
Empirical Software Engineering (2024) 29:55
https://doi.org/10.1007/s10664-023-10436-2

Machine learning-based test smell detection

Valeria Pontillo1,2 · Dario Amoroso d’Aragona3 · Fabiano Pecorelli1 ·
Dario Di Nucci1 · Filomena Ferrucci1 · Fabio Palomba1

© The Author(s) 2024

Abstract
Test smells are symptoms of sub-optimal design choices adopted when developing test cases.
Previous studies have proved their harmfulness for test codemaintainability and effectiveness.
Therefore, researchers have been proposing automated, heuristic-based techniques to detect
them. However, the performance of these detectors is still limited and dependent on tunable
thresholds. We design and experiment with a novel test smell detection approach based on
machine learning to detect four test smells. First, we develop the largest dataset of manually-
validated test smells to enable experimentation. Afterward, we train six machine learners
and assess their capabilities in within- and cross-project scenarios. Finally, we compare the
ML-based approach with state-of-the-art heuristic-based techniques. The key findings of the
study report a negative result. The performance of the machine learning-based detector is
significantly better than heuristic-based techniques, but none of the learners able to overcome
an average F-Measure of 51%. We further elaborate and discuss the reasons behind this
negative result through a qualitative investigation into the current issues and challenges that
prevent the appropriate detection of test smells, which allowed us to catalog the next steps
that the research community may pursue to improve test smell detection techniques.

Keywords Test smells · Test code quality · Machine learning · Empirical software
engineering

1 Introduction

Test cases are the first barrier against software faults, particularly during regression test-
ing (Myers et al. 2011). Development teams rely on their outcome to decide whether it is
worth merging a pull request (Gousios et al. 2015) or even deploying the system (Beller et al.
2017). At the individual level, the developer’s productivity is also partially dependent on

Communicated by: Maria Teresa Baldassarre, Jeff Carver and Neil Ernst

This article belongs to the Topical Collection: Registered Reports

B Valeria Pontillo
valeria.pontillo@vub.be

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Accepted: 10 December 2023 / Published online: 5 March 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10436-2&domain=pdf
http://orcid.org/0000-0001-6012-9947
http://orcid.org/0000-0002-1363-2184
http://orcid.org/0000-0003-2446-4291
http://orcid.org/0000-0002-3861-1902
http://orcid.org/0000-0002-0975-8972
http://orcid.org/0000-0001-9337-5116

Empirical Software Engineering (2024) 29:55

the ability of tests to find real defects in production code (Zhang and Mesbah 2015) and the
timely diagnosis of the underlying causes (Perez et al. 2017). Unfortunately, when developing
test cases, programmers may apply sub-optimal implementation choices that could introduce
test debt (Kruchten et al. 2012), namely potential design problems that lead to unforeseen
testing and debugging costs for developers (Maldonado and Shihab 2015). Test smells, i.e.,
symptoms of poor design or implementation choices in test code (Van Deursen et al. 2001),
represent one of the most significant sources of test debt (Samarthyam et al. 2017; Tufano
et al. 2016). Several empirical studies in the recent past have focused on test smells to under-
stand their properties (Tufano et al. 2016) and their impact on maintainability (Spadini et al.
2018; Bavota et al. 2015; Grano et al. 2019) and test effectiveness (Grano et al. 2019), by
showing compelling evidence of the risks associated with the presence of test smells for
software dependability and test code quality.

For these reasons, researchers have investigated methods for automatically detecting test
smells (Garousi and Küçük 2018). Such techniques discriminate tests affected (or not) by a
particular type of smell by applying detection rules that compare the values of relevantmetrics
extracted from test code against some empirically identified thresholds. For instance, Van
Rompaey et al. (2007) proposed a metric-based technique that computes several structural
metrics (e.g., number of production code calls made by a test case) and combines them into
detection rules to highlight the likelihood of a test being smelly. A test is marked as smelly if
the value overcomes a threshold. Despite the effort spent by researchers so far, existing test
smell detectors still suffer from two key limitations. First and foremost, they have limited
detection capabilities, behaving similarly to a random guessing approach (Van Rompaey
et al. 2007; Greiler et al. 2013; Palomba et al. 2018). Second, their performance is strongly
influenced by the thresholds used in the detection rules to discriminate between smelly
and non-smelly tests (Fernandes et al. 2016; Garousi and Küçük 2018). These restrictions
threaten the practical applicability of these approaches. Machine learning represents one
of the possible solutions to the limitations mentioned above. Besides avoiding the need to
combinemetrics using detection rules, a machine learning approachwould avoid the problem
of selecting thresholds, thus representing a promising solution to alleviate the limitations of
heuristic-based techniques.

In this paper, we aim to build on top of the existing knowledge, exploring the capabilities
of machine learning to improve the performance of existing test smell detectors through
an empirical investigation. More specifically, the proposed approach employs structural and
textual metrics as features to estimate the likelihood of a test being smelly and is instantiated
for the detection of four test smell types, i.e., Eager Test, Mystery Guest, Resource Optimism,
and Test Redundancy. Afterward, we empirically evaluate the performance of the devised
detector on a new dataset of Java projects—which we manually build, publicly releasing
the largest manually-crafted dataset of test smells to date (Garousi and Küçük 2018)—and
compare its performance with three state-of-art heuristic-based techniques. The findings of
our study can be configured as a negative result. The machine learning approach performs
better than the traditional, heuristic-based techniques but it is ineffective when detecting all
test smells.

As a consequence of our negative result, we conduct a qualitative investigation into the
issues and challenges that prevent the proper identification of test smells. Such a qualitative
investigation allows us to elicit and catalog the root causes of failures of machine learning-
and heuristic-based detectors, providing the research community with insights and practical
examples of when and why current test smell detectors fail, other than how to improve
the currently available instruments. We specifically identify several issues related to the
inaccurate definition of test smells, improper analysis and measurement of the characteristics

123

55 Page 2 of 44

Empirical Software Engineering (2024) 29:55

of those smells and inappropriate treatment of corner cases. Based on our qualitative analysis,
we finally outline take-away messages and actionable insights for future research in the field.

Structure of the Paper Section 2 overviews the related literature and explains howwe advance
the state of the art. In Section 3, we elaborate on the research questions driving our study,
while Section 4 reports the method used to define the novel test smell dataset. The machine
learning approach to detecting code smells is discussed in Section 5, while its empirical
evaluation is reported in Section 6 and discussed in Section 7. The potential limitations of the
study are reported in Section 8, other than the mitigation strategies applied. Finally, Section 9
concludes the paper and outlines our future research agenda.

2 RelatedWork

Investigations on the design of test code were initially pointed out by Beck (2003).
Van Deursen et al. (2001) and Meszaros (2007) defined catalogs of test smells along with
their refactoring actions.More recently,Greiler et al. (2013) devisedTestHound, a heuristic-
based approach to identify six test smell types evaluated through semi-structured interviews.
Palomba et al. (2018) devised Taste, a test smell detector that leverages textual metrics (e.g.,
the conceptual cohesion of test methods Marcus and Poshyvanyk 2005) to complement pre-
vious techniques and identify three test smell types. The detection rules proposed by Palomba
et al. (2018) were later implemented in Darts (Lambiase et al. 2020), an Intellij plugin
that makes Taste usable through a user interface. Peruma et al. (2020) proposed tsDe-

tect, a test smell detector that identifies 19 test smell types, including Assertion Roulette,
Eager Test, and Lazy Test. Maier and Felderer (Maier and Felderer 2023) recently introduced
SniffTest, a test smell detector based on language analysis methods to identify instances of
five test smell types such as Anonymous Test, Long Test, Conditional Test Logic, Assertion
Roulette, and Rotten Green Test. Pecorelli et al. (2020) implemented VITRuM, a Java plu-
gin to provide developers with static and dynamic test-related metrics and identify seven test
smell types. Similarly, Wang et al. (2021) proposed PyNose, a Python plugin to detect 17
test smells. Koochakzadeh and Garousi (2010) designed TeReDetect, a tool that uses rules
and dynamic metrics to detect Test Redundancy, i.e., a test that could be removed without
impacting the test suite. De Bleser et al. (2019) proposed SoCRATES, a fully automated
tool that combines syntactic and semantic data to identify six test smells in Scala soft-
ware systems. Our paper is complementary to this research since it introduces an orthogonal
method based on machine learning to identify test smells; compared to previous work, the
proposed approach would not require tuning thresholds and may be designed to combine
multiple metrics previously employed in isolation. Furthermore, we conduct a large-scale
empirical study on a manually-validated dataset, making our investigation the largest in test
smell detection research.

Other related work concerns the empirical analyses of test smells. Tufano et al. (2016)
investigated the lifecycle of test smells, while Bavota et al. (2015) showed that test smells are
highly diffused in software projects and impact the understandability of test code. Similar
results were later confirmed (Martins et al. 2023) and achieved when considering automat-
ically generated test cases (Grano et al. 2019) and in software systems developed using the
combination of Scala and ScalaTest (De Bleser et al. 2019). In addition, Rwemalika
et al. (2023) investigated test smells in interactive user test cases, finding that these are
highly diffused and potentially harmful. Furthermore, Spadini et al. (2018) showed that test
smells impact the maintainability of both test and production code. Spadini et al. (2019) also

123

Page 3 of 44 55

Empirical Software Engineering (2024) 29:55

discovered that test-driven code reviews might help developers discover design flaws in test
code. All these studies serve as motivation for our paper. Based on the empirical evidence
provided in the past, test smells represent a relevant threat to software reliability that should
be promptly detected. We aim to employ machine learning (ML) algorithms previously used
for code smell detection—the interested reader may find a comprehensive literature analysis
on machine learning for code smell detection by Azeem et al. (2019). Although code and test
smells share a similar high-level definition, they do not share the same characteristics. It is,
therefore, worth analyzing the main differences we expect compared to the previous research
on code smell detection. According to the literature available, ML-based code smell detec-
tion comes with three significant limitations concerning (i) data imbalance, (ii) subjectivity
of code smell data, and (iii) a set of predictors that poorly contribute to the accuracy of the
detection (Pecorelli et al. 2019b).

As for the data imbalance limitation, previous literature has shown that test smells are
more diffused than code smells, e.g., Bavota et al. (2015) found Eager Test instances to affect
around 35% of test classes. Conversely, code smells typically affect a meager percentage of
classes (i.e., around 2%) (Palomba et al. 2016). Therefore, it is reasonable to believe that the
limitation of data imbalance could have a lower significance when dealing with test smells.
Nevertheless, in the context of our empirical study, we investigate the use of data balancing
to understand whether this additional step could benefit the models.

Concerning subjectivity, we envision a strong relationship between test and code smells—
this was already shown by Tufano et al. (2016). The manually-validated dataset discussed in
Section 4 may have suffered from the subjectivity of the authors who made the validation;
in response, we also involved external developers to double-check the manual validations
performed when building the dataset. As for the predictors, we rely on metrics adopted by
existing heuristic techniques to verify the contributions provided by those metrics, other than
identifying potential limitations resulting from their adoption.

3 Goals and Research Questions

The goal of the study was to evaluate the suitability of machine learning for test smell
detection, with the purpose of improving test code quality through the removal of detrimental
design flaws. The perspective is of researchers and practitioners interested in understanding
the performance and limitations of machine learning techniques for test smell detection.
Specifically, our paper was structured around three research questions (RQs), namely:

RQ1. Which features provide more information gain to a machine learning-based test
smell detector?

RQ2. What is the performance of a machine learning-based test smell detector?

RQ3. How does a machine learning-based test smell detector perform compared to
heuristic-based approaches?

With the first research question (RQ1), we sought to understand which metrics con-
tribute the most to detecting test smells. These observations were used to (i) quantify the
predictive power of metrics and (ii) identify the most promising features to include in our
machine-learning approach. In RQ2, we run our machine learning approach against a man-
ually validated oracle of test smells (built according to the operations reported in Section 4)

123

55 Page 4 of 44

Empirical Software Engineering (2024) 29:55

to quantify its detection performance capabilities. Afterward, with RQ3, we aimed to com-
pare the performance of our technique with the one achieved by state-of-the-art approaches
based on heuristics: Such validation allowed us to understand the actual value of a machine
learning approach, i.e., should it work worse than heuristic approaches, its usefulness would
be limited, as practitioners might still find heuristic approaches more beneficial.

To design and report our empirical study, we followed the empirical software engineering
guidelines by Wohlin et al. (2012), other than the ACM/SIGSOFT Empirical Standards.1

4 Dataset Construction

Creating a manually-validated dataset of test smells represented the first step of our inves-
tigation. This step included selecting projects and test smell types, besides the manual data
collection to build the dataset. The following sections report on each of these points.

4.1 Projects Selection

We collected test data from a dataset of 66 open-source Java projects, publicly available on
GitHub, and 51,549 test cases. These projects are part of a larger, popular dataset knownas the
International Dataset of Flaky Tests (IDoFT).2 The selection was driven by two main factors.
First, we considered the entire set of test cases contained in these projects, i.e., not only those
labeled as flaky, to complement IDoFT with additional information related to test smells. In
this way, researchers might have been provided with a unique database containing various
test code-related issues, which would be beneficial to stimulate further research on test code
quality. These projects were highly diverse in terms of scopes and sizes, hence representing an
ideal source to mitigate possible threats to external validity—our online appendix provides
detailed statistics on those projects (Pontillo et al. 2023). Second, the rationale for using
this dataset came from previous observations made by Pontillo et al. (2021, 2022). In their
study, the authors ran a state-of-the-art test smell detector named VITRuM (Pecorelli et al.
2020) and identified a high number of test smells, i.e., they found that around 80% of test
cases were smelly. While we did not use automated tools to collect test smell data, the high
diffuseness of test smells in the dataset suggested that it may be worth manually analyzing
those projects—as documented in the next sections, this resulted in a reasonable choice, as
we found that the percentage of test smells validated as smelly by both us and VITRuM for
Eager Test, Mystery Guest, and Resource Optimism was 66%, 36%, and 7%, respectively.

4.2 Test Smell Selection

In the context of ourwork, we needed to experiment with test smells detectable usingmachine
learning algorithms. In addition, we aimed to compare the performance of those algorithms
with the ones of state-of-the-art heuristic tools. As such, we needed to identify a set of test
smells that would have allowed us to meet two requirements: (1) their detection should have
been based on at least two metrics—if a test smell can be detected through an individual
metric, it would not have made sense to experiment with machine learning solutions as
this would have contributed to neither RQ1 and RQ2; (2) their detection should have been

1 Available at https://github.com/acmsigsoft/EmpiricalStandards.
2 https://mir.cs.illinois.edu/flakytests/

123

Page 5 of 44 55

https://github.com/acmsigsoft/EmpiricalStandards
https://mir.cs.illinois.edu/flakytests/

Empirical Software Engineering (2024) 29:55

supported by at least one tool—otherwise, we could not have addressedRQ3. Based on these
requirements, we first performed a comprehensive literature analysis to extract all the test
smells automatically detectable by the current techniques. We started from the list of test
smell detection tools reported in a systematic mapping study by Aljedaani et al. (2021). This
study reports all the test smell detection tools available in the literature and the test smells
they detect. From an initial set of 22 tools, we included only those (i) supporting Java as a
programming language, as the vast majority of tools use only Java as the target language,
and (ii) relying on a metric-based approach, since machine learning classifiers require a set
of metrics to be used as predictors. Specifically, we excluded three tools that do not support
Java as a target programming language and nine tools that do not rely on a metric-based
approach to detect test smells. This filtering phase led us to a final number of ten tools.

Afterward, we analyzed each tool and extracted information about the test smells they
detect and the metrics they use for the detection. We extracted a total number of 31 different
test smells. We further considered only the test smells for which at least two metrics have
been defined (more details about the metrics are reported in Section 4.2), leading us to
select a set of six test smell types, namely Empty Test, Eager Test, Mystery Guest, Sensitive
Equality, Resource Optimism, and Test Redundancy. We discarded 25 of them because their
detection was based only on a single metric. It is important to note that, in this case, the
second requirement (i.e., the detection must be supported by at least one tool) is intrinsically
guaranteed since we extracted only the smells that are detected by the ten selected tools—
more details are reported in out online appendix (Pontillo et al. 2023).

