
https://doi.org/10.1007/s10664-023-10419-3

Search-based Automatic Repair for Fairness and Accuracy in
Decision-making Software

Max Hort1 · Jie M. Zhang2 · Federica Sarro3 ·Mark Harman3

© The Author(s) 2024

Abstract
Decision-making software mainly based on Machine Learning (ML) may contain fairness
issues (e.g., providing favourable treatment to certain people rather than others based on
sensitive attributes such as gender or race). Variousmitigationmethods have been proposed to
automatically repair fairness issues to achieve fairerML software and help software engineers
to create responsible software. However, existing bias mitigation methods trade accuracy for
fairness (i.e., trade a reduction in accuracy for better fairness). In this paper, we present a novel
search-based method for repairing ML-based decision making software to simultaneously
increase both its fairness and accuracy. As far as we know, this is the first bias mitigation
approach based on multi-objective search that aims to repair fairness issues without trading
accuracy for binary classification methods. We apply our approach to two widely studied
ML models in the software fairness literature (i.e., Logistic Regression and Decision Trees),
and compare it with seven publicly available state-of-the-art bias mitigation methods by
using three different fairness measurements. The results show that our approach successfully
increases both accuracy and fairness for 61% of the cases studied, while the state-of-the-
art always decrease accuracy when attempting to reduce bias. With our proposed approach,
software engineers that previously were concerned with accuracy losses when considering

Communicated by: Brittany Johnson, Justin Smith

This article belongs to the Topical Collection: Special Issue on Equitable Data and Technology.

B Federica Sarro
f.sarro@ucl.ac.uk

Max Hort
maxh@simula.no

Jie M. Zhang
jie.zhang@kcl.ac.uk

Mark Harman
mark.harman@ucl.ac.uk

1 Simula Research Laboratory, Oslo, Norway

2 Kings College London, London, UK

3 University College London, London, UK

0123456789().: V,-vol 123

Empirical Software Engineering (2024) 29:36

Accepted: 25 October 2023 / Published online: 3 January 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10419-3&domain=pdf
http://orcid.org/0000-0001-8684-5909

fairness, are now enabled to improve the fairness of binary classification models without
sacrificing accuracy.

Keywords Software fairness · Bias mitigation · Classification · Multi-objective optimization

1 Introduction

Discrimination occurs when a decision about a person is made based on sensitive attributes
such as race or gender rather than merit. This suppresses opportunities of deprived groups or
individuals (e.g., in education, or finance) (Kamiran et al. 2012, 2018). While software sys-
tems do not explicitly incorporate discrimination, they are not spared from biased decisions
and unfairness. For example, Machine Learning (ML) software, which nowadays is widely
used in critical decision-making software such as software justice risk assessment (Angwin
et al. 2016;Berk et al. 2018) and pedestrian detection for autonomous driving systems (Li et al.
2023) has shown to exhibit discriminatory behaviours (Pedreshi et al. 2008). Such discrim-
inatory behaviours can be highly detrimental, affecting human rights (Mehrabi et al. 2019),
profit and revenue (Mikians et al. 2012), and can also fall under regulatory control (Pedreshi
et al. 2008; Chen et al. 2019; Romei and Ruggieri 2011). To combat this, software fairness
aims to provide algorithms that operate in a non-discriminatory manner (Friedler et al. 2019)
for humans.

Due to its importance as a non-functional property, software fairness has recently received
a lot of attention, in the literature of software engineering (Zhang et al. 2020; Brun andMeliou
2018; Zhang and Harman 2021; Horkoff 2019; Chakraborty et al. 2020; Tizpaz-Niari et al.
2022; Hort et al. 2021; Chen et al. 2022b). Indeed, it is the duty of software engineers and
researchers to create responsible software.

A simple approach for repairing fairness issues in ML software is the removal of sensi-
tive attributes (i.e., attributes that constitute discriminative decisions, such as age, gender,
or race) from the training data. However, this has shown to not be able to combat unfair-
ness and discriminative classification, owing to correlation of other attributes with sensitive
attributes (Kamiran and Calders 2009; Calders et al. 2009; Pedreshi et al. 2008). Therefore,
more advanced methods have been proposed in the literature, which apply bias mitiga-
tion1 at different stages of the software development process. Bias mitigation has been
applied before training software models (pre-processing) (Calmon et al. 2017; Feldman
et al. 2015; Chakraborty et al. 2020; Kamiran and Calders 2012), during the training process
(in-processing) (Zhang et al. 2018; Kearns et al. 2018; Celis et al. 2019; Berk et al. 2017;
Zafar et al. 2017), and after a software model has been trained (post-processing) (Pleiss et al.
2017; Hardt et al. 2016; Calders and Verwer 2010; Kamiran et al. 2010, 2018). However,
there are limitations for the applicability of these methods and it has been shown that they
often reduce bias at the cost of accuracy (Kamiran et al. 2012, 2018), known as the price of
fairness (Berk et al. 2017).

In this paper, we introduce the use of amulti-objective search-based procedure tomutate
binary classification models in a post-processing stage, in order to automatically repair soft-
ware fairness and accuracy issues and conduct a thorough empirical study to evaluate
its feasibility and effectiveness. Here, binary classification models represent an important
component of fairness research, with hundreds of publications addressing their fairness

1 In this paper, we use term “bias repair” and “bias mitigation” alternatively to refer to the activities conducted
to improve software fairness.

123

36 Page 2 of 33 Empirical Software Engineering (2024) 29:36

improvements (Hort et al. 2023a). We apply our method on two widely-studied binary classi-
ficationmodels inML software fairness research, namely Logistic Regression (Feldman et al.
2015; Chakraborty et al. 2020; Zafar et al. 2017; Kamiran et al. 2012; Kamishima et al. 2012;
Kamiran et al. 2018) and Decision Trees (Kamiran et al. 2010, 2012, 2018; Žliobaite et al.
2011), which belong to two different families of classifiers. These twomodels are also widely
adopted in practice on fairness-critical scenarios, mainly due to their advantages in explain-
ability.2 We investigate the performance on four widely adopted datasets, and measure the
fairness with three widely-adopted fairness metrics. Furthermore, we benchmark our method
with all existing post-processing methods publicly available from the popular IBM AIF360
framework (Bellamy et al. 2018), as well as three pre-processing and one in-processing bias
mitigation method.

The results show that our approach is able to improve both accuracy and fairness of Logis-
tic Regression and Decision Tree classifiers in 61% of the cases. The three post-processing
bias mitigation methods we studied conform to the fairness-accuracy trade-off and therefore
decrease accuracy when attempting to mitigate bias. Among all post-processing repair meth-
ods, our approach achieves the highest accuracy in 100% of the cases, while also achieving
the lowest bias in 33% of these. When compared to pre- and in-processing bias mitigation
methods, our approaches show a better or comparable performance (i.e., they are not outper-
formed by the existing methods) in 87% of the evaluations. With our approach, engineers are
able to develop fairer binary classification models without the need to sacrifice accuracy.

In summary, we make the following contributions:

– We propose a novel application of multi-objective search to debias classification models
in a post-processing fashion.

– We carry out a thorough empirical study to evaluate the applicability and effectiveness of
our search-based post-processing approach to two different classification models (Logis-
tic Regression and Decision Trees) on four publicly available datasets, and benchmark it
to seven state-of-the-art post-processing methods according to three fairness metrics.

Additionally, we make our scripts and experimental results publicly available to allow for
replication and extension of our work (Hort et al. 2023d).

The rest of the paper is organized as follows. Section 2 provides the background and
related work on fairness research, including fairness metrics and bias mitigation methods.
Section 3 introduces our approach that is used to adapt trained classification models. The
experimental design is described in Section 4. Threats are outlined in Section 4.5, while
experiments and results are presented in Section 5. Section 6 concludes.

2 Background and RelatedWork

This section introduces some background on the fairness of software systems, measuring
fairness, and bias mitigation methods that have been proposed to improve the fairness of
software systems.

2 Decision-making scenarios that highly demand fairness often require high explainability, while low explain-
ability is a big disadvantage of big complex models such as Deep Neural Networks.

123

Page 3 of 33 36Empirical Software Engineering (2024) 29:36

2.1 Software Fairness

In recent years, the fairness of software systems has risen in importance, and gained attention
from both the software engineering (Zhang et al. 2020; Brun and Meliou 2018; Zhang and
Harman 2021; Horkoff 2019; Chakraborty et al. 2020; Hort et al. 2021; Chen et al. 2022b;
Sarro 2023; Hort et al. 2023c) and the machine learning research communities (Berk et al.
2017; Kamishima et al. 2012; Kamiran et al. 2012; Calders and Verwer 2010).

While software systems can be designed to reduce discrimination, previous work has
observed that this is frequently accompanied by a reduction of the accuracy or correctness
of said models (Kamiran and Calders 2012; Feldman et al. 2015; Corbett-Davies et al. 2017;
Hort et al. 2023c).

The power of multi-objective approaches can improve such fairness-accuracy trade off
(Sarro 2023). Hort et al. (2023c) showed that multi-objective evolutionary search is effective
to simultaneously improve for semantic correctness and fairness of word embeddings model.
Chen et al. (2022b) proposed MAAT, a novel ensemble approach able to combines ML
models optimized for different objectives: fairness andML performance. Such a combination
allow MAAT to outpefrom state-of-the-art methods in 92.2% of the overall cases evaluated.
Chakraborty et al. (2020) also integrated bias mitigation into the design of ML software
by leveraging a multi-objective search for hyperparameter tuning of a Logistic Regression
model. This work has inspired our approach to integrate bias mitigation into the software
development process, however at a different stage.WhileChakraborty et al. (2020) considered
pre- and in-processing approach for bias mitigation, we propose a post-processing approach.
Moreover, our approach is not focused on a single classification model, but can be transferred
to multiple ones, as we show by using it to improve Logistic Regression and Decision Tree
models. Lastly, while their multi-objective optimization does not prevent the improvement
of accuracy and fairness at the same time, our approach demands the improvement of both.
Perera et al. (2022) proposed a search-based fairness testing approach for testing regression-
based machine learning systems, and their empirical results revealed that it is effective to
reduce group discrimination in Emergency Department wait-time prediction software.

To ensure fair software, testing methods have been also proposed to address individual
discrimination (Horkoff 2019; Zhang et al. 2020; Zhang and Harman 2021; Ma et al. 2022).
Tools such as Themis (Galhotra et al. 2017; Angell et al. 2018) and AEQUITAS (Udeshi
et al. 2018) are able to generate tests to detect individual discrimination. Similarly, Aggarwal
et al. (2019) created tests to detect individual discrimination, however do this in a black-box
manner. Ma et al. (2022) proposed a novel an approach for the selection of the initial seeds to
generate individual discrimination instances (IDIs) for fairness testing, dubbed I&D, which
is effective for improving model fairness. We refer the reader to a comprehensive survey on
fairness testing (Chen et al. 2022a).

Empirical studies haven also been carried out by the software engineering community to
gain insight on software fairness. Biswas and Rajan (2020) investigated fairness and bias
mitigation of real-world crowd-sourced ML models. Furthermore, Harrison et al. (2020)
studied the way in which humans perceive the fairness of ML models. Zhang and Harman
(2021) found that the fairness of ML software can be improved by using a richer feature set
for training. Hort and Sarro (2021) pointed out that reducing the bias of ML software can
come at the cost of losing the ability to differentiate between desired features. To allow for a
benchmarking of bias mitigation methods, Hort et al. (2021) proposed Fairea which provides
a baseline and quantitative evaluation of fairness-accuracy trade-offs. Fairea has been adopted
by subsequent studiesChen et al. (2023a) to carry out themost comprehensive empirical study
to date of 17 state-of-the-art bias mitigation methods for ML classifiers, evaluated with 11

123

36 Page 4 of 33 Empirical Software Engineering (2024) 29:36

ML performance metrics, 4 fairness metrics, and 20 types of fairness-performance trade-off
assessment, applied to 8 widely-adopted software decision tasks. This study revealed that
the bias mitigation methods significantly decrease ML performance in 53% of the studied
scenarios (ranging between 42% and 66% according to different ML performance metrics),
thus suggesting the need of methods able to improve the accuracy-fairness trade-off. Chen
et al. (2024) empirically analysed the effectiveness of 11 state-of-the-art fairness improvement
methods when considering multiple protected attributes. They found that improving fairness
for a single protected attribute can largely decrease fairness regarding unconsidered protected
attributes. Intersectional bias (which encompasses multiple sensitive attributes at the same
time) is an open challenge in software fairness (Sarro 2023). We refer the reader to the work
by Gohar and Cheng (2023) for a survey on this topic.

