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Abstract

Decision-making software mainly based on Machine Learning (ML) may contain fairness
issues (e.g., providing favourable treatment to certain people rather than others based on
sensitive attributes such as gender or race). Various mitigation methods have been proposed to
automatically repair fairness issues to achieve fairer ML software and help software engineers
to create responsible software. However, existing bias mitigation methods trade accuracy for
fairness (i.e., trade a reduction in accuracy for better fairness). In this paper, we present a novel
search-based method for repairing ML-based decision making software to simultaneously
increase both its fairness and accuracy. As far as we know, this is the first bias mitigation
approach based on multi-objective search that aims to repair fairness issues without trading
accuracy for binary classification methods. We apply our approach to two widely studied
ML models in the software fairness literature (i.e., Logistic Regression and Decision Trees),
and compare it with seven publicly available state-of-the-art bias mitigation methods by
using three different fairness measurements. The results show that our approach successfully
increases both accuracy and fairness for 61% of the cases studied, while the state-of-the-
art always decrease accuracy when attempting to reduce bias. With our proposed approach,
software engineers that previously were concerned with accuracy losses when considering
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fairness, are now enabled to improve the fairness of binary classification models without
sacrificing accuracy.

Keywords Software fairness - Bias mitigation - Classification - Multi-objective optimization

1 Introduction

Discrimination occurs when a decision about a person is made based on sensitive attributes
such as race or gender rather than merit. This suppresses opportunities of deprived groups or
individuals (e.g., in education, or finance) (Kamiran et al. 2012, 2018). While software sys-
tems do not explicitly incorporate discrimination, they are not spared from biased decisions
and unfairness. For example, Machine Learning (ML) software, which nowadays is widely
used in critical decision-making software such as software justice risk assessment (Angwin
etal. 2016; Berk etal. 2018) and pedestrian detection for autonomous driving systems (Lietal.
2023) has shown to exhibit discriminatory behaviours (Pedreshi et al. 2008). Such discrim-
inatory behaviours can be highly detrimental, affecting human rights (Mehrabi et al. 2019),
profit and revenue (Mikians et al. 2012), and can also fall under regulatory control (Pedreshi
et al. 2008; Chen et al. 2019; Romei and Ruggieri 2011). To combat this, software fairness
aims to provide algorithms that operate in a non-discriminatory manner (Friedler et al. 2019)
for humans.

Due to its importance as a non-functional property, software fairness has recently received
alot of attention, in the literature of software engineering (Zhang et al. 2020; Brun and Meliou
2018; Zhang and Harman 2021; Horkoff 2019; Chakraborty et al. 2020; Tizpaz-Niari et al.
2022; Hort et al. 2021; Chen et al. 2022b). Indeed, it is the duty of software engineers and
researchers to create responsible software.

A simple approach for repairing fairness issues in ML software is the removal of sensi-
tive attributes (i.e., attributes that constitute discriminative decisions, such as age, gender,
or race) from the training data. However, this has shown to not be able to combat unfair-
ness and discriminative classification, owing to correlation of other attributes with sensitive
attributes (Kamiran and Calders 2009; Calders et al. 2009; Pedreshi et al. 2008). Therefore,
more advanced methods have been proposed in the literature, which apply bias mitiga-
tion! at different stages of the software development process. Bias mitigation has been
applied before training software models (pre-processing) (Calmon et al. 2017; Feldman
et al. 2015; Chakraborty et al. 2020; Kamiran and Calders 2012), during the training process
(in-processing) (Zhang et al. 2018; Kearns et al. 2018; Celis et al. 2019; Berk et al. 2017;
Zafar et al. 2017), and after a software model has been trained (post-processing) (Pleiss et al.
2017; Hardt et al. 2016; Calders and Verwer 2010; Kamiran et al. 2010, 2018). However,
there are limitations for the applicability of these methods and it has been shown that they
often reduce bias at the cost of accuracy (Kamiran et al. 2012, 2018), known as the price of
fairness (Berk et al. 2017).

In this paper, we introduce the use of a multi-objective search-based procedure to mutate
binary classification models in a post-processing stage, in order to automatically repair soft-
ware fairness and accuracy issues and conduct a thorough empirical study to evaluate
its feasibility and effectiveness. Here, binary classification models represent an important
component of fairness research, with hundreds of publications addressing their fairness

! In this paper, we use term “bias repair” and “bias mitigation” alternatively to refer to the activities conducted
to improve software fairness.
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improvements (Hort et al. 2023a). We apply our method on two widely-studied binary classi-
fication models in ML software fairness research, namely Logistic Regression (Feldman et al.
2015; Chakraborty et al. 2020; Zafar et al. 2017; Kamiran et al. 2012; Kamishima et al. 2012;
Kamiran et al. 2018) and Decision Trees (Kamiran et al. 2010, 2012, 2018,; Zliobaite et al.
2011), which belong to two different families of classifiers. These two models are also widely
adopted in practice on fairness-critical scenarios, mainly due to their advantages in explain-
ability.2 We investigate the performance on four widely adopted datasets, and measure the
fairness with three widely-adopted fairness metrics. Furthermore, we benchmark our method
with all existing post-processing methods publicly available from the popular IBM AIF360
framework (Bellamy et al. 2018), as well as three pre-processing and one in-processing bias
mitigation method.

The results show that our approach is able to improve both accuracy and fairness of Logis-
tic Regression and Decision Tree classifiers in 61% of the cases. The three post-processing
bias mitigation methods we studied conform to the fairness-accuracy trade-off and therefore
decrease accuracy when attempting to mitigate bias. Among all post-processing repair meth-
ods, our approach achieves the highest accuracy in 100% of the cases, while also achieving
the lowest bias in 33% of these. When compared to pre- and in-processing bias mitigation
methods, our approaches show a better or comparable performance (i.e., they are not outper-
formed by the existing methods) in 87% of the evaluations. With our approach, engineers are
able to develop fairer binary classification models without the need to sacrifice accuracy.

In summary, we make the following contributions:

— We propose a novel application of multi-objective search to debias classification models
in a post-processing fashion.

— We carry out a thorough empirical study to evaluate the applicability and effectiveness of
our search-based post-processing approach to two different classification models (Logis-
tic Regression and Decision Trees) on four publicly available datasets, and benchmark it
to seven state-of-the-art post-processing methods according to three fairness metrics.

Additionally, we make our scripts and experimental results publicly available to allow for
replication and extension of our work (Hort et al. 2023d).

The rest of the paper is organized as follows. Section 2 provides the background and
related work on fairness research, including fairness metrics and bias mitigation methods.
Section 3 introduces our approach that is used to adapt trained classification models. The
experimental design is described in Section 4. Threats are outlined in Section 4.5, while
experiments and results are presented in Section 5. Section 6 concludes.

2 Background and Related Work

This section introduces some background on the fairness of software systems, measuring
fairness, and bias mitigation methods that have been proposed to improve the fairness of
software systems.

2 Decision-making scenarios that highly demand fairness often require high explainability, while low explain-
ability is a big disadvantage of big complex models such as Deep Neural Networks.
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2.1 Software Fairness

In recent years, the fairness of software systems has risen in importance, and gained attention
from both the software engineering (Zhang et al. 2020; Brun and Meliou 2018; Zhang and
Harman 2021; Horkoff 2019; Chakraborty et al. 2020; Hort et al. 2021; Chen et al. 2022b;
Sarro 2023; Hort et al. 2023c) and the machine learning research communities (Berk et al.
2017; Kamishima et al. 2012; Kamiran et al. 2012; Calders and Verwer 2010).

While software systems can be designed to reduce discrimination, previous work has
observed that this is frequently accompanied by a reduction of the accuracy or correctness
of said models (Kamiran and Calders 2012; Feldman et al. 2015; Corbett-Davies et al. 2017,
Hort et al. 2023c¢).

The power of multi-objective approaches can improve such fairness-accuracy trade off
(Sarro 2023). Hort et al. (2023c) showed that multi-objective evolutionary search is effective
to simultaneously improve for semantic correctness and fairness of word embeddings model.
Chen et al. (2022b) proposed MAAT, a novel ensemble approach able to combines ML
models optimized for different objectives: fairness and ML performance. Such a combination
allow MAAT to outpefrom state-of-the-art methods in 92.2% of the overall cases evaluated.
Chakraborty et al. (2020) also integrated bias mitigation into the design of ML software
by leveraging a multi-objective search for hyperparameter tuning of a Logistic Regression
model. This work has inspired our approach to integrate bias mitigation into the software
development process, however at a different stage. While Chakraborty et al. (2020) considered
pre- and in-processing approach for bias mitigation, we propose a post-processing approach.
Moreover, our approach is not focused on a single classification model, but can be transferred
to multiple ones, as we show by using it to improve Logistic Regression and Decision Tree
models. Lastly, while their multi-objective optimization does not prevent the improvement
of accuracy and fairness at the same time, our approach demands the improvement of both.
Perera et al. (2022) proposed a search-based fairness testing approach for testing regression-
based machine learning systems, and their empirical results revealed that it is effective to
reduce group discrimination in Emergency Department wait-time prediction software.