However, we noticed that detecting two of these smells was very trivial (i.e., Empty Test
and Sensitive Equality); therefore, the use of a machine learning-based approach would not
lead to any detection performance improvement other than being an overkill in terms of
computational costs.

Empty Test is defined as “a test method that is empty or does not have executable state-
ments”; thus, a heuristic approach could objectively identify test cases that suffer from
this issue. As a proof of that, Peruma et al. (2020) applied this heuristic to detect Empty
Test instances within TsDetect, obtaining an F-Measure of 100%. The same consideration
applies to Sensitive Equality, which occurswhen“an assertion has an equality check by using
the toString method”. Two existing heuristic-based detectors, namely TsDetect (Peruma et al.
2020) and the one introduced by Bavota et al. (2012), are able to detect Sensitive Equality
instances with high accuracy. In particular, TsDetect (Peruma et al. 2020) detects a test
method as smelly if it invokes the toString method of an object, while the detector by
Bavota et al. (2012) verifies that a toStringmethod of an object is called within an asser-
tion. According to the performance reported within these previous papers, TsDetect (Peruma
et al. 2020) reaches an F-Measure of 90%, while Bavota et al. (2012) claimed an F-Measure
of 100%. Based on the above consideration, we decided to discard these two test smells,
resulting in a final set of four test smells reported in Table 4 together with their definition.

Another discussion point concerns the Resource Optimism smell. Given its definition,
it is likely that information-flow or dynamic analyses might be potentially more suitable
for detecting it. In this sense, a machine learning solution might be sub-optimal, yet we
aimed to assess the extent to which it may provide valuable insights to detect the smell.
These observations might be used to understand how the performance of machine learning
compares to existing approaches and, perhaps, be later used by researchers to combine it
with novel, more precise information flows or dynamic sources of information.

123

55 Page 6 of 44

Empirical Software Engineering (2024) 29:55

4.3 Test Smell Data Collection

Once we had selected projects and test smell types, we then proceeded with the manual test
smell classification. The first two authors of the paper acted as the “inspectors” to mitigate
potential subjectiveness issues due to a single inspector performing the manual validation.
The other authors were also involved whenever needed, as further discussed later in this
section. For the sake of transparency, it is worth remarking that the authors involved have 3
to 15 years of experience on themes connected to test code quality, test smells, and empirical
software engineering. In addition, most of the authors were also experienced in devising
manually-built datasets. Overall, the amount of effort required by the dataset-building phase
was quantified in 320 hours/person.

Given the impracticability of manually analyzing all 51,549 test cases, the process was
conducted on a statistically significant stratified sample of 9,633 test cases (confidence level
= 99%, margin of error = 1%). When defining the sample, we used the distribution of test
cases per software project as stratification criterion. In this way, we could analyze a sample
that kept the same proportion of test cases of the original population, i.e., a larger project
will account for more tests than a smaller one. It is worth pointing out that we could not take
the distribution of test smells into account when sampling the initial population of test cases,
as the sample was built exactly for the sake of manually detecting test smells. Indeed, the
idea of sampling the initial population of test cases came from our willingness to assess the
smelliness of test cases manually —in other terms, when sampling the population we did
not have information about test smells - this was indeed the intended result of the manual
validation. After defining the sample, we proceeded with the actual validation, which was
approached through a three-step process—Table 1 reports the number of test cases analyzed
at each stage:

Step #1: Initial Validation As a first step, both inspectors independently analyzed a subset of
963 test methods (equal to 10% of the total)—a third inspector (i.e., the third author of the
paper) was in charge of making the final decision about the disagreements. Specifically, the
tasks performed by the two inspectors are elaborated in the following:

1. They consider each test method they were assigned to, opening the corresponding code
in their preferred IDE, i.e., they were both IntelliJ users.

2. By taking the definitions of the test smells considered in our work, they assessed whether
the test code was affected by any of them. The inspectors were allowed to navigate
the code as they liked so that they could assess the test method on its own and how
it interacted with other test or production methods. They could also rely on additional
data, e.g., project documentation, contribution guidelines, or developer’s discussion, to
acquire contextual information and more appropriately assess the smelliness of the test
method.

Table 1 Number of test cases analyzed at each stage of the validation process

Inspector #1 Inspector #2 200 external practitioners

#1 Initial Validation 963 test cases

#2 Internal Validation 4335 test cases 4335 test cases

#3 External Validation 480 test cases

123

Page 7 of 44 55

Empirical Software Engineering (2024) 29:55

3. They filled a spreadsheet that was designed to have six columns: the first, named ‘Test
Method’, took track of the name (and path) of the test method analyzed; the second
to fifth columns, named Eager Test, ‘Mystery Guest’, ‘Resource Optimism’, and ‘Test
Redundancy’, respectively, stored boolean values representing whether the test method
contained or not each of the considered test smells; finally, the last column, named ‘Notes’,
was included to let the inspectors write down notes and observations that might be useful
for the subsequent validation steps.

Upon completion, the results of this first validation were compared through Cohen’s
κ (Cohen 1960), which measures the inter-rater agreement of the inspection task. As an
outcome, the two inspectors reached an agreement of 0.76, which indicates a substantial
agreement (McHugh 2012). The inspectors, including the third one, also scheduled an online
meeting to discuss the validation process, the cases of disagreement, the challenges they
faced, the annotations reported in the ‘Notes’ field of the spreadsheet, and how they dealt
with corner cases. The meeting was performed through Skype and lasted 1.5 hours. The
result of the meeting was instrumental for the second step, as it allowed the inspectors to do
a retrospective and set a baseline.

Step #2: Internal Validation As a second step, the unclassified instances were equally split
between the two inspectors, reiterating the same tasks described above. Upon completion of
the validation, we scheduled two meetings. In the first, the three inspectors mainly involved
in the process met again to discuss further the operations performed. This meeting was
performed on Skype and lasted 1.5 hours. In the second, more formal, all the authors of the
paper in which the specific actions conducted during the inspection process were critically
reviewed to discover possible inconsistencies in theway the inspectors conceptually classified
test smell instances. The meeting was hybrid (the remote component was realized through
Skype) and lasted 3 hours. As an outcome of themeeting,we decided to perform an additional
round of cross-check validation: each of the two main inspectors involved in the process
double-checked the validations made by the other to increase the robustness of the dataset.
As a result of the cross-check, the Cohen’s κ measured 0.84, indicating an almost perfect
agreement (McHugh 2012).

Step #3: External Validation While the formal process described above was supposed to
mitigate possible bias when labeling the smelliness of test code, this may still contain sub-
jective test smell instances. For this reason, we planned an external validation of the test
smells included in the dataset, which involved experienced software testers. We approached
such an external validation as a coherence check of the internal validation rather than as an
extensive assessment thereof—indeed, the external validation must be seen as a mitigation
of the possible subjectivity bias affecting the internal validation. The goal was to assess the
extent to which external practitioners would label the smelliness of test cases similarly to
the internal validation: in the positive case, this coherence check would have highlighted
the soundness of the internal validation procedure, other than the reliability of the dataset
constructed in our work. Since it was unreasonable to ask for an external validation of the
entire set of 9,633 test cases (it would have been excessively costly in terms of time and effort
required by external developers), we randomly selected a subset of 480 test cases (around 5%
of the test cases considered). There are some observations to make in terms of the sampling
strategy and its impact. We preferred a random selection as opposed to a stratification based
on the distribution of the test smells identified during our manual validation. In this case, the
rationale was to let practitioners validate test cases having different properties according to
their own experience with the aim of challenging and/or corroborating our own validation.

123

55 Page 8 of 44

Empirical Software Engineering (2024) 29:55

Table 2 List of questions for the background part in the survey with the type of response provided

Section 1: Participant’s background Type

#1 What kind of developer are you? Multiple choice (Industrial, Open-
source, Startup, Student, Researcher)

#2 Howmany years of experience do you
have with the Java programming lan-
guage?

Paragraph

#3 Please rate your level of expertise with
the Java programming language.

5-point Likert scale

#4 Howmany years of experience do you
have in Software Testing?

Paragraph

#5 Towhat extent do you perform each of
the following types of testing in your
projects?

Multiple-choice grid (Unit, Integra-
tion, System, Acceptance, Usability
testing from “Never” to “Frequently”)

#6 How familiar are you with the concept
of test smells, i.e., symptoms of sub-
optimal design choices adopted when
developing test cases?

5-point Likert scale

On the one hand, the validation of random samples might have led practitioners to identify
false negatives of the internal validation, i.e., instances labeled by us as non-smelly and by
practitioners as smelly-this would have potentially imposed another round of internal, man-
ual validation. On the other hand, practitioners might have assessed a random sample of test
cases labeled as smelly during the internal validation, providing indications on the soundness
of the operations performed by the inspectors. A distribution-aware selection solely looking
at the distribution of the test cases labeled as smelly could have not reached the same result,
as we would have not selected test cases labeled as non-smelly in our internal validation,
hence possibly missing information on false negatives. In any case, it is worth reporting that
the random sample still kept a similar proportion of the test smells within the validation set.
We indeed had 127 Eager Test instances (26% of the test cases of the sample), 68 Mys-
tery Guest instances (14%), 31 Resource Optimism instances (6%), and 2 Test Redundancy
instances (0.4%); in addition, 252 test cases (53%) were labeled as non-smelly in the internal
validation. In the sampled population, Eager Test instances represented 28% of all test cases,
Mystery Guest instances formed the 16% of the test cases, Resource Optimism instances the
8%, and Test Redundancy the 0.4%, with the non-smelly tests representing 48% of all test
cases—Table 3 reports information on the diffuseness of smelliness in the sample. In other
terms, the random sample did not negatively impact the representativeness of smelly and
non-smelly test cases.

Table 2 reports questions related to the participant’s background. In particular, we asked
for information on the context in which participants usually developed, e.g., industrial or
academic, their knowledge of the Java programming language, how much and which testing
they typically do when developing, and their familiarity with test smells.

We involved 200 external developers through the Prolific platform,3 a research instru-
ment to select research participants. To mitigate the possible self-selection or voluntary
response bias, we introduced a monetary incentive of 9 USD. Incentives are well-known to
mitigate self-selection or voluntary response bias, other than increasing the response rate,

3
Prolific website: https://www.prolific.co/.

123

Page 9 of 44 55

https://www.prolific.co/

Empirical Software Engineering (2024) 29:55

as shown in previous studies targeting the methods to increase response rate in survey stud-
ies (Heckman 1990; Sakshaug et al. 2016). By setting the appropriate filters, we involved
practitioners working in IT. More specifically, the developers were provided with a definition
of the test smells subject of the study and asked to assess the smelliness of four test cases,
i.e., the external developers performed very similar tasks as the inspectors in the internal
validation, allowing us to compare the outcomes produced fairly. The four test cases to show
to practitioners were randomly selected from the sample of 480 test cases, which means that
they may have dealt with either one or more smelly or non-smelly test cases. The choice of
limiting the amount of test cases to assess to four was dictated by two main reasons. First and
foremost, we aimed at limiting the cognitive load required by practitioners to perform the
task: we deemed four test cases a reasonable amount to let practitioners be focused on the task
and provide us with reliable insights - a higher number of test cases might have negatively
impacted the cognitive load, possibly biasing the external validation. Second, our choice was
motivated by the willingness to take the survey short, which is a relevant factor impacting the
response rate of survey studies: we designed the external validation to be conducted within
10 minutes-including both answers to background questions and validation of the four test
cases. A longer study involving the validation of more test cases may have lowered partici-
pation, affecting the validity of the external validation. Note that, having 480 tests and 200
developers, we could also perform cross-checking, i.e., several developers assessed a subset
of 262 test cases to verify the consistency among the evaluations provided.

Upon completing the data collection, we first filtered out 16 answers from developers with
less than one year of experience in testing—we considered them not experienced enough to
provide reliable insights. Regarding demographic details, we analyzed the data collected
directly from Prolific, looking at the self-declared information made available by the par-
ticipants. We focused on Age, Nationality, Language, and Sex. In terms of age, the lowest
age is 18, while the highest age is 62. The median is 26. Analyzing the nationality, 66% of
respondents came from Europe, 19% from Africa, 13% from Asia, and 2% from America.
English and Portuguese are the most common languages spoken by the participants (each for
32%), while other languages such as Italian, German, Greek, etc. contribute between 5% and
1%. Finally, 77% of the participants are male, while 23% are female—we reported all data
anonymously in the online appendix (Pontillo et al. 2023). As for the other 184 responses,
81% of the participants have more than three years of software development experience,
and 53% have more than three years of experience with Java. Almost 37% of the partici-
pants have more than three years of software testing experience, and 50% of the practitioners
declared that they perform unit testing frequently—more details about the participants’ back-
ground and their experience with software development and testing are reported in our online
appendix (Pontillo et al. 2023).

Afterward, we assessed the consistency of the answers provided by developers: on aver-
age, for each test smell instance, 88% of participants assessed it in the same manner. This
result looks interesting, especially when compared to the existing body of knowledge that
assessed the developer’s perception of test smells (Tufano et al. 2016). Our findings suggest
that developers’ awareness of test code quality issues may increase when providing them
with specific definitions of test smells—we plan to further investigate this matter as part
of our future research agenda. Finally, we computed the Cohen’s κ coefficient between the
evaluations provided by the inspectors on the sample instances and the evaluations provided
by the majority of the developers in the survey study—in other terms, in the case an instance
was evaluated differently by different developers, we applied a majority voting strategy to
identify the most popular evaluation of that instance. The Cohen’s κ measured 0.67, indicat-
ing a good agreement (McHugh 2012). We did not observe any case where the developer’s

123

55 Page 10 of 44

Empirical Software Engineering (2024) 29:55

recommendations drastically differed from those performed by the inspectors; therefore, we
did not change the original classification. The results obtained from this external valida-
tion were deemed sufficient to address the question about the potential bias of the internal
validation; as such, we considered the dataset construction phase concluded.

The process described above led to the creation of the most extensive test smell dataset up
to date—Table 3 reports details on the diffuseness of smelliness in the dataset. We obtained
2,699 instances ofEager Test (of which 2,082 test cases have only this smell), 1,534 instances
of Mystery Guest 413 istances present only Mystery Guest as test smell, 730 instances of
Resource Optimism (of which only three test cases have only this smell), and 40 instances of
Test Redundancy (17 instances are pure Test Redundancy). We publicly released the dataset
in our appendix (Pontillo et al. 2023). Besides indicating the smelliness of each test smell, we
also released the anonymized evaluations received by the developers. We hope this dataset
will be helpful to test code quality researchers to investigate further both test smell detectors
and the developer’s awareness of test quality concerns.

5 Machine Learning-based Test Smell Detection

We illustrate the approach employed to develop and experiment with a machine learning-
based approach for test smell detection.

Dependent Variable As we aimed at automatically detecting the presence of test smells,
the dependent variable is a binary value indicating the presence/absence of a specific test

Table 3 Diffuseness of test smells in the dataset used for the external validation (480 test cases) and in the
entire dataset (9,633 test cases). We reported the various combinations of test smells and non-test smells
present in the datasets. The first row represents test cases that are no-smelly, the last row represents the test
cases with all four test smells analyzed, and the rows in between are all combinations

Test red. Res. opt. Mystery guest Eager test Total
Ext. valid. Entire dataset

0 0 0 0 307 5,976

0 0 0 1 103 2,082

0 0 1 0 22 413

0 0 1 1 14 391

0 1 0 0 0 3

0 1 0 1 0 0

0 1 1 0 23 513

0 1 1 1 8 207

1 0 0 0 0 17

1 0 0 1 1 13

1 0 1 0 0 0

1 0 1 1 1 3

1 1 0 0 0 0

1 1 0 1 1 0

1 1 1 0 0 7

1 1 1 1 0 0

123

Page 11 of 44 55

Empirical Software Engineering (2024) 29:55

smell type. We considered the outcome of the validation process discussed in Section 4 as a
dependent variable.