2.2 Bias MitigationMethods

Bias can occur at any stage of the machine learning system development. To repair bias,
researchers have applied bias mitigation methods in three different stages: pre-processing,
in-processing and post-processing (Friedler et al. 2019; Hort et al. 2023b).

Pre-processing methods aim at processing the training data to reduce bias in the data.
Approaches include the reweighing of training data (Kamiran and Calders 2012; Calders
et al. 2009), editing of labels and features (Calmon et al. 2017; Feldman et al. 2015), data
obfuscation (Zemel et al. 2013), generation of additional data (Chakraborty et al. 2021) and
removal of data points (Žliobaite et al. 2011; Chakraborty et al. 2020; Chen et al. 2022b). Pre-
processing methods are applied on the training data, which provides the benefit that they can
be applied to any classification algorithm. On the other hand, this could lead to uncertainty
of results, as they do not take the training algorithms into account.

In-processing methods aim to mitigate bias during training by optimizing the ML
algorithms themselves. These include adversarial learning (Zhang et al. 2018), fairness con-
straints (Kamishima et al. 2012; Calders et al. 2013; Berk et al. 2017), adaptation of split rule
for decision trees (Kamiran et al. 2010), decision boundary (un)fairness (Zafar et al. 2017),
latent-unbiased variables (Calders and Verwer 2010), hyperparameter tuning (Tizpaz-Niari
et al. 2022). gerrymandering (Kearns et al. 2018), and meta algorithms (Celis et al. 2019).
While in-processing methods are able to impose specific fairness goals into the training
procedure, they are depending on the classification models they are designed for.

Post-processing methods apply changes, once a classification model has been trained.
Similar to pre-processing algorithms, post-processing methods can often be applied to any
classification algorithm. Moreover, they do not require access to training data or the learning
algorithm. Herein we propose a novel post-processing method, therefore in the following we
discuss the most common post-processing methods, which are also used as a benchmark in
our experiments (Section 5), and the main difference with our proposed approach. We refer
the reader to thework byHort et al. (2023b) for a comprehensive survey on the state-of-the-art
bias mitigation methods.

Kamiran et al. (2012, 2018) proposed Reject Option based Classification (ROC), which
exploits predictions with high uncertainty. This follows the intuition that discriminatory
decisions are made close to the decision boundary and therefore with uncertainty. Given
a region with low confidence (e.g., labels close to 0.5 in binary classification), instances
belonging to the unprivileged group receive a favorable label, and instances of the privileged
group an unfavorable label. Instances outside the low confidence region remain unchanged.

123

Page 5 of 33 36Empirical Software Engineering (2024) 29:36

Other than modifying predictions in a post-processing stage, trained classifiers can be
addressed as well. Savani et al. (2020) called the post-processing of trained classification
models “intra-processing” and proposed an approach for modifying the weights of Neural
Networks.

Kamiran et al. (2010) applied leaf relabeling, as a post-processing method on already
trained Decision Trees. Usually, labels of leaves are determined by the majority class of the
training data which is classified by this particular leaf node. In their debiasing method, leaves
are relabeled to reduce discrimination (e.g., a leaf that is returning “false” is changed to
return “true”), while also keeping the loss in accuracy minimal. In particular, each leaf node
is investigated to select and relabel the leaf with the highest ratio of discrimination reduction
and accuracy loss. Their approach assumes that, in order to lower discrimination of DTs, one
has to lower accuracy.

Hardt et al. (2016) proposed a post-processing method based on equalized odds. A clas-
sifier is said to satisfy equalized odds when it is independent of protected attribute and true
label (i.e., true positive and false positive rates across privileged and unprivileged group are
equal). Given a trained classification model, they used linear programming to derive an unbi-
ased one. Another variant of the equalized odds bias mitigation method has been proposed
by Pleiss et al. (2017). In contrast to the original equalized odds method, they used calibrated
probability estimates of the classification model (e.g., if 100 instances receive p = 0.6, then
60% of them should belong to the favorable label 1).

Our herein proposed post-processing approach differs from the leaf relabeling approach
proposed by Kamiran et al. (2010), as we do apply changes to the classification model
only if they increase accuracy and reduce bias. In other words, our approach is the first
to deliberately optimize classification models for accuracy and fairness at the same time,
unlike existing methods that are willing to reduce bias at the cost of accuracy (Berk et al.
2017). Overall, we apply a search procedure rather than deterministic approaches (Kamiran
et al. 2010, 2012, 2018; Hardt et al. 2016; Pleiss et al. 2017) and we do not assume that
bias reduction has to come with a decrease in accuracy. To the best of our knowledge our
proposal is the first to improve classification models according to both fairness and accuracy
by mutating the classification model itself, rather than manipulating the training data or the
predictions.

2.3 Fairness Measurement

There are two primary methods to measure fairness of classification models: individual
fairness and group fairness (Speicher et al. 2018).While individual fairness is concernedwith
an equal treatment of similar individuals (Dwork et al. 2012), group fairness requires equal
treatment of different population groups. Such groups are divided by protected attributes,
such as race, age or gender. Thereby, one group is said to be privileged if it is more likely to
get an advantageous outcome than another, unprivileged group.

Due to the difficulty of determining the degree of similarity between individuals (Jacobs
and Wallach 2021), it is common in the literature to focus on group fairness metrics. In
particular, we investigate three group fairness metrics (all publicly available in the AIF360
framework (Bellamy et al. 2018)) to measure the fairness of a classification model, which are
frequently used in the domain of software fairness (Zhang and Harman 2021; Chakraborty
et al. 2020, 2021;Hort et al. 2021) and are usually optimized by existing biasmitigationmeth-
ods such as Statistical Parity Difference, Average Odds Difference, and Equal Opportunity
Difference.

123

36 Page 6 of 33 Empirical Software Engineering (2024) 29:36

Proceeding, we use ŷ to denote a prediction of a classification model. We use D to denote
a group (privileged or unprivileged). We use Pr to denote probability.

TheStatistical ParityDifference (SPD) requires that predictions aremade independently of
protected attributes (Zafar et al. 2017). Therefore, favourable and unfavourable classifications
for each demographic group should be identical over the whole population (Dwork et al.
2012):

SPD = Pr(ŷ = 1|D = unprivileged)

−Pr(ŷ = 1|D = privileged) (1)

TheAverageOddsDifference (AOD) averages the differences in False PositiveRate (FPR)
and True Positive Rate (TPR) among privileged and unprivileged groups (Hardt et al. 2016):

AOD = 1

2
((FPRD=unprivileged − FPRD=privileged)

+(T PRD=unprivileged − T PRD=privileged)) (2)

The Equal Opportunity Difference (EOD) corresponds to the TPR difference (Hardt et al.
2016):

EOD = T PRD=unprivileged − T PRD=privileged (3)

Following previous work on fairness in SE (Chakraborty et al. 2020; Zhang and Harman
2021), we are interested in the absolute values of these metrics. Thereby, each metric is
minimized at zero, indicating that no bias is residing in a classification model.

3 Proposed Approach

This section introduces the search-based procedure we propose for mutating classification
models to simultaneously improve both accuracy and fairness. In addition,we describe imple-
mentation details for two classification models (Logistic Regression, Decision Trees) to
perform such a procedure.

3.1 Procedure

Our search-based post-processing procedure aims to iterativelymutate a trained classification
model in order to improve both accuracy and fairness at the same time. For this purpose, we
require a representation of the classification model that allows changes (“mutation”) to the
prediction function. To simplify the mutation process, we apply mutation incrementally (i.e.,
repeatedly changing small aspects of the classifier). Such a procedure is comparable to the
local optimisation algorithm hill climbing. Based on an original solution, hill climbing eval-
uates neighboring solutions and selects them only if it improves the original fitness (Harman
et al. 2010). We mutate a trained classification model cl f with the goal to achieve improve-
ments in accuracy and fairness. In this context, the fitness function measures the accuracy
and fairness of cl f on a validation dataset (i.e., a dataset that has not been used during the
initial training of cl f). “Accuracy” (acc) refers to the standard accuracy in machine learn-
ing, which is the number of correct predictions against the total number of predictions. To

123

Page 7 of 33 36Empirical Software Engineering (2024) 29:36

measure fairness, we use the three fairness metrics introduced in Section 2.3 (SPD, AOD,
EOD).

Algorithm 1 outlines our procedure to improve accuracy and fairness of a trained classifi-
cation model cl f . In line 4, f i tness(cl f) determines the fitness of the modified classification
model in terms of accuracy (acc′) and a fairness metric (f air ′). In our empirical study we
experiment with three different fairness metrics (see Section 2.3), one at a time. If desired,
f i tness(cl f) can also be modified to take multiple fairness metrics into account simultane-
ously.

We only apply a mutation if the accuracy and fairness of the mutated model (acc′, f air ′)
are better than the accuracy and fairness of the previous classification model (acc, f air)
(Line 5). If that is not the case, the mutation is reverted (undo_mutation) and the procedure
continues until the terminal condition is met. Amutation of the trainedmodel at each iteration
of the search process that leads to an improvement in one objective (either accuracy or
fairness) will almost certainly change the other objective at the same time. If the other
objective is not worsened, the change is kept; otherwise, the change is reverted. This effect
is accumulated over each iteration.

To show the generalizability of the approach, and in line with previous work (Kamiran
et al. 2012, 2018; Chakraborty et al. 2020), we use the default configuration, as provided
by scikit (Pedregosa et al. 2011) to train the classification models before applying our post-
processing procedure.

Algorithm 1 Post-processing procedure of a trained classification model cl f .
1: acc, f air ⇐ f i tness(cl f)
2: while terminal condition not met do
3: cl f ⇐ mutate(cl f)
4: acc′, f air ′ ⇐ f i tness(cl f)
5: if (acc′ > acc) && (f air ′ > f air) then
6: acc ⇐ acc′
7: f air ⇐ f air ′
8: else
9: cl f ⇐ undo_mutation(cl f)
10: end if
11: end while

3.2 Logistic Regression

Representation. Logistic Regression (LR) is a linear classifier that can be used for binary
classification. Given training data, LR determines the best weights for its coefficients. Below,
we illustrate the computation of the LR prediction with four tuneable weights (b0, b1, b2, b3).
At first, Equation 4 presents the computation of predictions with a regular linear regression
classifier. To make a prediction, LR uses this the Linear prediction in a sigmoid function
(Equation 5):

Linear(x1, x2, x3) = b0 + b1x1 + b2x2 + b3x3 (4)

P(Y) = 1

1 + e−Y
(5)

This prediction function determines the binary label of a 3-dimensional input (x1, x2, x3).
In a binary classification scenario, we treat predictions ≥ 0.5 as label 1, and 0 otherwise.

