution, and impact on software (Arcoverde et al. 2011; Chatzigeorgiou and Manakos 2010;
Palomba et al. 2018; Tufano et al. 2015, 2016). They have also investigated methods to detect
these design issues automatically. Many of these techniques rely on heuristic approaches
based on structural code metrics, such as size and complexity, while others use textual content
or version history (Moha et al. 2009; Palomba et al. 2016, 2014; Tsantalis and Chatzigeorgiou
2009). However, these heuristic techniques have limitations, leading to suboptimal results.

Therefore, researchers have explored machine-learning-based approaches for code smell
detection to address the limitations of heuristic techniques. While initial results appeared
promising (Arcelli Fontana et al. 2016), these techniques also have practical limitations (Di
Nucci et al. 2018; Pecorelli et al. 2019, 2020a,b, 2022). One major challenge across both
heuristic and machine-learning-based methods is the choice of metrics, as existing metrics
often have limited explanatory power in distinguishing between smelly and non-smelly code
instances.

As aresult, code smell detection remains an open challenge, and researchers are beginning
to explore alternative approaches, including deep learning (Lin et al. 2021; Liu et al. 2019),
to find more effective solutions to this problem.

2.4 Quantum-specific Code Smells

Chen et al. (2023) recently focused on the quality aspects of quantum programs. They con-
ducted an empirical study to answer two research questions:

RQ1 How do practitioners perceive quantum-specific code smells?
RQ2 What is the prevalence of quantum-specific code smells?

To answer RQ1, eight quantum-specific smells were identified based on best practices in
QC, and developers who have contributed to quantum open-source projects were surveyed to
assess their opinions on these smells. The results achieved by answering this question were
collected in a catalog of quantum-specific code smells, which is summarized in Table 1.

To answer RQ2, the authors developed a tool called QSMELL, which automatically com-
putes metrics indicating the presence of quantum-specific smells (depicted in Table 1) in
quantum programs (QPs) through dynamic and static analysis. They defined specific thresh-
olds that can be applied to these metrics to conduct this task. When conducting a dynamic
analysis of a QP, QSMELL requires an execution matrix as input. Each row of this matrix
corresponds to either a quantum or classical bit, while each column represents a timestamp
in the circuit. Each cell of the matrix indicates a quantum operation that took place in the
circuit. To begin, the module collects the set of qubits from the qc object’s data and then
proceeds to iterate through all the operations performed on each qubit. In summary, this
process involves analyzing the quantum operations that occur in a circuit by examining the
execution matrix for the QP. This dynamic analysis procedure computes all smells except
NC and LPQ. NC and LPQ smells are computed by static analysis. It takes a source code
Python files and analyzes it using Python AST to detect the smells that are concerned with
information about the execution backend.

The tool was then used to evaluate 15 QPs (circuits) empirically. They showed that 11
QPs (73.33%) contain at least one smell and, on average, a program has three smells. Fur-
thermore, the long circuit (LC) is the most prevalent smell present in 53.33% of the subjects.

@ Springer

Empirical Software Engineering

(2024) 29:61

Page70f34 61

Table1 Original catalog of smells provided by Chen et al. (2023) alongside the violated best practice, acronym,

and description

Best Practice

Smell Name

Acronym

Description

Getting a circuit to
run on hardware

Using CircuitOperation
to reduce circuit size

Use sweeps when
possoble

Short Gate Depth

Terminal
Measurements

Keep Qubits Busy

Delay Initialization
of Qubits

Qubit Picking

Use of Customized
Gates

Repeated set of
Operations on
Circuit

Non-parametrized
Circuit

Long Circuit

Intermediate
Measurement

Idle Qubits

Initialization of
Qubits

No-alignment
between the
Logical and
Physical Qubits

CG

ROC

NC

LC

M

1dQ

IQ

LPQ

Any customized gate is decomposable into
built-in framework operators. This decompo-
sition requires a substantially higher number
of operators when compared to the equivalent
solution made exclusively of built-in opera-
tors.

Due to technological and physical limitations,
the number of operations one can pass to
a quantum computer is limited; therefore,
the circuit implementing the whole algorithm
should be prepared in such a way that the num-
ber of a sequential repeated set of operations
to be performed is the least possible.

Real devices work in a shared policy. The
circuit should be designed parametrically to
provide the different initial values simulta-
neously, avoid queuing different ones, and
reduce communication payloads.

Unitary gates and measurements are prone to
errors (especially due to quantum noise). The
higher the depth of the circuit and/or wider the
circuit, the higher the probability of affecting
a quantum circuit’s intended behavior.

Measurements affect the state of the entire
system, making it prone to more errors. They
should be postponed to the last operation on
the circuit to avoid error propagation.

With current technology, it is possible to
ensure the correctness of a state only for very
short periods. Idle qubits for too long increase
the loss of quantum information that may
jeopardize the results of a quantum circuit.

Keeping the coherence of a quantum excited
state is technologically difficult. Hence, ini-
tially, one should keep it in its ground state
(i.e., in state |0)) as long as possible.

The topology of real qubits impacts the circuit
behavior, i.e., the results obtained from the
circuit can change according to the physical
qubits configuration. Not aligning the logical
qubits to the proper physical qubits may lead
to less accurate results.

CG, LPQ, and IM were never found to occur

Interestingly, CG, LPQ, and IM were never found to occur. The study’s main limitation was
that it did not consider the transpilation of quantum programs that might alter the properties
of the circuit used by QSMELL to detect the quantum-specific smells.

Although the study provided valuable insights, it also had limitations, including the tran-
spilation process. The study excluded smells that required direct source code evaluation. All

@ Springer

61 Page8of34 Empirical Software Engineering (2024) 29:61

source code was transpiled into a target gate set before being analyzed. This choice was
applied to all smells except for CG. As a result, the identification of smells was conducted
solely on the transpiled code, not the original code. The code analyzed for the CG smell was
not transpiled because this step would have removed custom gates. These limitations make it
difficult to determine to what extent the transpilation process impacted the persistence of the
smells and whether the circuits were considered smelly solely because they were evaluated
with a particular gate set. Our study aims to overcome this limitation by investigating the
effect of transpilation on the presence of code smells from two points of view. On the one
hand, we evaluate the smelliness pre and post-transpilation. On the other hand, we evaluate
the smelliness among multiple versions of the same circuit transpiled to different gate sets.

3 Experimental Design

Following the Goal-Question-Metric (GQM) approach delineated by Basili et al. (1994), we
define the objective of our study as:

Characterize the influence of transpilation on quantum-specific code smells for the
purpose of assessing with respect to its potential in mitigating or exacerbating the
presence of these smells from the point of view of both researchers and practitioners
in the context of quantum software development process.

Given our goal, we put forth the following Research Questions (RQs):

RQ;. How does transpilation affect the presence of quantum-specific code smells?
RQ,. How does transpiling to different gate sets affect the presence of quantum-specific
code smells?

Sampled Quantum
Programs Qsmell Analysis A B

Hypothesis Testing

Pl —{(AR
_

Transpilation Qsmell Analysis

Fig.3 Graphical representation of the experimental process for the RQ1. To answer the first research question,
we ran QSMELL on the transpiled and non-transpiled versions for each sample circuit to gather metrics and
smells; then, we tested for the difference

@ Springer

(2024) 29:61 Page90of34 61

Empirical Software Engineering

Figures 3 and 4 overview the research method applied to address these questions. As further
elaborated in the remainder of the section, we applied a quasi-experimental procedure on
17 quantum circuits, taken from literature (Chen et al. 2023), affected by quantum-specific
smells. We detected the smells before and after transpilation. We also compared the smells
of circuits transpiled to different target gate sets.

)

—>

Sampled Quantum

ﬁ%

Transpilation to

Programs original Gate Set

Qsmell Analysis

)

|

3

Transpilation to
ibm_perth Gate Set

) | @ &
A

Hypothesis Testing

Qsmell Analysis

|

5

Transpilation to
ibm_sherbrooke
Gate Set

Qsmell Analysis

|

5

Transpilation to
rpcx Gate Set

)

L—> R ——

Qsmell Analysis

)

Transpilation to

simple Gate Set Qsmell Analysis

Fig. 4 Graphical representation of the experimental process for the RQ2. To answer the second research
question, we transpiled each sample circuit to the chosen gate set; then, we ran QSMELL on each version to
gather metrics and smells and tested for differences. If a significant difference was observed, we conducted a
posthoc analysis

@ Springer

61 Page 10 of 34 Empirical Software Engineering (2024) 29:61

3.1 Context of the Study

Independent Variable. The independent variable to answer both research questions was the
target gate set used for transpiling quantum circuits. The target gate set represents the set of
gates the circuit is transpiled to, affecting the resulting properties and behavior of the circuit.
Specifically, the study considered five target gate sets, whose details are reported in Table 2,
that differ in the types of gates they contain. The transpilation process is consistent across
all the gate sets, but changing the target gate set also changes the final circuit; therefore,
the same circuit transpiled to different gate sets may produce different results. Besides the
original and none transpilations (representing the target gate set from the original pub-
lication (Chen et al. 2023) and the untranspiled circuit, respectively), we also considered four
distinct gate sets: ibm_perth, ibm_sherbrokee, rpcx, and simple. The rationale
behind this selection stems from both practicality and the need to capture diverse gate set rep-
resentations. The gate sets 1bm_perth and ibm_sherbrokee were chosen due to their
real-world significance. The IBM quantum provider, the original developer and distributor
of Qiskit (Qiskit 0.43.0 documentation 2024), supports both. Given our focus on Qiskit code
execution, these gate sets were the most relevant. However, different quantum machines can
share the same basis gate set. Specifically, the ibm_perth gate set, characterized by the
basis gates CX, ID, RZ, SX, and X, is not supported only by the IBM machine ’ibm_perth’,
but also by other, such as ’ibm_nairobi’. The same applies to the ibm_sherbrokee gate
set, which is not supported only by the ibm_sherbrokee’ machine but also by other machines.