Independent Variables To collect a set of reliable predictors for each test smell under consid-
eration, we used themetrics from heuristic approaches already available in the literature—the
identification of new features was not in the scope of our investigation. Specifically, while
performing the process described in Section 4 to select test smells, we collected all themetrics
defined and used by the available detection approaches. Table 4 reports the list of metrics
used for classifying each test smell with their description. We used these metrics as features
to learn the machine learning algorithms. Our online appendix (Pontillo et al. 2023) also
includes references to all the tools relying on the same metrics.

Selecting Machine Learning Algorithms To the best of our knowledge, our work investigates
the first machine learning-based test smell detector; therefore, the most suitable classifier
is still unknown. We have experimented with a set of classifiers belonging to different
families that have been widely used in problems related to software maintenance and evo-

Table 4 Test smells included in our study, their definition, and the independent variables for each smell under
investigation

Test smell Definition Metric Description Structural/textual

Eager test A test method involv-
ing many methods of the
object being tested.

NMC Number of method calls Structural

TMC Test method cohesion, i.e.,
the average textual simi-
larity between all the pairs
methods called by a test
method

Textual

TS Textual scattering, i.e., the
extent to which the text
within the method body is
conceptually scattered

Textual

NRF Number of references to
files

Structural

Mystery guest A test that uses external
resources (e.g., databases
or files).

NRDB Number of references to
database

Structural

Resource optimism A test that uses external
resources without check-
ing the state of these.

ERNC State of external resources,
which are not files, not
checked

Structural

FRNC State of file resources not
checked

Structural

PR Pair redundancy is the
ratio between the items
covered by a test and those
covered by another one

Structural

Test redundancy A test that could be
removed without impact-
ing the test suite.

SR Suite redundancy is the
ratio between the items
covered by a test compared
and those covered by all
other tests in the test suite

Structural

123

55 Page 12 of 44

Empirical Software Engineering (2024) 29:55

lution (Catolino et al. 2018; Catolino and Ferrucci 2019; Catolino et al. 2019; Di Nucci
et al. 2017; Pecorelli et al. 2019a, b). The goal of such extensive experimentation was to (i)
understand which machine learning algorithm was the best for test smell detection and (ii)
increase the generalizability of the results. More specifically, we assessed the capabilities
of Decision Tree (Freund and Mason 1999), Naive Bayes (Duda and Hart 1973), Multilayer
Perceptron (Taud and Mas 2018), and Support Vector Machine (Noble 2006), as basic clas-
sifier. We also considered two ensemble techniques, such as Ada Boost (Schapire 2013) and
Random Forest (Breiman 2001).

Model Configuration and Training When training the selected machine learners, we experi-
mented with multiple under- and over-sampling techniques to balance our data to understand
how those algorithms may improve the test smell detection capabilities. As for the under-
sampling, we considered the use ofNearMiss 1,NearMiss 2, andNearMiss 3 algorithms (Yen
and Lee 2006). These compute the distance between instances of the majority and minority
classes. Then, the algorithms select the instances of the majority class that have the shortest
distance from instances of the minority class and remove them. The underlying idea is that
removing the most similar majority samples increases the diversity of the training set and,
therefore, lets a machine learner more appropriately learn features. We also experimented
with aRandom Undersampling approach, which randomly explores the distribution ofmajor-
ity instances and under-samples them. As for the over-sampling, we investigated Synthetic
Minority Over-sampling Technique, a.k.a SMOTE (Chawla et al. 2002), and advanced ver-
sions of this algorithm, i.e., Adaptive Synthetic Sampling Approach, a.k.a ADASYN (He et al.
2008) and the Borderline-SMOTE (Han et al. 2005). While the basic SMOTE uses a simple
k-nearest neighbor function to identify the minority class instances to over-sample, ADASYN
over-samples the instances according to their learning difficulty. Instead, Borderline-SMOTE
selects the minority class instances based on their similarity compared to the majority class
instances.Wealso experimentedwith aRandom Oversampling approach,which randomly
explores the distribution of the minority class and over-samples them.

Finally, concerning the classifiers configuration, we experimented with the hyper-
parameters of the classifiers using the Random Search strategy (Bergstra and Bengio 2012):
this search-based algorithm randomly samples the hyper-parameters space to find the best
combination of hyper-parametersmaximizing a scoringmetric (i.e., theMatthewsCorrelation
Coefficient). We developed the entire pipeline with the Scikit- Learn library (Pedregosa
et al. 2011) in Python.

Model Validation To assess the performance of our models, we performed both within- and
cross-project validation. These validations aimed to quantify the performance of the models
in two different scenarios. We were indeed interested to understand (i) how accurate can the
performance be when a test smell detection model was trained using data of the same project
where it should be applied and (ii) how accurate the model was when trained using external
data to the project where it should be applied. For the within-project validation, we performed
a stratified ten-fold cross-validation (Stone 1974) for each project. This strategy randomly
partitions the data into ten folds of equal size, allowing us to maintain the correct proportion
in every split between smelly and non-smelly instances. It iteratively selects a single fold as
a test set while the other nine are used as a training set. For the cross-project validation, we
adopted the Leave-One-Out Cross-Validation strategy (Refaeilzadeh et al. 2009), a particular
case of K -fold cross-validation with K equal to N , the number of projects in the set. We
trained models using the test cases of N − 1 projects and used the test cases of the remaining

123

Page 13 of 44 55

Empirical Software Engineering (2024) 29:55

project as the test set. The process was repeated N times to ensure each project would occur
in the test set once.

6 ResearchMethod and Results

This section discusses the research methods employed to address the three main research
questions targeted by our work.

6.1 RQ1 - In Search of Suitable Metrics for Machine Learning-Based Test Smell
Detection

Research Method As explained in Section 4, we focused on the metrics used by previous
researchers when detecting test smells, i.e., we investigated whether a machine learning
solution was suitable to combine structural and textual metrics considered in isolation by
previous work. Table 4 lists and describes each considered test smell and the independent
variables taken into account for each smell under investigation. These metrics captured the
smelliness of tests under different perspectives, considering the size of fixtures and test suites,
cohesion and coupling aspects of tests, and conceptual relationships between the methods
composing test suites. We quantified the predictive power of each metric by computing their
information gain (Quinlan 1986). This step was used as a probing method, i.e., this step
allowed us to estimate the contribution provided by each metric. In addition, information
gain has also been used as a feature selection instrument for RQ2, and RQ3: we indeed used
as predictors the metrics having an information gain higher than zero, i.e., we discarded the
metrics that did not provide any expected beneficial effect on the performance. The output of
the information gain algorithm consists of a ranked list where the features of the model are
placed in a descending manner, meaning that those contributing the most are placed at the
top. We employed the Gain Ratio Feature Evaluation algorithm (Quinlan 1986) available in
the Scikit- Learn library (Kramer 2016).

Analysis of the Results Table 5 reports the results for RQ1, considering the within- and
cross-project scenarios. As for the Eager Test smell, we could notice that TMC and TS
provide a higher information gain than NMC. Both these metrics are textual, and, according
to our results, textual metrics seem to behave better than structural ones, possibly confirming
the findings by Palomba et al. (2018). This result holds for both (of the) validation scenarios
considered in ourwork. Perhapsmore interestingly, it is worth discussing the low contribution
of NMC. While an Eager Test is a test exercising multiple production methods, our results
report that the number of method calls done by the test—which might be a proxy of the
number of production methods exercised—is not a suitable metric. This result contradicts
previous findings, raising questions on the metrics that may be used to identify Eager Test
smells.

As for Mystery Guest, the number of references to files was the most impactful metric,
especially in the within-project scenario. At the same time, the NRDB was found to be less
impactful. Also in this case, the results were consistent in both validation scenarios. In any
case, conceptually speaking, both the metrics were very close to the definition of the smell,
hence possibly contributing to its detection. Likely, most considered systems store data using
files, influencing our results.

123

55 Page 14 of 44

Empirical Software Engineering (2024) 29:55

Table 5 The mean of the information gain obtained by all the considered metrics during the within- and
cross-project validation

Test smell Metric Within-project Cross-project

Eager test NMC: Number of Method Calls 0.037 0.007

TMC: TestMethodCohesion, i.e., the average
textual similarity between all the pairs meth-
ods called by a test method

0.428 0.559

TS: The extent to which the text within the
method body is conceptually scattered

0.428 0.559

Mystery guest NRF: Number of References to Files 0.661 0.042

NRDB: Number of References to Database 0.015 0.001

Resource optimism ERNC: state of External Resources, which are
not files, Not Checked

0.012 0.007

FRNC: state of File Resources Not Checked 0.052 0.022

Test redundancy PR: Pair Redundancy, i.e., the ratio between
the items covered by a test and those covered
by another one

0.001 0.000

SR: Suite, i.e., Redundancy the ratio between
the items coveredby a test compared and those
covered by all other tests in the test suite

0.001 0.001

When it turns to Resource Optimism, the information gain achieved for both (of) the
considered metrics, i.e., ERNC and FRNC, is relatively less significant in both scenarios.
This result is somehow surprising, as these metrics align with the definition of the smell—
yet they are not only based on external files, possibly neglecting other data storage solutions.
Our findings can suggest that further points of view, and therefore metrics, may be relevant.

Finally, when considering Test Redundancy, we found that the metrics had a very low
information gain in both validation scenarios. On the one hand, this finding might be due to
the limited diffuseness of this smell, i.e., we could find just 40 instances of this smell over
66 projects. On the other hand, the metrics considered were likely unable to characterize the
problem, possibly making this smell detection hard.

�Answer to RQ1.Overall, we observed that the metrics considered by previous research
might provide a limited information gain to machine learning-based test smell detectors.
We investigate the effects of those findings on the actual detection performance in the
following research questions.

6.2 RQ2 - Assessing the Performance of our Machine Learning-Based Test Smell
Detector

Research Method When assessing the performance of the machine-learning models, we pro-
ceeded with a stepwise analysis of the various components included in the experimentation.
We performed an ablation study to analyze the contribution of each configuration and train-
ing step to the overall models’ performance. We experimented with multiple combinations,
i.e., we analyzed how the performance varies when including (and not) the feature selection
step, the data balancing, and the hyper-parameter optimization, other than considering the
performance variations given by the different validation procedures. In this way, we could

123

Page 15 of 44 55

Empirical Software Engineering (2024) 29:55

also assess the best possible pipeline for the problem of test smell detection. To evaluate the
performance of the various combinations experimented and addressRQ2, we computed sev-
eral state-of-the-art metrics such as precision, recall, F-Measure (Baeza-Yates et al. 2011),
Matthews Correlation Coefficient (MCC) (Baldi et al. 2000), and the Area Under the Curve
- Precision-Recall (AUC-PR).

We statistically verified our conclusions by using the Friedman (Sheldon et al. 1996) and
Nemenyi tests (Nemenyi 1963) on the distribution ofMCCvalues ofmachine learningmodels
over the different projects, configurations, and test smell types for statistical significance. We
used the former to determine whether or not there is a statistically significant difference
between the MCC value, while we used the latter to report its results using MCM (i.e.,
Multiple Comparisons with the best) plots (McMinn 2004). We used 0.05 as a significance
level, so the elements plotted above the gray band were statistically larger than the others.
In addition, the dots in the plot represented the median MCC that the algorithms obtained in
the projects: a blue dot indicated that the MCC of an algorithm was statistically better than
the other algorithms. In contrast, red dots indicated that the performance was not statistically
different. To perform this last step, we relied on thenemenyi function available inR toolkit.4

Analysis of the Results Our study analyzed the machine learning approach when considering
both within- and cross-project scenarios. For the sake of readability, we first discuss the
results obtained from the ablation study conducted on the features, as the results of this step
informed all the other steps. Afterward, we split the analysis of the results by validation
strategy.

Ablation Study for Feature Selection To conduct such an ablation study, we relied on the
outcome of the information gain analysis to understand whether and which features should
have been excluded. The results of RQ1 reported that all the metrics considered provided
a non-null information gain, indicating that none of them could be excluded by the set of
features used by a machine learning instrument. Consequently, we could conclude that the
ablation study on feature selection did not reveal findings that should have informed the set
of features to use when building the machine learning-based detector.

These observationswere also backed up by an additional analysiswe performedwhen con-
sidering the performance of the machine learning-based detectors when relying on individual
metrics as features. In the within-project scenario, we built nine machine learning-based
detectors for each software project considered in the study, summing up to 108 configurations
for each test smells. In the cross-project scenario, we devised additional 54 configurations
for each test smell, i.e., nine machine learning-based detectors for each execution of the
Leave-One-Out Cross-Validation. While the detailed results of this additional analysis are
reported in our online appendix (Pontillo et al. 2023), we found the machine learning-based
detectors perform even worse when relying on individual metrics than the detectors rely-
ing on all metrics. On the one hand, this finding corroborated the results from RQ1: all the
metrics provide some information gain, and, therefore, they should be considered together
when training a machine learning instrument. On the other hand, this finding suggests that
the metrics are orthogonal to each other, meaning that they do not operate in a conflicting
fashion when classifying the smelliness of test cases. In conclusion of this first step, we could
observe that the best configuration of features to use is the one that includes all the metrics,
and for this reason, the next sections describe the results obtained by this configuration.

4 https://www.r-project.org/

123

55 Page 16 of 44

https://www.r-project.org/

Empirical Software Engineering (2024) 29:55

Within-project Results The ablation study led us to build 108 configurations for each
project—7,128 models in total. Each model was configured and run for each of the four test
smells considered in our study, resulting in 28,512 different runs. We only discuss the best
configuration for each test smell for readability while we report the full results in our online
appendix (Pontillo et al. 2023).

Looking at Fig. 1, we could observe that the median MCC achieved by Random Forest
on Eager Test, Mystery Guest, and Resource Optimism is slightly higher than the other
algorithms (respectively 0.1, 0.09 and 0.05)—detailed result for all models are in our online
appendix (Pontillo et al. 2023). In contrast, in the case ofTest Redundancy,Naive Bayes seems
to be the only classifier capable of detecting this smell themedianwas 0.01. The Friedman test
showed that the distributions for Eager Test and Resource Optimism do not show statistically
significant differences. However, we still decided to apply the Nemenyi test to all test smells
to analyze which model showed higher values, even if not statistically significant. Figure 2
plots the outcome of the Nemenyi Test on the four test smells in the within-project validation.
We can observe that for two test smells, i.e.,Eager Test andResource Optimism, no algorithm
performed statistically better than others—all the dots are red. Differently, forMystery Guest,
Random Forest and Decision Tree are shown to achieve better performance than the others
with a statistically significant difference. Based on these considerations, we will discuss the
following results relying on Random Forest for Eager Test, Resource Optimism, and Mystery
Guest. In contrast, Naive Bayes will be used for further analyses on Test Redundancy.

Concerning the impact of the balancing techniques, the Friedman test found no
statistically significant differences between the distributions except for Mystery Guest.

0.00

0.25

0.50

0.75

adaboost

decisiontree

multila
yerperceptron

naivebayes

randomforest
svm

M
C

C
 −

 E
ag

er
 T

es
t

0.00

0.25

0.50

adaboost

decisiontree

multila
yerperceptron

naivebayes

randomforest
svm

M
C

C
 −

 M
ys

te
ry

 G
ue

st

0.0

0.2

0.4

0.6

0.8

adaboost

decisiontree

multila
yerperceptron

naivebayes

randomforest
svm

M
C

C
 −

 R
es

ou
rc

e
O

pt
im

is
m

0.00

0.02

0.04

0.06

adaboost

decisiontree

multila
yerperceptron

naivebayes

randomforest
svm

M
C

C
 −

 T
es

t R
ed

un
da

nc
y

Fig. 1 Boxplot representing the MCC values obtained by classifiers for all considered test smells in the
within-project setting

123

Page 17 of 44 55

Empirical Software Engineering (2024) 29:55
Li

ke
lih

oo
d

M
C

C
 E

ag
er

 T
es

t

sv
m

 −
 3

.0
5

ad
ab

oo
st

 −
 3

.5
0

m
ul

til
ay

er
pe

rc
ep

tro
n

−
3.