123

36 Page 8 of 33 Empirical Software Engineering (2024) 29:36

This shows that the binary classification is determined by n variables (b0 . . . bn−1). To
represent an LR model, we store the n coefficients in an n-dimensional vector.
Mutation Given that an LR classification model can be represented by one-dimensional
vector, wemutate single vector elements to createmutated variants of themodel. In particular,
we pick an element at random and multiply it by a value within a range of {−10%, 10%}. We
performed an analysis on different degrees of noise and mutation operators for LR models
in Section 5.4.

3.3 Decision Tree

Representation. Decision Trees (DT) are classification models that solve the classification
process by creating tree-like solutions, which create leaves and branches based on features
of the training data. We are interested in binary DTs. In binary DTs, every interior node (i.e.,
all nodes except for leaves) have exactly two child nodes (left and right).
Mutation We use pruning as a means to mutate DTs. The pruning process deletes all the
children of an interior node, transforming it into a leaf node, and has shown to improve
the accuracy of DT classification in previous work (Breiman et al. 1984; Quinlan 1987;
Breslow and Aha 1997). In particular, we pick an interior node i at random and treat it as a
leaf node by removing all subjacent child nodes. We choose to use pruning, instead of leaf
relabeling, because preliminary experiments showed that pruning outperforms leaf relabeling
(i.e., Kamiran et al. (2010) used leaf relabeling in combination with an in-processing method
but not in isolation).

4 Experimental Setup

In this section, we describe the experimental design we carry out to assess our search-based
bias repair method for binary classification models (i.e., Logistic Regression and Decision
Trees). We first introduce the research questions, followed by the subjects and the experi-
mental procedure used to answer these questions.

4.1 Research Questions

Our evaluation aims to answer the following research questions:
RQ1: To what extent can the proposed search-based approach be used to improve both,
accuracy and fairness, of binary classification models?

To answer this question, we apply our post-processing approach to LR andDTs (Section 3)
on four datasets with a total of six protected attributes (Section 4.2).

The search procedure is guided by accuracy and each of the three fairness metrics (SPD,
AOD, EOD) separately. Therefore, for each classification model, we perform 3 (fairness
metrics) x 6 (datasets) = 18 experiments. For each of the fairness metrics, we mutate the
classification models and measure changes in accuracy and the particular fairness metric
used to guide the search (e.g., we post-process LR based on accuracy and SPD). We then
determine whether the improvement in accuracy and fairness (as explained in Section 3)
achieved by mutating the classification models are statistically significant, in comparison to
the performance of the default classification model.

123

Page 9 of 33 36Empirical Software Engineering (2024) 29:36

Furthermore, we compare optimization results from post-processing with existing bias
mitigation methods:
RQ2:Howdoes theproposed search-basedapproachcompare to existingbiasmitigation
methods?

We address this research question in two steps. First, we perform a comparison with post-
processing bias mitigation methods, which are applied at the same stage of the development
process as our approach (RQ2.1). Afterwards, we compare our post-processing approach to
pre- and in-processing methods (RQ2.2).

To answer both questions (RQ2.1 and RQ2.2), we benchmark our approach against
existing and widely-used bias mitigation methods: three post-processing methods, three pre-
processing methods and one in-processing method, which are all publicly available in the
AIF360 framework (Bellamy et al. 2018). In particular, we applied these existing bias mitiga-
tion methods to LR and DTs on the same set of problems (i.e., the four datasets used also for
RQ1 and RQ3) in order to compare their fairness-accuracy trade-off with the one achieved
by our proposed approach. A description of the benchmarking bias mitigation methods is
provided in Section 4.3, whereas the datasets used are described in Section 4.2.

While the objectives considered during the optimization procedure are improved, this has
shown to carry detrimental effects on other objectives (Ferrucci et al. 2010; Chakraborty
et al. 2020). Therefore, we determine the impact optimization for one fairness metric has
on the other two fairness metrics, which have not been considered during the optimization
procedure:
RQ3: What is the impact of post-processing guided by a single fairness metric on other
fairness metrics?

To answer this question, we apply our post-processing method on LR and DTs. While
optimizing for each of the three fairness metrics, we measure changes of the other two. We
are then able to compare the fairness metrics before and after the optimization process, and
visualize changes using boxplots. Moreover, we can determine whether there are statistically
significant changes to “untouched” fairness metrics, which are not optimized for.

We perform additional experiments to gain insights on the importance of parameters when
applying our post-processing method (i.e., terminal condition and mutation operations), and
the performance of advanced binary classification models (e.g., neural networks) in com-
parison to Logistic Regression and Decision Tree classifiers. The investigation of parameter
choices is addressed in Section 5.4, advanced classification models are investigated in Sec-
tion 5.5.

4.2 Datasets

We perform our experiments on four real-world datasets used in previous software fair-
ness work (Chakraborty et al. 2020; Zhang and Harman 2021) with a total of six protected
attributes.

The Adult Census Income (Adult) (Kohav 2023) contains financial and demographic
information about individuals from the 1994 U.S. census. The privileged and unprivileged
groups are distinguished by whether their income is above 50 thousand dollars a year.

The Bank Marketing (Bank) (Moro et al. 2014) dataset contains details of a direct mar-
keting campaign performed by a Portuguese banking institution. Predictions are made to
determine whether potential clients are likely to subscribe to a term deposit after receiv-
ing a phone call. The dataset also includes information on the education and type of job of
individuals.

123

36 Page 10 of 33 Empirical Software Engineering (2024) 29:36

Table 1 Datasets used in our empirical study

Dataset Size Attributes Favourable Label Majority Label Protected Privileged - Unprivileged

Adult 48,842 14 1 (income > 50k) 0 (75%) Sex Male - female

Race White - non white

COMPAS 7,214 28 0 (No recid) 0 (54%) Sex Female - male

Race Caucasian - not Caucasian

Bank 41,188 20 1 (yes) 0 (87%) Age ≥ 25 - < 25

MEPS19 15,830 138 1 (≥ 10 visits) 0 (83%) Race White - non-white

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
(propublica 2023) dataset contains the criminal history and demographic information of
offenders in Broward County, Florida. To indicate whether a previous offender is likely to
re-offend, they receive a recidivism label.

TheMedical Expenditure Panel Survey (MEPS19) represents a large scale survey of fam-
ilies and individuals, their medical providers, and employers across the United States.3 The
favourable label is determined by “Utilization” (i.e., how frequently individuals frequented
medical providers).

In Table 1, we provide the following information about the four datasets: number of
rows and features, the favourable label and majority class. In addition, we list the protected
attributes for each dataset (as provided by the AIF360 framework (Bellamy et al. 2018)),
which are investigated in our experiments, and the respective privileged and unprivileged
groups for each protected attribute.

4.3 Benchmark Bias MitigationMethods

As our proposed method belongs to the category of post-processing methods, we compare it
with all the state-of-art post-processing bias mitigation methods made publicly available in
the AIF360 framework (Bellamy et al. 2018), as follows (Section 2.2):

• Reject Option Classification (ROC) (Kamiran et al. 2012, 2018);
• Equalized odds (EO) (Hardt et al. 2016);
• Calibrated Equalized Odds (CO) (Pleiss et al. 2017).

AIF360 (Bellamy et al. 2018) provides ROCandCOwith the choice of three different fairness
metrics to guide the bias mitigation procedure (Section 2.3). ROC can be applied with SPD,
AOD, and EOD. CO can be applied with False Negative rate (FNR), False Positive Rate
(FPR), and a “weighed” combination of both. We apply both, ROC and CO, with each of the
available fairness metrics. EO does not provide choices for fairness metrics to users.

While our focus lies on the empirical evaluation of our post-processing approach with
approaches of the same type, we also consider a comparison with pre- and in-processing
methods (RQ2-2, Section 5.5). In particular, we compare our approach to the following
pre-processing and in-processing methods:

• Optimized Pre-processing (OP) (Calmon et al. 2017): Probabilistic transformation of
features and labels in the dataset.

3 https://meps.ahrq.gov/mepsweb/

123

Page 11 of 33 36Empirical Software Engineering (2024) 29:36

https://meps.ahrq.gov/mepsweb/

D
at

as
et

1) Train classifier 2) Perform optimization

Train

Validation

Test

3) Evaluate Performance

a) Modify classifier
repeat 30 times b) Find Pareto-set

Fig. 1 Empirical evaluation of a single data split

• Learning Fair Representation (LFR) (Zemel et al. 2013): Intermediate representation
learning to obfuscate protected attributes.

• Reweighing (RW) (Kamiran and Calders 2012; Calders et al. 2009): Reweighing the
importance (weigh) of instances from the privileged and unprivileged group in the dataset.

• Exponentiated gradient reduction (RED) (Agarwal et al. 2018): Two player game to find
the best randomized classifier under fairness constraints.

The three pre-processing methods (OP, LFR, RW) are classification model-agnostic and
can be easily be applied Logistic Regression and Decision Tree models (i.e., training data
can be changed independent of the classification model used). Whereas, in order to apply
RED, the in-processing approach proposed by Agarwal et al. (2018), one needs to provide
a classification model (Logistic Regression or Decision Tree) and a fairness notion. In our
case, we apply RED with three different fairness notions: “DemographicParity” (REDDP),
“EqualizedOdds” (REDEO), “TruePositiveRate” (REDT PR). These three notions coincide
with our evaluation metrics, SPD, AOD and EOD, respectively.

4.4 Validation and Evaluation Criteria

Tovalidate the effectiveness of our post-processing approach to improve accuracy and fairness
of binary classification models, we apply it to LR and DT. Since our optimization approach
applies randommutations, we expect variation in the results. Figure 1 illustrates the empirical
evaluation procedure of our method for a single datasplit. At first, we split the data in three
sets: training (70%), validation (15%), test (15%).4 To mitigate variation, we apply each bias
mitigation method, including our newly proposed approach on 50 different data splits.

The training data is used to create a classifier which we can post-process. Once a classifier
is trained (i.e., Logistic Regression or Decision Tree), we apply our optimization approach 30
times (Step 2).5 To then determine theperformance (accuracy and fairness) of our approach

4 We have performed a comparison of different data splits (i.e., it is beneficial to train with more data by
combining train and validation) set but could not find systematic advantages. Further details can be found in
our online appendix (Hort et al. 2023d).
5 There is no particular reason for choosing to run it 30 times, this number can be adjusted as one sees
fit. Ideally the more runs the better, in order to cater for the inherent stochastic nature of the approach, yet
limited computational resources or time may limit the number of repetitions performed. In practice, only one
classification model can be used, therefore one can apply our approach multiple times and select a model from
the Pareto-front, or use the entire search budget on building a single optimal classification model.

123

36 Page 12 of 33 Empirical Software Engineering (2024) 29:36

on a single data split, we compute the Pareto-optimal set6 based on the performance on
the validation set. Once we obtain the Pareto-set of optimized classification models based
on their performance on the validation set, we average their performance on the test set.
Performance on the test set (i.e., accuracy and fairness) is used to compare different bias
mitigation methods and determine their effectiveness. Each run of our optimization approach
is limited to 2, 500 iterations (terminal condition, Algorithm 1). The existing post-processing
methods are deterministic, and therefore applied only once for each data split.

To assess the effectiveness of our approach (RQ1) and compare it with existing bias
mitigation methods (RQ2), we consider both summary statistics (i.e., average accuracy and
fairness), statistical significance tests and effect size measures, and Pareto-optimality. Fur-
thermore, we use boxplots to visualize the impact of optimizing accuracy and one fairness
metric on the other two fairness metrics (RQ3).

Pareto-optimality states that a solution a is not worse in all objectives than another solution
b and better in at least one (Harman et al. 2010). We use Pareto-optimality to both measure
how often our approach dominates the default classification model or is Pareto-optimal, and
to plot the set of solutions found to be non-dominated (and therefore equally viable) with
respect to the state-of-the-art (RQs1-2). In the case where there are two objectives, such as
ours, this leads to a two dimensional Pareto surface.