To ensure fair software, testing methods have been also proposed to address individual
discrimination (Horkoff 2019; Zhang et al. 2020; Zhang and Harman 2021; Ma et al. 2022).
Tools such as Themis (Galhotra et al. 2017; Angell et al. 2018) and AEQUITAS (Udeshi
et al. 2018) are able to generate tests to detect individual discrimination. Similarly, Aggarwal
et al. (2019) created tests to detect individual discrimination, however do this in a black-box
manner. Ma et al. (2022) proposed a novel an approach for the selection of the initial seeds to
generate individual discrimination instances (IDIs) for fairness testing, dubbed 1&D, which
is effective for improving model fairness. We refer the reader to a comprehensive survey on
fairness testing (Chen et al. 2022a).

Empirical studies haven also been carried out by the software engineering community to
gain insight on software fairness. Biswas and Rajan (2020) investigated fairness and bias
mitigation of real-world crowd-sourced ML models. Furthermore, Harrison et al. (2020)
studied the way in which humans perceive the fairness of ML models. Zhang and Harman
(2021) found that the fairness of ML software can be improved by using a richer feature set
for training. Hort and Sarro (2021) pointed out that reducing the bias of ML software can
come at the cost of losing the ability to differentiate between desired features. To allow for a
benchmarking of bias mitigation methods, Hort et al. (2021) proposed Fairea which provides
abaseline and quantitative evaluation of fairness-accuracy trade-offs. Fairea has been adopted
by subsequent studies Chen et al. (2023a) to carry out the most comprehensive empirical study
to date of 17 state-of-the-art bias mitigation methods for ML classifiers, evaluated with 11
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ML performance metrics, 4 fairness metrics, and 20 types of fairness-performance trade-off
assessment, applied to 8 widely-adopted software decision tasks. This study revealed that
the bias mitigation methods significantly decrease ML performance in 53% of the studied
scenarios (ranging between 42% and 66% according to different ML performance metrics),
thus suggesting the need of methods able to improve the accuracy-fairness trade-off. Chen
etal. (2024) empirically analysed the effectiveness of 11 state-of-the-art fairness improvement
methods when considering multiple protected attributes. They found that improving fairness
for a single protected attribute can largely decrease fairness regarding unconsidered protected
attributes. Intersectional bias (which encompasses multiple sensitive attributes at the same
time) is an open challenge in software fairness (Sarro 2023). We refer the reader to the work
by Gohar and Cheng (2023) for a survey on this topic.

2.2 Bias Mitigation Methods

Bias can occur at any stage of the machine learning system development. To repair bias,
researchers have applied bias mitigation methods in three different stages: pre-processing,
in-processing and post-processing (Friedler et al. 2019; Hort et al. 2023b).

Pre-processing methods aim at processing the training data to reduce bias in the data.
Approaches include the reweighing of training data (Kamiran and Calders 2012; Calders
et al. 2009), editing of labels and features (Calmon et al. 2017; Feldman et al. 2015), data
obfuscation (Zemel et al. 2013), generation of additional data (Chakraborty et al. 2021) and
removal of data points (Zliobaite et al. 2011; Chakraborty et al. 2020; Chen et al. 2022b). Pre-
processing methods are applied on the training data, which provides the benefit that they can
be applied to any classification algorithm. On the other hand, this could lead to uncertainty
of results, as they do not take the training algorithms into account.

In-processing methods aim to mitigate bias during training by optimizing the ML
algorithms themselves. These include adversarial learning (Zhang et al. 2018), fairness con-
straints (Kamishima et al. 2012; Calders et al. 2013; Berk et al. 2017), adaptation of split rule
for decision trees (Kamiran et al. 2010), decision boundary (un)fairness (Zafar et al. 2017),
latent-unbiased variables (Calders and Verwer 2010), hyperparameter tuning (Tizpaz-Niari
et al. 2022). gerrymandering (Kearns et al. 2018), and meta algorithms (Celis et al. 2019).
While in-processing methods are able to impose specific fairness goals into the training
procedure, they are depending on the classification models they are designed for.

Post-processing methods apply changes, once a classification model has been trained.
Similar to pre-processing algorithms, post-processing methods can often be applied to any
classification algorithm. Moreover, they do not require access to training data or the learning
algorithm. Herein we propose a novel post-processing method, therefore in the following we
discuss the most common post-processing methods, which are also used as a benchmark in
our experiments (Section 5), and the main difference with our proposed approach. We refer
the reader to the work by Hort et al. (2023b) for a comprehensive survey on the state-of-the-art
bias mitigation methods.

Kamiran et al. (2012, 2018) proposed Reject Option based Classification (ROC), which
exploits predictions with high uncertainty. This follows the intuition that discriminatory
decisions are made close to the decision boundary and therefore with uncertainty. Given
a region with low confidence (e.g., labels close to 0.5 in binary classification), instances
belonging to the unprivileged group receive a favorable label, and instances of the privileged
group an unfavorable label. Instances outside the low confidence region remain unchanged.
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Other than modifying predictions in a post-processing stage, trained classifiers can be
addressed as well. Savani et al. (2020) called the post-processing of trained classification
models “intra-processing” and proposed an approach for modifying the weights of Neural
Networks.

Kamiran et al. (2010) applied leaf relabeling, as a post-processing method on already
trained Decision Trees. Usually, labels of leaves are determined by the majority class of the
training data which is classified by this particular leaf node. In their debiasing method, leaves
are relabeled to reduce discrimination (e.g., a leaf that is returning “false” is changed to
return “true”), while also keeping the loss in accuracy minimal. In particular, each leaf node
is investigated to select and relabel the leaf with the highest ratio of discrimination reduction
and accuracy loss. Their approach assumes that, in order to lower discrimination of DTs, one
has to lower accuracy.

Hardt et al. (2016) proposed a post-processing method based on equalized odds. A clas-
sifier is said to satisfy equalized odds when it is independent of protected attribute and true
label (i.e., true positive and false positive rates across privileged and unprivileged group are
equal). Given a trained classification model, they used linear programming to derive an unbi-
ased one. Another variant of the equalized odds bias mitigation method has been proposed
by Pleiss et al. (2017). In contrast to the original equalized odds method, they used calibrated
probability estimates of the classification model (e.g., if 100 instances receive p = 0.6, then
60% of them should belong to the favorable label 1).

Our herein proposed post-processing approach differs from the leaf relabeling approach
proposed by Kamiran et al. (2010), as we do apply changes to the classification model
only if they increase accuracy and reduce bias. In other words, our approach is the first
to deliberately optimize classification models for accuracy and fairness at the same time,
unlike existing methods that are willing to reduce bias at the cost of accuracy (Berk et al.
2017). Overall, we apply a search procedure rather than deterministic approaches (Kamiran
et al. 2010, 2012, 2018; Hardt et al. 2016; Pleiss et al. 2017) and we do not assume that
bias reduction has to come with a decrease in accuracy. To the best of our knowledge our
proposal is the first to improve classification models according to both fairness and accuracy
by mutating the classification model itself, rather than manipulating the training data or the
predictions.

2.3 Fairness Measurement

There are two primary methods to measure fairness of classification models: individual
fairness and group fairness (Speicher et al. 2018). While individual fairness is concerned with
an equal treatment of similar individuals (Dwork et al. 2012), group fairness requires equal
treatment of different population groups. Such groups are divided by protected attributes,
such as race, age or gender. Thereby, one group is said to be privileged if it is more likely to
get an advantageous outcome than another, unprivileged group.

Due to the difficulty of determining the degree of similarity between individuals (Jacobs
and Wallach 2021), it is common in the literature to focus on group fairness metrics. In
particular, we investigate three group fairness metrics (all publicly available in the AIF360
framework (Bellamy et al. 2018)) to measure the fairness of a classification model, which are
frequently used in the domain of software fairness (Zhang and Harman 2021; Chakraborty
etal. 2020, 2021; Hortetal. 2021) and are usually optimized by existing bias mitigation meth-
ods such as Statistical Parity Difference, Average Odds Difference, and Equal Opportunity
Difference.
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Proceeding, we use y to denote a prediction of a classification model. We use D to denote
a group (privileged or unprivileged). We use Pr to denote probability.