53

na
iv

eb
ay

es
 −

 3
.5

9

de
ci

si
on

tre
e

−
3.

63

ra
nd

om
fo

re
st

 −
 3

.7
0

2.
5

3.
5

Li
ke

lih
oo

d
M

C
C

 M
ys

te
ry

 G
ue

st

na
iv

eb
ay

es
 −

 2
.6

4

sv
m

 −
 3

.0
7

m
ul

til
ay

er
pe

rc
ep

tro
n

−
3.

48

ad
ab

oo
st

 −
 3

.5
9

de
ci

si
on

tre
e

−
4.

11

ra
nd

om
fo

re
st

 −
 4

.1
1

2.
0

3.
5

Li
ke

lih
oo

d
M

C
C

 R
es

ou
rc

e
O

pt
im

is
m

na
iv

eb
ay

es
 −

 2
.9

3

sv
m

 −
 3

.2
2

m
ul

til
ay

er
pe

rc
ep

tro
n

−
3.

54

ad
ab

oo
st

 −
 3

.6
7

de
ci

si
on

tre
e

−
3.

78

ra
nd

om
fo

re
st

 −
 3

.8
7

2.
5

3.
5

4.
5

Li
ke

lih
oo

d
M

C
C

 T
es

t R
ed

un
da

nc
y

ad
ab

oo
st

 −
 3

.0
0

de
ci

si
on

tre
e

−
3.

00

m
ul

til
ay

er
pe

rc
ep

tro
n

−
3.

00

ra
nd

om
fo

re
st

 −
 3

.0
0

sv
m

 −
 3

.0
0

na
iv

eb
ay

es
 −

 6
.0

0

2
4

6
8

Fig. 2 The likelihood of each model for the four test smells in within-project validation in Nemenyi rank in
MCC. The circle dots are the median likelihood, while the error bars indicate the 95% confidence interval.
60% of likelihood means that a classification technique appears at the top rank for 60% of the studied projects

Figures 3 and 4 show the distributions of MCC and the Nemenyi ranks for each smell.
We can observe that no balancing technique performed statistically better than the others in
the cases of Eager Test and Resource Optimism—BorderlineSMOTE seems to have slightly
higher performance. When it turns to Mystery Guest, the Random Forest classifier, without
any balancing algorithm, performed statistically better than all the alternatives. This obser-
vation is also true for Test Redundancy, yet in this case, the performance differences are
not statistically significant. All in all, our findings seem to corroborate previous observa-
tions showing that balancing algorithms are not always effective in the context of code smell
detection (Pecorelli et al. 2019a).

Therefore, the best machine learning classifiers for the four test smells analyzed are (i)
Random Forest with Borderline-SMOTE for Eager Test, (ii) Random Forest for Mystery
Guest, (iii) Random Forest with Borderline-SMOTE for Resource Optimism, and (iv) Naive
Bayes for Test Redundancy.

The last step of the ablation study concerns hyperparameter optimization.Wecompared the
performance of the bestmodelswith andwithout hyperparameters optimization to understand
whether and to what extent such additional steps could improve the models.

It is important to point out that, since we considered several systems, we needed to
aggregate the results achieved for each system to have a more transparent overview of the
performance (Antoniol et al. 2002). Therefore, we aggregated the obtained confusion matri-
ces before computing Precision, Recall, F-Measure, andMCC.Moreover, wemust also point
out that we could not produce results for all the smells analyzed and all individual projects.
By diagnosing the reasons behind the failures of the models, we identified a main factor: on
some projects, the number of test smells was equal to one, causing a training error. Therefore,

123

55 Page 18 of 44

Empirical Software Engineering (2024) 29:55

−0.25

0.00

0.25

0.50

0.75

Random Forest

adasyn_RF

borderlinesmote_RF

nearmissunder1_RF

nearmissunder2_RF

nearmissunder3_RF

randomover_RF

randomunder_RF

smoteover_RF

M
C

C
 −

 E
ag

er
 T

es
t

−0.25

0.00

0.25

0.50

Random Forest

adasyn_RF

borderlinesmote_RF

nearmissunder1_RF

nearmissunder2_RF

nearmissunder3_RF

randomover_RF

randomunder_RF

smoteover_RF

M
C

C
 −

 M
ys

te
ry

 G
ue

st

−0.25

0.00

0.25

0.50

0.75

Random Forest

adasyn_RF

borderlinesmote_RF

nearmissunder1_RF

nearmissunder2_RF

nearmissunder3_RF

randomover_RF

randomunder_RF

smoteover_RF

M
C

C
 −

 R
es

ou
rc

e
O

pt
im

is
m

0.02

0.04

0.06

Naive Bayes

adasyn_NB

borderlinesmote_NB

nearmissunder1_NB

nearmissunder2_NB

nearmissunder3_NB

M
C

C
 −

 T
es

t R
ed

un
da

nc
y

Fig. 3 Boxplot representing the MCC values obtained by balancing techniques for all considered test smells
in the within-project setting

we created and tested machine learning models for 37 projects for Eager Test, 28 projects for
Mystery Guest, 18 projects for Resource Optimism, and three projects for Test Redundancy.

Table 6 shows the achieved performance in terms of Precision, Recall, Accuracy, F-
Measure, MCC, and AUC-PR. The result immediately highlights that the performance of the
approaches is generally low. Themaximum F-Measure achieved is for Eager Test (i.e., 51%).
Analyzing the MCC, we notice that the performance ranges from 0.01 (Test Redundancy)
to 0.39 (Mystery Guest). Overall, we found that the hyper-parameter optimization did not
improve the performance as much as to justify the high computational cost required.

Cross-project Results Regarding the cross-project validation, we performed the same
ablation study applied for the within-project validation. While the entire process is shown in
our online appendix (Pontillo et al. 2023), here we only report and discuss the results of the
Nemenyi Test and the distribution for each test smell after applying the various balancing
techniques.

Differently from the within-project configuration, we found Ada Boost to be the best
classifier for Eager Test and Support Vector Machine for Resource Optimism in the cross-
project setting. As for Mystery Guest and Test Redundancy, the best classifiers are the same
as the within-project setting, namely Random Forest and Naive Bayes, respectively.

Figure 5 reports the boxplots showing the performance of different data balancing algo-
rithms in the cross-project setting. As we can observe, the performance is generally poor,
with MCC values close to zero. However, differently from the within-project configuration,
the Friedman test and the Nemenyi test found statistically significant differences between the

123

Page 19 of 44 55

Empirical Software Engineering (2024) 29:55
Li

ke
lih

oo
d

M
C

C
 E

ag
er

 T
es

t B
al

an
c.

ne
ar

m
is

su
nd

er
2_

R
F

−
4.

36

ne
ar

m
is

su
nd

er
1_

R
F

−
4.

39

ne
ar

m
is

su
nd

er
3_

R
F

−
4.

70

ra
nd

om
ov

er
_R

F
−

4.
88

ad
as

yi
n_

R
F

−
4.

97

sm
ot

eo
ve

r_
R

F
−

5.
00

R
an

do
m

 F
or

es
t −

 5
.5

5

ra
nd

om
un

de
r_

R
F

−
5.

56

bo
rd

er
lin

es
m

ot
e_

R
F

−
5.

59

3.
5

5.
0

6.
5

Li
ke

lih
oo

d
M

C
C

 M
ys

te
ry

 G
ue

st
 B

al
an

c.

ne
ar

m
is

su
nd

er
3_

R
F

−
3.

10

ra
nd

om
un

de
r_

R
F

−
4.

38

ad
as

yi
n_

R
F

−
4.

69

ra
nd

om
ov

er
_R

F
−

5.
14

bo
rd

er
lin

es
m

ot
e_

R
F

−
5.

36

ne
ar

m
is

su
nd

er
2_

R
F

−
5.

45

ne
ar

m
is

su
nd

er
1_

R
F

−
5.

52

sm
ot

eo
ve

r_
R

F
−

5.
60

R
an

do
m

 F
or

es
t −

 5
.7

6

2
4

6

Li
ke

lih
oo

d
M

C
C

 R
es

ou
rc

e
O

pt
. B

al
an

c.

ra
nd

om
ov

er
_R

F
−

3.
42

ne
ar

m
is

su
nd

er
2_

R
F

−
4.

08

ra
nd

om
un

de
r_

R
F

−
4.

54

ne
ar

m
is

su
nd

er
1_

R
F

−
4.

81

ne
ar

m
is

su
nd

er
3_

R
F

−
4.

88

sm
ot

eo
ve

r_
R

F
−

5.
42

R
an

do
m

 F
or

es
t −

 5
.5

4

ad
as

yi
n_

R
F

−
5.

92

bo
rd

er
lin

es
m

ot
e_

R
F

−
6.

38

2
4

6
8

Li
ke

lih
oo

d
M

C
C

 T
es

t R
ed

. B
al

an
c.

ne
ar

m
is

su
nd

er
2_

N
B

−
3.

67

ne
ar

m
is

su
nd

er
3_

N
B

−
4.

67

ra
nd

om
ov

er
_N

B
−

4.
67

ra
nd

om
un

de
r_

N
B

−
4.

67

sm
ot

eo
ve

r_
N

B
−

4.
67

ad
as

yi
n_

N
B

−
5.

67

bo
rd

er
lin

es
m

ot
e_

N
B

−
5.

67

ne
ar

m
is

su
nd

er
1_

N
B

−
5.

67

N
ai

ve
 B

ay
es

 −
 5

.6
7

0
2

4
6

8

Fig. 4 The likelihood of each balancing technique for the four test smells in within-project validation in
Nemenyi rank in MCC. The circle dots are the median likelihood, while the error bars indicate the 95%
confidence interval. 60% of likelihood means that a classification technique appears at the top rank for 60%
of the studied projects

Table 6 Aggregate results for Precision, Recall, Accuracy, F-Measure, MCC, and AUC-PR without (i.e.,
“w/o HT”) and with (i.e., “w/ HT”) the hyper-parameter optimization by Random Search in the within-project
setting

Precision Recall Accuracy

Test smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager test 0.47 0.48 0.53 0.54 0.68 0.68

Mystery guest 0.64 0.64 0.34 0.34 0.83 0.84

Resource opt. 0.33 0.33 0.31 0.36 0.85 0.84

Test red. 0.08 0.01 1.00 0.97 0.05 0.03

F-Measure MCC AUC-PR

Test smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager test 0.50 0.51 0.27 0.28 0.49 0.50

Mystery guest 0.45 0.44 0.39 0.38 0.59 0.55

Resource opt. 0.32 0.34 0.24 0.25 0.53 0.53

Test red. 0.01 0.01 0.01 0.01 0.52 0.52

123

55 Page 20 of 44

Empirical Software Engineering (2024) 29:55

−0.4

−0.2

0.0

0.2

0.4

Ada Boost

adasyn_AB

borderlinesmote_AB

nearmissunder1_AB

nearmissunder2_AB

nearmissunder3_AB

randomover_AB

randomunder_AB

smoteover_AB

M
C

C
 −

 E
ag

er
 T

es
t C

ro
ss

−0.2

0.0

0.2

0.4

0.6

Random Forest

adasyn_RF

borderlinesmote_RF

nearmissunder1_RF

nearmissunder2_RF

nearmissunder3_RF

randomover_RF

randomunder_RF

smoteover_RF

M
C

C
 −

 M
ys

te
ry

 G
ue

st
 C

ro
ss

−0.25

0.00

0.25

0.50

SVM

adasyn_SVM

borderlinesmote_SVM

nearmissunder1_SVM

nearmissunder2_SVM

nearmissunder3_SVM

randomover_SVM

randomunder_SVM

smoteover_SVM

M
C

C
 −

 R
es

ou
rc

e
O

pt
im

is
m

 C
ro

ss

−0.02

0.00

0.02

0.04

Naive Bayes

adasyn_NB

borderlinesmote_NB

nearmissunder1_NB

nearmissunder2_NB

nearmissunder3_NB

randomover_NB

randomunder_NB

smoteover_NB

M
C

C
 −

 T
es

t R
ed

un
da

nc
y

C
ro

ss

Fig. 5 Boxplot representing the MCC values obtained by balancing techniques during the cross-project vali-
dation for all considered test smells

experimented data balancing techniques. From Fig. 6, we can observe that the various distri-
butions exhibit statistical significance except forEager Test. In addition,Mystery Guest shows
several blue dots, i.e., some balancing techniques perform statistically better than others. Our
results report that, in the cross-project context, undersampling techniques are more useful
than oversampling techniques except for Test Redundancy. In this case, the classifier without
any balancing technique performed better, although no statistically-significant difference is
reported compared to the other techniques. These differences with within-project validation
can be explained by the training data containingwaymore instances in a cross-project setting,
thus enabling more exhaustive training of the machine learning models.

Based on the results discussed so far, the following discussion will focus on (i) Ada Boost
with NearMiss2 for the Eager Test detection, (ii) Random Forest with NearMiss1 for the
Mystery Guest detection, (iii) SVM with Random Undersampling for the Resource Optimism
detection, and (iv) Naive Bayes for the Test Redundancy detection.

Table 7 reports the aggregate results in terms of Precision, Recall, Accuracy, F-Measure,
MCC, and AUC-PR of the best models with and without hyper-parameter optimization.
The results obtained were generally low, even more than the within-project validation. The
maximum F-Measure achieved was for Mystery Guest (40%), while the MCC ranges from -
0.01 to 0.3.Hence, cross-project validation is ineffective in classifying negative class samples.
Finally, analyzing the AUC-PR, the maximum results obtained was 46% for Mystery Guest.

123

Page 21 of 44 55

Empirical Software Engineering (2024) 29:55

M
C

C
 E

ag
er

 T
es

t B
al

an
c.

 C
ro

ss

bo
rd

er
lin

es
m

ot
e_

AB
 −

 4
.5

1

ne
ar

m
is

su
nd

er
3_

AB
 −

 4
.7

5

sm
ot

eo
ve

r_
AB

 −
 4

.8
7

ra
nd

om
ov

er
_A

B
−

5.
05

Ad
a

Bo
os

t −
 5

.0
5

ra
nd

om
un

de
r_

AB
 −

 5
.1

3

ad
as

yn
_A

B
−

5.
16

ne
ar

m
is

su
nd

er
1_

AB
 −

 5
.1

7

ne
ar

m
is

su
nd

er
2_

AB
 −

 5
.3

1

4.
0

5.
0

6.
0

M
C

C
 M

ys
te

ry
 G

ue
st

 B
al

an
c.

 C
ro

ss

ne
ar

m
is

su
nd

er
2_

R
F

−
3.

72

ne
ar

m
is

su
nd

er
3_

R
F

−
3.

92

R
an

do
m

 F
or

es
t −

 5
.1

5

ad
as

yn
_R

F
−

5.
21

bo
rd

er
lin

es
m

ot
e_

R
F

−
5.

22

sm
ot

eo
ve

r_
R

F
−

5.
37

ra
nd

om
ov

er
_R

F
−

5.
39

ra
nd

om
un

de
r_

R
F

−
5.

47

ne
ar

m
is

su
nd

er
1_

R
F

−
5.

55

3.
0

4.
5

6.
0

M
C

C
 R

es
ou

rc
e

O
pt

. B
al

an
c.

 C
ro

ss

ne
ar

m
is

su
nd

er
2_

SV
M

 −
 4

.4
3

SV
M

 −
 4

.4
8

ne
ar

m
is

su
nd

er
3_

SV
M

 −
 4

.6
3

bo
rd

er
lin

es
m

ot
e_

SV
M

 −
 4

.8
2

ad
as

yn
_S

VM
 −

 5
.2

9

ne
ar

m
is

su
nd

er
1_

SV
M

 −
 5

.3
0

sm
ot

eo
ve

r_
SV

M
 −

 5
.3

3

ra
nd

om
ov

er
_S

VM
 −

 5
.3

4

ra
nd

om
un

de
r_

SV
M

 −
 5

.3
9

4.
0

5.
0

6.
0

M
C

C
 T

es
t R

ed
un

d.
 B

al
an

c.
 C

ro
ss

ne
ar

m
is

su
nd

er
1_

N
B

−
4.