Table 2 The different gate sets and the raw one used in the study and their corresponding descriptions

Name Gates Description

original Ul, U2, U3, RZ, SX, X, CX, ID Gate set employed in the original liter-
ature on quantum smells (Chen et al.
2023).

ibm_perth CX, ID,RZ, SX, X Gate set employed by the IBM quan-

tum machine ibm_perth (Qiskit
0.43.0 documentation 2024).

ibm_sherbrokee ECR, ID, RZ, SX, X Gate set employed by the IBM quan-
tum machine ibm_sherbrooke
(Qiskit 0.43.0 documentation 2024).

rpcx CX,RX,RY,RZ, P Known universal gate set composed of
the controlled-not gate, all axes rota-
tion gates, and phase gate (Williams
2011).

simple CX, U3 Similar to rpcx but relying on the U3
parametrized rotation gate, which can
perform rotation on all the axes and
in the phase (Qiskit 0.43.0 documen-
tation 2024; Williams 2011).

none - The raw circuit defined in the source
code, without transpilation (Chen
et al. 2023).

The gate sets include the original gate set used in the literature on quantum-specific smells, two gate sets
employed by IBM quantum machines (ibm_perth and ibm_sherbrooke), and two known universal gate sets
(rpex and simple)

@ Springer

Empirical Software Engineering (2024) 29:61 Page110f34 61

Table 3 Dependent variables, metric descriptions, and smelliness thresholds, as depicted by Chen et al. (2023)

Acronym Name Metric Description Smelliness Thresh-
old
LC Long Circuit Likelihood of a circuit not having any Lower than 0.5

error as (1 — e)l‘c, whereas e is the
maximum error of any active gate of
the real device that is used to run the
circuit, and / is the maximum number
of operations in any qubit and ¢ is the
maximum number of parallel opera-
tions in the circuit.

1Q Initialization of Qubits Maximum number of operations per- Median value on
formed in the circuit between the ini- original distribution:
tialization of any qubit (usually the Higher than 0

first operation applied to the qubit) and
the second operation applied to the

same qubit.
1dQ Idle Qubits Maximum number of circuit opera- Median value on
tions between one operation using a original distribution:
qubit and the subsequent operation Higher than 0
where that qubit is used again.
ROC Repeated Set of Oper- Number of sequentially repeated sets Higher than 1
ations on Circuits of operations.

It must be noted that the smell and the metric share the same name as reported in the original publication
(Chen et al. 2023)

This observation leads us to conclude that IBM machines predominantly support this configu-
ration, making our study directly applicable to real-world scenarios. The rpcx and simple
gate sets were chosen to capture the essence of universal gate sets (Williams 2011) but with
a difference in granularity. The rpcx gate set is comprehensive, comprising the CX, RX,
RY, RZ, and P gates. This ensemble, including the C-Not gate, phase gate, and rotation gates
across all axes, encapsulates a universal set and is well-acknowledged in quantum litera-
ture (Williams 2011). Contrarily, the simple gate set is a more streamlined representation.
It mimics the rpcx set but utilizes only the CX and U3 gates. The U3 gate, specifically
offered by IBM, is a versatile, parametrized gate capable of rotations across all three axes
and phase alterations based on given parameters. It can emulate the functionalities of RX, RY,
RZ, and P gates by fixing two parameters. However, this simplicity means the transpiler has
a different set of gates to work with during the transpilation phase, offering alternate (but not
necessarily superior or inferior) transpilation strategies. In essence, these two gate sets, while
both being universal, present varied gate counts, further enriching our study. To answer our
first research question, we considered only None and original transpilation to measure
the before/after transpilation effect, while original, ibm_perth, ibm_sherbrokee,
rpcx, and simple gates sets were employed to answer our second research question.

Dependent Variables. The dependent variables considered are the metrics used to detect
quantum-specific smells, as described in literature (Chen et al. 2023). The details of these
metrics are depicted in Table 3. We selected only these from the original set of smells since
NC and LPQ were computed with static analysis on the original code and not on the execution
matrix generated by QSMELL (see Section 2 for further details about these analyses) (Chen
et al. 2023), so they were not affected by transpilation. CG and IM were discarded from the

@ Springer

61 Page 120f34 Empirical Software Engineering (2024) 29:61

study since they were never detected, both in the original and our study. Hence, we conducted
a dedicated discussion in Section 5.

Hypotheses. After defining the independent and dependent variables for both research ques-
tions, we formulated the following sets of null (Hp) and alternative (H;) hypotheses to be
tested. Given

M ={LC,1Q,1dQ, ROC)

the sets of considered metrics (M) (as depicted in Table 3), we formulated the following set
of hypotheses to answer RQ1:

Hél) (m): Transpilation has no impact on the metric m € M
Hl(l)(m): Transpilation impacts on the metric m € M

Similarly, we formulated the following hypotheses to answer RQ2:

Héz) (m): Transpiling to different gates set has no impact on the metricm € M
H1(2) (m): Transpiling to different gates set impacts on the metric m € M

Population and Sample. The interested population of this study comprises all the possible
existing quantum circuits. However, for the sake of fair comparison in this study, we choose
a sample of 17 quantum circuits, written in QISKIT, that were already objects of investigation
in a previous study on quantum-specific smells (Chen et al. 2023). In particular, the selection
process involved several steps, as described in the original publication (Chen et al. 2023) in
which three umbrella projects were selected (i.e., giskit-machinelearning, qiskit-terra, and
qgiskit-nature) containing multiple Quantum Programs (QPs). From these umbrella projects,
17 programs representing the sample were chosen. Two of these circuits were employed by the
original publication to validate the tool and, hence, were excluded from the empirical study
whose results are reported in Table 5 of the original paper (Chen et al. 2023). For the sake of
the sample’s significance, we chose to employ all subjects available, hence conducting our
experiment on all 17 samples. However, we were aware of the limitation of the sample size in
our study. Nevertheless, we faced the same issue as the original publication from which we
took the samples for comparison. Chen et al. (2023) had already conducted extensive research
to identify possible subjects from open-source projects that were part of real-world projects,
not toy or learning ones. Despite this, we tried to find other possible samples to increase
the generalizability of our results. To begin with, we looked for samples from a replication
package of our previous work (De Stefano et al. 2022). This work included a collection of
quantum-related repositories classified as Libraries/Frameworks, which could be considered
nontrivial and contain possible samples. However, despite working with quantum libraries
like Qiskit, we could not find an explicit use of quantum circuits that could be integrated into
our sample. We also referred to other published work to find a dataset of quantum circuits for
analysis. Specifically, we examined two studies: the one conducted by Paltenghi and Pradel
(2022) and the one conducted by Campos and Souto (2021). While the former is a collection
of bugs minimized on change records, the latter proposes creating a dataset of reproducible
quantum bugs unavailable at the time of writing. As such, neither study helped provide
us with a dataset to use. Therefore, we used the Qiskit functionality to generate synthetic
circuits (i.e., random circuits) (Api reference for giskit.circuit.random.random_circuit 2024)
to conduct the same analysis on a broader set of circuits. Using this functionality, we created
a new sample of 100 circuits with a width and depth ranging from the minimum to the
maximum width and depth of the original samples. We applied the same analysis process

@ Springer

Empirical Software Engineering (2024) 29:61 Page130f34 61

that we employed for the original circuits. However, we must emphasize that these synthetic
circuits are made by randomly putting gates one on top of another without additional criteria,
i.e., such circuits could lack semantics to solve real problems.

3.2 Data Collection and Analysis

We used the original code for the sample circuits from Chen et al. (2023): the selection of
these circuits was based on our willingness to replicate the original study, which led us to rely
on their same dataset (Chen et al. 2023). We transpiled each circuit using Qiskit’s transpiler
with the selected target gate set. Then, we measured the smells’ metrics using the QSMELL
tool (Chen et al. 2023). To evaluate our pre- and post-transpilation results and address RQj,
we ran QSMELL on the raw circuit (the none gate set in Table 2) and on the circuits transpiled
to the original gate set (i.e., in the form that evaluated by Chen et al.).

We then used the Wilcoxon Signed Rank Test (Wilcoxon 1992) to test our first set of
hypotheses. We needed a paired statistical test since we evaluated a pre/post-treatment sce-
nario where the transpilation corresponds to the treatment that our subjects (the circuits)
underwent. Furthermore, we needed a non-parametric statistical test because our data did not
follow a normal distribution, confirmed by the Shapiro-Wilk test. Hence, our choice fell on
the Wilcoxon Signed Rank Test, a paired non-parametric statistical test (Wilcoxon 1992). In
particular, we applied this test to the metrics distributions of the none and original treat-
ments. To determine the difference between the two groups, we used Hedge’s g, a method
of measuring effect size (Hedges 1981). This approach is efficient when working with small
sample sizes of less than 20. A g value of one indicates a difference of one standard deviation
between the groups, a g value of two corresponds to a two standard deviation difference, and
so on. We adhere to the following guidelines to interpret Hedges’ g values: 0.2 for a small
effect, 0.5 for a medium effect, and 0.8 for a large effect (Hedges 1981).