To determine whether the differences in the results achieved by all approaches are statis-
tical significant, we use the Wilcoxon Signed-Rank test, which is a non-parametric test that
makes no assumptions about underlying data distribution (Wilcoxon 1992). We set the confi-
dence limit, α, at 0.05 and applied the Bonferroni correction for multiple hypotheses testing
(α/K , where K is the number of hypotheses).7 This correction is the most conservative of all
corrections and its usage allows us to avoid the risk of Type I errors (i.e., incorrectly reject-
ing the Null Hypothesis and claiming predictability without strong evidence). In particular,
depending on the RQ, we test the following null hypothesis:
(RQ1) H0: The fairness and accuracy achieved by approachx is not improved with respect to
the default classificationmodel. The alternative hypothesis is as follows: H1:The fairness and
accuracy achieved by approachx improves with respect to the default classification model.
In this context, “improved” means that the accuracy is increased and fairness metric values
are decreased (e.g., a SPD of 0 indicates that there is no unequal treatment of privileged and
unprivileged groups).
(RQ3) H0: Optimizing for accuracy and fairness metric m1 does not improve fairness met-
ricm2 with respect to the default classificationmodel. The alternative hypothesis is as follows:
H1:Optimizing for accuracy and fairness metric m1 improves fairness metricm2 with respect
to the default classification model. For this RQ, we summarise the results of the Wilcoxon
tests by counting the number of win-tie-loss as follows: p–value<0.01 (win), p–value>0.99
(loss), and 0.01≤ p–value≥0.99 (tie), as done in previouswork (Sarro et al. 2017; Kocaguneli
et al. 2011; Sarro et al. 2018; Sarro and Petrozziello 2018).

In addition to evaluating statistical significance, we measure the effect size based on the
Vargha and Delaney’s Â12 non-parametric measure (Vargha and Delaney 2000), which does
not require that the data is normally distributed (Arcuri and Briand 2014). The Â12 measure

6 This is the set of solutions that are non-dominated to each other but are superior to the rest of solutions in the
search space. In other words each solution of the Pareto-set includes at least one objective inferior to another
solution in that Pareto-set, although both solutions are superior to others in the rest of the search space with
respect to all objectives.
7 Here we use K = 12, for the two hypothesis and the six datasets. In Tables 2 and 3, we report the original
p-value (i.e., with no correction) so that a reader could assess the results using a different correction, if
interested.

123

Page 13 of 33 36Empirical Software Engineering (2024) 29:36

compares an algorithm A with another algorithm B, to determine the probability that A
performs better than B with respect to a performance measure M :

Â12 = (R1/m − (m + 1)/2)/n (6)

In this formula, m and n represent the number of observations made with algorithm A and B
respectively; R1 denotes the rank sum of observations made with A. If A performs better than
B, Â12 can display one of the following effect sizes: Â12 ≥ 0.72 (large), 0.64 < Â12 < 0.72
(medium), 0.56 < Â12 < 0.64 (small), although these thresholds are not definitive (Sarro
et al. 2016).

4.5 Threats to Validity

The internal validity of our study relies in the confidence that the experimental results we
obtained are trustworthy and correct. To alleviate possible threats to the internal validity, we
applied our post-processing method and existing bias mitigation methods 50 times, under
different train/validation/test splits. This allowed us to use statistical significance tests to
further assess our results and findings.We have used traditional measures used in the software
fairness literature to assess ML accuracy, while we recognise alternative measures could be
used to take into account data imbalance (Chen et al. 2023b; Moussa and Sarro 2022).

Threats to external validity related to generalizability of our results, are primarily con-
cerned with the datasets, approaches and metrics we investigated. To mitigate this threat
we have considered in this study all datasets publicly available which have been previously
used in the literature to solve the same problem. Using more data in the future will further
increase the generalizability of our results. Furthermore, we have successfully applied our
post-processing method on two inherently different classification models (Logistic Regres-
sion, Decision Trees), which strengthens the confidence that our approach could be applied to
other binary classifiers. We have also explored all state-of-the-art post-processing debiasing
methods in addition to three pre-processing and one in-processing method available from
the AIF360 framework (Bellamy et al. 2018) (version 0.3.0), which is publicly available, to
strengthen the generalizability and reproducibility of our work.

To mitigate possible threats to construct validity, and support the applicability and gener-
alizability of our approach, and allow for the replication and extension of our work, we have
made our scripts and results publicly available (Hort et al. 2023d).

5 Results

This section presents the results of our experiments to answer the research questions explained
in Section 4.1.

5.1 RQ1. Fairness-Accuracy Improvement

In the first research question, we investigate whether our post-processing approach is able
to improve both fairness and accuracy when applied to binary classification models (namely
LR and DT). The baseline considered is the default classification model. We apply our
approach on four datasets, as outlined in Section 4.4. In total, we apply post-processing with
three different configurations, to optimize for accuracy and one of the three fairness metric
at a time. We will call those configurations DTSPD , DTAOD , DTEOD , LRSPD , LRAOD ,

123

36 Page 14 of 33 Empirical Software Engineering (2024) 29:36

Ta
bl
e
2

R
Q
1-
L
og
is
tic

R
eg
re
ss
io
n:

A
ve
ra
ge

ac
cu
ra
cy

an
d
fa
ir
ne
ss

of
no
n-
do
m
in
at
ed

so
lu
tio

ns
ov
er

50
di
ff
er
en
td

at
a
sp
lit
s
(i
.e
.,
fo
r
ea
ch

da
ta
sp
lit
,w

e
se
le
ct
th
e
no

n-
do

m
in
at
ed

so
lu
tio

ns
an
d
av
er
ag
e
th
ei
r
pe
rf
or
m
an
ce

on
th
e
te
st
se
t)

A
du

lt
C
om

pa
s

B
an
k

M
ep
s1
9

Se
x

R
ac
e

Se
x

R
ac
e

A
ge

R
ac
e

A
cc
ur
ac
y

L
R
d
e
fa

ul
t

0.
83

3
0.
83

3
0.
67

7
0.
67

7
0.
89

9
0.
83

8

L
R
S
P
D

0.
84

5
(0
.0
0)

0.
84

5
(0
.0
0)

0.
67

6
(0
.2
2)

0.
67

5
(0
.3
1)

0.
90

0
(0
.0
1)

0.
83

5
(0
.0
0)

L
R
A
O
D

0.
84

6
(0
.0
0)

0.
84

5
(0
.0
0)

0.
67

5
(0
.2
9)

0.
67

5
(0
.3
1)

0.
90

0
(0
.0
6)

0.
83

4
(0
.0
0)

L
R
E
O
D

0.
84

6
(0
.0
0)

0.
84

5
(0
.0
0)

0.
67

5
(0
.2
0)

0.
67

6
(0
.7
2)

0.
90

0
(0
.0
5)

0.
83

4
(0
.0
0)

SP
D

L
R
d
e
fa

ul
t

0.
19

1
0.
03

4
0.
27

9
0.
17

3
0.
07

4
0.
12

3

L
R
S
P
D

0.
17

1
(0
.0
0)

0.
08

6
(0
.0
0)

0.
19

9
(0
.0
0)

0.
15

7
(0
.0
0)

0.
07

4
(0
.5
9)

0.
10

7
(0
.0
0)

A
O
D

L
R
d
e
fa

ul
t

0.
12

0
0.
04

4
0.
25

4
0.
15

0
0.
05

1
0.
12

5

L
R
A
O
D

0.
08

3
(0
.0
0)

0.
04

1
(0
.4
2)

0.
17

8
(0
.0
0)

0.
13

3
(0
.0
0)

0.
05

4
(0
.2
0)

0.
11

1
(0
.0
0)

E
O
D

L
R
d
e
fa

ul
t

0.
15

0
0.
07

8
0.
19

4
0.
09

4
0.
07

6
0.
20

5

L
R
E
O
D

0.
08

8
(0
.0
0)

0.
04

9
(0
.0
1)

0.
11

5
(0
.0
0)

0.
07

9
(0
.0
0)

0.
08

2
(0
.3
3)

0.
17

5
(0
.0
0)

B
ol
d
va
lu
es

in
di
ca
te

im
pr
ov
em

en
ts
ov
er

th
e
de
fa
ul
t
cl
as
si
fic
at
io
n
m
od
el
.
T
he

p-
va
lu
e
of

th
e
W
ilc
ox
on

Si
gn
ed
-R
an
k
te
st
co
m
pa
ri
ng

ea
ch

ap
pr
oa
ch

w
ith

th
e
de
fa
ul
t
L
og
is
tic

R
eg
re
ss
io
n
m
od
el
,i
s
gi
ve
n
in

br
ac
ke
ts
fo
r
ea
ch

m
et
ri
c.
C
ol
or
s
ar
e
us
ed

to
sh
ow

th
e
ef
fe
ct
si
ze

(
la
rg
e
,
m
ed
iu
m

,
sm

al
l
)

123

Page 15 of 33 36Empirical Software Engineering (2024) 29:36

Ta
bl
e
3

R
Q
1-
D
ec
is
io
n
T
re
e:
A
ve
ra
ge

ac
cu
ra
cy

an
d
fa
ir
ne
ss
of

no
n-
do
m
in
at
ed

so
lu
tio

ns
ov
er
50

di
ff
er
en
td
at
a
sp
lit
s
(i
.e
.,
fo
re
ac
h
da
ta
sp
lit
,w

e
se
le
ct
th
e
no

n-
do

m
in
at
ed

so
lu
tio

ns
an
d
av
er
ag
e
th
ei
r
pe
rf
or
m
an
ce

on
th
e
te
st
se
t) A
du

lt
C
om

pa
s

B
an
k

M
ep
s1
9

Se
x

R
ac
e

Se
x

R
ac
e

A
ge

R
ac
e

A
cc
ur
ac
y

D
T d

e
fa

ul
t

0.
81

7
0.
81

7
0.
62

2
0.
62

2
0.
87

7
0.
76

0

D
T
S
P
D

0.
83

6
(0
.0
0)

0.
84

1
(0
.0
0)

0.
64

5
(0
.0
0)

0.
63

8
(0
.0
0)

0.
89

2
(0
.0
0)

0.
79

8
(0
.0
0)

D
T
A
O
D

0.
83

8
(0
.0
0)

0.
83

8
(0
.0
0)

0.
64

8
(0
.0
0)

0.
64

0
(0
.0
0)

0.
88

9
(0
.0
0)

0.
79

8
(0
.0
0)

D
T
E
O
D

0.
83

2
(0
.0
0)

0.
83

1
(0
.0
0)

0.
64

6
(0
.0
0)

0.
64

2
(0
.0
0)

0.
88

7
(0
.0
0)

0.
79

1
(0
.0
0)

SP
D

D
T d

e
fa

ul
t

0.
18

0
0.
08

5
0.
12

9
0.
11

4
0.
10

7
0.
12

8

D
T
S
P
D

0.
11

0
(0
.0
0)

0.
06

0
(0
.0
0)

0.
08

3
(0
.0
0)

0.
09

1
(0
.0
0)

0.
08

8
(0
.0
0)

0.
04

7
(0
.0
0)

A
O
D

D
T d

e
fa

ul
t

0.
07

3
0.
03

5
0.
10

7
0.
09

8
0.
06

8
0.
09

1

D
T
A
O
D

0.
03

2
(0
.0
0)

0.
02

8
(0
.0
0)

0.
07

5
(0
.0
0)

0.
08

1
(0
.0
0)

0.
05

7
(0
.0
0)

0.
03

6
(0
.0
0)

E
O
D

D
T d

e
fa

ul
t

0.
05

6
0.
03

4
0.
08

9
0.
06

4
0.
07

7
0.
09

3

D
T
E
O
D

0.
04

1
(0
.0
0)

0.
03

4
(0
.7
0)

0.
05

7
(0
.0
0)

0.
06

2
(0
.8
1)

0.
08

1
(0
.6
1)

0.
02

2
(0
.0
0)

B
ol
d
va
lu
es

in
di
ca
te
im

pr
ov
em

en
ts
ov
er
th
e
de
fa
ul
tc
la
ss
ifi
ca
tio

n
m
od
el
.T

he
p-
va
lu
e
of

th
e
W
ilc
ox
on

Si
gn
ed
-R
an
k
te
st
co
m
pa
ri
ng

ea
ch

ap
pr
oa
ch

w
ith

th
e
de
fa
ul
tD

ec
is
io
n
T
re
e

m
od
el
,i
s
gi
ve
n
in

br
ac
ke
ts
fo
r
ea
ch

m
et
ri
c.
C
ol
or
s
ar
e
us
ed

to
sh
ow

th
e
ef
fe
ct
si
ze

(
la
rg
e
,
m
ed
iu
m

,
sm

al
l
).