81

ne
ar

m
is

su
nd

er
2_

N
B

−
4.

81

ne
ar

m
is

su
nd

er
3_

N
B

−
4.

87

ra
nd

om
un

de
r_

N
B

−
4.

90

ad
as

yn
_N

B
−

5.
12

bo
rd

er
lin

es
m

ot
e_

N
B

−
5.

12

ra
nd

om
ov

er
_N

B
−

5.
12

sm
ot

eo
ve

r_
N

B
−

5.
12

N
ai

ve
 B

ay
es

 −
 5

.1
2

4.
0

5.
0

Fig. 6 The likelihood of each balancing technique for the four test smells in cross-project validation in
Nemenyi rank in MCC. The circle dots are the median likelihood, while the error bars indicate the 95%
confidence interval. 60% of likelihood means that a classification technique appears at the top rank for 60%
of the studied projects

It is important to point out that also for the cross-project validation, the hyper-parameter
optimization did not improve the performance.

� Answer to RQ2. The performance of ML-based test smell detection techniques was
generally low, regardless of the configuration adopted. The within-project setting achieved
better performance than the cross-project. While over-sampling techniques performed bet-
ter in the within-project configuration, under-sampling seems more appropriate in the case
of cross-project. Finally, the hyper-parameter optimization did not significantly improve
the models’ performance.

6.3 RQ3 - ComparingMachine Learning- and Heuristic-Based Techniques for Test
Smell Detection

Research Method While the results achieved in the context of RQ2 reported that machine
learning-based test smell detectors did not sufficiently perform, we still conducted a bench-

123

55 Page 22 of 44

Empirical Software Engineering (2024) 29:55

Table 7 Aggregate results for Precision, Recall, Accuracy, F-Measure, MCC, and AUC-PR without (i.e., “w/o
HT”) and with (i.e., “w/ HT”) the hyper-parameter optimization by Random Search in the cross-project setting

Precision Recall Accuracy

Test smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager test 0.27 0.30 0.64 0.54 0.42 0.53

Mystery guest 0.44 0.44 0.37 0.37 0.82 0.82

Resource opt. 0.25 0.24 0.32 0.30 0.87 0.87

Test red. 0.004 0.01 0.97 0.97 0.05 0.03

F-Measure MCC AUC-PR

Eager test 0.38 0.39 -0.01 0.06 0.32 0.33

Mystery guest 0.40 0.40 0.30 0.30 0.46 0.41

Resource opt. 0.28 0.26 0.22 0.20 0.27 0.28

Test red. 0.01 0.01 0.01 0.00 0.41 0.13

mark study to address two specific objectives. On the one hand, we could assess the real
usefulness of the machine learning-based technique: should our model be less performing
than the baselines, its practical use would be further limited, and, because of that, we could
recommend researchers invest effort in the improvement of heuristic approaches rather than
of machine learning-based solutions. On the other hand, we could measure the extent to
which our technique compares to existing approaches, thus understanding the strengths and
weaknesses of the proposed test smell detector compared to existing detectors. More partic-
ularly, our study aimed at comparing the machine learning-based test smell detectors against
the three heuristic-based baselines described in the following:

tsDetect (Peruma et al. 2020) We selected this tool as it represents the current state of the
art in test smell detection (Aljedaani et al. 2021) and can detect the highest number of test
smell types. Out of the four test smells included in our study, tsDetect could identify three
of them, i.e., Eager Test, Mystery Guest, and Resource Optimism. In particular, the first is
detected by computing the number of the multiple calls made by a test method to multiple
production methods. The second is identified by analyzing whether a test method contains
instances of files and database classes. Finally, the third is identified by looking at whether a
test method utilizes a File instance without calling the method exists(), isFile(),
or notExist().
TeReDetect (Koochakzadeh and Garousi 2010) We selected this tool as it is the only one
to detect Test Redundancy smell instances. The tool detects the smell by computing code
coverage and analyzing whether two tests cover similar paths.
Darts (Lambiase et al. 2020) Themodel built forEager Test relies on an information retrieval
metric (i.e., TC). For this reason, we also considered it worth comparing the model against
an information retrieval-based heuristic technique, which is the one implemented within
Darts (Lambiase et al. 2020). The tool relies on the detection rule proposed by Palomba
et al. (2018). It detects Eager Test instances through a two-step process: first, the test method
calls are replaced with the actual production code methods called by the test method; then,
the conceptual cohesion metric is computed, taking into account the constituent methods
and, whether this metric exceeds 0.5 the smell is detected.

123

Page 23 of 44 55

Empirical Software Engineering (2024) 29:55

We run the heuristic approaches against the same systems considered in RQ2 to enable
a fair comparison. None of these heuristic tools required additional configuration, i.e., they
could be run against the source code without the need to specify any parameter: this ensured
the execution of their original implementations, hence avoiding possible bias due to the
wrong configuration of the tools. We employed the same evaluation metrics used to assess
themachine learningmodels, i.e.,Precision,Recall,F-Measure, andMCC. Similarly toRQ2,
we also statistically verified the validity of the findings between our machine learning-based
detector and baseline techniques using the Nemenyi test (Nemenyi 1963) on the distribution
of MCC values they obtained.

Analysis of the Results Similarly to RQ2, we split the analysis of the results by validation
strategy so that we could benchmark the machine learning approach and heuristic-based
techniques in two different scenarios. Within-project Results. Figure 7 reports the outcome
obtained from the Nemenyi test comparing the various distributions ofMCC.We can observe
that for Eager Test, the machine learning in a within-project setting performs statistically
better compared to the other approaches. For Mystery Guest, Resource Optimism, and Test
Redundancy, the machine learning approach has higher performance even if there are no
statistically significant differences.

Tables 8 and 9 show the aggregate results for Eager Test, Mystery Guest, and Resource
Optimism over the machine learning approach and two heuristic-based techniques (i.e.,

Li
ke

lih
oo

d
M

C
C

 E
ag

er
 T

es
t S

m
el

l

ts
de

te
ct

 −
 1

.9
9

da
rts

 −
 2

.2
6

M
L_

cr
os

s
−

2.
59

M
L_

w
ith

in
 −

 3
.1

6

2.
0

2.
5

3.
0

3.
5

Li
ke

lih
oo

d
M

C
C

 M
ys

te
ry

 G
ue

st
 S

m
el

l

M
L_

cr
os

s
−

1.
86

ts
de

te
ct

 −
 1

.9
3

M
L_

w
ith

in
 −

 2
.2

1

1.
6

1.
8

2.
0

2.
2

2.
4

Li
ke

lih
oo

d
M

C
C

 R
es

ou
rc

e
O

pt
im

is
m

 S
m

el
l

ts
de

te
ct

 −
 1

.7
5

M
L_

cr
os

s
−

1.
94

M
L_

w
ith

in
 −

 2
.3

1

1.
4

1.
8

2.
2

2.
6

Li
ke

lih
oo

d
M

C
C

 T
es

t R
ed

un
da

nc
y

Sm
el

l

M
L_

cr
os

s
−

1.
33

te
re

de
te

ct
 −

 1
.6

7

M
L_

w
ith

in
 −

 3
.0

0

0.
5

1.
5

2.
5

3.
5

Fig. 7 The likelihood of the heuristic- and machine learning-based techniques to detect the four test smells
ranked by Nemenyi computed on the MCC. The circle dots are the median likelihood, while the error bars
indicate the 95% confidence interval. 60% of likelihood means that a classification technique appears at the
top rank for 60% of the studied projects

123

55 Page 24 of 44

Empirical Software Engineering (2024) 29:55

Table 8 Aggregate results for Precision, Recall, F-Measure, and MCC, comparing the machine learning
approach to TsDetect

Precision Recall

Test smell ML within TSDETECT ML within TSDETECT

Eager test 0.47 0.37 0.53 0.17

Mystery guest 0.64 0.42 0.34 0.44

Resource opt. 0.33 0.21 0.31 0.37

F-measure MCC

Test smell ML within TSDETECT ML within TSDETECT

Eager test 0.50 0.23 0.27 0.06

Mystery guest 0.45 0.43 0.39 0.29

Resource opt. 0.32 0.27 0.24 0.15

Precision Recall

Test smell ML cross TSDETECT ML cross TSDETECT

Eager test 0.27 0.35 0.64 0.16

Mystery guest 0.44 0.40 0.37 0.40

Resource opt. 0.25 0.18 0.32 0.37

F-measure MCC

Test smell ML cross TSDETECT ML cross TSDETECT

Eager test 0.38 0.22 -0.01 0.06

Mystery guest 0.40 0.40 0.30 0.29

Resource opt. 0.28 0.25 0.22 0.17

TsDetect and Darts). Concerning the three test smells detected by TsDetect, the per-
formance was generally lower in terms of Precision, F-Measure, and MCC compared to
machine learning-based approaches. Looking at the Recall, we notice that compared with

Table 9 Aggregate results for
Precision, Recall, F-Measure,
and MCC, comparing the
machine learning approach to
Darts

Precision Recall

Test smell ML within Darts ML within Darts

Eager test 0.47 0.33 0.53 0.31

F-Measure MCC

Test smell ML within Darts ML within Darts

Eager test 0.50 0.32 0.27 0.04

Precision Recall

Test smell ML cross Darts ML cross Darts

Eager test 0.27 0.30 0.64 0.31

F-measure MCC

Test smell ML cross Darts ML cross Darts

Eager test 0.38 0.30 -0.01 0.03

123

Page 25 of 44 55

Empirical Software Engineering (2024) 29:55

the machine learning approach, TsDetect has higher values when it comes to the detection
of Mystery Guest and Resource Optimism.

The results obtained by Darts confirmed that the machine learning-based approach per-
formed better than the heuristic baselines for all the metrics evaluated, e.g., the MCC (27%
vs. 4%).

To further elaborate on the differences between the approacheswe conducted an additional
analysis focused on understanding the overlap among them. Given two prediction models mi

and m j , we computed (i) the number of test smells correctly predicted by both mi and m j

and (ii) the number of test smells correctly predicted by only mi and missed by m j .
The overlap analysis for the within-project scenario is reported in Table 11. The analysis

confirms the previous results and shows that the machine learning-based approach detects
more test smells than the heuristic-based approaches when analyzing Eager Test and Test
Redundancy. For Mystery Guest and Resource Optimism, the amount of common predictions
is higher than that of the individual machine learning- and heuristic-based approaches.

Cross-Project Results Different conclusions can be drawn in the cross-project setting.
While the cross-project machine learning is still shown to perform better than TsDetect in
terms of MCC for most of the code smells under analysis, there is no statistical significance.
Moreover, looking at the other indicators, we notice that the machine learning approach
is, overall, less precise. The explanation behind this result could be that in a cross-project
configuration, instances coming fromheterogeneous systems are used for training. Therefore,
the classifiers are brought to infer a more generic detection and generate more false positives.

The only smell that deserves a separate discussion is Test Redundancy, whose results are
reported in Table 10. In this case, the performance of the various approaches is very low
(close to zero), even if machine learning still performs slightly better than TeReDetect,
particularly for the Recall.

Looking at the overlap analysis for the cross-project scenario (reported in Table 12), the
results showed that the machine learning-based approach detects more test smells than the
heuristic-based approaches for all test smells. In addition, we could observe that for Eager
Test, only 26% of the predicted smells are in common between machine learning and Darts

Table 10 Aggregate results for Precision, Recall, F-Measure, and MCC, comparing the machine learning
approach to TeReDetect

Precision Recall

Test smell ML within TeReDetect ML within TeReDetect

Test red. 0.01 0.00 1.00 0.00

F-Measure MCC

Test smell ML within TeReDetect ML within TeReDetect

Test red. 0.01 0.00 0.01 −0.01

Precision Recall

Test smell ML cross TeReDetect ML cross TeReDetect

Test red. 0.01 0.00 0.97 0.00

F-Measure MCC

Test smell ML cross TeReDetect ML cross TeReDetect

Test red. 0.01 0.00 0.01 -0.01

123

55 Page 26 of 44

Empirical Software Engineering (2024) 29:55

Table 11 The overlap results in a within-project scenario. We reported the results for each test smell by
comparing the machine learning-based approach to the heuristic-based one

Eager test

ML corr ∩ Darts corr ML corr \ Darts corr Darts corr \ ML corr

26% 53% 21%

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

12% 76% 12%

Mystery guest

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

72% 5% 23%

Resource optimism

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

60% 13% 27%

Test redundancy

ML corr ∩ TeReDetect corr ML corr \ TeReDetect corr TeReDetect corr \ ML corr

0% 100% 0%

and further decreased to 15% when analyzing TsDetect. A similar discussion can be drawn
for Mystery Guest and Resource Optimism, while again for Test Redundancy, this analysis is
infeasible because the number of smells detected by TereDetect but missed by the machine
learning approach is zero (Table12).

Table 12 The overlap results in a cross-project scenario. We reported the results for each test smell by
comparing the machine learning-based approach to the heuristic-based one

Eager test

ML corr ∩ Darts corr ML corr \ Darts corr Darts corr \ ML corr

26% 60% 14%

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

15% 78% 7%

Mystery guest

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

14% 67% 19%

Resource optimism

ML corr ∩ TsDetect corr ML corr \ TsDetect corr TsDetect corr \ ML corr

11% 71% 18%

Test redundancy

ML corr ∩ TeReDetect corr ML corr \ TeReDetect corr TeReDetect corr \ ML corr

0% 100% 0%

123

Page 27 of 44 55

Empirical Software Engineering (2024) 29:55

� Answer to RQ3. The machine learning-based approach performs significantly better
than its heuristic counterparts when run in a within-project setting. However, we point out
that machine learning and heuristic approaches achieve low performance when detecting
most test smells. The overlap analysis seems to suggest that the machine learning-based
approach works better for test smells with high or low frequency, such as Eager Test and
Test Redundancy, while for test smells like Mystery Guest and Resource Optimism both
approaches can be employed.

7 Discussion, Further Analysis, and Qualitative Insights

Our findings reveal several points worthy of further analysis and discussion, which we elab-
orate on in this section.

7.1 Machine Learning-based Test Smell Detection: How Bad Is It?

According to our findings, a machine learning-based detector might perform better than
heuristic-based alternatives. Yet, this seems not to be enough, as a key result of our inves-
tigation concerns the low performance achieved by the machine learning-based detector in
terms of all the evaluation metrics considered. Regardless of the type of test smell consid-
ered and the machine learning configuration adopted in within- and cross-project scenarios,
it cannot solve the problem effectively. To provide a more pragmatic measure of how low
the performance achieved is, we conducted an additional analysis to compare the machine
learning-based detector with the so-called dummy classifiers, i.e., classifiers that make pre-
dictions ignoring the input features. More specifically, we compared the best model, both in
within- and cross-project scenarios, coming from our empirical study with three baselines
such as (i) the Optimistic Constant Classifier, which consistently classifies an instance as
smelly; (ii) the Pessimistic Constant Classifier, which consistently classifies an instance as
non-smelly; and (iii) a Random Classifier, which randomly classifies an instance as smelly or
non-smelly. Through this comparison, we could assess how far we are, as researchers, to the
definition of a usable and effective machine learning-based test smell detector by measuring
the distance between the performance it achieved and those of simple classifiers. In addition,
if any of these baselines would have outperformed our solution, this might have potentially
indicated an issue with the features exploited by the model, i.e., if a classifier that ignores the
input features perform better than one based on features, this would imply that the features
themselves are not impactful enough.

Following the researchmethod taken in previous studies (Haiduc et al. 2012),we compared
Type I and Type II errors, namely the total number of false positive and false negative errors,
respectively.