The Statistical Parity Difference (SPD) requires that predictions are made independently of
protected attributes (Zafar et al. 2017). Therefore, favourable and unfavourable classifications
for each demographic group should be identical over the whole population (Dwork et al.
2012):

SPD = Pr(y = 1|D = unprivileged)
—Pr(y = 1|D = privileged) (€))

The Average Odds Difference (AOD) averages the differences in False Positive Rate (FPR)
and True Positive Rate (TPR) among privileged and unprivileged groups (Hardt et al. 2016):

1
AOD = E((FPRD:unprivileged - FPRD:privileged)
+(TPRD:unprivileged - TPRD:privileged)) (2)

The Equal Opportunity Difference (EOD) corresponds to the TPR difference (Hardt et al.
2016):
EOD = TPRD:lmprivileged - TPRD:privileged (3)

Following previous work on fairness in SE (Chakraborty et al. 2020; Zhang and Harman
2021), we are interested in the absolute values of these metrics. Thereby, each metric is
minimized at zero, indicating that no bias is residing in a classification model.

3 Proposed Approach

This section introduces the search-based procedure we propose for mutating classification
models to simultaneously improve both accuracy and fairness. In addition, we describe imple-
mentation details for two classification models (Logistic Regression, Decision Trees) to
perform such a procedure.

3.1 Procedure

Our search-based post-processing procedure aims to iteratively mutate a trained classification
model in order to improve both accuracy and fairness at the same time. For this purpose, we
require a representation of the classification model that allows changes (“mutation”) to the
prediction function. To simplify the mutation process, we apply mutation incrementally (i.e.,
repeatedly changing small aspects of the classifier). Such a procedure is comparable to the
local optimisation algorithm hill climbing. Based on an original solution, hill climbing eval-
uates neighboring solutions and selects them only if it improves the original fitness (Harman
et al. 2010). We mutate a trained classification model cl/f with the goal to achieve improve-
ments in accuracy and fairness. In this context, the fitness function measures the accuracy
and fairness of c/f on a validation dataset (i.e., a dataset that has not been used during the
initial training of clf). “Accuracy” (acc) refers to the standard accuracy in machine learn-
ing, which is the number of correct predictions against the total number of predictions. To
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measure fairness, we use the three fairness metrics introduced in Section 2.3 (SPD, AOD,
EOD).

Algorithm 1 outlines our procedure to improve accuracy and fairness of a trained classifi-
cation model c/f. Inline 4, fitness(clf) determines the fitness of the modified classification
model in terms of accuracy (acc’) and a fairness metric (fair’). In our empirical study we
experiment with three different fairness metrics (see Section 2.3), one at a time. If desired,
fitness(clf) can also be modified to take multiple fairness metrics into account simultane-
ously.

We only apply a mutation if the accuracy and fairness of the mutated model (acc’, fair’)
are better than the accuracy and fairness of the previous classification model (acc, fair)
(Line 5). If that is not the case, the mutation is reverted (undo_mutation) and the procedure
continues until the terminal condition is met. A mutation of the trained model at each iteration
of the search process that leads to an improvement in one objective (either accuracy or
fairness) will almost certainly change the other objective at the same time. If the other
objective is not worsened, the change is kept; otherwise, the change is reverted. This effect
is accumulated over each iteration.

To show the generalizability of the approach, and in line with previous work (Kamiran
et al. 2012, 2018; Chakraborty et al. 2020), we use the default configuration, as provided
by scikit (Pedregosa et al. 2011) to train the classification models before applying our post-
processing procedure.

Algorithm 1 Post-processing procedure of a trained classification model clf.
1: acc, fair < fitness(clf)
2: while terminal condition not met do
clf < mutate(clf)
acc’, fair' < fitness(clf)
if (acc’ > acc) && (fair’ > fair) then
acc < acc’
fair & fair’
else
clf < undo_mutation(clf)
10:  endif
11: end while

ORI NR W

3.2 Logistic Regression

Representation. Logistic Regression (LR) is a linear classifier that can be used for binary
classification. Given training data, LR determines the best weights for its coefficients. Below,
we illustrate the computation of the LR prediction with four tuneable weights (bg, b1, b2, b3).
At first, Equation 4 presents the computation of predictions with a regular linear regression
classifier. To make a prediction, LR uses this the Linear prediction in a sigmoid function
(Equation 5):

Linear(xy, xp, x3) = by + b1x1 + byxo + b3x3 “é)
1

PY)=—— 5

=17 ®)

This prediction function determines the binary label of a 3-dimensional input (x1, x2, x3).
In a binary classification scenario, we treat predictions > 0.5 as label 1, and 0 otherwise.
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This shows that the binary classification is determined by »n variables (bg . ..b,—_1). To
represent an LR model, we store the n coefficients in an n-dimensional vector.
Mutation Given that an LR classification model can be represented by one-dimensional
vector, we mutate single vector elements to create mutated variants of the model. In particular,
we pick an element at random and multiply it by a value within a range of {—10%, 10%}. We
performed an analysis on different degrees of noise and mutation operators for LR models
in Section 5.4.

3.3 Decision Tree

Representation. Decision Trees (DT) are classification models that solve the classification
process by creating tree-like solutions, which create leaves and branches based on features
of the training data. We are interested in binary DTs. In binary DTs, every interior node (i.e.,
all nodes except for leaves) have exactly two child nodes (left and right).

Mutation We use pruning as a means to mutate DTs. The pruning process deletes all the
children of an interior node, transforming it into a leaf node, and has shown to improve
the accuracy of DT classification in previous work (Breiman et al. 1984; Quinlan 1987;
Breslow and Aha 1997). In particular, we pick an interior node i at random and treat it as a
leaf node by removing all subjacent child nodes. We choose to use pruning, instead of leaf
relabeling, because preliminary experiments showed that pruning outperforms leaf relabeling
(i.e., Kamiran et al. (2010) used leaf relabeling in combination with an in-processing method
but not in isolation).

4 Experimental Setup

In this section, we describe the experimental design we carry out to assess our search-based
bias repair method for binary classification models (i.e., Logistic Regression and Decision
Trees). We first introduce the research questions, followed by the subjects and the experi-
mental procedure used to answer these questions.

4.1 Research Questions

Our evaluation aims to answer the following research questions:
RQ1: To what extent can the proposed search-based approach be used to improve both,
accuracy and fairness, of binary classification models?

To answer this question, we apply our post-processing approach to LR and DTs (Section 3)
on four datasets with a total of six protected attributes (Section 4.2).

The search procedure is guided by accuracy and each of the three fairness metrics (SPD,
AOD, EOD) separately. Therefore, for each classification model, we perform 3 (fairness
metrics) x 6 (datasets) = 18 experiments. For each of the fairness metrics, we mutate the
classification models and measure changes in accuracy and the particular fairness metric
used to guide the search (e.g., we post-process LR based on accuracy and SPD). We then
determine whether the improvement in accuracy and fairness (as explained in Section 3)
achieved by mutating the classification models are statistically significant, in comparison to
the performance of the default classification model.
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Furthermore, we compare optimization results from post-processing with existing bias
mitigation methods:

RQ2: How does the proposed search-based approach compare to existing bias mitigation
methods?

We address this research question in two steps. First, we perform a comparison with post-
processing bias mitigation methods, which are applied at the same stage of the development
process as our approach (RQ2.1). Afterwards, we compare our post-processing approach to
pre- and in-processing methods (RQ2.2).

To answer both questions (RQ2.1 and RQ2.2), we benchmark our approach against
existing and widely-used bias mitigation methods: three post-processing methods, three pre-
processing methods and one in-processing method, which are all publicly available in the
AIF360 framework (Bellamy et al. 2018). In particular, we applied these existing bias mitiga-
tion methods to LR and DTs on the same set of problems (i.e., the four datasets used also for
RQ1 and RQ3) in order to compare their fairness-accuracy trade-off with the one achieved
by our proposed approach. A description of the benchmarking bias mitigation methods is
provided in Section 4.3, whereas the datasets used are described in Section 4.2.

While the objectives considered during the optimization procedure are improved, this has
shown to carry detrimental effects on other objectives (Ferrucci et al. 2010; Chakraborty
et al. 2020). Therefore, we determine the impact optimization for one fairness metric has
on the other two fairness metrics, which have not been considered during the optimization
procedure:

RQ3: What is the impact of post-processing guided by a single fairness metric on other
fairness metrics?