Being in a similar situation as the previous set of hypotheses, i.e., with paired non-
parametric data, but with more than one distribution to consider, we choose the Friedman
Test (Friedman 1937) alongside posthoc analysis to evaluate our second set of hypothe-
ses, i.e., to evaluate the metrics among the different transpilation targets (Table 2. Since
the Friedman test, in the case of a significant result, is able only to tell whether there is
any difference between all the tested distributions (Friedman 1937), we needed a posthoc
analysis to understand which were the distribution actually differing. We used the pairwise
Wilcoxon signed-rank test to perform the posthoc analysis, which implies making multiple
comparisons among all the considered distributions. When multiple comparisons are made,
the Bonferroni correction is applied by adjusting the significance threshold. This method is
essential to maintain the overall reliability of the conclusions by controlling the cumulative
probability of Type I errors (Armstrong 2014).

In all cases, we set the significance level at « = 0.05. To reject the null hypothesis in favor
of the alternative, the p-value obtained from the tests had to be less than «. This approach
was applied to both the original samples dataset and the synthetic samples dataset separately.

3.3 Threats to Validity

In the following, we discuss the threats to the validity of our study.

Threats to Construct Validity. 1t is essential to ensure that the methods used reflect the
intended subject to ensure accuracy in conducting a study, also known as construct validity.

@ Springer

61 Page 14 0f 34 Empirical Software Engineering (2024) 29:61

For our study, we utilized QSMELL to measure our circuits’ smelliness, which could affect our
findings’ validity. However, it is worth noting that QSMELL has been previously validated,
which may alleviate this concern.

Threats to Conclusion Validity. Threats to conclusion validity refer to factors or conditions
affecting the researcher’s ability to draw accurate conclusions from data analysis. In our case,
this is mainly related to non-parametric statistical tests, which have a lower statistical power,
i.e., less ability to detect significant effects or differences between groups if they exist. Their
usage was the only option since the conditions for applying parametric tests were unmet.

Threats to Internal Validity. Internal validity is a critical factor in research, as it determines
the degree to which a study can establish a definitive causal relationship between independent
and dependent variables. When working with human subjects, researchers often use a within-
subjects experimental design, administering multiple treatments in different orders to mitigate
the impact of learning or maturation. However, our study’s subjects are quantum programs,
and the treatment is a deterministic algorithm: learning or maturation effects cannot occur,
as the output is consistently the same whenever a circuit and specific target gate set are
utilized. Additionally, each treatment is applied to the original circuit code each time without
impacting the subsequent transpilations.

Threats to External Validity. One possible external validity threat is the limited sample size
of only 17 circuits, which were all created using QISKIT, the same quantum technology.
However, this decision was crucial to ensure a fair comparison with the previous study (Chen
et al. 2023), which exclusively employed real circuits rather than synthetic or toy circuits. It
must also be noted that the original publication (Chen et al. 2023) already conducted large
research of real-world (and not trivial) quantum circuits in open source systems, only finding
the reported 17 samples. We conducted another large search of real-world quantum circuits
in a dataset of a previous publication (De Stefano et al. 2022) (i.e., the repositories identified
as libraries/frameworks). Still, we found no additional items to be put in the experimen-
tal sample. We tried to overcome such limitation by employing a set of synthetic circuits
generated by the Qiskit random_circuit utility, which, however, generates circuits by
randomly putting gates in sequences, hence creating circuits that are not necessarily similar
to the ones created by developers. Nevertheless, it could be possible to replicate our proposed
experiments with more real-world circuits when a greater dataset is available. Although we
specifically selected circuits previously identified to have quantum-specific issues, our find-
ings might not universally apply to all quantum circuits. Finally, our research only focuses
on quantum-specific code smells. Transpiling quantum circuits could impact other quality
issues, and in particular, the presence of traditional code smells.

4 Analysis of the Results

In this section, we delve into the findings of our study, structured around the research objec-
tives and hypotheses articulated earlier. As we analyze the collected data, one particular aspect
merits immediate clarification. Identifying the ROC smell requires identifying repeating pat-
terns within quantum circuits, which means that its practicality diminishes with increasing
circuit depth since the number of patterns to examine increases exponentially. This limitation
became evident when considering the shor circuit. The circuit possesses significant depth
in its rpcx and simple transpiled versions, rendering the ROC smell method impractical
for discerning patterns. Consequently, we excluded the shor circuit from our ROC analysis

@ Springer

Empirical Software Engineering (2024) 29:61 Page150f34 61

for our second research question. With this context in place, let us proceed with a detailed
presentation of our results.

4.1 RQq: Effects of Transpilation on the Smell Presence

Table 4 compares the smelliness metrics before and after transpilation. Most data points have
azero value when analyzing the IQ metric before transpilation, with the first, second, and third
quartiles all at this value. There is only one outlier, with a value of one. After transpilation,
there is a significant shift in the distribution of the IQ metric. The median value remains
unchanged, indicating no central tendency or spread change. However, the maximum value
has significantly increased to 15,650, representing a substantial change in the upper range

Table 4 Results of QSmells run on the circuits before and after transpilation

None Original
Subject 1Q 1dQ LC ROC 1Q 1dQ LC ROC
adapt_vqe 0.00 0.00 0.87 0.00 5.00 19.00 0.00 7.00
ae 0.00 0.00 0.65 0.00 0.00 821.00 0.00 49.00
fae 0.00 0.00 0.61 4.00 0.00 0.00 0.10 4.00
grover 0.00 0.00 0.81 1.00 1.00 2.00 0.22 1.00
hhl 0.00 0.00 0.93 0.00 1.00 1.00 0.75 0.00
iae 0.00 0.00 0.78 4.00 0.00 0.00 0.22 4.00
ipe 0.00 0.00 0.96 0.00 0.00 0.00 0.96 0.00
mlae 0.00 0.00 0.53 15.00 0.00 0.00 0.01 15.00
phase_estimation 0.00 0.00 0.96 0.00 0.00 0.00 0.96 0.00
qaoa 1.00 1.00 0.81 0.00 0.00 0.00 0.81 0.00
geom 0.00 0.00 0.87 0.00 0.00 19.00 0.01 0.00
qgan 0.00 0.00 0.87 0.00 0.00 0.00 0.75 0.00
gsve 0.00 0.00 0.93 0.00 0.00 1.00 0.49 1.00
shor 0.00 0.00 0.08 N/A 15,650.00 15,650.00 0.00 N/A
vqc 0.00 0.00 0.87 0.00 0.00 1.00 0.39 2.00
vqd 0.00 0.00 0.93 0.00 0.00 0.00 0.70 0.00
vage 0.00 0.00 0.93 0.00 0.00 0.00 0.70 0.00
Mean 0.06 0.06 0.79 1.50 921.00 971.41 0.41 5.18
Std 0.24 0.24 0.22 3.84 3,795.50 3,787.77 0.36 12.33
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.78 0.00 0.00 0.00 0.26 0.00
50% 0.00 0.00 0.87 0.00 0.00 0.00 0.39 0.50
75% 0.00 0.00 0.93 0.25 0.00 2.00 0.75 4.00
Max 1.00 1.00 0.96 49.00 15,650.00 15,650.00 0.96 15.00

@ Springer

61 Page 16 0of 34 Empirical Software Engineering (2024) 29:61

of IQ values after transpilation. The number of outliers has also increased to three, and the
proportion of data falling above the smelliness threshold has changed.

For the IdQ metric before transpilation, the distribution is very similar to the IQ metric, with
a median and an IQR of zero. There is only one outlier, which is also above the smelliness
threshold. After transpilation, the boxplot displays a median value of zero, indicating no
change in central tendency. The IQR remains at 2.0, indicating a narrow spread. However,
the maximum value has also increased to 15,650, indicating a significant change in the upper
range of 1dQ values compared to the previous distribution. The number of outliers and the
data falling above the smelliness threshold have also increased.

The table reveals a median value of 0.87 when examining the LC metric before transpi-
lation. Approximately 25% of the data falls below 0.78, and 75% falls below 0.93. The data
has a moderate spread, indicated by the interquartile range (IQR) of 0.15. There are only two
outliers in the data. After transpilation, the LC metric shows a median value of 0.39, which is
slightly lower than the previous distribution. The interquartile range (IQR) remains similar
at 0.74, indicating a consistent spread. Notably, the maximum value remains unchanged at
0.96, indicating that the upper bound of LC values has not changed after transpilation.

Lastly, the ROC metric shows a median zero value, with 25% of the data below 0.25
and 75% below 15.0. The data has a substantial spread, with an IQR of 14.75. There are
two outliers with values of 4 and 15 above the smelliness threshold. After transpilation, the
ROC metric shows a median value of 0.5, which is a decrease compared to the previous
distribution. The IQR shows a value of 4.0, indicating a consistent spread. However, the
maximum value has increased to 49, reflecting a notable change in the upper range of ROC
values after transpilation.