Table 13 reports the results obtained when considering the within-project scenario. As for
the Type I errors, the machine learning-based approach outperformed both the Optimistic
Constant Classifier and Random Classifier, reaching lower false positive rates for all the test
smells. For instance, the false positive rate for Eager Test was 17%, namely 53% and 20%
lower than the Optimistic Constant Classifier and Random Classifier, respectively. At the
same time, the difference compared to the Pessimistic Constant Classifier was still evident,

123

55 Page 28 of 44

Empirical Software Engineering (2024) 29:55

Table 13 Comparison between the experimented machine learning-based test smell detector and the dummy
classifiers in the within-project scenario

ML-based approach Optimistic constant

Test smell Type I Type II Type I Type II

Eager test 1,524 (17%) 1,240 (14%) 6,079 (70%) 0 (0%)

Mystery guest 239 (3%) 817 (10%) 6,118 (80%) 0 (0%)

Resource opt. 445 (7%) 481 (8%) 5,576 (89%) 0 (0%)

Test red. 2,302 (72%) 0 (0%) 3,169 (99%) 0 (0%)

Pessimistic constant Random constant

Test smell Type I Type II Type I Type II

Eager test 0 (0%) 2,648 (30%) 3,246 (37%) 1,293 (15%)

Mystery guest 0 (0%) 1,487 (20%) 3,409 (45%) 764 (10%)

Resource opt. 0 (0%) 688 (11%) 2,995 (48%) 346 (6%)

Test red. 0 (0%) 40 (1%) 2,089 (65%) 26 (1%)

especially when considering the absolute number of errors, particularly in the case of Test
Redundancy, where themachine learning-based approach output 2,302 false positives (72%).
Based on these results, we could conclude that the machine learning approach was too eager
to recommend the smelliness of test cases, producing a notable amount of false positives.

When it turns to Type II errors, we could observe that the approach obtained results close
to those of the Random Classifier for all the considered test smells, with absolute numbers
indicating a similar behavior. By interpreting those numbers, we could conclude that the
machine learning-based approach was often unable to properly recognize the smelliness of
test code, performing no better than a random choice. This finding is even more worrisome
than the one obtained for the Type I errors, as it possibly indicates that the features or the
configuration exploited by the approach often could not correctly characterize the presence
of test smells.

The conclusions drawn were similar when considering the cross-project scenario. As
shown in Table 14, the trend looks similar to what was just discussed. Regarding Type
I error, the machine learning-based approach typically worked better than the Optimistic
Constant Classifier and Random Classifier alternatives. The only exception concerned with
Eager Test: in the cross-project scenario, the false positive rate was indeed higher than the
previous case when compared to theRandom Classifier, possibly indicating that the approach
was even more prone to highlight the presence of test smells. As for the Type II errors, we
could instead confirm the similar behavior between the machine learning-based approach
and the Random Classifier.

On the basis of the argumentation above, we can conclude that themachine learning-based
detector was quite unstable, both considering false positives and negatives: this suggests that
either the features or other characteristics of the problem exploited were not suitable enough
for the classification task - we elaborate on this matter in the next section. Also, our results
suggest that the research on machine learning-based test smell detection is still far from
reaching a decent point. Indeed, the current solution is unsuitable for a practical case and
too close to dummy alternatives. On the one hand, in the within-project scenario, a model
ensemble (i.e., Random Forest) is the best classifier for three out of four test smells. On
the other hand, in the cross-project scenario, two ensemble models (ii.e., Random Forest
and AdaBoost) are the best classifiers for two out of four test smells. Please consider that

123

Page 29 of 44 55

Empirical Software Engineering (2024) 29:55

Table 14 Comparison between the experimented machine learning-based test smell detector and the dummy
classifiers in the cross-project scenario

ML-based approach Optimistic constant

Test smell Type I Type II Type I Type II

Eager test 4,578 (48%) 942 (10%) 6,934 (72%) 0 (0%)

Mystery guest 723 (8%) 955 (10%) 8,099 (84%) 0 (0%)

Resource opt. 691 (7%) 492 (5%) 8,903 (92%) 0 (0%)

Test red. 9,105 (95%) 1 (0.01%) 9,593 (99%) 0 (0%)

Pessimistic constant Random constant

Test smell Type I Type II Type I Type II

Eager test 0 (0%) 2,699 (28%) 3,485 (36%) 1,388 (14%)

Mystery guest 0 (0%) 1,534 (16%) 4,121 (43%) 780 (8%)

Resource opt. 0 (0%) 730 (8%) 4,462 (46%) 364 (4%)

Test red. 0 (0%) 40 (0.4%) 4,822 (50%) 27 (0.3%)

RandomForest is an ensemble of pruned decision trees, where each decision tree is built using
Bootstrap Aggregating (i.e., Bagging), and the combination of the prediction of the decision
trees is performed by using majority voting. Hence, the results of RQ2 suggest that ensemble
learning can help achieve better performance, and their employment can leverage the results
obtained by other classifiers (e.g., Naive Bayes, Multi-layer Perceptron, and Support Vector
Machine). In this sense, our work may pose the basis for additional studies, for instance, by
targeting a larger variety of machine learning and natural language processing techniques,
which might potentially improve the test smell detection capabilities by relying on different
data representations and/or features.

∠ Take Away Message 1. Our machine learning-based test smell detector performs bet-
ter than heuristic-based approaches, even though they act similarly to dummy classifiers
when considering false positives and negatives. Based on our considerations, we argue
that machine learning for classifying test smells is not yet at a level that would effec-
tively support practitioners. While one of the possible motivations falls into the features
exploited—which seem not to characterize the presence of test smells properly—further
advances might be obtained through the use of different, more powerful machine learning
and natural language processing techniques.

7.2 Test Smell Detection: A Research Field to Revisit?

The underwhelming performance demonstrated by the machine learning-based approach and
the limitations exposed through the comparison with the dummy classifiers raises significant
concerns regarding the current approach to test smell detection. The analysis of false positive
and negative rates suggests that multiple aspects should be revisited in terms of either features
or formulation of the test smell detection problem. In the first place, the probing and ablation
studies conducted on the features (RQ1 andRQ2) highlighted that, despite they all contribute
to increase the prediction power, their actual contribution is limited and, indeed, the resulting

123

55 Page 30 of 44

Empirical Software Engineering (2024) 29:55

performance improved when putting them together, as the machine learning-based approach
could exploit the orthogonality between the features. Perhaps more importantly, the results
for RQ3 suggest that the performance of the heuristic-based approaches is slightly lower,
possibly highlighting fundamental, general problems pertaining to all test smell detectors.
Indeed, when experimenting with those heuristic-based approaches against a large dataset
of manually-validated instances, we were unable to generalize the performance reported
in the original papers (Peruma et al. 2020; Koochakzadeh and Garousi 2010; Lambiase
et al. 2020). These observations call for some more reflections. To further understand those
aspects and provide the research community with insights into the challenges that should be
addressed in future research, we proceeded with an additional qualitative investigation into
the false positive and false negative instances output bymachine learning- and heuristic-based
approaches.

Our goal was to identify and classify the root causes of failure for each considered test
smell so that we could point out indications for designing more accurate test smell detectors.
To this aim, we set up a similar inspection process as described in Section 4. This time, the
first and third authors of the paper took the role of inspectors. They manually went through
the erroneous instances predicted by the experimented approaches, attempting to elicit the
potential motivation(s) behind the errors. The inspectors first individually analyzed all the
false positive and negative instances, writing down notes and observations to be further
discussed—this task took around 100 hours/person. Afterward, they opened a discussion
to elaborate on their individual observations: this was implemented through a Skype meet-
ing that took around two hours. The outcome was a collection of representative qualitative
examples that could explain the reasons behind the failures of the machine learning-based
approach. Such a collection was finally discussed with the other paper authors, who provided
additional feedback. In the following, we report on the specific root-cause analysis performed
for each test smell, although there is a general consideration to make. From our additional
analysis, we could realize that the errors made by the experimented detectors were similar,
as these errors come from inaccurate interpretation of the test smell sources, improper mea-
surement of the characteristics of those smells, or inappropriate treatment of corner cases. In
other terms, the causes of failure are the same for all the detectors and may provide insight
to improve the design of such detectors.

Eager Test When considering this test smell, we could classify three main root causes leading
the approaches to fail. More specifically:

1. Misleading definition of the problem First and foremost, we identified 458 test cases with a
serious concern regarding the definition ofEager Test enclosed by the detectors. VanDeursen
et al. defined this test smell as a “test method [that] checks several methods of the object to be
tested” (VanDeursen et al. 2001). Consequently, the structural detector identifies the smell by
considering the number of production method calls, while the textual detector computes the
conceptual similarity between themethods exercised by the test. Themachine learning-based
approach combines these metrics. The problem with the definition arises because it does not
explicitly consider the difference between intra-method and intra-class unit testing (Pezzè
and Young 2008). In particular, when designing unit test cases, two levels of granularity
should be preserved (Harrold et al. 1992; Pezzè and Young 2008; Orso and Silva 1998). On
the one hand, developers should create tests covering individual methods of the production
code, i.e., intra-method (Pezzè and Young 2008) or basic-unit testing (Orso and Silva 1998).

123

Page 31 of 44 55

Empirical Software Engineering (2024) 29:55

On the other hand, they should implement tests exercising the interaction between themethods
of the class to verify additional execution paths of the production code that would not be
covered otherwise, i.e., intra-class (Pezzè and Young 2008) or unit testing (Orso and Silva
1998). While it is reasonable to consider smelly an intra-method test that exercises more
production methods, it is not the same for intra-class tests: these must necessarily call more
production methods to perform unit testing effectively and should not be considered smelly.
Unfortunately, the definition provided by Van Deursen et al. (2001) does not account for
unit test granularity, possibly biasing the interpretation of the smell to enclose within the
detectors. As a consequence, the vast majority of false positive instances were due to the
presence of intra-class tests that were erroneously classified as Eager Test, but that instead
should not be considered as such. A representative example is shown in Listing 1.

1 @Test
2 public void testSetDataWithVersion () throws Exception {
3 ZKUtil.createWithParents (ZKW , "/s1/s2/s3");
4 int v0 = getZNodeDataVersion("/s1/s2/s3");
5 assertEquals (0, v0);
6

7 ZKUtil.setData(ZKW , "/s1/s2/s3", Bytes.toBytes (12L));
8 int v1 = getZNodeDataVersion("/s1/s2/s3");
9 assertEquals (1, v1);

10

11 ZKUtil.multiOrSequential (ZKW ,
12 ImmutableList.of(ZKUtilOp.setData("/s1/s2/s3", Bytes.

toBytes (13L), v1)), false);
13 int v2 = getZNodeDataVersion("/s1/s2/s3");
14 assertEquals (2, v2);
15 }

Listing 1 Example of false positive Eager Test.

The test exercises a class named ZKUtil of the HBase project, i.e., a framework imple-
menting a centralized service to maintain configuration information and provide distributed
synchronization. The production method under test is named setData and is responsible
for storing version data within an internal data structure. The test exercises an individual pro-
duction method, i.e., setData, yet it calls various methods of the same production class,
i.e., createWithParents and multiOrSequential. All the experimented detectors
classified this instance as smelly. However, this is a false positive case because the calls
performed to the production class methods are required to experiment with the setData
method with different configurations to cover an execution path that could not be covered
without performing those calls. For this reason, the test cannot be considered an Eager Test.
Based on the argumentations above, we argue that the definition of this smell should be
revisited to consider the levels of granularity that should be preserved in unit testing.
2. Inability to Handle MocksWhenwriting unit test cases, developersmay simulate dependen-
cies’ expected behaviors through the use ofmock objects (Mackinnon et al. 2000). According
to our analysis, in 380 test cases, the use of mocks represents a second threat to the accuracy
of the detectors. In particular, when simulating the behavior of the dependencies, developers
have to add a call to a mock object. This addition should not influence the test smell detectors,
yet it does. In other terms, the metrics employed by the detectors do not consider mocking
practices. Listing 2 presents an example.

123

55 Page 32 of 44

Empirical Software Engineering (2024) 29:55

1 @Test
2 public void testWhenValidPreProcessorsSet () {
3 createManager ();
4

5 configureValidUriLocators (mockFilterConfig);
6 Mockito.when(mockFilterConfig.getInitParameter(

ConfigurableProcessorsFactory.PARAM_PRE_PROCESSORS)).
thenReturn("cssUrlRewriting");

7 assertEquals (1, processorsFactory .getPreProcessors ().
size());

8 }

Listing 2 Example of false positive Eager Test due to mock objects.

As shown, the test testWhenValidPreProcessorsSet leverages the Mockito
framework,5 a well-known instrument to enable mocking, to simulate the behavior of the
ConfigurableProcessorsFactory class and get parameters to use within the test.
In this case, all detectors failed, as they mistakenly accounted for this call. As such, the
definition of mocking-aware metrics would boost test smell detection capabilities.
3. Limited Information Gathering The third issue identified in 1,738 cases, significantly
impacted the amount of false negative instances of all the experimented detectors. The lim-
ited information gathering arises when a detector has no or limited access to the production
class related to the test method under account. More specifically, the metrics exploited to
characterize Eager Test instances assume the existence of a linking between the test method
under consideration and its corresponding production class., e.g., this linking is required
to estimate the amount of calls made by the test method to the production class or com-
pute the textual similarity metrics between the production methods involved in the test case.
Unfortunately, such a linking is not always available nor reliable. All the experimented detec-
tors perform an initial information-gathering phase which consists of linking test classes
and methods to production code through a traceability technique based on pattern match-
ing and naming conventions. In particular, this traceability technique takes the name of
test class as input (e.g., DoubleConverterTest.java) and looks for the production
class having the same name of the test class after removing the suffix or prefix Test (e.g.,
DoubleConverter.java). In case the search succeeds, the test class is associated to
the production class and, in a subsequent information-gathering phase, the individual test
methods of the test suite are linked to production methods using the same traceability tech-
nique. In the case the search fails, the linking is not performed and, therefore, the Eager Test
detection fails. In this respect, there are two considerations to make. In the first place, the
traceability technique employed by the tools is well-known in literature and has been exper-
imented multiple times (Qusef et al. 2014; Van Rompaey and Demeyer 2009; Parizi et al.
2014), showing an accuracy close to 85%, which is comparable with more sophisticated but
less scalable techniques (e.g., the slicing-based approach proposed by Qusef et al. (2014)).
Of course, the overall accuracy of the test smell detection process is bounded to the accuracy
of the linking process. As such, the improvements in the field of traceability recovery might
provide insights into the field of test smell detection. In the second place, it is also worth
discussing the sneakiest failure motivation, where the linking is correctly performed but the
information available in the production class is not sufficient to perform the detection. To
reason on this motivation, let us consider the example shown in Listing 3.

5 The Mockito framework: https://site.mockito.org.

123

Page 33 of 44 55

https://site.mockito.org

Empirical Software Engineering (2024) 29:55

1 public void testCacheInstanceWithManyThreads () throws
BrokenBarrierException , InterruptedException {

2

3 // Code suppressed for the sake of readability.
4 }

Listing 3 Example of false negative Eager Test due to limited information gathering.

The test method belongs to the test suite EmbeddedJSPResultTest and has
been classified as an Eager Test instance. According to the outcome of the informa-
tion gathering phase, the test suite was linked to the EmbeddedJSPResult production
class. Nonetheless, such a production class was only an interface for another class,
i.e., JSPRuntime, which was responsible for the actual operations exercised by the
testCacheInstanceWithManyThreads method. More specifically, the code of the
EmbeddedJSPResult class is shown in Listing 4.

1 public class EmbeddedJSPResult extends
StrutsResultSupport {

2 protected void doExecute(String finalLocation ,
ActionInvocation invocation) throws Exception {

3 JSPRuntime.handle(StringUtils.removeStart(
finalLocation , "/"));

4 }
5 }

Listing 4 Production class identified through the traceability technique based on pattern matching and
naming convention.