To answer this question, we apply our post-processing method on LR and DTs. While
optimizing for each of the three fairness metrics, we measure changes of the other two. We
are then able to compare the fairness metrics before and after the optimization process, and
visualize changes using boxplots. Moreover, we can determine whether there are statistically
significant changes to “untouched” fairness metrics, which are not optimized for.

We perform additional experiments to gain insights on the importance of parameters when
applying our post-processing method (i.e., terminal condition and mutation operations), and
the performance of advanced binary classification models (e.g., neural networks) in com-
parison to Logistic Regression and Decision Tree classifiers. The investigation of parameter
choices is addressed in Section 5.4, advanced classification models are investigated in Sec-
tion 5.5.

4.2 Datasets

We perform our experiments on four real-world datasets used in previous software fair-
ness work (Chakraborty et al. 2020; Zhang and Harman 2021) with a total of six protected
attributes.

The Adult Census Income (Adult) (Kohav 2023) contains financial and demographic
information about individuals from the 1994 U.S. census. The privileged and unprivileged
groups are distinguished by whether their income is above 50 thousand dollars a year.

The Bank Marketing (Bank) (Moro et al. 2014) dataset contains details of a direct mar-
keting campaign performed by a Portuguese banking institution. Predictions are made to
determine whether potential clients are likely to subscribe to a term deposit after receiv-
ing a phone call. The dataset also includes information on the education and type of job of
individuals.
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Table 1 Datasets used in our empirical study

Dataset Size Attributes Favourable Label Majority Label Protected Privileged - Unprivileged

Adult 48,842 14 1 (income > 50k) 0 (75%) Sex Male - female

Race White - non white
COMPAS 7,214 28 0 (No recid) 0 (54%) Sex Female - male

Race Caucasian - not Caucasian
Bank 41,188 20 1 (yes) 0 (87%) Age >25-<25
MEPS19 15,830 138 1 (> 10 visits) 0 (83%) Race White - non-white

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
(propublica 2023) dataset contains the criminal history and demographic information of
offenders in Broward County, Florida. To indicate whether a previous offender is likely to
re-offend, they receive a recidivism label.

The Medical Expenditure Panel Survey (MEPS19) represents a large scale survey of fam-
ilies and individuals, their medical providers, and employers across the United States.? The
favourable label is determined by “Utilization” (i.e., how frequently individuals frequented
medical providers).

In Table 1, we provide the following information about the four datasets: number of
rows and features, the favourable label and majority class. In addition, we list the protected
attributes for each dataset (as provided by the AIF360 framework (Bellamy et al. 2018)),
which are investigated in our experiments, and the respective privileged and unprivileged
groups for each protected attribute.

4.3 Benchmark Bias Mitigation Methods

As our proposed method belongs to the category of post-processing methods, we compare it
with all the state-of-art post-processing bias mitigation methods made publicly available in
the AIF360 framework (Bellamy et al. 2018), as follows (Section 2.2):

e Reject Option Classification (ROC) (Kamiran et al. 2012, 2018);
e Equalized odds (EO) (Hardt et al. 2016);
e Calibrated Equalized Odds (CO) (Pleiss et al. 2017).

AIF360 (Bellamy et al. 2018) provides ROC and CO with the choice of three different fairness
metrics to guide the bias mitigation procedure (Section 2.3). ROC can be applied with SPD,
AOD, and EOD. CO can be applied with False Negative rate (FNR), False Positive Rate
(FPR), and a “weighed” combination of both. We apply both, ROC and CO, with each of the
available fairness metrics. EO does not provide choices for fairness metrics to users.

While our focus lies on the empirical evaluation of our post-processing approach with
approaches of the same type, we also consider a comparison with pre- and in-processing
methods (RQ2-2, Section 5.5). In particular, we compare our approach to the following
pre-processing and in-processing methods:

e Optimized Pre-processing (OP) (Calmon et al. 2017): Probabilistic transformation of
features and labels in the dataset.

3 https://meps.ahrq.gov/mepsweb/
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Fig. 1 Empirical evaluation of a single data split

e Learning Fair Representation (LFR) (Zemel et al. 2013): Intermediate representation
learning to obfuscate protected attributes.

Reweighing (RW) (Kamiran and Calders 2012; Calders et al. 2009): Reweighing the
importance (weigh) of instances from the privileged and unprivileged group in the dataset.
Exponentiated gradient reduction (RED) (Agarwal et al. 2018): Two player game to find
the best randomized classifier under fairness constraints.

The three pre-processing methods (OP, LFR, RW) are classification model-agnostic and
can be easily be applied Logistic Regression and Decision Tree models (i.e., training data
can be changed independent of the classification model used). Whereas, in order to apply
RED, the in-processing approach proposed by Agarwal et al. (2018), one needs to provide
a classification model (Logistic Regression or Decision Tree) and a fairness notion. In our
case, we apply RED with three different fairness notions: “DemographicParity” (REDpp),
“EqualizedOdds” (RE DEg o), “TruePositiveRate” (RE Dt pr). These three notions coincide
with our evaluation metrics, SPD, AOD and EOD, respectively.

4.4 Validation and Evaluation Criteria

To validate the effectiveness of our post-processing approach to improve accuracy and fairness
of binary classification models, we apply it to LR and DT. Since our optimization approach
applies random mutations, we expect variation in the results. Figure 1 illustrates the empirical
evaluation procedure of our method for a single datasplit. At first, we split the data in three
sets: training (70%), validation (15%), test (15%).* To mitigate variation, we apply each bias
mitigation method, including our newly proposed approach on 50 different data splits.

The training data is used to create a classifier which we can post-process. Once a classifier
is trained (i.e., Logistic Regression or Decision Tree), we apply our optimization approach 30
times (Step 2).> To then determine theperformance (accuracy and fairness) of our approach

4 We have performed a comparison of different data splits (i.e., it is beneficial to train with more data by
combining train and validation) set but could not find systematic advantages. Further details can be found in
our online appendix (Hort et al. 2023d).

5 There is no particular reason for choosing to run it 30 times, this number can be adjusted as one sees
fit. Ideally the more runs the better, in order to cater for the inherent stochastic nature of the approach, yet
limited computational resources or time may limit the number of repetitions performed. In practice, only one
classification model can be used, therefore one can apply our approach multiple times and select a model from
the Pareto-front, or use the entire search budget on building a single optimal classification model.
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on a single data split, we compute the Pareto-optimal set® based on the performance on
the validation set. Once we obtain the Pareto-set of optimized classification models based
on their performance on the validation set, we average their performance on the test set.
Performance on the test set (i.e., accuracy and fairness) is used to compare different bias
mitigation methods and determine their effectiveness. Each run of our optimization approach
is limited to 2, 500 iterations (terminal condition, Algorithm 1). The existing post-processing
methods are deterministic, and therefore applied only once for each data split.

To assess the effectiveness of our approach (RQ1) and compare it with existing bias
mitigation methods (RQ2), we consider both summary statistics (i.e., average accuracy and
fairness), statistical significance tests and effect size measures, and Pareto-optimality. Fur-
thermore, we use boxplots to visualize the impact of optimizing accuracy and one fairness
metric on the other two fairness metrics (RQ3).

Pareto-optimality states that a solution a is not worse in all objectives than another solution
b and better in at least one (Harman et al. 2010). We use Pareto-optimality to both measure
how often our approach dominates the default classification model or is Pareto-optimal, and
to plot the set of solutions found to be non-dominated (and therefore equally viable) with
respect to the state-of-the-art (RQs1-2). In the case where there are two objectives, such as
ours, this leads to a two dimensional Pareto surface.

To determine whether the differences in the results achieved by all approaches are statis-
tical significant, we use the Wilcoxon Signed-Rank test, which is a non-parametric test that
makes no assumptions about underlying data distribution (Wilcoxon 1992). We set the confi-
dence limit, o, at 0.05 and applied the Bonferroni correction for multiple hypotheses testing
(o/ K, where K is the number of hypotheses).” This correction is the most conservative of all
corrections and its usage allows us to avoid the risk of Type I errors (i.e., incorrectly reject-
ing the Null Hypothesis and claiming predictability without strong evidence). In particular,
depending on the RQ, we test the following null hypothesis:

(RQ1) Hy: The fairness and accuracy achieved by approach is not improved with respect to
the default classification model. The alternative hypothesis is as follows: Hy: The fairness and
accuracy achieved by approachy improves with respect to the default classification model.
In this context, “improved” means that the accuracy is increased and fairness metric values
are decreased (e.g., a SPD of 0 indicates that there is no unequal treatment of privileged and
unprivileged groups).