123

36 Page 16 of 33 Empirical Software Engineering (2024) 29:36

LREOD to determine the classification model and the fairness metric considered during
optimization. These configurations are applied to four datasets on 50 train/validation/test
splits and repeated 30 times. Tables 2 and 3 show these results for Logistic Regression and
Decision Trees respectively. These tables show the results of the default classification model
and the three optimization configurations.

We can see that our post-processing approach is able to improve the accuracy of the two
classification models (LR and DT) in 27 out of 36 cases. In the half of the cases the accuracy
of LR is statistically significant better (6 out of 18 cases) or comparable (3 out of 18 cases)
with respect to the default model, while in 6 out of 18 cases it is reduced although no statistical
significant difference is observed. In the remaining three cases, all on the MEPS19 datasets,
accuracy is statistically worse with a small effect size.

All the 18 out of 18 cases improve the accuracy of DT, all of which are statistically
significant with large effect sizes.

When investigating the impact of our post-processing approach on each of the three
fairness metrics (i.e., mutation is applied if the particular fairness metric and accuracy are
improved), we compare the fairness of the default classification model with the configuration
to optimize for that particular metric (e.g., we compare the SPD of the default LR with
the SPD achieved by LRSPD). Therefore, instead of 18 cases for LR and DT, we have six
comparisons for each metric.

For each of the three fairness metrics (SPD, AOD, EOD) our post-processing approach
is able to improve fairness on 5 out of 6 datasets on LR. LRSPD is not able to achieve SPD
improvements on the Adult dataset (protected attribute = “race”), LRAOD and LREOD are
not able to achieve fairness improvements on the Bank dataset. Among the 15 out of 18 cases
that improve fairness on LR, 11 are statistically significant, with six of those having large
effect sizes. Furthermore, it can be noted that the instances where our approach is not able to
improve fairness, already have a low bias score. According to the online tool of the AIF360
framework (Bellamy et al. 2018), values ≤ 0.1 can be seen as fair, when investigating SPD,
AOD and EOD.8 Applied to DTs, our post-processing approach improves fairness for 16
out of 18 cases. In particular, in 6 out of 6 cases DTSPD and DTAOD achieve statistically
significant fairness improvements on their respective fairness metric. In 3 out of 6 cases,
DTEOD achieves statistically significant improvements. In the remaining two cases (i.e.,
EOD on the Adult-race and Bank-Age datasets), our approach is not able to significantly
improve fairness, likely because the default model already shows a low bias (≤ 0.1).

Overall, the three post-processing configurations achieve improvements in both accuracy
and fairness in 22 out of 36 cases, and improvements in at least one of the two (i.e., either
accuracy and fairness) in the remaining 14 out of 36 cases. Notably, our post-processing
approach improves accuracy and fairness of DTs in 16 out of 18 cases.

In addition to comparing the average performance of our optimization approach for each
data-split (i.e., we average accuracy and fairness of all solutions in the Pareto-front), we
perform a comparison of each solution in the Pareto-front with the default classification
model. Table 4 shows the results. For each combination of datasets and metric optimized by
our approach, we compute the percentage of solutions that: dominate the default model, are
Pareto-optimal, are dominated by the default model. This comparison (e.g., do solutions in
the Pareto-front dominate the default classification model?) is performed for each data-split
and weighted accordingly, such that each data-split has the same contribution to the results
(e.g., a data-split with 10 solutions in the Pareto-front is treated equally as a data-split with 2
solutions in the Pareto-front). Our post-processing methods applied on Logistic Regression

8 https://aif360.mybluemix.net/

123

Page 17 of 33 36Empirical Software Engineering (2024) 29:36

https://aif360.mybluemix.net/

Table 4 RQ1: Comparison of each individual run of our approach (30 runs over 50 datasplits) against the
default classification model

Adult Compas Bank Meps19
Sex Race Sex Race Age Race �

LR SPD 59-41-0 0-98-2 36-57-7 38-47-16 37-50-14 25-68-8 32-60-8

AOD 65-34-1 50-50-0 36-54-10 37-48-16 26-50-24 15-65-19 38-50-12

EOD 71-29-0 61-39-0 37-58-6 41-44-15 31-49-19 17-72-11 43-48-8

� 65-35-0 37-62-1 36-56-7 39-46-16 31-50-19 19-68-13 38-53-9

DT SPD 100-0-0 100-0-0 91-9-0 76-23-2 69-31-0 99-1-0 89-11-0

AOD 100-1-0 71-29-0 85-14-1 69-31-1 63-37-0 95-5-0 80-19-0

EOD 78-22-0 54-46-0 78-20-2 47-52-1 43-57-0 89-11-0 65-35-0

� 92-8-0 75-25-0 85-15-1 64-35-1 58-42-0 94-6-0 78-22-0

For each dataset and metric, we measure the percentage of runs that: dominate the default model - are Pareto-
optimal - are dominated by the default model

achieves comparable or better performance than the default model in 91% of the cases across
all datasets studied, and, specifically, it dominates the default model in 38% of the cases
and is dominated in only 9% of the cases. This shows that our approach is a useful tool for
optimizing LR models (i.e., developers are either able to choose a strictly better model, or
models with competitive fairness-accuracy trade-offs). When we apply our approach to DTs,
we observe an even higher performance improvement: It dominates the default DT models
in 78% of the cases and not dominated in the remaining cases.

Answer to RQ1: In 22 out of 36 cases (61%), our search-based approach is able
to improve both, fairness and accuracy of Logistic Regression and Decision Trees
with respect to the default model when considering all datasets and fairness met-
rics. Notably, this happens in 16 out of 18 cases when applying our optimization
approach to Decision Trees, with 15 of these cases achieving statistically significant
improvements with large and medium effect sizes in the vast majority of cases (14
out of 15). supports explainability of these models.

5.2 RQ2. Comparison to Existing Bias MitigationMethods

5.2.1 RQ2-1. Comparison to Post-Processing Methods

To answer RQ2.1, we compare our post-processing method against three existing post-
processing bias mitigation methods (Section 4.3) applied to LR and DT on the same datasets
(Adult, COMPAS, Bank,MEPS19) by using identical train/validation/test splits, as described
in Section 4. The mean performance of these methods over 50 data splits, and of our post-
processing method, are shown in Figure 2. While Figure 2 only includes six cases for LR and
measuring SPD, the remaining results for other metrics and DTs are available in our online
appendix (Hort et al. 2023d). In each sub-figure, we show the performance of every non-
dominated bias mitigation method on the respective dataset and fairness metric. A summary
on how often each bias mitigation method is part of the Pareto-front is provided in Table 5.

123

36 Page 18 of 33 Empirical Software Engineering (2024) 29:36

Fig. 2 RQ2: Comparison of our proposed approach against existing bias mitigation methods and default
classification models based on Pareto-optimality. The figure shows six exemplary comparisons for LR and
SPD

When comparing the accuracy of classification models achieved after applying our post-
processing method against the existing bias mitigation methods, we observe that all of the
existing bias mitigation methods have a lower accuracy. Moreover, all of the existing bias
mitigation methods reduce the accuracy of the default classification model, thereby con-
forming to the fairness-accuracy trade-off. On the other end, our approach, which takes into
account accuracy in the bias mitigation process, is always able to generate a widely applica-
ble solution (i.e., our approach always produces at least a solution belonging to each of 36
Pareto-fronts, and therefore is never dominated by any of the existing methods).

Table 5 RQ2: Frequency of bias
mitigation methods in the
Pareto-front

Logistic Regression Decision Tree
Our CO ROC EO Our CO ROC EO

SPD 6 3 3 6 6 0 2 0

AOD 6 2 2 6 6 0 2 0

EOD 6 2 4 5 6 0 2 1

� 18/18 7/18 9/18 17/18 18/18 0/18 6/18 1/18

Each combination of bias mitigation method and fairness metric is eval-
uated on six datasets

123

Page 19 of 33 36Empirical Software Engineering (2024) 29:36

We can observe a difference in performance of our approach when applied to LR and DT.
While our approach, applied to LR, is able to outperform some of the existing bias mitigation
methods on the three fairness metrics (CO and ROC), it is only able to dominate EO in
1 out of 18 cases (Bank-age EOD). In the remaining 17 cases, EO has a lower accuracy
than our approach while improving fairness to a higher degree. On the other end, when
applying our post-processing approach to DTs, it not only produces solutions that dominate
the default classification model (as seen in RQ1), but also all investigated bias mitigation
methods in 12 out of 18 cases. Furthermore, for DT, our approach outperforms existing
bias mitigation methods on the three fairness metrics, in addition to achieving the highest
accuracy. In particular, our approach achieves the lowest bias on all three fairness metrics for
the Adult, Bank and MEPS19 datasets. Only ROC is able to achieve a lower level of bias for
the COMPAS dataset in 6 out of 6 cases, and EO in 1 out of 6 cases. This may be due to the
fact that COMPAS is the smallest of the datasets we investigate herein.

Answer to RQ2.1: Our approach provides Pareto-optimal solutions when applied to
both Decision Trees and Logistic Regression for each of the datasets investigated in
our study. In particular, it achieves the highest accuracy with respect to the existing
bias mitigation methods in 100% of the cases and the highest fairness in 33% of the
cases.Notably, our approach provides the best performancewhen applied toDecision
Trees, as in this case it generates solutions that strictly dominate those provided by
the existing bias mitigationmethods in 12 out of 18 cases (i.e., it achieves both higher
accuracy and lower bias), and achieves a higher accuracy in the remaining 6 out of
18 cases.

5.2.2 RQ2-2. Comparison to Pre- and In-Processing Methods

To answer RQ2-2, we compare our post-processing approach with available pre- and in-
processing biasmitigationmethods. In particular, we use three pre-processingmethods (LFR,
OP,REW) and one in-processingmethod (RED), under consideration of three fairnessmetrics
(REDDP , REDEO , REDT PR), for comparison. Table 6 shows the performance of the bias
mitigation methods when applied to Logistic Regression models and Table 7 shows results
for Decision Trees. Due to the dimensionality of data (number of features and instances in
the dataset), OP could not be applied to the Bank and Meps19 datasets.

The lowest bias for LR models is achieved by REW (pre-processing) and RED (in-
processing), while the highest accuracy is achieved by our post-processing approach and
the original LR model (Table 6). For DTs, RED achieves the lowest degree of bias in 13 out
of 18 cases. Our post-processing approach is able to achieve the lowest degree of bias in 4 out
18 cases and the highest accuracy in 4 out of 6 cases. The pre-processingmethod LFR is never
among the best performing methods for any of the four metrics (i.e., accuracy or fairness),
while OP achieves the highest accuracy once for DTs on the COMPAS dataset. One reason
that could explain the ability of RED to reduce bias further than pre-processing methods
is that RED takes related fairness metrics into account. The pre-processing methods either
re-balance the data or obfuscate sensitive information. These approaches are intuitive with
regard to the overall goal of achieving fairness but do not coincide with the three measured
fairness metrics.