Table 5 presents the results of the Wilcoxon signed-rank tests used to compare the pre-
and post-treatment measures for specific metrics. We conducted the tests under a two-sided
alternative hypothesis and reported the p-values and effect size for each metric. Significant p-
values are reported in bold. Based on the findings, the LC metric revealed a considerable gap
between the measurements taken before and after the treatment (p — value = 0.001), with
a remarkably positive effect size (g = 1.196), which suggests that the LC values for the first
group (pre-treatment) were distinctly higher than those for the second group (post-treatment).
The IdQ metric also showed a significant difference (p — value = 0.020) but with a small
negative difference (g = —0.354), indicating that the IdQ values before treatment are lower
than the ones after treatment. However, the IQ metric did not show any significant difference
(p — value = 0.170) despite the small negative effect size (g = —0.335). Likewise, the
ROC metric did not reveal any significant difference (p — value = 0.100), with a slightly
lower effect size (g = 0.393).

Having discussed the above data, we can reject Hél) (LC)and H(;I) (1d Q) in favor of their

respective alternative ones. However, we failed to reject Hél) (I1Q) and H(gl) (ROC).

Table 5 Results of the Wilcoxon

signed-rank test for the Metric p-value Hedge’s g Interpretation
comparison of the pre- and
post-transpilation metrics LC <0.01 1.20 Large

IQ 0.17 -0.34 Small

1dQ 0.02 -0.35 Small

ROC 0.10 -0.39 Small

@ Springer

Empirical Software Engineering (2024) 29:61 Page170f34 61

Concerning the synthetic sample, Fig. 5 shows the distribution of the smelliness metrics
computed on the synthetic samples. What is immediately noticeable is that the values of the
two distributions are almost the same, except for some variations in LC and 1dQ metrics.
Indeed, this is also confirmed by the descriptive statistics.

Before transpilation, the LC metric mean was 0.8793, with a modest spread around the
mean. The majority of circuits had a consistent LC metric value. After transpilation, the
mean increased slightly to 0.8812 but with greater variability. Some circuits had a significant
decrease in the LC metric, with a wider range of LC values post-transpilation. This scenario
differs from the original sample, where the variability of the LC metric was much more
marked.

For the 1Q metric, all the samples in both treatments are flattened on a value of zero.

The value of IdQ before transpilation is consistently zero, indicating no variation. In
contrast, the after-transportation group has some variability, with a low mean of 0.05 and
a standard deviation of 0.22. Although most values are zeros, the maximum value reaches

Before }—D]
After ¢ e }—.—{
0.0 0.2 0.4 0.6 0.8 1.0
LC
Before '
After '
0 1 2 3 4 5
Q
Before '
After | ¢
0 5 10 15 20
[dQ
Before U
After ' ’

00 25 50 75 100 125 150
ROC

Fig.5 Boxplot displaying the distribution of smelliness metrics before and after transpilation for the synthetic
samples

@ Springer

61 Page 18 of 34 Empirical Software Engineering (2024) 29:61

Table 6 Results of the Wilcoxon

signed-rank test for comparing Metric p-value Hedge’s g Interpretation
the pre- and post-transpilation o
metrics of the synthetic samples ~ LC 0.12 -0.03 Negligible

1Q N/A N/A N/A

1dQ 0.04 -0.32 Small

ROC 0.35 0.14 Small

1.00, indicating a significant outlier. The before group aligns closely with the after group,
except for the outlier.

The mean ROC metric before transpilation was 0.03, indicating a low average ROC value
with some variability. However, most circuits had ROC metrics close to zero. After tran-
spilation, the mean ROC metric was slightly lower at 0.01, and most circuits still had ROC
metrics close to zero. This scenario resembles what was observed with the original sample.

Focusing on Table 6 it is possible to observe that, differently from the original sample,
only the IdQ metric showed a statistically significant difference, with a p-value of 0.035
and a slightly small negative effect size (g = —0.322). This was expected since descriptive
statistics showed very similar values for all the metrics. Hence, this data allows us to reject
only H(gl) (1dQ)

Main findings for RQ;

In the original sample, transpilation significantly impacts identifying quantum-specific
code smells, particularly in the Long Circuit (LC) and Idle Qubits (IdQ) metrics. The
difference in smelliness values before and after transpilation is noteworthy. The LC
metric decreases after transpilation, while the IdQ metric increases. However, the 1Q
and ROC metrics show no significant changes. In the synthetic and much bigger sample,
transpilation significantly affects only the IdQ metric.

4.2 RQ;: Impact of Different Gate Sets on the Smell Presence

Tables 7, 8, 9, 10 show the values of the 1Q, IdQ, LC, and ROC metrics for each gate set,
respectively, alongside descriptive statistics, which provide valuable insights into the patterns
observed for each metric.

The IQ metric distributions are mostly minimal for all treatments, concentrated around
zero, suggesting that most data falls below the smelliness threshold, except for outliers
representing rare cases of IQ smell. The highest IQ values are observed in the ibm_perth
treatment (593.0), ibm_sherbrokee (24,764.0), original (15,650.0), rpcx (583.0),
and simple (12,008.0).

The 1dQ metric distributions vary across treatments. Outliers in all treatments indicate
significant deviations in the IdQ values. The ibm_perth treatment shows a consistent
distribution of IdQ, while ilbm_sherbrokee exhibits greater variability. original pri-
marily concentrates its IdQ values around zero, while both rpcx and simple have stable
distributions.

@ Springer

Empirical Software Engineering (2024) 29:61 Page190f34 61

Table 7 1Q metric across different treatments with summary statistics

Subject original ibm_perth ibm_sherbrokee rpcx simple
adapt_vqe 5.00 5.00 0.00 5.00 5.00

ae 0.00 0.00 2.00 0.00 8.00

fae 0.00 0.00 0.00 0.00 0.00
grover 1.00 1.00 1.00 0.00 0.00

hhl 1.00 0.00 0.00 1.00 0.00

iae 0.00 0.00 0.00 0.00 0.00

ipe 0.00 0.00 0.00 0.00 0.00
mlae 0.00 0.00 0.00 0.00 0.00
phase_estimation 0.00 0.00 0.00 0.00 0.00
qaoa 0.00 0.00 0.00 0.00 0.00
qeom 0.00 0.00 0.00 17.00 14.00
qgan 0.00 0.00 0.00 0.00 0.00
gsve 0.00 0.00 0.00 0.00 0.00
shor 15,650.00 593.00 24,764.00 583.00 12,008.00
vqc 0.00 0.00 0.00 0.00 0.00
vad 0.00 0.00 4.00 0.00 0.00
vqe 0.00 0.00 4.00 0.00 0.00
Mean 921.00 35.23 1,457.35 35.64 707.94
Std 3,795.50 143.73 6,005.98 141.11 2,911.96
Min 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00
50% 0.00 0.00 0.00 0.00 0.00
75% 0.00 0.00 1.00 0.00 0.00
Max 15,650.00 593.00 24,764.00 583.00 12,008.00

The LC metric highlights distinct differences among the treatments. The median LC values
for original, ibm_perth, and ibm_sherbrokee fall below the smelliness threshold,
with original at 0.39 and both ibm_perth and ibm_sherbrokee at 0.46.

The ROC metric provides insights into the presence of repeated sets of operations. The
ibm_perth treatment has an average ROC value of approximately 1.7, indicating a moder-
ate count of repeated sets of operations. In contrast, ibm_sherbrokee has a lower average
ROC value of around 1.1, suggesting fewer repeated sets.

Table 11 showcases the results of the Friedman test, which aimed to compare different
target gate sets based on the four metrics.

Among the metrics analyzed, the LC, IdQ, and ROC metrics exhibit significant differences
among the target gate sets. The LC metric shows a highly significant difference (p-value
= 0.000), suggesting notable variations in the performance of long circuits across different
gate sets. Similarly, the IdQ and ROC metrics display significant differences (textitp-value
= 0.001 and 0.002, respectively), indicating variations in the behavior of idle qubits and

@ Springer

61 Page 20 of 34 Empirical Software Engineering (2024) 29:61

Table 8 1dQ metric across different treatments with summary statistics

Subject original ibm_perth ibm_sherbrokee rpcx simple
adapt_vqe 19.00 15.00 23.00 10.00 22.00

ae 821.00 8.00 18.00 11.00 10.00
fae 0.00 0.00 0.00 0.00 0.00
grover 2.00 2.00 1.00 1.00 0.00

hhl 1.00 0.00 1.00 1.00 0.00

iae 0.00 0.00 0.00 0.00 0.00

ipe 0.00 0.00 0.00 0.00 0.00
mlae 0.00 0.00 0.00 0.00 0.00
phase_estimation 0.00 0.00 0.00 0.00 0.00
qaoa 0.00 0.00 0.00 0.00 0.00
qeom 19.00 25.00 35.00 17.00 14.00
qgan 0.00 0.00 2.00 0.00 0.00
qsvc 1.00 1.00 1.00 1.00 1.00
shor 15,650.00 11,664.00 24,764.00 11,503.00 12,008.00
vqc 1.00 1.00 2.00 1.00 1.00

vad 0.00 0.00 4.00 0.00 0.00
vqe 0.00 0.00 4.00 0.00 0.00
Mean 971.41 689.17 1,462.05 679.11 709.17
Std 3,787.70 2,828.15 6,004.78 2,789.25 2911.64
Min 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00
50% 0.00 0.00 1.00 0.00 0.00
75% 2.00 2.00 4.00 1.00 1.00
Max 15,650.00 11,664.00 24,764.00 11,503.00 12,008.00

repeated sets of operations on the circuit based on the gate sets used. In contrast, the IQ
metric does not reveal a significant difference (textitp-value = 0.690), implying that the
choice of gate set does not strongly influence this metric.