(RQ3) Ho: Optimizing for accuracy and fairness metric mi does not improve fairness met-
ricmy with respect to the default classification model. The alternative hypothesis is as follows:
Hi: Optimizing for accuracy and fairness metric my improves fairness metricmy with respect
to the default classification model. For this RQ, we summarise the results of the Wilcoxon
tests by counting the number of win-tie-loss as follows: p—value<0.01 (win), p—value>0.99
(loss), and 0.01 < p—value >0.99 (tie), as done in previous work (Sarro et al. 2017; Kocaguneli
et al. 2011; Sarro et al. 2018; Sarro and Petrozziello 2018).

In addition to evaluating statistical significance, we measure the effect size based on the
Vargha and Delaney’s Alz non-parametric measure (Vargha and Delaney 2000), which does
not require that the data is normally distributed (Arcuri and Briand 2014). The A 12 measure

6 This is the set of solutions that are non-dominated to each other but are superior to the rest of solutions in the
search space. In other words each solution of the Pareto-set includes at least one objective inferior to another
solution in that Pareto-set, although both solutions are superior to others in the rest of the search space with
respect to all objectives.

7 Here we use K = 12, for the two hypothesis and the six datasets. In Tables 2 and 3, we report the original
p-value (i.e., with no correction) so that a reader could assess the results using a different correction, if
interested.
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compares an algorithm A with another algorithm B, to determine the probability that A
performs better than B with respect to a performance measure M:

A = (Ri/m — (m +1)/2)/n (©6)

In this formula, m and n represent the number of observations made with algorithm A and B
respectively; Rj denotes the rank sum of observations made with A. If A performs better than
B, Alz can display one of the following effect sizes: Alz > 0.72 (large), 0.64 < Alg < 0.72
(medium), 0.56 < Alz < 0.64 (small), although these thresholds are not definitive (Sarro
et al. 2016).

4.5 Threats to Validity

The internal validity of our study relies in the confidence that the experimental results we
obtained are trustworthy and correct. To alleviate possible threats to the internal validity, we
applied our post-processing method and existing bias mitigation methods 50 times, under
different train/validation/test splits. This allowed us to use statistical significance tests to
further assess our results and findings. We have used traditional measures used in the software
fairness literature to assess ML accuracy, while we recognise alternative measures could be
used to take into account data imbalance (Chen et al. 2023b; Moussa and Sarro 2022).

Threats to external validity related to generalizability of our results, are primarily con-
cerned with the datasets, approaches and metrics we investigated. To mitigate this threat
we have considered in this study all datasets publicly available which have been previously
used in the literature to solve the same problem. Using more data in the future will further
increase the generalizability of our results. Furthermore, we have successfully applied our
post-processing method on two inherently different classification models (Logistic Regres-
sion, Decision Trees), which strengthens the confidence that our approach could be applied to
other binary classifiers. We have also explored all state-of-the-art post-processing debiasing
methods in addition to three pre-processing and one in-processing method available from
the AIF360 framework (Bellamy et al. 2018) (version 0.3.0), which is publicly available, to
strengthen the generalizability and reproducibility of our work.

To mitigate possible threats to construct validity, and support the applicability and gener-
alizability of our approach, and allow for the replication and extension of our work, we have
made our scripts and results publicly available (Hort et al. 2023d).

5 Results

This section presents the results of our experiments to answer the research questions explained
in Section 4.1.

5.1 RQ1. Fairness-Accuracy Improvement

In the first research question, we investigate whether our post-processing approach is able
to improve both fairness and accuracy when applied to binary classification models (namely
LR and DT). The baseline considered is the default classification model. We apply our
approach on four datasets, as outlined in Section 4.4. In total, we apply post-processing with
three different configurations, to optimize for accuracy and one of the three fairness metric
at a time. We will call those configurations DTspp, DTaop, DTEop, LRspp, LRAoOD,
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LREgop to determine the classification model and the fairness metric considered during
optimization. These configurations are applied to four datasets on 50 train/validation/test
splits and repeated 30 times. Tables 2 and 3 show these results for Logistic Regression and
Decision Trees respectively. These tables show the results of the default classification model
and the three optimization configurations.

We can see that our post-processing approach is able to improve the accuracy of the two
classification models (LR and DT) in 27 out of 36 cases. In the half of the cases the accuracy
of LR is statistically significant better (6 out of 18 cases) or comparable (3 out of 18 cases)
with respect to the default model, while in 6 out of 18 cases it is reduced although no statistical
significant difference is observed. In the remaining three cases, all on the MEPS19 datasets,
accuracy is statistically worse with a small effect size.

All the 18 out of 18 cases improve the accuracy of DT, all of which are statistically
significant with large effect sizes.

When investigating the impact of our post-processing approach on each of the three
fairness metrics (i.e., mutation is applied if the particular fairness metric and accuracy are
improved), we compare the fairness of the default classification model with the configuration
to optimize for that particular metric (e.g., we compare the SPD of the default LR with
the SPD achieved by LRgpp). Therefore, instead of 18 cases for LR and DT, we have six
comparisons for each metric.

For each of the three fairness metrics (SPD, AOD, EOD) our post-processing approach
is able to improve fairness on 5 out of 6 datasets on LR. L Rgpp is not able to achieve SPD
improvements on the Adult dataset (protected attribute = “race”), LRoop and LRgop are
not able to achieve fairness improvements on the Bank dataset. Among the 15 out of 18 cases
that improve fairness on LR, 11 are statistically significant, with six of those having large
effect sizes. Furthermore, it can be noted that the instances where our approach is not able to
improve fairness, already have a low bias score. According to the online tool of the AIF360
framework (Bellamy et al. 2018), values < 0.1 can be seen as fair, when investigating SPD,
AOD and EOD.? Applied to DTs, our post-processing approach improves fairness for 16
out of 18 cases. In particular, in 6 out of 6 cases DTspp and DT 40 p achieve statistically
significant fairness improvements on their respective fairness metric. In 3 out of 6 cases,
DTEop achieves statistically significant improvements. In the remaining two cases (i.e.,
EOD on the Adult-race and Bank-Age datasets), our approach is not able to significantly
improve fairness, likely because the default model already shows a low bias (< 0.1).

Overall, the three post-processing configurations achieve improvements in both accuracy
and fairness in 22 out of 36 cases, and improvements in at least one of the two (i.e., either
accuracy and fairness) in the remaining 14 out of 36 cases. Notably, our post-processing
approach improves accuracy and fairness of DTs in 16 out of 18 cases.

In addition to comparing the average performance of our optimization approach for each
data-split (i.e., we average accuracy and fairness of all solutions in the Pareto-front), we
perform a comparison of each solution in the Pareto-front with the default classification
model. Table 4 shows the results. For each combination of datasets and metric optimized by
our approach, we compute the percentage of solutions that: dominate the default model, are
Pareto-optimal, are dominated by the default model. This comparison (e.g., do solutions in
the Pareto-front dominate the default classification model?) is performed for each data-split
and weighted accordingly, such that each data-split has the same contribution to the results
(e.g., a data-split with 10 solutions in the Pareto-front is treated equally as a data-split with 2
solutions in the Pareto-front). Our post-processing methods applied on Logistic Regression

8 https://aif360.mybluemix.net/
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Table 4 RQ1: Comparison of each individual run of our approach (30 runs over 50 datasplits) against the
default classification model

Adult Compas Bank Meps19
Sex Race Sex Race Age Race x

LR SPD 59-41-0 0-98-2 36-57-7 38-47-16 37-50-14 25-68-8 32-60-8
AOD 65-34-1 50-50-0 36-54-10 37-48-16 26-50-24 15-65-19 38-50-12
EOD 71-29-0 61-39-0 37-58-6 41-44-15 31-49-19 17-72-11 43-48-8

z 65-35-0 37-62-1 36-56-7 39-46-16 31-50-19 19-68-13 38-53-9
DT SPD 100-0-0 100-0-0 91-9-0 76-23-2 69-31-0 99-1-0 89-11-0
AOD 100-1-0 71-29-0 85-14-1 69-31-1 63-37-0 95-5-0 80-19-0
EOD 78-22-0 54-46-0 78-20-2 47-52-1 43-57-0 89-11-0 65-35-0
) 92-8-0 75-25-0 85-15-1 64-35-1 58-42-0 94-6-0 78-22-0

For each dataset and metric, we measure the percentage of runs that: dominate the default model - are Pareto-
optimal - are dominated by the default model

achieves comparable or better performance than the default model in 91% of the cases across
all datasets studied, and, specifically, it dominates the default model in 38% of the cases
and is dominated in only 9% of the cases. This shows that our approach is a useful tool for
optimizing LR models (i.e., developers are either able to choose a strictly better model, or
models with competitive fairness-accuracy trade-offs). When we apply our approach to DTs,
we observe an even higher performance improvement: It dominates the default DT models
in 78% of the cases and not dominated in the remaining cases.