Table 8 investigates the relation of the bias mitigationmethods in amulti-objective setting,
i.e., how often is our approach better than existing methods, how often is there a trade-off
between accuracy and fairness, and how often is our method worse. From the results, we

123

36 Page 20 of 33 Empirical Software Engineering (2024) 29:36

Table 6 RQ2-2: Performance comparison with pre-processing (LFR, OP, RW) and in-processing (RED)
methods for Logistic Regression

Adult Compas Bank Meps19
Sex Race Sex Race Age Race

ACC LRdef ault 0.833 0.833 0.677 0.677 0.899 0.838

LRSPD 0.845 0.845 0.676 0.675 0.900 0.835

LRAOD 0.846 0.845 0.675 0.675 0.900 0.834

LREOD 0.846 0.845 0.675 0.676 0.900 0.834

LFR 0.773 0.770 0.549 0.549 0.878 0.795

OP 0.794 0.803 0.665 0.659

REW 0.789 0.803 0.661 0.656 0.900 0.835

REDDP 0.783 0.802 0.658 0.651 0.899 0.826

REDEO 0.789 0.803 0.655 0.643 0.897 0.834

REDT PR 0.789 0.803 0.658 0.652 0.899 0.833

SPD LRdef ault 0.191 0.034 0.279 0.173 0.074 0.123

LRSPD 0.171 0.086 0.199 0.157 0.074 0.107

LFR 0.111 0.069 0.063 0.075 0.032 0.036

OP 0.115 0.047 0.159 0.124

REW 0.066 0.041 0.097 0.060 0.031 0.055

REDDP 0.017 0.014 0.043 0.038 0.023 0.019

AOD LRdef ault 0.120 0.044 0.254 0.150 0.051 0.125

LRAOD 0.083 0.041 0.178 0.133 0.054 0.111

LFR 0.115 0.087 0.065 0.076 0.052 0.037

OP 0.094 0.025 0.126 0.096

REW 0.014 0.022 0.087 0.053 0.043 0.029

REDEO 0.019 0.025 0.061 0.044 0.050 0.032

EOD LRdef ault 0.150 0.078 0.194 0.094 0.076 0.205

LREOD 0.088 0.049 0.115 0.079 0.082 0.175

LFR 0.171 0.137 0.057 0.065 0.084 0.057

OP 0.151 0.036 0.082 0.072

REW 0.021 0.033 0.054 0.043 0.073 0.045

REDT PR 0.033 0.042 0.063 0.049 0.075 0.059

Bold values highlight the best metric values for each dataset

observe that our approach is comparable, if not better, than LFR and OP over all datasets
and the two classification models (LR and DT). The same holds for RED applied to LR.
However, REW tends to perform better than our approach for LR (pareto-optimal in 12 cases
and better in 6).

Overall, we can observe that in the majority of the cases for LR (52 out of 66), our
approach is pareto-optimal to existing pre- and in-processing approaches, indicating that
there is a trade-off between fairness and accuracy. For practitioners, it would be important
to consider more than one solutions to choose from, in particular those provided by our
approach and REW, in order to select the best models with regards to specific datasets and
metrics. For DT classifiers, we observe that our approach is strictly better than pre- and
in-processing methods in 33 out of 66 cases, showing that there are performance difference

123

Page 21 of 33 36Empirical Software Engineering (2024) 29:36

Table 7 RQ2-2: Performance comparison with pre-processing (LFR, OP, RW) and in-processing (RED)
methods for Decision Trees

Adult Compas Bank Meps19
Sex Race Sex Race Age Race

ACC DTdef ault 0.817 0.817 0.622 0.622 0.877 0.760

DTSPD 0.836 0.841 0.645 0.638 0.892 0.798

DTAOD 0.838 0.838 0.648 0.640 0.889 0.798

DTEOD 0.832 0.831 0.646 0.642 0.887 0.791

LFR 0.747 0.745 0.569 0.571 0.829 0.738

OP 0.786 0.799 0.658 0.655

REW 0.787 0.801 0.658 0.652 0.879 0.760

REDDP 0.784 0.801 0.656 0.648 0.877 0.764

REDEO 0.790 0.802 0.658 0.647 0.876 0.758

REDT PR 0.790 0.802 0.659 0.650 0.878 0.759

SPD DTdef ault 0.180 0.085 0.129 0.114 0.107 0.128

DTSPD 0.110 0.060 0.083 0.091 0.088 0.047

LFR 0.167 0.075 0.096 0.066 0.073 0.100

OP 0.068 0.023 0.104 0.136

REW 0.056 0.014 0.071 0.091 0.104 0.102

REDDP 0.018 0.014 0.040 0.038 0.027 0.037

AOD DTdef ault 0.073 0.035 0.107 0.098 0.068 0.091

DTAOD 0.032 0.028 0.075 0.081 0.057 0.036

LFR 0.137 0.087 0.093 0.067 0.083 0.087

OP 0.050 0.042 0.087 0.108

REW 0.032 0.048 0.070 0.081 0.068 0.068

REDEO 0.020 0.023 0.056 0.048 0.070 0.087

EOD DT-default 0.056 0.034 0.089 0.064 0.077 0.093

DTEOD 0.041 0.034 0.057 0.062 0.081 0.022

LFR 0.170 0.140 0.074 0.053 0.097 0.098

OP 0.081 0.066 0.058 0.085

REW 0.049 0.078 0.061 0.070 0.077 0.070

REDT PR 0.032 0.039 0.039 0.042 0.083 0.089

Bold values highlight the best metric values for each dataset

among classification models. However, it is still beneficial to consider methods such as REW
and RED, as there are cases in which they provide better results than our approach (i.e., they
are strictly dominating).

In accordancewith current findings (Pessach and Shmueli 2022), there is no singlemethod
that is the most suitable over all considered cases. Moreover, there is no clear preference on
which stage bias mitigation methods should be applied. Rather, one has to take the dataset
and fairness metric into account when selecting bias mitigation methods.

123

36 Page 22 of 33 Empirical Software Engineering (2024) 29:36

Table 8 RQ2-2: Comparison of our approach with pre- and in-processing methods in terms of domination
criteria

Logistic Regression Decision Tree
SPD AOD EOD � SPD AOD EOD �

LFR 0-6-0 2-4-0 3-3-0 5-13-0 5-1-0 5-1-0 5-1-0 15-3-0

OP 0-4-0 1-3-0 1-3-0 2-10-0 0-4-0 4-0-0 2-2-0 6-6-0

REW 0-4-2 0-4-2 0-4-2 0-12-6 2-2-2 4-0-2 3-2-1 9-4-5

RED 0-6-0 1-5-0 0-6-0 1-17-0 0-4-2 0-4-2 3-1-2 3-9-6

� 0-20-2 4-16-2 4-16-2 8-52-6 7-11-4 13-5-4 13-6-3 33-22-11

For each of the four methods (three pre-processing, one in-processing) we provide results over the 6 datasets
and three metrics as follows: our method dominates the existing method - both methods are pareto-optimal
- our method is dominated. We determine domination with regard to accuracy and each of the three fairness
metrics separately

Answer to RQ2.2: Our approach provides Pareto-optimal or better solutions than
pre- and in-processing methods in 60 out of 66 cases for Logistic Regression and 55
out of 66 cases for Decision Trees. LFR and OP are never better than our approach
for both objectives (accuracy and fairness), while being strictly worse in 28 out of
60 cases.

5.3 RQ3. Impact on Fairness Metrics

In RQ3, we investigate the impact of optimizing for one fairness metric on the other two (e.g.,
if we optimize for accuracy and AOD, how do SPD and EOD change?). Therefore, we apply
the three configurations of our post-processing approach on the four datasets and measure
every kind of fairness metric at the end of the optimization procedure. In accordance with
RQ1 and RQ2, we investigate the performance over 50 different train/validation/test splits.

Figure 3 shows the results of the optimization results. For each dataset, we use boxplots
to show the default performance of the classification model, as well as the performance
after optimization with each of the three configurations. Thereby, three colors represent
optimization with one of the fairness metrics, and one color represents the fairness of the
default classification model.

Given the results, we can see that the fairness achieved by an optimized, post-processed
classification model behaves similarly, independent of the fairness metric used for optimiza-
tion. For example, this can be seen on the Adult-sex dataset for LR and DT. Regardless of the
fairness metric considered during optimization, the average AOD of all three configurations
is better than the default classification model. Such a behaviour (all three optimization con-
figurations achieve improvements on a fairness metric) happens in 28 out of 36 cases. There
is one case (Adult-race for LR) in which none of the three search configurations achieve
improvements on SPD (neither LRSPD , LRAOD nor LREOD).

In the remaining 7 out of 36 cases, there are differences when using different optimization
configurations. One example for this is the Bank-age datasets for LR. Only LRSPD achieves
improvements over the default LR model in SPD, AOD and EOD. LRAOD and LREOD are
not able to improve any fairness metric (neither SPD, AOD or EOD).

123

Page 23 of 33 36Empirical Software Engineering (2024) 29:36

Fig. 3 RQ3: Summary of bias values (the lower the better) achieved by the three different post-processing
settings (SPD, AOD, EOD) and the default classification models. Boxplots are grouped based on the fairness
metric they measure

123

36 Page 24 of 33 Empirical Software Engineering (2024) 29:36

Table 9 RQ3: Win-tie-loss
summary of the Wilcoxon tests
when optimizing for one fairness
metric and measuring the other
two (e.g., use SPD during
optimization and test on EOD) in
comparison to the default
classification model

SPD AOD EOD �

AOD EOD SPD EOD SPD AOD

LR 4-2-0 4-1-1 3-3-0 4-2-0 3-3-0 4-2-0 22-13-1

DT 5-1-0 3-2-1 6-0-0 3-3-0 3-2-1 3-3-0 23-11-2

To evaluate the overall level of bias mitigation achieved by optimization on a different
fairness metric, we summarize the statistical significance differences we found over the four
datasets in Table 9. In particular, we investigate whether significant improvements over the
default classification models are achieved (win), whether no significant differences can be
found (tie), or whether the default classification model has a statistically significant lower
bias than the optimized model (loss). Combining the results for LR and DT, there are 45
wins, 24 ties and 3 losses. This indicates, that while our post-processing approach optimizes
for one fairness metric, it can positively effect other metrics as well.

Answer to RQ3: Based on the three investigated fairness metrics (SPD, AOD, EOD),
fairness improvements are achieved independently of the metric used during opti-
mization. In 78% of the cases (28 out of 36), fairness metrics are improved by all
three configurations (e.g., SPD on the Adult-sex dataset is improved by LRSPD ,
LRAOD , LREOD). We do not observe any dramatic detrimental effect, as in 96% of
the cases (69 out of 72) there is no performance deterioration in “untouched” fairness
metrics, which are not optimized for. Among those, in 63% of the cases (45 out of
72), our approach even leads to statistically significant improvements.

5.4 Parameter Analysis for Logistic Regression

This section presents a closer investigation of parameter choices for our optimization proce-
dure. An investigation of parameter choices is of particular importance for our experiments
with Logistic Regression models, as the mutation operators are non-deterministic. In detail,
we are interested in investigating the effect of the noise considered when modifying Logistic
Regression models and the consideration of different terminal conditions (i.e., stopping the
optimization process after a different number of steps) for three mutation types:

– Reduction: Multiply a single vector element by a random value within a range of
{−noise, noise}.

– Adjustment: Multiply a single vector element by a random value within a range of
{1 − noise, 1 + noise}.

– Vector:Multiply each vector element by a random valuewithin a range of {1−noise, 1+
noise}.