As shown in the listing, EmbeddedJSPResult just contains one method, i.e.,
doExecute, that delegates its own operations to the method handle of the JSPRuntime
class. Because of that, EmbeddedJSPResult does not contain any method that could be
linked to the testCacheInstanceWithManyThreads test and, for this reason, the
test smell detectors could not compute the metrics that would have allowed its detection.
In other terms, we may consider this example as a case of conceptual false positive link
given by the traceability technique, i.e., the link is technically correct, yet the linked class
is not the actual production class under test. On the one hand, the use of more advanced
test-to-code traceability techniques (e.g., Qusef et al. 2014; Parizi et al. 2014) might boost
the overall test smell detection capabilities. On the other hand, the example provided may
inform the possible improvements to make in terms of test-to-code traceability based on
pattern matching and naming convention. As a final point of discussion, we may argue that
the EmbeddedJSPResult class (Listing 4) could be affected by the so-called Middle Man
(Fowler and Beck 1999), i.e., a type of code smell that arises when a class delegates all its
operations to other classes, hence uselessly increasing the complexity and computational
costs of the system (Fowler and Beck 1999). In other terms, our analysis may suggest that the
presence of code smells in production code may affect the test smell detection capabilities:
the intrinsic relation between code and test smells is something we plan to explore as part of
our future research agenda.

Mystery Guest and Resource Optimism When it turns to Mystery Guest and Resource Opti-
mism, both are connected to the usage of external resourceswithin a testmethod. By analyzing
the reasons behind the detection failures, we could draw very similar conclusions:

1. Inability to Handle Mocks The use of mocks severely impacted the false positive rate of
both test smells (respectively 893 and 1,202 cases) but for different reasons to those discussed
for Eager Test. In particular, mocks create fake external dependencies that all the detectors

123

55 Page 34 of 44

Empirical Software Engineering (2024) 29:55

mistakenly interpret as real. In the case of Mystery Guest, the detectors identified smelly
instances because of those fake dependencies, which were not present. Instead, in the case
of Resource Optimism, the detector could not detect any mechanism of verification of the
existence/status of the resource, hence highlighting the presence of the smell: however, since
mocks simulate the behavior of external resources, there is no need to verify their status,
hence biasing the performance of all detectors.

1 @Test
2 public void shouldReturnNullValueFromSession
3 IfNoEntryWithSpecifiedKeyExists () {
4 String expectedKey = "FooBar";
5

6 when(mockSession.get(anyString ())).thenReturn(null);
7 when(mockRouteContext.getSession ()).thenReturn(

mockSession);
8 when(mockPippoWebContext .getRouteContext ()).thenReturn(

mockRouteContext);
9

10 PippoSessionStore sessionStore = new PippoSessionStore
();

11

12 assertThat(sessionStore.get(mockPippoWebContext ,
expectedKey), is(nullValue ()));

13

14 verify(mockSession , times (1)).get(expectedKey);
15 verify(mockRouteContext , times (1)).getSession ();
16 verify(mockPippoWebContext , times (1)).getRouteContext ()

;
17 }

Listing 5 Example of false positive Mystery Guest and Resource Optimism due to mock objects.

A representative example of false positive impacting the performance of both Mystery
Guest and Resource Optimism detection is reported in Listing 5. As shown in the piece
of code, the test shouldReturnNullValueFromSession of the project Pippo—
a micro web framework for Java—makes significant use of mocking objects to simulate
navigation session values. Such a dependency was therefore interpreted as a Mystery Guest
instance. At the same time, the code does not check for the status of themock; therefore, it was
erroneously classified as a Resource Optimism instance. In conclusion, we could emphasize
that mocking practices notably impact the performance of test smell detectors and that,
therefore, novel mocking-aware detection strategies may provide significant contributions to
the field.
2. Incomplete operationalization of the definition As for false negatives, we could identify
a common reason for failure: the incomplete operationalization of the definitions of Mys-
tery Guest (919 test cases) and Resource Optimism (453 test cases). Both smells arise when
handling external resources (Van Deursen et al. 2001): yet, the definition does not provide
a comprehensive list of what should be considered as an external resource—Van Deursen
et al. (2001) just made the examples of files and databases. We suppose that the original
definition was left open on purpose to include other types of external resources. Never-
theless, it seems that most detectors based their own detection rules solely on managing
external files and databaseswithout identifying issueswhen handling other types of resources.
Therefore, this issue impacted the number of false negatives. An example is shown in
Listing 6.

123

Page 35 of 44 55

Empirical Software Engineering (2024) 29:55

1 @Test
2 public void shouldFindValidWebjar () throws Exception {
3 assertNotEmpty (victim.locate("webjar:jquery.js"));
4 assertNotEmpty (victim.locate("webjar:jquery /2.0.0/

jquery.js"));
5 assertNotEmpty (victim.locate("webjar :/ jquery /2.0.0/

jquery.js"));
6 }

Listing 6 Example of false negative Mystery Guest and Resource Optimism due to the incomplete
operationalization of the definitions.

The example reports the case of the shouldFindValidWebjar test of the Wro4J
project. The test checks if external JavaScript pages exist. All the detectors did not iden-
tify the external resource, overlooking this potential test smell. In conclusion, we argue that
better detectors might be built by devising novel taxonomies to systematically collect com-
prehensive knowledge on how Mystery Guest and Resource Optimism instances may arise.

Test RedundancyThe performance obtained by the experimented detectors on the Test Redun-
dancy smell was close to 100% in terms of recall, meaning that they could detect all instances
of the smell. However, the precision of the detectors was dramatically low, i.e., close to 0%.
In this respect, there are two main points of discussion:

1. Insufficient sample As discussed in Section 4, our dataset contained very few instances of
Test Redundancy. The low diffuseness of the smell was definitively one of the causes that
let the machine learning-based approach fail: it was unable to learn the properties charac-
terizing this test smell. In this sense, we may argue the need for alternative methods to feed
machine learning-based approaches, e.g., defining synthetic training samples to complement
the information provided by manually-validated instances.
2. Lack of semantic redundancy analysis The second critical threat to accurately detecting the
smell was the inappropriate measurement performed by the current test redundancy metrics,
which lack semantic analysis (identified in 43 test cases). Let us consider the example in
Listing 7.

1 @Test
2 public void shouldParseSingular () {
3 final TimeSpan span = TimeSpan.valueOf("1 second");
4 assertThat(span.to(SECONDS), is(1L));
5 }
6

7 @Test
8 public void shouldParseNonLowerCase () {
9 final TimeSpan span = TimeSpan.valueOf("17 Seconds");

10 assertThat(span.to(SECONDS), is(17L));
11 }

Listing 7 Example of false positive Test Redundancy.

The example refers to the shoudParseSingular and shoudParseNonLower
Case test cases of the Riptide project. These tests were identified as smelly by both
TeReDetect and the machine learning-based approach. The test cases seem to exercise
the same execution path, yet they do that in differentmanners.More specifically, the test cases
aim at verifying the behavior of the valueOf method of the production class when this is
supplied with timestamps expressed in seconds. While this case may look like an instance of
Test Redundancy, it is worth considering that the values passed to the valueOfmethod have

123

55 Page 36 of 44

Empirical Software Engineering (2024) 29:55

two very different meanings: shouldParseSingular exercises the production method
with an extreme input (time cannot be negative; hence one second represents an extreme value
of the input range of the production method), while shouldParseNonLowerCase with
an in-range input (17 seconds). As such, the two methods cannot be considered redundant,
as none of them can be removed without impacting the test suite - otherwise, developers
would lose a relevant piece of information for the adequacy of the production code. Unfor-
tunately, the pair redundancy metric exploited by the detectors only considers whether two
test cases cover the same path without accounting for the rationale behind them. Therefore,
we argue the need for more advanced metrics to combine dynamic and semantic analysis to
discriminate redundancy cases correctly.

Concluding our argumentation on the root causes of test smell detection failures, we
identified the current issues and challenges that researchers in the field are called to address
in future research efforts. In addition, our analysis could shed lights on the limitations of
currently available test smell detection tools: they indeed seem to rely on rather simple
detection tactics that may fail in the wild because of the problems emerged from our analysis.
Overall, we argue that the field of test smells would benefit from a systematic reinterpretation
of its ground, whichwouldmore effectively inform the next generation of test smell detectors.
This observation is especially true when considering contemporary testing practices, e.g.,
mocking, that naturally impact how test code quality is managed and assessed. It is our hope
that the limitations of heuristic-based approaches highlighted by our work might stimulate
researchers to devise novel, more robust and realistic detectors that might be resilient to the
current issues.

∠ Take AwayMessage 2.Our qualitative study identified critical issues with the definition
of test smells and how test smell detectors were designed. Misleading definitions of test
smells, missing analysis of contemporary testing practices, and incomplete operationaliza-
tion represent the major causes of failures. The outcomes of our qualitative investigation
revealed some key challenges and insights for possible improvements that researchers
should face in future research.

8 Threats to Validity

Multiple factors might have biased the conclusions drawn in our empirical assessment. This
section overviews the main limitations faced and how we mitigated them, discussing them
based on their impact on our study.

Construct Validity When considering the relationship between theory and observation, the
first potential limitation to discuss is concerned with the test smell dataset we relied on.
In our research, we contributed a novel, manually-validated dataset composed of 9,633 test
cases labeled according to their smelliness. We opted for constructing a novel dataset as, to
the best of our knowledge, the current literature does not provide a sufficiently large dataset
to experiment with machine learning algorithms. We approached the dataset construction
through a formal validation procedure that involved multiple inspectors, who were called
to label the smelliness of test methods available in the well-known IDoFT dataset. The
inspectors interleaved manual validation sessions with open discussions of their actions to
find a consistent procedure to assess the smelliness of the artifacts considered. In addition,
the inspectors constantly monitored their agreement to tune the validation process. Since the
process could still suffer from subjectivity, we performed a further step ahead by running a

123

Page 37 of 44 55

Empirical Software Engineering (2024) 29:55

coherence check that involved real-world developers who were asked to validate—using a
similar process as the inspectors—part of the test methods of the dataset. This additional step
was performed to assess the potential subjectivity bias affecting the internal validation of test
smells and measure how much our manual validation would align with the one performed
by experienced developers. The external validation results were positive (Cohen’s κ=0.67)
and indicated a good level of agreement (McHugh 2012). On the one hand, this allowed us
to establish the overall soundness of the manual validation process. On the other hand, the
lack of a full agreement was expected, as the validation of test smells has an intrinsically
subjective nature. For this reason, it would have been nearly impossible to build a dataset
that fully represents the perspective of a generic developer. In any case, we publicly released
the dataset as part of our online appendix (Pontillo et al. 2023); further researchers may want
to contribute to its understanding, improvement, and evolution.

A second limitation concerns howwecomputed the independent variables, i.e., the features
considered by the machine learning solutions and heuristic approaches experimented with in
the study. We specifically collected and relied on the metrics previously defined in test smell
research. First, this choice allowed us to set a fair comparison between machine learning-
based test smell detectors and heuristic approaches. Second, the definition of novel metrics
was outside the scope of our study, as this would have required their preliminary theoretical
and empirical evaluations (Fenton and Bieman 2014). Nonetheless, as part of our further
analyses, we attempted to identify the limitations of current metrics to provide researchers
with insights into the next steps that might be performed to improve test smell detection.

Conclusion Validity As for the limitations due to the relation between treatment and outcome,
a key potential source of bias may have been related to the presence of independent variables
providing a similar contribution to the performance of the experimented machine learning
models: it has indeed been shown that this situation may increase noise when training a
machine learning algorithm, finally biasing its performance (O’brien 2007). To account for
this potential threat, we purposely defined RQ1 to probe each feature of the models, i.e., we
computed the information gain provided by each feature used to feed the models (Quinlan
1986). Such a process allowed us to verify that the independent variables were orthogonal,
contributing to the models built. Along the same line, another discussion point concerns the
possible noise caused by specific pre-processing steps applied when building the machine
learning pipeline. In this respect, we opted for an ablation study (Lipton and Steinhardt
2019) through which we could assess the contribution of each pre-processing step, hence
identifying the best pipeline configuration to use in our study.

We did not have a baseline for machine learning algorithms experimented with, as our
work represents the first attempt to study machine learning for test smell detection. As such,
we experimented with multiple techniques to identify the best algorithm. For the sake of
readability, we did not discuss all the results in Section 6; yet, our online appendix (Pontillo
et al. 2023) includes all our findings, which researchers can use to understand further the
impact of machine learning techniques on the performance of test smell detection.

In the context of RQ2, we assessed test smell detectors based on machine learning
under two different use case scenarios, considering both within- and cross-project train-
ing. This analysis was done to increase the scope of our analysis and provide insights into
the capabilities of machine learning in different contexts. We relied on well-established
validation approaches such as cross-fold (Stone 1974) and leave-one-project-out valida-
tion (Refaeilzadeh et al. 2009). To further corroborate the conclusions drawn in the study, we

123

55 Page 38 of 44

Empirical Software Engineering (2024) 29:55

finally applied the Nemenyi test (Nemenyi 1963), which allowed us to report our findings
from a statistical perspective.

External Validity As for the generalizability of the conclusions, the dataset exploited was
based on open-source projects written in Java. We cannot, therefore, ensure that our findings
hold when considering different programming languages or types of software systems. In
this regard, further replications would still be desirable: for instance, recent efforts have been
made to devise test smell detectors working on Python code (Vavrová and Zaytsev 2017;
Wang et al. 2021). To stimulate further research, we made all our scripts available in our
appendix (Pontillo et al. 2023).

9 Conclusion

The ultimate goal of our work was to experiment with machine learning algorithms for test
smell detection, relying on the set of features previously defined to characterize the source
of test smells. In the first place, we defined a novel, publicly-available dataset of test smells,
which we later used to feed a machine-learning pipeline. We investigated the performance of
the devisedmachine learning solution in the context of an empirical study, where we assessed
(1) the features that most contribute to the prediction of test smells; (2) the performance of
28,248 and 14,256 different configurations ofmachine learning pipelines inwithin- and cross-
project training scenarios, respectively; and (3) how machine learning approaches compare
to standard, heuristic-based test smell detectors. Our findings reported a negative result: none
of the experimentedmachine learning pipelines reached an F-Measure higher than 51%, even
though a machine learning approach often outperforms the heuristic-based techniques.

We did not limit ourselves to reporting on the negative result but also performed additional
qualitative investigations aimed at (1) assessing the performance of the machine learning-
based test smell detector when compared to dummy classifiers to provide a more pragmatical
view of the performance of the detector, and (2) classifying the root-causes of failures that
prevent test smell detectors from identifying test smell instances correctly. The additional
insights of our study let emerge several open issues and challenges that the research commu-
nity should address through future research.

To sum up, our paper provided the following contributions:

1. A novel publicly-available dataset of manually-validated test smell instances, which
researchers may use to analyze test smells further;

2. An empirical investigation into the capabilities of machine learning approaches for test
smell detection, which researchers can use as a baseline to build additional research on
the matter;

3. A catalog of root causes of failures for test smell detection, which provides qualitative
insights and practical examples of how the field of test smell detection could be improved
to better support practitioners;

4. An online appendix (Pontillo et al. 2023) that contains all data and scripts used in the
empirical study, which can be employed to replicate and extend ours.

The main considerations and conclusions of the study represent the input of our future
research agenda.Wewill work toward better understanding and conceptualizing the test smell
definitions and designing novel features that may better capture the concept of test smells.
Furthermore, we plan to investigate the extent towhich differentmachine learning and natural
language processing techniques might empower test smell detection. In addition, we plan to
analyze which software project characteristics could help select the most suitable approach

123

Page 39 of 44 55

Empirical Software Engineering (2024) 29:55

for future work, considering that they should characterize the test code, the application code,
and the development process. Eventually, such an analysis could lead to a meta-classifier
to predict the most suitable detector. We also plan to elaborate on how design issues in
production code may affect the performance of test smell detectors. Finally, to corroborate
our findings, we plan to replicate our work in different contexts, e.g., on Python code.

Acknowledgements Fabio gratefully acknowledges the support of the Swiss National Science Foundation
through the SNF project No. PZ00P2_186090. In addition, the work has been partially supported by the
EMELIOT national research project, which the MUR has funded under the PRIN 2020 program (Contract
2020W3A5FY).