Answer to RQ1: In 22 out of 36 cases (61%), our search-based approach is able
to improve both, fairness and accuracy of Logistic Regression and Decision Trees
with respect to the default model when considering all datasets and fairness met-
rics. Notably, this happens in 16 out of 18 cases when applying our optimization
approach to Decision Trees, with 15 of these cases achieving statistically significant
improvements with large and medium effect sizes in the vast majority of cases (14
out of 15). supports explainability of these models.

5.2 RQ2. Comparison to Existing Bias Mitigation Methods
5.2.1 RQ2-1. Comparison to Post-Processing Methods

To answer RQ2.1, we compare our post-processing method against three existing post-
processing bias mitigation methods (Section 4.3) applied to LR and DT on the same datasets
(Adult, COMPAS, Bank, MEPS19) by using identical train/validation/test splits, as described
in Section 4. The mean performance of these methods over 50 data splits, and of our post-
processing method, are shown in Figure 2. While Figure 2 only includes six cases for LR and
measuring SPD, the remaining results for other metrics and DTs are available in our online
appendix (Hort et al. 2023d). In each sub-figure, we show the performance of every non-
dominated bias mitigation method on the respective dataset and fairness metric. A summary
on how often each bias mitigation method is part of the Pareto-front is provided in Table 5.
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Fig. 2 RQ2: Comparison of our proposed approach against existing bias mitigation methods and default
classification models based on Pareto-optimality. The figure shows six exemplary comparisons for LR and
SPD

When comparing the accuracy of classification models achieved after applying our post-
processing method against the existing bias mitigation methods, we observe that all of the
existing bias mitigation methods have a lower accuracy. Moreover, all of the existing bias
mitigation methods reduce the accuracy of the default classification model, thereby con-
forming to the fairness-accuracy trade-off. On the other end, our approach, which takes into
account accuracy in the bias mitigation process, is always able to generate a widely applica-
ble solution (i.e., our approach always produces at least a solution belonging to each of 36
Pareto-fronts, and therefore is never dominated by any of the existing methods).

Table 5 RQ2: Frequency of bias

L . Decision Tree
mitigation methods in the

Logistic Regression

Pareto-front Our CO ROC EO Our CO ROC EO
SPD 6 33 6 6 o 2 0
AOD 6 2 2 6 6 0 2 0
EOD 6 2 45 6 o2 1
x 18/18 7/18 9/18 17/18 18/18 0/18 6/18 1/18

Each combination of bias mitigation method and fairness metric is eval-
uated on six datasets
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We can observe a difference in performance of our approach when applied to LR and DT.
While our approach, applied to LR, is able to outperform some of the existing bias mitigation
methods on the three fairness metrics (CO and ROC), it is only able to dominate EO in
1 out of 18 cases (Bank-age EOD). In the remaining 17 cases, EO has a lower accuracy
than our approach while improving fairness to a higher degree. On the other end, when
applying our post-processing approach to DTs, it not only produces solutions that dominate
the default classification model (as seen in RQ1), but also all investigated bias mitigation
methods in 12 out of 18 cases. Furthermore, for DT, our approach outperforms existing
bias mitigation methods on the three fairness metrics, in addition to achieving the highest
accuracy. In particular, our approach achieves the lowest bias on all three fairness metrics for
the Adult, Bank and MEPS19 datasets. Only ROC is able to achieve a lower level of bias for
the COMPAS dataset in 6 out of 6 cases, and EO in 1 out of 6 cases. This may be due to the
fact that COMPAS is the smallest of the datasets we investigate herein.

( D
Answer to RQ2.1: Our approach provides Pareto-optimal solutions when applied to
both Decision Trees and Logistic Regression for each of the datasets investigated in
our study. In particular, it achieves the highest accuracy with respect to the existing
bias mitigation methods in 100% of the cases and the highest fairness in 33% of the
cases. Notably, our approach provides the best performance when applied to Decision
Trees, as in this case it generates solutions that strictly dominate those provided by
the existing bias mitigation methods in 12 out of 18 cases (i.e., it achieves both higher
accuracy and lower bias), and achieves a higher accuracy in the remaining 6 out of
18 cases.

5.2.2 RQ2-2. Comparison to Pre- and In-Processing Methods

To answer RQ2-2, we compare our post-processing approach with available pre- and in-
processing bias mitigation methods. In particular, we use three pre-processing methods (LFR,
OP, REW) and one in-processing method (RED), under consideration of three fairness metrics
(REDpp, REDEo, RE Dt pR), for comparison. Table 6 shows the performance of the bias
mitigation methods when applied to Logistic Regression models and Table 7 shows results
for Decision Trees. Due to the dimensionality of data (number of features and instances in
the dataset), OP could not be applied to the Bank and Meps19 datasets.

The lowest bias for LR models is achieved by REW (pre-processing) and RED (in-
processing), while the highest accuracy is achieved by our post-processing approach and
the original LR model (Table 6). For DTs, RED achieves the lowest degree of bias in 13 out
of 18 cases. Our post-processing approach is able to achieve the lowest degree of bias in 4 out
18 cases and the highest accuracy in 4 out of 6 cases. The pre-processing method LFR is never
among the best performing methods for any of the four metrics (i.e., accuracy or fairness),
while OP achieves the highest accuracy once for DTs on the COMPAS dataset. One reason
that could explain the ability of RED to reduce bias further than pre-processing methods
is that RED takes related fairness metrics into account. The pre-processing methods either
re-balance the data or obfuscate sensitive information. These approaches are intuitive with
regard to the overall goal of achieving fairness but do not coincide with the three measured
fairness metrics.

Table 8 investigates the relation of the bias mitigation methods in a multi-objective setting,
i.e., how often is our approach better than existing methods, how often is there a trade-off
between accuracy and fairness, and how often is our method worse. From the results, we
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Table 6 RQ2-2: Performance comparison with pre-processing (LFR, OP, RW) and in-processing (RED)
methods for Logistic Regression

Adult Compas Bank Meps19
Sex Race Sex Race Age Race
ACC LRyefaulr 0.833 0.833 0.677 0.677 0.899 0.838
LRspp 0.845 0.845 0.676 0.675 0.900 0.835
LRsoD 0.846 0.845 0.675 0.675 0.900 0.834
LREop 0.846 0.845 0.675 0.676 0.900 0.834
LFR 0.773 0.770 0.549 0.549 0.878 0.795
(0)3 0.794 0.803 0.665 0.659
REW 0.789 0.803 0.661 0.656 0.900 0.835
REDpp 0.783 0.802 0.658 0.651 0.899 0.826
REDEo 0.789 0.803 0.655 0.643 0.897 0.834
REDTpR 0.789 0.803 0.658 0.652 0.899 0.833
SPD LRyefault 0.191 0.034 0.279 0.173 0.074 0.123
LRspp 0.171 0.086 0.199 0.157 0.074 0.107
LFR 0.111 0.069 0.063 0.075 0.032 0.036
OoP 0.115 0.047 0.159 0.124
REW 0.066 0.041 0.097 0.060 0.031 0.055
REDpp 0.017 0.014 0.043 0.038 0.023 0.019
AOD LRdefault 0.120 0.044 0.254 0.150 0.051 0.125
LRaoD 0.083 0.041 0.178 0.133 0.054 0.111
LFR 0.115 0.087 0.065 0.076 0.052 0.037
OP 0.094 0.025 0.126 0.096
REW 0.014 0.022 0.087 0.053 0.043 0.029
REDEo 0.019 0.025 0.061 0.044 0.050 0.032
EOD LRyefauit 0.150 0.078 0.194 0.094 0.076 0.205
LRrop 0.088 0.049 0.115 0.079 0.082 0.175
LFR 0.171 0.137 0.057 0.065 0.084 0.057
OoP 0.151 0.036 0.082 0.072
REW 0.021 0.033 0.054 0.043 0.073 0.045
REDtpR 0.033 0.042 0.063 0.049 0.075 0.059

Bold values highlight the best metric values for each dataset

observe that our approach is comparable, if not better, than LFR and OP over all datasets
and the two classification models (LR and DT). The same holds for RED applied to LR.
However, REW tends to perform better than our approach for LR (pareto-optimal in 12 cases
and better in 6).