We investigate a total of three different levels of noise for mutation (0.05, 0.1, 0.2). While an
increased number of steps should always be beneficial for improving a classification model
(i.e., the chance of finding more fairness and accuracy improvements is higher), the question
is whether the additional costs are justified. For this purpose, we consider three terminal
conditions: 1000, 2500 and 5000 steps.

123

Page 25 of 33 36Empirical Software Engineering (2024) 29:36

Fig. 4 Average number of successful modifications of Logistic Regressionmodel when applying our approach
with three different noise degrees (0.05, 0.1, 0.2) after 1000, 2500 and 5000 steps. Values are averaged over
50 data-splits and three fairness metrics for optimization (SPD, AOD, EOD)

123

36 Page 26 of 33 Empirical Software Engineering (2024) 29:36

Figure 4 compares the number of successful modifications achieved by modifying Logis-
tic Regression models with different degrees of noise, as well as the benefit of performing
additional steps in the optimization procedure for the three mutation operators (Reduction,
Adjustment, Vector). For the two mutation operators that modify a single element, Reduc-
tion and Adjustment, we can observe that the highest number of successful modifications
is achieved by a mutation weight of 0.2. Among the 36 cases (two mutation operators ×
six datasets × three terminal conditions), there is only one case where a mutation weight
of 0.1 achieves a higher number of successful mutations (i.e., 5.67 with a weight of 0.1
over 5.62 with a weight of 0.2, with Reduction). Using a mutation weight 0.2 for Vector
modifications only achieves the highest number of successful modification for one of the
six datasets (Compas-sex). Given that Vector modifications are more intrusive than the other
mutation operators (i.e., modifying each vector element as opposed to modifying a single
one), changes might be too big, or a stage where no further changes are applicable is reached
quicker with high-noise modifications.

When applying Reductionmodifications, an average 92.9% of all successful modification
are performed in the first 1000 steps. Within an additional 1500 steps (i.e., terminal condition
of 2500 steps), 5.6% of successful modification are performed. Only 1.6% of all successful
modifications are performed in the last 2500 steps, from 2501 to 5000.While the percentages
vary over datasets (e.g., after 1000 steps, 98% and 85% of modifications are performed for
the Adult and COMPAS dataset respectively), it can be seen that the benefit of additional
steps decreases over time, as themajority of modifications are performedwithin the first 1000
steps. Vector and Adjustment show similar results. The last 2500 steps (from 2501 to 5000)
performed 10-15% of the modifications, while more than 60% of successful modifications
are performed in the first 1000 steps. This confirms that the early steps of the optimization
procedure are of higher importance than later iterations.

Given the low amount of additional modification achieved after 5000 steps, it is appears
justified to not increase the limit for modifying Logistic Regression models further for our
experiments (RQ1-RQ3), with the chances of potential improvements when using a mutation
weight of 0.2. However, one could argue for decreasing the number of steps to 1000, which
would decrease the runtime of our algorithm while retaining at least 60% of the successful
modifications, depending on the mutation operator.

Lastly, we compare the quality of changes between the three mutation operators. This
allows us to not only compare the amount of modifications but also the effectiveness of
different operators. For this purpose, we illustrate the pareto-fronts for each of the fairness
metrics in combination with the achieved accuracy in Figure 5. Among the nine mutated
LR models (three mutation operators with three different levels of noise, after 5000 steps),
we only visualize non-dominated ones. The modification operator that is part of the most
pareto-fronts is a Vector modification with a noise level of 0.2 (in 16 out of 18 pareto-fronts).
Reduction and Adjustment are part of three to six pareto-fronts, depending on the level of
noise used. This illustrates that the quality of improvements is influenced by the choice of
mutation operators.

5.5 Advanced ClassificationModels

Commonly, the effectiveness of bias mitigation methods is evaluated for a given classifica-
tion model (e.g., which bias mitigation method should be applied to the model) rather than
to compare performances across models (e.g., which model should the bias mitigation meth-
ods be applied to). Nonetheless, it can be interesting to compare the performance of more

123

Page 27 of 33 36Empirical Software Engineering (2024) 29:36

Fig. 5 Pareto-fronts of the three different mutation operators (Reduction, Adjustment, Vector), and three levels
of noise (0.2 - black, 0.1 - gray, 0.05 - white). Results are shown for four datasets: Adult (A), COMPAS (C),
Bank (B),MEPS19 (M). Three protected attributes are considered: race (R), sex (S), age (A). The y-axis shows
accuracy; the x-axis shows the respective fairness metric

advanced binary classification models for potential future applications. For this purpose,
we consider three advanced types of tree-based and regression-based classification models:
Random Forest (RF), Gradient Boosting (GB), Neural Network (NN).

Following existing fairness approaches (Chen et al. 2023b), our NN model consists of
five hidden layers (64, 32, 16, 8, 4, neurons respectively) and is trained for 20 epochs. In
accordance with our implementation of LR and DT models, RF and GB are implemented
using the default configurations provided by scikit (Pedregosa et al. 2011).

Table 10 presents the accuracy achieved by each of the advanced classification models,
Logistic Regression and Decision Trees, and our post-processing approach applied to both
these models. To take fairness metrics in account, we count how often each classification
model is part of any of the 18 fairness-accuracy pareto-fronts (six datasets and three fairness
metrics), which illustrates trade-offs between fairness and accuracy.

Among all classification models, GB achieves the highest accuracy on all datasets, and
outperforms RFs and NNs. NNs are outperformed by unmodified LR models for all datasets.
RFs are outperformed by our optimized LR models in 5 out of 6 cases for accuracy, except
for the Bank dataset. While DTs have the lowest accuracy, they also show the lowest degree
of bias in 15 out of 18 cases. The only dataset for which DTs do not achieve the lowest degree
of bias is the Bank dataset. For all three fairness metrics, NNs achieve the lowest degree of

123

36 Page 28 of 33 Empirical Software Engineering (2024) 29:36

Table 10 Accuracy of Logistic Regression and Decision Tree approaches in comparison with advanced clas-
sification models. The highest accuracy for each dataset is highlighted in bold

Adult Compas Bank MEPS19 In Pareto-front
Sex Race Sex Race Age Race SPD AOD EOD �

LR 0.833 0.833 0.677 0.677 0.899 0.838 3 2 1 6

LRSPD 0.845 0.845 0.676 0.675 0.900 0.835 6 - -

LRAOD 0.846 0.845 0.675 0.675 0.900 0.834 - 2 - 12

LREOD 0.846 0.845 0.675 0.676 0.900 0.834 - - 4

DT 0.817 0.817 0.622 0.622 0.877 0.760 0 0 1 1

DTSPD 0.836 0.841 0.645 0.638 0.892 0.798 5 - -

DTAOD 0.838 0.838 0.648 0.640 0.889 0.798 - 5 - 15

DTEOD 0.832 0.831 0.646 0.642 0.887 0.791 - - 5

RF 0.843 0.843 0.650 0.650 0.901 0.831 4 4 3 11

Boosting 0.863 0.863 0.686 0.686 0.908 0.838 6 6 6 18

NN 0.819 0.810 0.668 0.672 0.889 0.829 1 1 1 3

bias for the Bank dataset. This suggests, that it can be beneficial to carefully investigate and
select suitable classification models for each use case.

Moreover, we observe that there is a trade-off between accuracy and fairness, as the
classification model with the highest accuracy is never the one with lowest bias and vice
versa. Nonetheless, it can be promising to use Boosting models as a starting point to apply
bias mitigation to, as they exhibited the highest accuracy.

6 Conclusions and FutureWork

We proposed a novel search-based approach to mutate classification models in a post-
processing stage, in order to simultaneously repair fairness and accuracy issues. This approach
differentiates itself from existing bias mitigation methods, which conform to the fairness-
accuracy trade-off (i.e., repair fairness issues come at a cost of a reduced accuracy). We
performed a large scale empirical study to evaluate our approach with two popular binary
classifiers (Logistic Regression and Decision Trees) on four widely used datasets and three
fairness metrics, publicly available in the popular IBM AIF360 framework (Bellamy et al.
2018).

We found that our approach is able to simultaneously improve accuracy and fairness
of both classification models in 61% of the cases. Our approach is particularly effective for
Decision Trees, where we achieve statistically significant improvement on both accuracy and
fairness in 81.1% of the cases. Moreover, we achieved improvements without detrimental
effect on other fairness metrics that are not considered during optimization.

The comparison with three existing post-processing bias mitigation methods showed that
none of these methods is able to achieve an accuracy as high as our method in any of the
datasets. Furthermore, our approach is able to outperform existing post-processing methods
in both accuracy and fairness in 12 out of 18 cases for Decision Trees.

These findings show not only the feasibility but also the effectiveness of our approach
with respect to existing bias mitigation methods. Software engineers would benefit to have
this tool at their disposal when developing fair software, as it allows them to find good trade-

123

Page 29 of 33 36Empirical Software Engineering (2024) 29:36

offs between competing objectives rather than proposing a solution which often sacrifices
accuracy, as done in previous work. According to their needs, engineers can choose the
solution that better conforms to their fairness and accuracy constraints.

The promising results reported herein can be further strengthened in future work. In par-
ticular, while we already investigated two inherently different classification models (Logistic
Regression and Decision Trees) and various mutation operators, it could be of interest to
further extend our approach to other binary classification models (e.g., Neural Network, Gra-
dient Boosting) and mutation operators, as these could lead to further improvements in the
results, as highlighted in Sections 5.4 and 5.5.

Acknowledgements This work is supported by the ERC grant no. 741278 (EPIC). Max Hort is supported
through the ERCIM ‘Alain Bensoussan’ Fellowship Programme.

Data Availability We make our scripts and experimental results publicly available to allow for replication and
extension of our work (Hort et al. 2023d).

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agarwal A, Beygelzimer A, Dudík M, Langford J, Wallach H (2018) A reductions approach to fair classifica-
tion. In: International conference on machine learning. PMLR, 60–69

Aggarwal A, Lohia P, Nagar S, Dey K, Saha D (2019) Black box fairness testing of machine learning models.
In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering. pp. 625–635

Angell R, Johnson B, Brun Y, Meliou A. (2018) Themis: Automatically testing software for discrimination.
In: Proceedings of the 2018 26th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering. pp. 871–875

Angwin J, Larson J, Mattu S, Kirchner L (2016) Machine bias. ProPublica. See https://www.propublica.org/
article/machine-bias-risk-assessments-in-criminal-sentencing/

Arcuri A, Briand L (2014) A Hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. STVR 24(3):219–250

Bellamy RKE, Dey K, Hind M, Hoffman SC, Houde S, Kannan K, Lohia P, Martino J, Mehta S, Mojsilovic A,
et al (2018) AI Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted
algorithmic bias. arXiv:1810.01943

BerkR,Heidari H, Jabbari S, JosephM,KearnsM,Morgenstern J, Neel S, RothA (2017)AConvex Framework
for Fair Regression. FAT-ML Workshop

Berk R, Heidari H, Jabbari S, Kearns M, Roth A (2018) Fairness in criminal justice risk assessments: The state
of the art. Sociological Methods & Research. https://doi.org/10.1177/0049124118782533

Biswas S, Rajan H (2020) Do the Machine Learning Models on a Crowd Sourced Platform Exhibit Bias? An
Empirical Study on Model Fairness. arXiv:2005.12379

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press
Breslow LA, Aha DW (1997) Simplifying decision trees: A survey. Knowl Eng Rev 12(1):1–40

123

36 Page 30 of 33 Empirical Software Engineering (2024) 29:36

http://creativecommons.org/licenses/by/4.0/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing/
http://arxiv.org/abs/1810.01943
https://doi.org/10.1177/0049124118782533
http://arxiv.org/abs/2005.12379

Brun Y, Meliou A (2018) Software fairness. In: Proceedings of the 2018 26th ACM joint meeting on european
software engineering conference and symposium on the foundations of software engineering. 754–759