The following presents the post-hoc analysis results for LC, IdQ, and ROC. Since the
Friedman test gave no statistically significant result for 1Q, we did not conduct a post-hoc
analysis, and we failed to reject H\> (1 Q).

Table 12 shows the pairwise Wilcoxon signed-rank test results for comparing different
target gate sets regarding the LC metric. Among the comparisons made for the LC metric, the
pairs ibm_perth and rpcx and ibm_perth and simple exhibited significant p-values
of 0.038 and 0.021, respectively. These significant textitp-values indicate notable differences
in the LC metric between these pairs of gate sets. When analyzing the effect sizes measured
by Hedge’s g, we observed values of -0.307 for the ibm_perth vs. rpcx comparison
and -0.379 for the ibm_perth vs. simple comparison, both indicating a tendency of

@ Springer

Empirical Software Engineering (2024) 29:61 Page210of34 61

Table9 LC metric across different treatments with summary statistics

Subject original ibm_perth ibm_sherbrokee rpcx simple
adapt_vqe 0.00 0.00 0.00 0.00 0.00
ae 0.00 0.03 0.00 0.03 0.02
fae 0.10 0.70 0.70 0.87 0.87
grover 0.22 0.53 0.49 0.53 0.70
hhl 0.75 0.53 0.49 0.75 0.81
iae 0.22 0.87 0.87 0.93 0.93
ipe 0.96 0.96 0.96 0.96 0.96
mlae 0.01 0.87 0.87 0.93 0.93
phase_estimation 0.96 0.96 0.96 0.96 0.96
qaoa 0.81 0.81 0.81 0.87 0.93
geom 0.01 0.00 0.00 0.01 0.02
qgan 0.75 0.46 0.42 0.70 0.75
qsve 0.49 0.37 0.24 0.42 0.49
shor 0.00 0.00 0.00 0.00 0.00
vqc 0.39 0.19 0.12 0.34 0.39
vad 0.70 0.46 0.46 0.93 0.93
vqe 0.70 0.46 0.46 0.93 0.93
Mean 0.41 0.48 0.46 0.59 0.62
Std 0.36 0.34 0.35 0.38 0.38
Min 0.00 0.00 0.00 0.00 0.00
25% 0.01 0.19 0.12 0.34 0.39
50% 0.39 0.46 0.46 0.75 0.81
75% 0.75 0.81 0.81 0.93 0.93
Max 0.96 0.96 0.96 0.96 0.96

ibm_perth to have lower values (more smelly) than the other two. These effect sizes
suggest moderate to large differences in the LC metric between the compared gate sets. On
the other hand, the remaining comparisons did not yield significant p-values, implying that
we did not observe significant differences in the LC metric between those specific pairs of
gate sets. Nonetheless, it is important to note that although the p-values were not significant,
Hedge’s g can still provide valuable information about the effect sizes. In this context, effect
sizes ranged from -0.471 to 0.182, indicating moderate differences in the LC metric for those
non-significant comparisons. In this scenario, we can confidently reject Héz)(LC) in favor
of the alternative hypothesis.

Table 13 presents the results of the pairwise Wilcoxon signed-rank test, which serves as
a post-hoc analysis for the IdQ (Idle Qubits) metric, comparing different target gate sets.
The p-values obtained after applying the Bonferroni correction are examined to determine
significant differences between the pairs, and the effect size, measured by Hedge’s g, pro-

@ Springer

61 Page22of34 Empirical Software Engineering (2024) 29:61

Table 10 ROC metric across different treatments with summary statistics

Subject original ibm_perth ibm_sherbrokee rpcx simple
adapt_vqe 7.00 3.00 1.00 3.00 0.00
ae 49.00 0.00 1.00 0.00 0.00
fae 4.00 1.00 1.00 0.00 0.00
grover 1.00 0.00 0.00 0.00 1.00
hhl 0.00 2.00 1.00 0.00 0.00
iae 4.00 0.00 0.00 0.00 0.00
ipe 0.00 0.00 0.00 0.00 0.00
mlae 15.00 0.00 0.00 0.00 0.00
phase_estimation 0.00 0.00 0.00 0.00 0.00
qaoa 0.00 0.00 0.00 0.00 0.00
qeom 0.00 10.00 3.00 0.00 0.00
qgan 0.00 1.00 1.00 0.00 0.00
qsvc 1.00 2.00 2.00 1.00 1.00
shor N/A N/A N/A N/A N/A
vqc 2.00 4.00 3.00 2.00 2.00
vad 0.00 2.00 2.00 0.00 0.00
vqe 0.00 2.00 2.00 0.00 0.00
Mean 5.18 1.68 1.06 0.37 0.25
Std 12.33 2.54 1.06 0.88 0.57
Min 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00
50% 0.50 1.00 1.00 0.00 0.00
75% 4.00 2.00 2.00 0.00 0.00
Max 49.00 10.00 3.00 3.00 2.00

vides insights into the magnitude of these differences. None of the pairwise comparisons
for the IdQ metric reached statistical significance, as all p-values are above the threshold of
0.05. The Bonferroni correction, which adjusts for multiple comparisons, likely contributed

Table 11 Results of the Friedman
test for the comparison among
the different target gate sets

@ Springer

Metric Q p-value
LC 31.88 <0.01
1Q 2.25 0.69
1dQ 19.66 <0.01
ROC 17.08 <0.01

Significant p-values are highlighted in bold

Empirical Software Engineering (2024) 29:61 Page230f34 61

Table 12 Results of the pairwise Wilcoxon signed-rank test for comparing the different target gate sets for
the LC metric

Gate Set A Gate Set B p-value Hedge’s g Interpretation
ibm_perth ibm_sherbrokee 0.34 0.06 Small
ibm_perth original 1.00 0.18 Small
ibm_perth rpex 0.04 -0.31 Small
ibm_perth simple 0.02 -0.38 Small
ibm_sherbrokee original 1.00 0.12 Small
ibm_sherbrokee rpcx 0.02 -0.36 Small
ibm_sherbrokee simple 0.02 -0.43 Small
original rpcx 0.45 -0.47 Medium
original simple 0.06 -0.54 Medium
rpcx simple 0.21 -0.07 Small

Significant p-values are highlighted in bold

to this outcome. The relatively small differences between the gate sets may not have sur-
passed the stringent significance threshold. Furthermore, when considering the effect sizes
measured by Hedge’s g, the values range from -0.161 to 0.163, indicating small effect sizes.
These values suggest that the observed differences in the IdQ metric between the compared
gate sets are modest. Despite this, since the Friedman test gave a significant result, we can
reject Héz) (I1d Q) in favor of the alternative hypothesis, although some deeper analyses and
considerations should be carried out.

The pairwise Wilcoxon signed-rank test results comparing different target gate sets for
the ROC metric are shown in Table 14. None of the comparisons resulted in p-values below
the significance threshold of 0.05, indicating no statistically significant differences between

Table 13 Results of the pairwise Wilcoxon signed-rank test for the comparison among the different target
gate sets for the IdQ metric

Gate Set A Gate Set B p-value Hedge’s g Interpretation
ibm_perth ibm_sherbrokee 0.11 -0.16 Small
ibm_perth original 1.00 -0.08 Negligible
ibm_perth rpcx 1.00 0.00 Negligible
ibm_perth simple 1.00 -0.01 Negligible
ibm_sherbrokee original 1.00 0.10 Negligible
ibm_sherbrokee rpex 0.14 0.16 Small
ibm_sherbrokee simple 0.06 0.16 Small
original rpex 0.59 0.09 Negligible
original simple 1.00 0.08 Negligible
rpcx simple 1.00 -0.01 Negligible

Significant p-values are highlighted in bold

@ Springer

61 Page240f34 Empirical Software Engineering (2024) 29:61

Table 14 Results of the pairwise Wilcoxon signed-rank test for the comparison among the different target
gate sets for the ROC metric

Gate Set A Gate Set B p-value Hedge’s g Interpretation
ibm_perth ibm_sherbrokee 1.00 0.31 Small
ibm_perth original 1.00 -0.38 Small
ibm_perth rpcx 0.13 0.67 Medium
ibm_perth simple 0.11 0.76 Medium
ibm_sherbrokee original 1.00 -0.46 Medium
ibm_sherbrokee rpcx 0.47 0.69 Medium
ibm_sherbrokee simple 0.09 0.93 Large
original rpcx 0.34 0.54 Medium
original simple 0.58 0.55 Medium
rpcx simple 1.00 0.16 Small

Significant p-values are highlighted in bold

the gate sets. It is important to note that the Bonferroni correction was applied, which adjusts
the significance threshold to account for multiple comparisons. The differences between
the distributions may also have contributed to the lack of statistical significance. Despite the
absence of significant findings, the effect sizes measured by Hedge’s g for the non-significant
comparisons are worth noting. These effect sizes ranged from -0.459 to 0.926, suggesting
small to moderate differences in the ROC metric between the gate sets. Although these dif-
ferences were not statistically significant, they may still be practically relevant. Nevertheless,
the Friedman test produced a significant result, allowing us to reject Héz) (ROC) in favor of
the alternative hypothesis. However, further analysis and consideration are necessary.