Overall, we can observe that in the majority of the cases for LR (52 out of 66), our
approach is pareto-optimal to existing pre- and in-processing approaches, indicating that
there is a trade-off between fairness and accuracy. For practitioners, it would be important
to consider more than one solutions to choose from, in particular those provided by our
approach and REW, in order to select the best models with regards to specific datasets and
metrics. For DT classifiers, we observe that our approach is strictly better than pre- and
in-processing methods in 33 out of 66 cases, showing that there are performance difference
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Table 7 RQ2-2: Performance comparison with pre-processing (LFR, OP, RW) and in-processing (RED)

methods for Decision Trees

Adult Compas Bank Meps19
Sex Race Sex Race Age Race
ACC DTyefault 0.817 0.817 0.622 0.622 0.877 0.760
DTspp 0.836 0.841 0.645 0.638 0.892 0.798
DTs0p 0.838 0.838 0.648 0.640 0.889 0.798
DTgop 0.832 0.831 0.646 0.642 0.887 0.791
LFR 0.747 0.745 0.569 0.571 0.829 0.738
OP 0.786 0.799 0.658 0.655
REW 0.787 0.801 0.658 0.652 0.879 0.760
REDpp 0.784 0.801 0.656 0.648 0.877 0.764
REDEo 0.790 0.802 0.658 0.647 0.876 0.758
REDTpR 0.790 0.802 0.659 0.650 0.878 0.759
SPD DTyefaulr 0.180 0.085 0.129 0.114 0.107 0.128
DTspp 0.110 0.060 0.083 0.091 0.088 0.047
LFR 0.167 0.075 0.096 0.066 0.073 0.100
OP 0.068 0.023 0.104 0.136
REW 0.056 0.014 0.071 0.091 0.104 0.102
REDpp 0.018 0.014 0.040 0.038 0.027 0.037
AOD DTyefault 0.073 0.035 0.107 0.098 0.068 0.091
DTs0p 0.032 0.028 0.075 0.081 0.057 0.036
LFR 0.137 0.087 0.093 0.067 0.083 0.087
OP 0.050 0.042 0.087 0.108
REW 0.032 0.048 0.070 0.081 0.068 0.068
REDEo 0.020 0.023 0.056 0.048 0.070 0.087
EOD DT-default 0.056 0.034 0.089 0.064 0.077 0.093
DTeop 0.041 0.034 0.057 0.062 0.081 0.022
LFR 0.170 0.140 0.074 0.053 0.097 0.098
OP 0.081 0.066 0.058 0.085
REW 0.049 0.078 0.061 0.070 0.077 0.070
REDTpR 0.032 0.039 0.039 0.042 0.083 0.089

Bold values highlight the best metric values for each dataset

among classification models. However, it is still beneficial to consider methods such as REW
and RED, as there are cases in which they provide better results than our approach (i.e., they

are strictly dominating).

In accordance with current findings (Pessach and Shmueli 2022), there is no single method
that is the most suitable over all considered cases. Moreover, there is no clear preference on
which stage bias mitigation methods should be applied. Rather, one has to take the dataset

and fairness metric into account when selecting bias mitigation methods.
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Table 8 RQ2-2: Comparison of our approach with pre- and in-processing methods in terms of domination
criteria

Logistic Regression Decision Tree

SPD AOD EOD 2 SPD AOD EOD =
LFR 0-6-0 2-4-0 3-3-0 5-13-0 5-1-0 5-1-0 5-1-0 15-3-0
OP 0-4-0 1-3-0 1-3-0 2-10-0 0-4-0 4-0-0 2-2-0 6-6-0
REW 0-4-2 0-4-2 0-4-2 0-12-6 2-2-2 4-0-2 3-2-1 9-4-5
RED 0-6-0 1-5-0 0-6-0 1-17-0 0-4-2 0-4-2 3-1-2 3-9-6
= 0-20-2 4-16-2 4-16-2 8-52-6 7-11-4 13-5-4 13-6-3 33-22-11

For each of the four methods (three pre-processing, one in-processing) we provide results over the 6 datasets
and three metrics as follows: our method dominates the existing method - both methods are pareto-optimal
- our method is dominated. We determine domination with regard to accuracy and each of the three fairness
metrics separately

Answer to RQ2.2: Our approach provides Pareto-optimal or better solutions than
pre- and in-processing methods in 60 out of 66 cases for Logistic Regression and 55
out of 66 cases for Decision Trees. LFR and OP are never better than our approach
for both objectives (accuracy and fairness), while being strictly worse in 28 out of
60 cases.

5.3 RQ3. Impact on Fairness Metrics

In RQ3, we investigate the impact of optimizing for one fairness metric on the other two (e.g.,
if we optimize for accuracy and AOD, how do SPD and EOD change?). Therefore, we apply
the three configurations of our post-processing approach on the four datasets and measure
every kind of fairness metric at the end of the optimization procedure. In accordance with
RQI and RQ2, we investigate the performance over 50 different train/validation/test splits.

Figure 3 shows the results of the optimization results. For each dataset, we use boxplots
to show the default performance of the classification model, as well as the performance
after optimization with each of the three configurations. Thereby, three colors represent
optimization with one of the fairness metrics, and one color represents the fairness of the
default classification model.

Given the results, we can see that the fairness achieved by an optimized, post-processed
classification model behaves similarly, independent of the fairness metric used for optimiza-
tion. For example, this can be seen on the Adult-sex dataset for LR and DT. Regardless of the
fairness metric considered during optimization, the average AOD of all three configurations
is better than the default classification model. Such a behaviour (all three optimization con-
figurations achieve improvements on a fairness metric) happens in 28 out of 36 cases. There
is one case (Adult-race for LR) in which none of the three search configurations achieve
improvements on SPD (neither LRspp, LRoop nor LREoD)-

In the remaining 7 out of 36 cases, there are differences when using different optimization
configurations. One example for this is the Bank-age datasets for LR. Only L Rgp p achieves
improvements over the default LR model in SPD, AOD and EOD. LR4pop and LRgop are
not able to improve any fairness metric (neither SPD, AOD or EOD).
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Fig. 3 RQ3: Summary of bias values (the lower the better) achieved by the three different post-processing
settings (SPD, AOD, EOD) and the default classification models. Boxplots are grouped based on the fairness
metric they measure
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Table9 RQ3: Win-tie-loss SPD AOD EOD 5

summary of the Wilcoxon tests AOD EOD  SPD EOD  SPD AOD
when optimizing for one fairness

metric and measuring the other  yR 4.0  4-1-1  3-3-0 420 330 420 22-13-1

two (e.g., use SPD during
optimization and test on EOD) in pr 510 3-2-1 6-0-0 330 321 330 23112

comparison to the default
classification model

To evaluate the overall level of bias mitigation achieved by optimization on a different
fairness metric, we summarize the statistical significance differences we found over the four
datasets in Table 9. In particular, we investigate whether significant improvements over the
default classification models are achieved (win), whether no significant differences can be
found (tie), or whether the default classification model has a statistically significant lower
bias than the optimized model (loss). Combining the results for LR and DT, there are 45
wins, 24 ties and 3 losses. This indicates, that while our post-processing approach optimizes
for one fairness metric, it can positively effect other metrics as well.

Answer to RQ3: Based on the three investigated fairness metrics (SPD, AOD, EOD),
fairness improvements are achieved independently of the metric used during opti-
mization. In 78% of the cases (28 out of 36), fairness metrics are improved by all
three configurations (e.g., SPD on the Adult-sex dataset is improved by LRgspp,
LRsop, LREop). We do not observe any dramatic detrimental effect, as in 96% of
the cases (69 out of 72) there is no performance deterioration in “untouched” fairness
metrics, which are not optimized for. Among those, in 63% of the cases (45 out of
72), our approach even leads to statistically significant improvements.

5.4 Parameter Analysis for Logistic Regression

This section presents a closer investigation of parameter choices for our optimization proce-
dure. An investigation of parameter choices is of particular importance for our experiments
with Logistic Regression models, as the mutation operators are non-deterministic. In detail,
we are interested in investigating the effect of the noise considered when modifying Logistic
Regression models and the consideration of different terminal conditions (i.e., stopping the
optimization process after a different number of steps) for three mutation types:

— Reduction: Multiply a single vector element by a random value within a range of
{—noise, noise}.

— Adjustment: Multiply a single vector element by a random value within a range of
{1 —noise, 1 + noise}.

— Vector: Multiply each vector element by a random value within arange of {1 —noise, 1+
noise}.