Author Contributions Valeria Pontillo: Formal analysis, Investigation, Data Curation, Validation, Writing -
Original Draft, Visualization.DarioAmoroso d’Aragona: Formal analysis, Investigation, Data Curation, Val-
idation, Writing - Original Draft, Visualization. Fabiano Pecorelli: Formal analysis, Supervision, Resources,
Writing - Review& Editing.Dario Di Nucci: Supervision, Resources, Writing - Review& Editing. Filomena
Ferrucci: Supervision, Resources, Writing - Review & Editing. Fabio Palomba: Supervision, Resources,
Writing - Review & Editing.

Funding Open access funding provided by Università degli Studi di Salerno within the CRUI-CARE Agree-
ment.

Data Availability Statement Themanuscript has data included as electronic supplementary material. In partic-
ular: datasets generated and analyzed during the current study, detailed results, as well as scripts and additional
resources useful for reproducing the study, are available as part of our online appendix on GitHub: https://
github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix.

Declarations

Competing interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aljedaani W, Peruma A, Aljohani A, Alotaibi M, Mkaouer MW, Ouni A, Newman CD, Ghallab A, Ludi S
(2021) Test smell detection tools: a systematic mapping study. Eval Assess Softw Eng 170–180

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links between code
and documentation. IEEE Trans Softw Eng 28(10):970–983

Azeem MI, Palomba F, Shi L, Wang Q (2019) Machine learning techniques for code smell detection: a
systematic literature review and meta-analysis. Inf Softw Technol

Baeza-Yates R, Ribeiro BdAN et al (2011) Modern information retrieval. New York: ACM Press; Harlow,
England: Addison-Wesley

Baldi P, Brunak S, ChauvinY, Andersen CA,NielsenH (2000) Assessing the accuracy of prediction algorithms
for classification: an overview. Bioinformatics 16(5):412–424

Bavota G, Qusef A, Oliveto R, De Lucia A, Binkley D (2012) An empirical analysis of the distribution of unit
test smells and their impact on software maintenance. In: 2012 28th IEEE international conference on
software maintenance. IEEE, pp 56–65

123

55 Page 40 of 44

https://github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix
https://github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix
http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2024) 29:55

Bavota G, Qusef A, Oliveto R, De Lucia A, Binkley D (2015) Are test smells really harmful? An empirical
study. Empir Softw Eng 20(4):1052–1094

Beck K (2003) Test-driven development: by example. Addison-Wesley Professional
Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: an explorative analysis of Travis ci

with Github. In: International conference on mining software repositories (MSR). IEEE, pp 356–367
Bergstra J, BengioY (2012)Random search for hyper-parameter optimization. JMachLearnRes 13(Feb):281–

305
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Catolino G, Di Nucci D, Ferrucci F (2019) Cross-project just-in-time bug prediction for mobile apps: an

empirical assessment. In: International conference on mobile software engineering and systems. IEEE,
pp 99–110

Catolino G, Ferrucci F (2019) An extensive evaluation of ensemble techniques for software change prediction.
J Softw Evol Process e2156

Catolino G, Palomba F, De Lucia A, Ferrucci F, Zaidman A (2018) Enhancing change prediction models using
developer-related factors. J Syst Softw 143:14–28

ChawlaNV,BowyerKW,HallLO,KegelmeyerWP(2002)Smote: syntheticminority over-sampling technique.
J Artif Intell Res 16:321–357

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46
De Bleser J, Di Nucci D, De Roover C (2019) Assessing diffusion and perception of test smells in scala

projects. In: International conference on mining software repositories. IEEE Press, pp 457–467
De Bleser J, Di Nucci D, De Roover C (2019) Socrates: Scala radar for test smells. In: ACM SIGPLAN

symposium on Scala. ACM, pp 22–26
Di Nucci D, Palomba F, De Rosa G, Bavota G, Oliveto R, De Lucia A (2017) A developer centered bug

prediction model. IEEE Trans Softw Eng
Duda RO, Hart PE et al (1973) Pattern classification and scene analysis. A Wiley-Interscience Publication,

Wiley
Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC Press
Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) A review-based comparative study of bad smell

detection tools. In: International conference on evaluation and assessment in software engineering. ACM,
p 18

Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley Professional
Freund Y, Mason L (1999) The alternating decision tree learning algorithm. In: icml, vol 99. Citeseer, pp

124–133
Garousi V, Küçük B (2018) Smells in software test code: a survey of knowledge in industry and academia. J

Syst Softw 138:52–81
Gousios G, Zaidman A, Storey M, Van Deursen A (2015) Work practices and challenges in pull-based devel-

opment: the integrator’s perspective. In: International conference on software engineering, vol 1. IEEE
Press, pp 358–368

Grano G, Palomba F, Di Nucci D, De Lucia A, Gall HC (2019) Scented since the beginning: on the diffuseness
of test smells in automatically generated test code. J Syst Softw 156:312–327

Grano G, Palomba F, Gall HC (2019) Lightweight assessment of test-case effectiveness using source-code-
quality indicators. IEEE Trans Softw Eng

Greiler M, Van Deursen A, Storey MA (2013) Automated detection of test fixture strategies and smells. In:
Software testing, verification and validation (ICST), pp 322–331

Haiduc S, Bavota G, Oliveto R, De Lucia A, Marcus A (2012) Automatic query performance assessment
during the retrieval of software artifacts. In: Proceedings of the 27th IEEE/ACM international conference
on automated software engineering, pp 90–99

Han H, Wang W, Mao B (2005) Borderline-smote: a new over-sampling method in imbalanced data sets
learning. In: International conference on intelligent computing. Springer, pp 878–887

Harrold MJ, McGregor JD, Fitzpatrick KJ (1992) Incremental testing of object-oriented class structures. In:
Proceedings of the 14th international conference on software engineering, pp 68–80

HeH,BaiY,Garcia EA, Li S (2008)Adasyn: adaptive synthetic sampling approach for imbalanced learning. In:
International joint conference on neural networks (IEEE world congress on computational intelligence).
IEEE, pp 1322–1328

Heckman JJ (1990) Selection bias and self-selection. In: Econometrics. Springer, pp 201–224
KoochakzadehN, Garousi V (2010) A tester-assistedmethodology for test redundancy detection. Advan Softw

Eng 2010
Kramer O (2016) Scikit-learn. In: Machine learning for evolution strategies. Springer, pp 45–53
Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: from metaphor to theory and practice. IEEE Softw

29(6):18–21

123

Page 41 of 44 55

Empirical Software Engineering (2024) 29:55

Lambiase S, Cupito A, Pecorelli F, De Lucia A, Palomba F (2020) Just-in-time test smell detection and
refactoring: the darts project. In: International conference on program comprehension, pp 441–445

Lipton ZC, Steinhardt J (2019) Troubling trends in machine learning scholarship: some ml papers suffer from
flaws that could mislead the public and stymie future research. Queue 17(1):45–77

Mackinnon T, Freeman S, Craig P (2000) Endo-testing: unit testing with mock objects. Extreme Program
Examined 287–301

Maier F, Felderer M (2023) Detection of test smells with basic language analysis methods and its evaluation.
In: 2023 IEEE international conference on software analysis, evolution and reengineering (SANER).
IEEE, pp 897–904

Maldonado EdS, Shihab E (2015) Detecting and quantifying different types of self-admitted technical debt.
In: International workshop on managing technical debt (MTD). IEEE, pp 9–15

Marcus A, Poshyvanyk D (2005) The conceptual cohesion of classes. In: International conference on software
maintenance. IEEE, pp 133–142

Martins L, Costa H, Machado I (2023) On the diffusion of test smells and their relationship with test code
quality of java projects. J Softw Evol Process e2532

McHugh ML (2012) Interrater reliability: the kappa statistic. Biochemia medica 22(3):276–282
McMinn P (2004) Search-based software test data generation: a survey. Softw Test Verification Reliab

14(2):105–156
Meszaros G (2007) xUnit test patterns: refactoring test code. Pearson Educ
Myers GJ, Sandler C, Badgett T (2011) The art of software testing. John Wiley & Sons
Nemenyi PB (1963) Distribution-free multiple comparisons. Princeton University
Noble WS (2006) What is a support vector machine? Nat Biotechnol 24(12):1565–1567
O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Quality & Quantity

41(5):673–690
Orso A, Silva S (1998) Open issues and research directions in object-oriented testing. In: Proceedings of the

4th international conference on achieving quality in software: software quality in the communication
society (AQUIS’98)

Palomba F, Di Nucci D, Panichella A, Oliveto R, De Lucia A (2016) On the diffusion of test smells in auto-
matically generated test code: an empirical study. In: International workshop on search-based software
testing. ACM, pp 5–14

Palomba F, Zaidman A, De Lucia A (2018) Automatic test smell detection using information retrieval tech-
niques. In: International conference on software maintenance and evolution. IEEE, pp 311–322

Parizi RM, Lee SP, Dabbagh M (2014) Achievements and challenges in state-of-the-art software traceability
between test and code artifacts. IEEE Trans Reliab 63(4):913–926

Pecorelli F, Di Lillo G, Palomba F, De Lucia A (2020) Vitrum: a plug-in for the visualization of test-related
metrics. In: AVI 2020, pp 1–3

Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2019) On the role of data balancing for machine learning-
based code smell detection. In: ACM SIGSOFT International workshop on machine learning techniques
for software quality evaluation, pp 19–24

Pecorelli F, Palomba F, Di Nucci D, De Lucia A (2019) Comparing heuristic and machine learning approaches
for metric-based code smell detection. In: International conference on program comprehension. IEEE
Press, pp 93–104

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

PerezA,AbreuR, vanDeursenA (2017)A test-suite diagnosabilitymetric for spectrum-based fault localization
approaches. In: International conference on software engineering. IEEE Press, pp 654–664

Peruma A, Almalki K, Newman CD, M, MW, Ouni A, Palomba F (2020) Tsdetect: an open source test smells
detection tool. In: ACM joint meeting on European software engineering conference and symposium on
the foundations of software engineering, pp 1650–1654

Pezzè M, Young M (2008) Software testing and analysis: process, principles, and techniques. John Wiley &
Sons

Pontillo V, Amoroso D’Aragona D, Pecorelli F, Di Nucci D, Ferrucci F, Palomba F (2023) Machine learning-
based test smell detection— online appendix. https://github.com/darioamorosodaragona-tuni/ML-Test-
Smell-Detection-Online-Appendix

Pontillo V, Palomba F, Ferrucci F (2021) Toward static test flakiness prediction: a feasibility study. In: Inter-
national workshop on machine learning techniques for software quality evolution, pp 19–24

Pontillo V, Palomba F, Ferrucci F (2022) Static test flakiness prediction: how far can we go? Empir Softw Eng
27(7):187

Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106

123

55 Page 42 of 44

https://github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix
https://github.com/darioamorosodaragona-tuni/ML-Test-Smell-Detection-Online-Appendix

Empirical Software Engineering (2024) 29:55

Qusef A, Bavota G, Oliveto R, Lucia AD, Binkley DW (2014) Recovering test-to-code traceability using
slicing and textual analysis. J Syst Softw 88:147–168. https://doi.org/10.1016/j.jss.2013.10.019

Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In: Encyclopedia of database systems. Springer, pp
532–538

Rwemalika R, Habchi S, Papadakis M, Le Traon Y, Brasseur MC (2023) Smells in system user interactive
tests. Empir Softw Eng 28(1):20

Sakshaug JW, Schmucker A, Kreuter F, Couper MP, Singer E (2016) Evaluating active (opt-in) and passive
(opt-out) consent bias in the transfer of federal contact data to a third-party survey agency. J Survey Stat
Method 4(3):382–416

Samarthyam G, Muralidharan M, Anna, RK (2017) Understanding test debt. In: Trends in software testing.
Springer, pp 1–17

Schapire RE (2013) Explaining adaboost. In: Empirical inference. Springer, pp 37–52
SheldonMR, FillyawMJ, ThompsonWD (1996) The use and interpretation of the friedman test in the analysis

of ordinal-scale data in repeated measures designs. Physiother Res Int 1(4):221–228
Spadini D, Palomba F, Baum T, Hanenberg S, Bruntink M, Bacchelli A (2019) Test-driven code review: an

empirical study. In: International conference on software engineering. IEEE Press, pp 1061–1072
Spadini D, Palomba F, Zaidman A, Bruntink M, Bacchelli A (2018) On the relation of test smells to software

code quality. In: 2018 IEEE international conference on software maintenance and evolution. IEEE, pp
1–12

Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc Ser B
(Methodol) 36(2):111–133

Taud H, Mas J (2018) Multilayer perceptron (mlp). In: Geomatic approaches for modeling land change sce-
narios. Springer, pp 451–455

TufanoM, Palomba F, Bavota G, Di PentaM,Oliveto R, De Lucia A, PoshyvanykD (2016)An empirical inves-
tigation into the nature of test smells. In: International conference on automated software engineering,
pp 4–15

Van Deursen A,Moonen L, van den Bergh A, Kok G (2001) Refactoring test code. In: International conference
on extreme programming and flexible processes in software engineering (XP2001), pp 92–95

Van Rompaey B, Demeyer S (2009) Establishing traceability links between unit test cases and units under test.
In: 2009 13th European conference on software maintenance and reengineering. IEEE, pp 209–218

Van Rompaey B, Du Bois B, Demeyer S, Rieger M (2007) On the detection of test smells: a metrics-based
approach for general fixture and eager test. IEEE Trans Softw Eng 33(12):800–817

Vavrová N, Zaytsev V (2017) Does python smell like java? tool support for design defect discovery in python.
arXiv:1703.10882

Wang T, Golubev Y, Smirnov O, Li J, Bryksin T, Ahmed I (2021) Pynose: a test smell detector for python.
In: 2021 36th IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp
593–605

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Yen S, Lee Y (2006) Under-sampling approaches for improving prediction of the minority class in an imbal-
anced dataset. In: Intelligent control and automation. Springer, pp 731–740

Zhang Y, Mesbah A (2015) Assertions are strongly correlated with test suite effectiveness. In: Joint meeting
on foundations of software engineering. ACM, pp 214–224

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Page 43 of 44 55

https://doi.org/10.1016/j.jss.2013.10.019
http://arxiv.org/abs/1703.10882

Empirical Software Engineering (2024) 29:55

Authors and Affiliations

Valeria Pontillo1,2 · Dario Amoroso d’Aragona3 · Fabiano Pecorelli1 ·
Dario Di Nucci1 · Filomena Ferrucci1 · Fabio Palomba1

Dario Amoroso d’Aragona
dario.amorosodaragona@tuni.fi

Fabiano Pecorelli
fpecorelli@unisa.it

Dario Di Nucci
ddinucci@unisa.it

Filomena Ferrucci
fferucci@unisa.it

Fabio Palomba
fpalomba@unisa.it

1 Software Engineering (SeSa) Lab - University of Salerno, Fisciano, Italy
2 Software Languages (Soft) Lab - Vrije Universiteit Brussel, Brussel, Belgium
3 Tampere University, Tampere, Finland

123

55 Page 44 of 44

http://orcid.org/0000-0001-6012-9947
http://orcid.org/0000-0002-1363-2184
http://orcid.org/0000-0003-2446-4291
http://orcid.org/0000-0002-3861-1902
http://orcid.org/0000-0002-0975-8972
http://orcid.org/0000-0001-9337-5116

	Machine learning-based test smell detection
	Abstract
	1 Introduction
	2 Related Work
	3 Goals and Research Questions
	4 Dataset Construction
	4.1 Projects Selection
	4.2 Test Smell Selection
	4.3 Test Smell Data Collection

	5 Machine Learning-based Test Smell Detection
	6 Research Method and Results
	6.1 RQ1 - In Search of Suitable Metrics for Machine Learning-Based Test Smell Detection
	6.2 RQ2 - Assessing the Performance of our Machine Learning-Based Test Smell Detector
	6.3 RQ3 - Comparing Machine Learning- and Heuristic-Based Techniques for Test Smell Detection

	7 Discussion, Further Analysis, and Qualitative Insights
	7.1 Machine Learning-based Test Smell Detection: How Bad Is It?
	7.2 Test Smell Detection: A Research Field to Revisit?

	8 Threats to Validity
	9 Conclusion
	Acknowledgements
	References