Concerning the synthetic data, Fig. 6 depicts the distribution of the metrics among the
different target gate sets. The IQ metric varies across different gate sets. The ibm_perth and
ibm_sherbrokee sets have moderate variability, with most circuits having low IQ values.
The original and simple sets have no variability, with all circuits having minimal or no
1Q values. The rpcx set has lower variability than ibm_perth and ibm_sherbrokee,
with most circuits having low 1Q values. Comparing these results with the original sample,
it is possible to note that the distributions in the synthetic data are generally concentrated
around lower values, with most circuits across all treatments having minimal IQ values.
This is particularly evident in the original and simple sets, which show no variability.
In contrast, the ibm_perth, ibm_sherbrokee, and rpcx sets display some degree of
variability, although most of their circuits still have low IQ values. The presence of maximum
values at 4.0 and 2.0 in the 1bm_perth and rpcx sets, respectively, suggests the existence
of a few outliers with slightly higher 1Q metrics.

1dQ metric analysis shows variability across different sets. ibm_perth has a mean IdQ of
0.35, ibm_sherbrokee has a slightly higher average 1dQ of 0.47, original has alower
average 1dQ of 0.05, and rpcx has a mean IdQ of 0.2. Both original and simple have
an average 1dQ of 0.05, indicating minimal variability. Comparing these results with the orig-
inal sample, the IdQ metric distributions show variability across treatments. While outliers
are present in all treatments, indicating significant deviations, the 1bm_perth treatment
demonstrates a relatively consistent distribution of 1dQ. In contrast, ibm_sherbrokee

@ Springer

Empirical Software Engineering (2024) 29:61 Page250f34 61

1.00

== == ==
L 1] [] I] ?
SO :
‘ .
O 0.50
' .
0.25 !
0.00
original ibm_perth ibm_sherbrooke rpex simple
4 . .
.
g
2 + .
. .
0
original ibm_perth ibm_sherbrooke rpex simple
20
15
g 10
5 R +
' .
+ : + : “
0
original ibm_perth ibm_sherbrooke rpex simple
15
i) 10
]
['4
5
.
i}
+ . ‘ .
0
original ibm_perth ibm_sherbrooke rpex simple

Fig.6 Boxplot displaying the distribution of smelliness metrics among the different gate sets for the synthetic
samples

exhibits more considerable variability. original primarily concentrates its IdQ values
around zero, similar to simple. Both rpex and simple maintain stable distributions with
minimal extremes.

Figure 6 shows that the mean and median values of LC were higher in all treatments as
compared to the original dataset. The original treatment had the highest mean LC value
and the smallest standard deviation. The ilbm_perth and rpcx treatments had a moderate
variability, while ibm_sherbrokee is the most variable.

ROC over the various gate sets reveals differences in the presence of repeated sets of
operations across groups. The ibm_perth has a mean ROC of 0.19 with a standard devi-
ation of 0.39, while ibm_sherbrokee has a higher average ROC of 0.26. In contrast,
original has a much lower average ROC of 0.01, while the rpcx treatment shows a uni-
form ROC distribution with an average and standard deviation of zero. simple treatment
mirrors the pattern of the original group. Comparing this result with the original sample,
it is possible to note some contrasts in the ROC metric. The ibm_perth treatment, with an
average ROC value of approximately 1.70 in the original data, indicates a moderate count
of repeated sets of operations. In contrast, ibm_sherbrokee, with a lower average ROC
value of around 1.10, suggests fewer repeated sets. This comparison highlights differences

@ Springer

61 Page 26 of 34 Empirical Software Engineering (2024) 29:61

Table 15 Results of the Metri f

Friedman test for comparing the etrie Q p-vatue

different target gate sets of the

synthetic samples LC 207.27 <0.01
1Q 12.03 0.02
1dQ 45.86 <0.01
ROC 70.35 <0.01

Significant p-values are highlighted in bold

in the complexity and structure of quantum circuits across different treatments, with some
treatments like ibm_perth and ibm_sherbrokee showing more complexity in terms
of repeated operations than others like original and simple.

Table 15 depicts the results of the Friedman test for all the metrics computed on the
synthetic dataset, among all the gate sets. It is immediately possible to note that differently
from the original sample, for all the metrics a statistically significant result was achieved,
with very low p-values, while with the original data, the IQ metric was not significant.

Table 16 shows the post-hoc analysis results for the IQ metric. The metric was not subject
to post-hoc analysis in the original data because the Friedman test did not produce a statisti-
cally significant result. The table shows that only four comparisons produced a statistically
significant result: ibm_sherbrokee vs. original, ibm_sherbrokee vs. simple,
original vs. rpcx, and rpex vs. simple. In all cases, the effect size was between
0.20 and 0.40, indicating a moderate positive difference. Hence, this data allows us to reject
Hy? (10)

Table 17 depicts the post-hoc analysis results for the IdQ metrics on the synthetic dataset.
These results differed from the original data presented in Table 13. In this case, all treat-
ments except original and simple had an identical distribution, which resulted in no
significant findings. However, all treatments except ibm_perth vs. ibm_sherbrokee
and original vs. rpcx showed a moderate positive effect size, with Hedges’ g values

Table 16 Results of the pairwise Wilcoxon signed-rank test for comparing the different target gate sets for
the IQ metric on the synthetic data

Gate Set A Gate Set B p-adjust Hedge’s g Interpretation
ibm_perth ibm_sherbrokee 6.75 -0.06 Negligible
ibm_perth original 1.02 0.24 Small
ibm_perth rpcx 5.81 0.04 Negligible
ibm_perth simple 1.02 0.24 Small
ibm_sherbrokee original <0.01 0.30 Small
ibm_sherbrokee rpcx 5.66 0.11 Small
ibm_sherbrokee simple <0.01 0.30 Small
original rpcx <0.01 -0.31 Small
original simple N/A N/A N/A
rpcx simple <0.01 0.31 Small

Significant adjusted p-values are highlighted in bold

@ Springer

Empirical Software Engineering (2024) 29:61 Page270of34 61

Table 17 Results of the pairwise Wilcoxon signed-rank test for comparing the different target gate sets for
the IdQ metric on the synthetic data

Gate Set A Gate Set B p-adjust Hedge’s g Interpretation
ibm_perth ibm_sherbrokee 0.28 -0.09988 Negligible
ibm_perth original <0.01 0.38470 Small
ibm_perth rpcx <0.01 0.17240 Small
ibm_perth simple <0.01 0.38470 Small
ibm_sherbrokee original <0.01 0.44677 Medium
ibm_sherbrokee rpcx <0.01 0.26570 Small
ibm_sherbrokee simple <0.01 0.44677 Medium
original rpcx <0.01 -0.33778 Small
original simple N/A N/A N/A
rpcx simple <0.01 0.33778 Small

Significant adjusted p-values are highlighted in bold

ranging between 0.20 and 0.50 (in absolute value). This indicates that there was a noticeable
difference between the treatments. Hence, this data allows us to reject Héz) (Idg)

Table 18 presents the outcomes of the post-hoc analysis for the LC metric. It is notice-
able that in comparison to the results reported in Table 12, where only ibm_perth vs.
rpcx, ibm_perthvs. simple, ibm_sherbrokee vs. rpcx and ibm_sherbrokee
vs. simple showed a statistically significant result with moderate negative effect size,
in this scenario, ibm_perth vs. original, ibm_perth vs. ibm_sherbrokee, and
ibm_sherbrokee vs. original were also statistically significant. Not only were the
p-values remarkably low, but also the effect sizes were moderate to high, ranging between

Table 18 Results of the pairwise Wilcoxon signed-rank test for comparing the different target gate sets for
the LC metric on the synthetic data

Gate Set A Gate Set B p-adjust Hedge’s g Interpretation
ibm_perth ibm_sherbrokee <0.01 0.134524 Small
ibm_perth original <0.01 -0.558788 Medium
ibm_perth rpcx <0.01 -0.278662 Small
ibm_perth simple <0.01 -0.558788 Medium
ibm_sherbrokee original <0.01 -0.624340 Medium
ibm_sherbrokee rpcx <0.01 -0.385460 Small
ibm_sherbrokee simple <0.01 -0.624340 Medium
original rpcx <0.01 0.296363 Small
original simple N/A N/A N/A
rpcx simple <0.01 -0.296363 Small

Significant adjusted p-values are highlighted in bold

@ Springer

61 Page 280f 34 Empirical Software Engineering (2024) 29:61

Table 19 Results of the pairwise Wilcoxon signed-rank test for comparing the different target gate sets for
the ROC metric on the synthetic data

Gate Set A Gate Set B p-adjust Hedge’s g Interpretation
ibm_perth ibm_sherbrokee 0.83 -0.14 Small
ibm_perth original <0.01 0.62 Medium
ibm_perth rpcx <0.01 0.68 Medium
ibm_perth simple <0.01 0.62 Medium
ibm_sherbrokee original <0.01 0.58 Medium
ibm_sherbrokee rpcx <0.01 0.61 Medium
ibm_sherbrokee simple <0.01 0.58 Medium
original rpcx 3.17 0.14 Small
original simple N/A N/A N/A
rpcx simple 3.17 -0.14 Small

Significant adjusted p-values are highlighted in bold

0.30 and 0.60 (in absolute values). All effect sizes were negative except for ibm_perth vs.
ibm_sherbrokee. Hence, this data allows us to reject Héz) (LC)

Table 19 presents the outcomes of the post-hoc analysis for the ROC metric. It is noticeable
that in comparison to the results reported in Table 14, where no statistically significant result
was found, here we have all but ibm_perth vs. ibm_sherbrokee, original vs.
rpcx, original vs. simple, and rpcex vs. simple showing a statistically significant
result. Like in the case previously discussed, all the p-values are remarkably low, and effect
size values are fairly large, with values ranging between 0.50 and 0.60 (in absolute values)
and always positive. Hence, this data allows us to reject Héz) (ROC)

Main findings for RQ;

When converting quantum circuits to different gate sets, there are significant variations in
quantum-specific codeissues. LC, IdQ, and ROC metrics demonstrate notable differences
among gate sets, indicating that smelliness canrelate to the executing environment. These
differences are even more significant in the synthetic sample, where LC, IdQ, ROC, and
1Q metrics have notable differences when converting to different gate sets.