We investigate a total of three different levels of noise for mutation (0.05, 0.1, 0.2). While an
increased number of steps should always be beneficial for improving a classification model
(i.e., the chance of finding more fairness and accuracy improvements is higher), the question
is whether the additional costs are justified. For this purpose, we consider three terminal
conditions: 1000, 2500 and 5000 steps.
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Figure 4 compares the number of successful modifications achieved by modifying Logis-
tic Regression models with different degrees of noise, as well as the benefit of performing
additional steps in the optimization procedure for the three mutation operators (Reduction,
Adjustment, Vector). For the two mutation operators that modify a single element, Reduc-
tion and Adjustment, we can observe that the highest number of successful modifications
is achieved by a mutation weight of 0.2. Among the 36 cases (two mutation operators X
six datasets x three terminal conditions), there is only one case where a mutation weight
of 0.1 achieves a higher number of successful mutations (i.e., 5.67 with a weight of 0.1
over 5.62 with a weight of 0.2, with Reduction). Using a mutation weight 0.2 for Vector
modifications only achieves the highest number of successful modification for one of the
six datasets (Compas-sex). Given that Vector modifications are more intrusive than the other
mutation operators (i.e., modifying each vector element as opposed to modifying a single
one), changes might be too big, or a stage where no further changes are applicable is reached
quicker with high-noise modifications.

When applying Reduction modifications, an average 92.9% of all successful modification
are performed in the first 1000 steps. Within an additional 1500 steps (i.e., terminal condition
of 2500 steps), 5.6% of successful modification are performed. Only 1.6% of all successful
modifications are performed in the last 2500 steps, from 2501 to 5000. While the percentages
vary over datasets (e.g., after 1000 steps, 98% and 85% of modifications are performed for
the Adult and COMPAS dataset respectively), it can be seen that the benefit of additional
steps decreases over time, as the majority of modifications are performed within the first 1000
steps. Vector and Adjustment show similar results. The last 2500 steps (from 2501 to 5000)
performed 10-15% of the modifications, while more than 60% of successful modifications
are performed in the first 1000 steps. This confirms that the early steps of the optimization
procedure are of higher importance than later iterations.

Given the low amount of additional modification achieved after 5000 steps, it is appears
justified to not increase the limit for modifying Logistic Regression models further for our
experiments (RQ1-RQ3), with the chances of potential improvements when using a mutation
weight of 0.2. However, one could argue for decreasing the number of steps to 1000, which
would decrease the runtime of our algorithm while retaining at least 60% of the successful
modifications, depending on the mutation operator.

Lastly, we compare the quality of changes between the three mutation operators. This
allows us to not only compare the amount of modifications but also the effectiveness of
different operators. For this purpose, we illustrate the pareto-fronts for each of the fairness
metrics in combination with the achieved accuracy in Figure 5. Among the nine mutated
LR models (three mutation operators with three different levels of noise, after 5000 steps),
we only visualize non-dominated ones. The modification operator that is part of the most
pareto-fronts is a Vector modification with a noise level of 0.2 (in 16 out of 18 pareto-fronts).
Reduction and Adjustment are part of three to six pareto-fronts, depending on the level of
noise used. This illustrates that the quality of improvements is influenced by the choice of
mutation operators.

5.5 Advanced Classification Models

Commonly, the effectiveness of bias mitigation methods is evaluated for a given classifica-
tion model (e.g., which bias mitigation method should be applied to the model) rather than
to compare performances across models (e.g., which model should the bias mitigation meth-
ods be applied to). Nonetheless, it can be interesting to compare the performance of more
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Fig.5 Pareto-fronts of the three different mutation operators (Reduction, Adjustment, Vector), and three levels
of noise (0.2 - black, 0.1 - gray, 0.05 - white). Results are shown for four datasets: Adult (A), COMPAS (C),
Bank (B), MEPS19 (M). Three protected attributes are considered: race (R), sex (S), age (A). The y-axis shows
accuracy; the x-axis shows the respective fairness metric

advanced binary classification models for potential future applications. For this purpose,
we consider three advanced types of tree-based and regression-based classification models:
Random Forest (RF), Gradient Boosting (GB), Neural Network (NN).

Following existing fairness approaches (Chen et al. 2023b), our NN model consists of
five hidden layers (64, 32, 16, 8, 4, neurons respectively) and is trained for 20 epochs. In
accordance with our implementation of LR and DT models, RF and GB are implemented
using the default configurations provided by scikit (Pedregosa et al. 2011).

Table 10 presents the accuracy achieved by each of the advanced classification models,
Logistic Regression and Decision Trees, and our post-processing approach applied to both
these models. To take fairness metrics in account, we count how often each classification
model is part of any of the 18 fairness-accuracy pareto-fronts (six datasets and three fairness
metrics), which illustrates trade-offs between fairness and accuracy.

Among all classification models, GB achieves the highest accuracy on all datasets, and
outperforms RFs and NNs. NNs are outperformed by unmodified LR models for all datasets.
RFs are outperformed by our optimized LR models in 5 out of 6 cases for accuracy, except
for the Bank dataset. While DTs have the lowest accuracy, they also show the lowest degree
of bias in 15 out of 18 cases. The only dataset for which DTs do not achieve the lowest degree
of bias is the Bank dataset. For all three fairness metrics, NNs achieve the lowest degree of
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Table 10 Accuracy of Logistic Regression and Decision Tree approaches in comparison with advanced clas-
sification models. The highest accuracy for each dataset is highlighted in bold

Adult Compas Bank MEPS19 In Pareto-front

Sex Race Sex Race Age Race SPD AOD EOD z
LR 0.833 0.833  0.677 0.677  0.899  0.838 3 2 1 6
LRspp 0.845 0.845 0.676  0.675 0.900  0.835 6 - -
LRsoD 0.846 0.845 0.675 0.675 0900 0.834 - 2 - 12
LREoD 0.846 0.845 0.675 0.676 0900  0.834 - - 4
DT 0.817 0.817 0.622 0.622 0.877 0.760 0 0 1 1
DTspp 0.836  0.841 0.645 0.638 0.892  0.798 5 - -
DTs0p 0.838 0.838 0.648 0.640 0.889  0.798 - 5 - 15
DTgop 0.832  0.831 0.646 0.642 0.887  0.791 - - 5
RF 0.843  0.843  0.650 0.650  0.901 0.831 4 4 3 11
Boosting  0.863  0.863  0.686  0.686  0.908  0.838 6 6 6 18
NN 0.819  0.810  0.668 0.672  0.889  0.829 1 1 1 3

bias for the Bank dataset. This suggests, that it can be beneficial to carefully investigate and
select suitable classification models for each use case.

Moreover, we observe that there is a trade-off between accuracy and fairness, as the
classification model with the highest accuracy is never the one with lowest bias and vice
versa. Nonetheless, it can be promising to use Boosting models as a starting point to apply
bias mitigation to, as they exhibited the highest accuracy.

6 Conclusions and Future Work

We proposed a novel search-based approach to mutate classification models in a post-
processing stage, in order to simultaneously repair fairness and accuracy issues. This approach
differentiates itself from existing bias mitigation methods, which conform to the fairness-
accuracy trade-off (i.e., repair fairness issues come at a cost of a reduced accuracy). We
performed a large scale empirical study to evaluate our approach with two popular binary
classifiers (Logistic Regression and Decision Trees) on four widely used datasets and three
fairness metrics, publicly available in the popular IBM AIF360 framework (Bellamy et al.
2018).

We found that our approach is able to simultaneously improve accuracy and fairness
of both classification models in 61% of the cases. Our approach is particularly effective for
Decision Trees, where we achieve statistically significant improvement on both accuracy and
fairness in 81.1% of the cases. Moreover, we achieved improvements without detrimental
effect on other fairness metrics that are not considered during optimization.

The comparison with three existing post-processing bias mitigation methods showed that
none of these methods is able to achieve an accuracy as high as our method in any of the
datasets. Furthermore, our approach is able to outperform existing post-processing methods
in both accuracy and fairness in 12 out of 18 cases for Decision Trees.

These findings show not only the feasibility but also the effectiveness of our approach
with respect to existing bias mitigation methods. Software engineers would benefit to have
this tool at their disposal when developing fair software, as it allows them to find good trade-
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offs between competing objectives rather than proposing a solution which often sacrifices
accuracy, as done in previous work. According to their needs, engineers can choose the
solution that better conforms to their fairness and accuracy constraints.

The promising results reported herein can be further strengthened in future work. In par-
ticular, while we already investigated two inherently different classification models (Logistic
Regression and Decision Trees) and various mutation operators, it could be of interest to
further extend our approach to other binary classification models (e.g., Neural Network, Gra-
dient Boosting) and mutation operators, as these could lead to further improvements in the
results, as highlighted in Sections 5.4 and 5.5.
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