5 Discussion and Lessons Learnt
5.1 On the Effects of Transpilation on the Smell Presence

The study unveils significant findings regarding the impact of transpilation on circuit smells,
shedding light on the intricate relationship between the two. The results demonstrate a notable
distinction in the presence of smells before and after transpilation, at least for some specific
smells. Remarkably, the study reveals that circuits initially unaffected by any smells can
acquire them post-transpilation, with the effect particularly pronounced for the LC smell.

@ Springer

Empirical Software Engineering (2024) 29:61 Page290of34 61

qm.—.—.—m.—.—.—.—.—.—.—.—?
cll 0

Fig.7 MLAE circuit representation before transpilation

There seems to be a noticeable rise in smells following transpilation, which can be
attributed to the circuit’s changes during the process. In particular, the LC smell appears
very sensitive to transpilation because it considers aspects that undergo significant alterations
during the process. These changes can potentially upset the circuit’s delicate equilibrium,
resulting in new smells not present beforehand.

To explain this phenomenon, we consider a circuit named “mlae”. The circuit initially had
specific metrics (i.e., Width 2, Depth 18, 1 Qubit, 1 Classical bit, and 18 Gates), which can be
easily inferred by Fig. 7. However, after transpilation, significant metric changes resulted in
a Width of 2, a Depth of 130, 1 Qubit, 1 Classical bit, and 130 Gates, which can be observed
in Fig. 8. The non-transpiled version had an LC value of 0.53; hence, the LC smell did not
affect it. In contrast, the transpiled version had an LC value of 0.01, indicating a substantial
increase in the intensity of the LC smell.

Furthermore, while other smells experience changes after transpilation, they are compar-
atively less affected. Intriguingly, the 1Q smell, which pertains to the initialization of the
circuit, remains unaffected by transpilation since the initialization is preserved throughout
the process. This observation suggests that certain smells are more resilient to the transfor-

- &

Fig.8 MLAE circuit representation after transpilation to original gate set

@ Springer

61 Page30o0f34 Empirical Software Engineering (2024) 29:61

Table 20 Results of the

. Smell Before After
comparison of the number of pre-
and post-transpilation smells by
applying the thresholds Chen LC 1 10
et al. (2023) 1Q 1 4
1dQ 1 8
ROC 3 6

mations induced by transpilation, allowing them to persist or remain absent even after the
circuit undergoes significant modifications.

As Table 20 depicts, by applying on the metrics the thresholds that allow the detection of
the smells (Chen et al. 2023), it is possible to note how the number of smelly circuits changes
before and after transpilation. Despite the variation can be statistically significant or not, it is
possible to appreciate such change. The case of LC smell is the most evident, with a variation
of nine more smelly circuits after the transpilation.

The implications of these findings are significant, as they suggest that a circuit that initially
exhibits favorable characteristics and is deemed good by various metrics can unexpectedly
acquire smells following transpilation. This predicament places developers in a powerless
position, unable to control or prevent the emergence of these smells despite their best efforts in
circuit design and optimization. This result acquires even more importance if we reflect on the
possible impacts of such smells. For example, the LC and ROC smells, which imply a deeper
circuit, can seriously impact the correctness of the execution of the circuit. Deeper circuits
are more prone to errors during their execution in a real quantum machine (Aleksandrowicz
et al. 2019; Chen et al. 2023; Hoare and Milner 2005). Therefore, further investigation is
imperative to comprehend the impact and potential harm these smells can inflict.

&, Take Away Message. Transpilation can cause circuit smells, especially LC smell. Some
previously smell-free circuits may develop smells after transpilation. IQ smell is largely
unaffected. Further exploration is needed to understand the impact and consequences of
these smells. Developers may have limited ability to prevent their appearance.

5.2 On the Impact of Different Gate Sets on the Smell Presence

The investigation demonstrates that selecting gate sets when transpiling quantum circuits
can significantly impact the level of smelliness and the number and type of smells in the
circuits. The presence and severity of smells vary depending on the type of gate set used.
Developers must pay particular attention to LC smells as they are susceptible to gate set
selection. This result is evident if we consider Table 21, where similarly to Table 20, we
applied the smells thresholds (Chen et al. 2023) on each metric to detect the smelly circuits.
Indeed, LC is the smell showing more variation in affected circuits given the target gate
set. The situation for IdQ and ROC is similar. Different gate sets use different fundamental
gates, which can significantly affect the structure of the transpiled circuits and disrupt the
interactions between qubits and gates. Conversely, a gate set choice does not significantly
affect 1Q smells, demonstrating that the transpiler’s optimization strategies can handle idle
qubits regardless of the selected gate set. However, developers have limited control over gate
set selection, usually determined by the underlying hardware and software stack. Therefore,

@ Springer

Empirical Software Engineering (2024) 29:61 Page310of34 61

Table 21 Results of the comparison among the different target gate sets for the different metrics

smell original ibm_perth ibm_sherbrokee rpcx simple
LC 10 9 11 6 6
IQ 4 3 5 4 4
1dQ 8 7 11 8 6
ROC 6 7 5 2 1

it is crucial to understand the impact of the gate set choice on circuit smelliness to anticipate
potential issues and make informed decisions during development.

Future studies should comprehensively evaluate the impact of the gate set selection on
circuit smelliness, including a broader range of gate sets, additional metrics, and a more
extensive collection of quantum circuits. Researchers should also consider hardware char-
acteristics, such as machine architecture, noise levels, and error rates, to fully understand
the interplay between gate sets, hardware characteristics, and circuit smells. Researchers can
develop practical tools and techniques for optimizing quantum circuits by understanding
these factors more deeply. It is crucial to exercise caution when evaluating the concept of
quantum-specific smells due to significant variations in smelliness metrics and the number of
smells observed across different gate sets. Although identified smells offer valuable insights,
the variability introduced by different gate sets suggests that the concept of smells may have
little universal applicability or standardization. Therefore, future research should refine and
contextualize the concept of quantum-specific smells, considering the specific characteristics
and constraints associated with different gate sets and hardware platforms.

& Take Away Message. The choice of gate set can affect the level and types of smells
in quantum circuits, particularly LC smells. Developers should consider this impact, and
further research is needed to refine the concept of quantum-specific smells for different
gate sets and hardware.

6 Conclusion and Future Work

This study aimed to investigate the effect of transpilation on quantum-specific smells and
how different gate sets impact them. We aimed to answer two research questions employing
the original dataset of Chen et al. (2023) comprising 17 circuits and one created by generating
100 synthetic circuits.

On the one hand, we examined the effect of transpilation on the presence of quantum-
specific code smells. In particular, we investigated how transpiling can impact the metrics
used by QSMELL to detect the smells. The results showed these metrics could be impacted,
particularly LC and IdQ. However, 1dQ showed this significance over the two analyzed data
samples, while LC was only on the original one.

On the other hand, we investigated the effect of transpiling to different gate sets on the
presence of quantum-specific code smells. The results showed that the choice of gate set
significantly impacts the presence and severity of smells in transpiled circuits. Different
gate sets introduce distinct fundamental gates and optimization strategies, leading to circuit

@ Springer

61 Page32o0f34 Empirical Software Engineering (2024) 29:61

structural changes. The results obtained on the synthetic data highlighted this phenomenon
even more.

These findings have significant implications for developers, as they highlight the limited
control over the emergence of smells in transpiled circuits. Developers must be aware of the
potential for circuit smells to arise after transpilation and carefully consider the choice of
the gate set to mitigate their impact whenever possible. Indeed, further research is needed
to assess the presence of the smell by creating a more solid and validated set of rules and
thresholds, which sparks from the initial definition provided by Chen et al. (2023). Further
research is needed to fully understand the consequences of these smells and their potential
harm to quantum computations. Furthermore, the variability observed across different gate
sets shows the need for careful evaluation and contextualization when applying the concept
of quantum-specific smells, considering the characteristics and constraints associated with
each gate set and hardware platform.

Acknowledgements This work has been partially supported by project “QUASAR: QUAntum software engi-
neering for Secure, Affordable, and Reliable systems”, grant 2022T2E39C, under the PRIN 2022 MUR
program funded by by the EU - NGEU.

Funding Open access funding provided by Universita degli Studi di Salerno within the CRUI-CARE Agree-
ment.

Data Availability The datasets generated during and/or analysed during the current study are available in the
figshare repository:
https://doi.org/10.6084/m9.figshare.23799210

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Api reference for giskit.circuit.random.random_circuit (2024). https://docs.quantum.ibm.com/api/qiskit/0.19/
qiskit.circuit.random.random_circuit

Qiskit 0.43.0 documentation (2024). https://qiskit.org/documentation/

Transpiler (qiskit.transpiler)—Qiskit 0.43.1 documentation (2024). https://qiskit.org/documentation/apidoc/
transpiler.html

Ahmad A, Khan AA, Waseem M, Fahmideh M, Mikkonen T (2022) Towards process centered architecting
for quantum software systems. In: 2022 IEEE International conference on quantum software (QSW), pp
26-31. IEEE

Aleksandrowicz G, Alexander T, Barkoutsos P, Bello L, Ben-Haim Y, Bucher D, Cabrera-Hernandez FJ,
Carballo-Franquis J, Chen A, Chen CF et al (2019) Qiskit: An open-source framework for quantum
computing. Accessed 16 Mar

Arcelli Fontana F, Mintylda MV, Zanoni M, Marino A (2016) Comparing and experimenting machine learning
techniques for code smell detection. Empirical Softw Engg 21(3):1143-1191

Arcoverde R, Garcia A, Figueiredo E (2011) Understanding the longevity of code smells: preliminary results
of an explanatory survey. In: Workshop on refactoring tools, pp 33-36

Armstrong RA (2014) When to use the Bonferroni correction. Ophthalmic Physiol Opt 34(5):502-508. https://
doi.org/10.1111/0po.12131

Awan U, Hannola L, Tandon A, Goyal RK, Dhir A (2022) Quantum computing challenges in the software
industry. a fuzzy ahp-based approach. Inf Softw Technol 147:106896

@ Springer

https://doi.org/10.6084/m9.figshare.23799210
http://creativecommons.org/licenses/by/4.0/
https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.circuit.random.random_circuit
https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.circuit.random.random_circuit
https://qiskit.org/documentation/
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://doi.org/10.1111/opo.12131
https://doi.org/10.1111/opo.12131

Empirical Software Engineering (2024) 29:61 Page330of34 61

Garcia de la Barrera A, Garcia-Rodriguez de Guzmén I, Polo M, Piattini M (2021) Quantum software testing:
State of the art. Journal of Software: Evolution and Process p €2419

Basili VR, Caldiera G, Rombach HD (1994) The goal question metric approach. Encyclopedia of Software
Engineering

Campos J, Souto A (2021) Qbugs: A collection of reproducible bugs in quantum algorithms and a supporting
infrastructure to enable controlled quantum software testing and debugging experiments. arXiv preprint
arXiv:2103.16968

Chatzigeorgiou A, Manakos A (2010) Investigating the evolution of bad smells in object-oriented code. In:
International conference on the quality of information and communications technology, pp 106-115.
IEEE

Chen Q, CamaraR, Campos J, Souto A, Ahmed I (2023) The smelly eight: An empirical study on the prevalence
of code smells in quantum computing. In: 2023 IEEE/ACM 45th International conference on software
engineering (ICSE)

Cunningham W (1992) The wycash portfolio management system. OOPSLA-92

De Stefano M, Pecorelli F, Di Nucci D, Palomba F, De Lucia A (2022) Software engineering for quantum
programming: How far are we? J Syst Softw 190:111326. https://doi.org/10.1016/].jss.2022.111326

De Stefano M, Pecorelli F, Di Nucci D, Palomba F, De Lucia A (2023) The Quantum Frontier of Software
Engineering: A Systematic Mapping Study. https://doi.org/10.48550/arXiv.2305.19683

Di Nucci D, Palomba F, Tamburri D, Serebrenik A, De Lucia A (2018) Detecting code smells using machine
learning techniques: Are we there yet? In: Int Conf on software analysis, evolution, and reengineering

El Aoun MR, Li H, Khomh F, Openja M (2021) Understanding quantum software engineering challenges:
An empirical study on stack exchange forums and github issues. In: 37th International conference on
software maintenance and evolution (ICSME)

Fowler M, Beck K (1999) Refactoring: Improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc

Friedman M (1937) The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of
Variance. J] Am Stat Assoc 32(200):675-701. https://doi.org/10.1080/01621459.1937.10503522

Hedges LV (1981) Distribution Theory for Glass’s Estimator of Effect size and Related Estimators. J Educ
Stat 6(2):107-128. https://doi.org/10.3102/10769986006002107

Hoare T, Milner R (2005) Grand challenges for computing research. Comput J 48(1):49-52

Knight W (2018) Serious quantum computers are finally here. what are we going to do with them. MIT
Technology Review. Retrieved on October 30:2018

Lin T, Fu X, Chen F, Li L (2021) A novel approach for code smells detection based on deep leaning. In: Inter-
national conference on applied cryptography in computer and communications, pp 171-174. Springer

LiuH, JinJ, XuZ, Bu Y, Zou Y, Zhang L (2019) Deep learning based code smell detection. Transactions on
Software Engineering

Moguel E, Berrocal J, Garcia-Alonso J, Murillo JM (2020) A roadmap for quantum software engineering:
Applying the lessons learned from the classics. In: Q-SET@ QCE, pp 5-13

Moha N, Gueheneuc YG, Duchien L, Le Meur AF (2009) Decor: A method for the specification and detection
of code and design smells. Trans Softw Eng 36(1):20-36

Nielsen MA, Chuang IL (2010) Quantum Computation and Quantum Information, 10th anniversary, ed.
Cambridge University Press, Cambridge, New York

Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A (2018) A large-scale empirical study on
the lifecycle of code smell co-occurrences. Inf Softw Technol 99

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A (2014) Mining version histories for
detecting code smells. Trans Softw Eng 41(5):462-489

Palomba F, Panichella A, De Lucia A, Oliveto R, Zaidman A (2016) A textual-based technique for smell
detection. In: International conference on program comprehension (ICPC), pp 1-10. IEEE

Paltenghi M, Pradel M (2022) Bugs in quantum computing platforms: an empirical study. Proc ACM Program
Lang 6(OOPSLA1):1-27

Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2020a) A large empirical assessment of the role of data
balancing in machine-learning-based code smell detection. Journal of Systems and Software p 110693

Pecorelli F, Lujan S, Lenarduzzi V, Palomba F, De Lucia A (2022) On the adequacy of static analysis warnings
with respect to code smell prediction. Empir Softw Eng 27(3):1-44

Pecorelli F, Palomba F, Di Nucci D, De Lucia A (2019) Comparing heuristic and machine learning approaches
for metric-based code smell detection. In: International conference on program comprehension (ICPC),
pp 93-104. IEEE

Pecorelli F, Palomba F, Khomh F, De Lucia A (2020b) Developer-driven code smell prioritization. In: Inter-
national conference on mining software repositories

@ Springer

http://arxiv.org/abs/2103.16968
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.48550/arXiv.2305.19683
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.3102/10769986006002107

61 Page34o0f34 Empirical Software Engineering (2024) 29:61

Piattini M, Peterssen G, Pérez-Castillo R (2020) Quantum computing: A new software engineering golden
age. ACM SIGSOFT Softw Eng Notes 45(3):12-14

Piattini M, Peterssen G, Pérez-Castillo R, Hevia JL, Serrano MA, Hernandez G, de Guzméan IGR, Paradela
CA, Polo M, Murina E et al (2020b) The talavera manifesto for quantum software engineering and
programming. In: QANSWER, pp 1-5

Piattini M, Serrano M, Perez-Castillo R, Petersen G, Hevia JL (2021) Toward a quantum software engineering.
IT Professional 23(1):62-66

Shi Y, Gokhale P, Murali P, Baker JM, Duckering C, Ding Y, Brown NC, Chamberland C, Javadi-Abhari
A, Cross AW et al (2020) Resource-efficient quantum computing by breaking abstractions. Proc IEEE
108(8):1353-1370

Tsantalis N, Chatzigeorgiou A (2009) Identification of move method refactoring opportunities. Trans Softw
Eng 35(3):347-367

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2016) An empirical inves-
tigation into the nature of test smells. In: International conference on automated software engineering,
pp 4-15

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2015) When and why
your code starts to smell bad. In: International conference on software engineering, vol 1, pp 403—414.
IEEE

Wilcoxon F (1992) Individual Comparisons by Ranking Methods. In: Kotz S, Johnson NL (eds) Breakthroughs
in statistics: methodology and distribution, Springer Series in Statistics, pp 196-202. Springer, New York,
NY. https://doi.org/10.1007/978-1-4612-4380-9_16

Williams CP (2011) Quantum Gates. In: Williams CP (ed) Explorations in quantum computing, texts in
computer science, pp 51-122. Springer, London. https://doi.org/10.1007/978-1-84628-887-6_2

Yarkoni S, Raponi E, Bick T, Schmitt S (2022) Quantum annealing for industry applications: Introduction and
review. Reports on Progress in Physics

Zhao J (2020) Quantum software engineering: Landscapes and horizons. arXiv preprint arXiv:2007.07047

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-84628-887-6_2
http://arxiv.org/abs/2007.07047

	An empirical study into the effects of transpilation on quantum circuit smells
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Quantum Computing and Transpilation
	2.2 Quantum Software Engineering
	2.3 Code Smells
	2.4 Quantum-specific Code Smells

	3 Experimental Design
	3.1 Context of the Study
	3.2 Data Collection and Analysis
	3.3 Threats to Validity

	4 Analysis of the Results
	4.1 RQ1: Effects of Transpilation on the Smell Presence
	4.2 RQ2: Impact of Different Gate Sets on the Smell Presence

	5 Discussion and Lessons Learnt
	5.1 On the Effects of Transpilation on the Smell Presence
	5.2 On the Impact of Different Gate Sets on the Smell Presence

	6 Conclusion and Future Work
	Acknowledgements
	References