Calders T, Kamiran F, Pechenizkiy M (2009) Building classifiers with independency constraints. In: 2009
IEEE international conference on data mining workshops. IEEE, 13–18

Calders T, Karim A, Kamiran F, Ali W, Zhang X (2013) Controlling attribute effect in linear regression. In
2013 IEEE 13th international conference on data mining. IEEE, 71–80

Calders T, Verwer S (2010) Three naive Bayes approaches for discrimination-free classification. Data Min
Knowl Discov 21(2):277–292

Calmon F, Wei D, Vinzamuri B, Ramamurthy KN, Varshney KR (2017) Optimized pre-processing for dis-
crimination prevention. In Advances in neural information processing systems. 3992–4001

Celis LE, Huang L, Keswani V, Vishnoi NK (2019) Classification with fairness constraints: A meta-algorithm
with provable guarantees. In: Proceedings of the conference on fairness, accountability, and transparency.
319–328

Chakraborty J, Majumder S, Menzies T (2021) Bias in machine learning software:Why? how? what to do?. In:
Proceedings of the 29thACM jointmeeting on european software engineering conference and symposium
on the foundations of software engineering. 429–440

Chakraborty J,Majumder S, Yu Z,Menzies T (2020) Fairway: a way to build fairML software. In: Proceedings
of the 28th ACM joint meeting on european software engineering conference and symposium on the
foundations of software engineering. 654–665

Chen J, Kallus N, Mao X, Svacha G, Udell M (2019) Fairness under unawareness: Assessing disparity when
protected class is unobserved. In: Proceedings of the conference on fairness, accountability, and trans-
parency. 339–348

Chen Z, Zhang JM, Hort M, Sarro F, Harman M (2022a) Fairness Testing: A Comprehensive Survey and
Analysis of Trends. arXiv:2207.10223

Chen Z, Zhang JM, Sarro F, Harman M (2022b) MAAT: a novel ensemble approach to addressing fairness
and performance bugs for machine learning software. In: Proceedings of the 30th ACM joint european
software engineering conference and symposium on the foundations of software engineering. 1122–1134

Chen Z, Zhang JM, Sarro F, HarmanM (2023) A Comprehensive Empirical Study of Bias MitigationMethods
for Machine Learning Classifiers. ACM Trans Softw Eng Methodol 32(4):106:1-106:30

Chen Z, Zhang JM, Sarro F, HarmanM (2023b)AComprehensive Empirical Study of BiasMitigationMethods
for Machine Learning Classifiers. ACM Trans Softw Eng Methodol

Chen Z, Zhang JM, Sarro F, HarmanM (2024) Fairness Improvement withMultiple Protected Attributes: How
Far Are We?. In: International conference on software engineering (ICSE)

Corbett-Davies S, Pierson E, Feller A, Goel S, Huq A (2017)Algorithmic decision making and the cost of
fairness. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining. 797–806

Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In: Proceedings of the
3rd innovations in theoretical computer science conference. 214–226

Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and removing
disparate impact. In: proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining. 259–268

Ferrucci F, Gravino C, Oliveto R, Sarro F (2010) Genetic Programming for Effort Estimation: An Analysis
of the Impact of Different Fitness Functions. In: 2nd International symposium on search based software
engineering. 89–98

Friedler SA, Scheidegger C, Venkatasubramanian S, Choudhary S, Hamilton EP, Roth D (2019) A comparative
study of fairness-enhancing interventions in machine learning. In: Proceedings of the conference on
fairness, accountability, and transparency. ACM, 329–338

Galhotra S, Brun Y, Meliou A (2017) Fairness testing: testing software for discrimination. In: Proceedings of
the 2017 11th joint meeting on foundations of software engineering. ACM, 498–510

Gohar U, Cheng L (2023) A Survey on Intersectional Fairness in Machine Learning: Notions, Mitigation,
and Challenges. In: Elkind E(Ed) Proceedings of the thirty-second international joint conference on
artificial intelligence, IJCAI-23, . International Joint Conferences on Artificial Intelligence Organization,
6619–6627 https://doi.org/10.24963/ijcai.2023/742

Hardt M, Price E, Srebro N (2016) Equality of opportunity in supervised learning. In: Advances in neural
information processing systems. 3315–3323

HarmanM,McMinn P, De Souza JT, Yoo S (2010) Search based software engineering: Techniques, taxonomy,
tutorial. In: Empirical software engineering and verification. Springer, 1–59

Harrison G, Hanson J, Jacinto C, Ramirez J, Ur B (2020) An empirical study on the perceived fairness
of realistic, imperfect machine learning models. In: Proceedings of the 2020 conference on fairness,
accountability, and transparency. 392–402

123

Page 31 of 33 36Empirical Software Engineering (2024) 29:36

http://arxiv.org/abs/2207.10223
https://doi.org/10.24963/ijcai.2023/742

Horkoff J (2019) Non-functional requirements for machine learning: Challenges and new directions. In: 2019
IEEE 27th international requirements engineering conference (RE). IEEE, 386–391

Hort M, Chen Z, Zhang JM, Harman M, Sarro F (2023a) Bias mitigation for machine learning classifiers: A
comprehensive survey. ACM J Resp Comput

Hort M, Chen Z, Zhang JM, Harman M, Sarro F (2023b) Bias Mitigation for Machine Learning Classifiers:
A Comprehensive Survey. ACM J Resp Comput. arXiv:2207.07068

Hort M, Moussa R, Sarro F (2023) Multi-objective search for gender-fair and semantically correct word
embeddings. Appl Soft Comput 133(109916):1568–4946. https://doi.org/10.1016/j.asoc.2022.109916

HortM, Sarro F (2021)Did you do your homework?Raising awareness on software fairness and discrimination.
In: 2021 36th IEEE/ACM international conference on automated software engineering (ASE). IEEE,
1322–1326

HortM,Zhang JM,HarmanM,Sarro F (2023d)On-lineAppendix to the article Search-basedAutomaticRepair
for Fairness and Accuracy in Decision-making Software https://github.com/SOLAR-group/Fairness-
Postprocessing

Hort M, Zhang JM, Sarro F, HarmanM (2021) Fairea: Amodel behaviour mutation approach to benchmarking
biasmitigationmethods. In: Proceedings of the 29thACMjointmeeting on european software engineering
conference and symposium on the foundations of software engineering. 994–1006

Jacobs AZ, Wallach H (2021) Measurement and Fairness. In: Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency (FAccT ’21). Association for Computing Machinery, New
York, NY, USA, 375-385. 9781450383097 https://doi.org/10.1145/3442188.3445901

Kamiran F, Calders T (2009) Classifying without discriminating. In: 2009 2nd international conference on
computer, control and communication. IEEE, 1–6

Kamiran F, Calders T (2012) Data preprocessing techniques for classification without discrimination. Knowl
Inf Syst 33(1):1–33

Kamiran F, Calders T, Pechenizkiy M (2010) Discrimination aware decision tree learning. In: 2010 IEEE
international conference on data mining. IEEE, 869–874

Kamiran F, Karim A, Zhang X (2012) Decision theory for discrimination-aware classification. In: 2012 IEEE
12th international conference on data mining. IEEE, 924–929

Kamiran F, Mansha S, Karim A, Zhang X (2018) Exploiting reject option in classification for social discrimi-
nation control. Inf Sci 425:18–33

Kamishima T, Akaho S, AsohH, Sakuma J (2012) Fairness-aware classifier with prejudice remover regularizer.
In: Joint european conference on machine learning and knowledge discovery in databases. Springer, 35–
50

Kearns M, Neel S, Roth A, Wu ZS (2018) Preventing Fairness Gerrymandering: Auditing and Learning for
Subgroup Fairness. In: Dy J, KrauseA (Eds) Proceedings ofMachine Learning Research, Vol. 80. PMLR,
Stockholmsmässan, Stockholm Sweden, 2564–2572. http://proceedings.mlr.press/v80/kearns18a.html

Kocaguneli E,Menzies T,Keung JW (2011)On the value of ensemble effort estimation. IEEETSE38(6):1403–
1416

Kohav R (2023) Adult data set. http://archive.ics.uci.edu/ml/datasets/adult
Li X, Chen Z, Zhang JM, Sarro F, Zhang Y, Liu X (2023) Dark-Skin Individuals Are at More Risk on the

Street: Unmasking Fairness Issues of Autonomous Driving Systems. arXiv:abs/2308.02935
Ma M, Tian Z, Hort M, Sarro F, Zhang H, Lin Q, Zhang D (2022) Enhanced Fairness Testing via Generating

Effective Initial Individual Discriminatory Instances. arXiv:cs.SE/2209.08321
Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2019) A survey on bias and fairness in machine

learning. arXiv:1908.09635
Mikians J, Gyarmati L, Erramilli V, Laoutaris N (2012) Detecting price and search discrimination on the

internet. In: Proceedings of the 11th ACM workshop on hot topics in networks. 79–84
Moro S, Cortez P, Rita P (2014) A data-driven approach to predict the success of bank telemarketing. Decis

Support Syst 62:22–31
Moussa R, Sarro F (2022) On the Use of Evaluation Measures for Defect Prediction Studies. In: 2022 ACM

SIGSOFT international symposium on software testing and analysis (ISSTA. ACM
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss

R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: Machine Learning in Python. J Mach Learn Res 12:2825–2830

Pedreshi D, Ruggieri S, Turini F (2008) Discrimination-aware data mining. In: Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining. 560–568

Perera A, Aleti A, Tantithamthavorn C, Jiarpakdee J, Turhan B, Kuhn L, Walker K (2022) Search-Based
Fairness Testing for Regression-Based Machine Learning Systems. Empir Softw Eng 27(3):79. https://
doi.org/10.1007/s10664-022-10116-7

PessachD, Shmueli E (2022)A reviewon fairness inmachine learning.ACMComput Surv (CSUR) 55(3):1–44

123

36 Page 32 of 33 Empirical Software Engineering (2024) 29:36

http://arxiv.org/abs/2207.07068
https://doi.org/10.1016/j.asoc.2022.109916
https://github.com/SOLAR-group/Fairness-Postprocessing
https://github.com/SOLAR-group/Fairness-Postprocessing
https://doi.org/10.1145/3442188.3445901
http://proceedings.mlr.press/v80/kearns18a.html
http://archive.ics.uci.edu/ml/datasets/adult
http://arxiv.org/2308.02935
http://arxiv.org/abs/2209.08321
http://arxiv.org/abs/1908.09635
https://doi.org/10.1007/s10664-022-10116-7
https://doi.org/10.1007/s10664-022-10116-7

Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ (2017) On fairness and calibration. In: Advances
in neural information processing systems. 5680–5689

propublica (2023) data for the propublica story ‘machine bias’. https://github.com/propublica/compas-
analysis/

Quinlan JR (1987) Simplifying decision trees. Int J Man-Mach Stud 27(3):221–234
Romei A, Ruggieri S (2011) A multidisciplinary survey on discrimination analysis
Sarro F (2023) Search-based software engineering in the era of modern software systems. In: Procs. of the

31st IEEE international requirements engineering conferece
Sarro F, Ferrucci F, Harman M, Manna A, Ren J (2017) Adaptive Multi-Objective Evolutionary Algorithms

for Overtime Planning in Software Projects. IEEE TSE 43(10):898–917
Sarro F, Harman M, Jia Y, Zhang Y (2018) Customer rating reactions can be predicted purely using app

features. In: IEEE international requirements engineering conference. 76–87
Sarro F, Petrozziello A (2018) Linear Programming As a Baseline for Software Effort Estimation. ACM

TOSEM 27(3):12:1-12:28 12:1-12:28
Sarro F, Petrozziello A, Harman M. (2016). Multi-objective software effort estimation. In Procs. of the inter-

national conference on software engineering (ICSE). IEEE, 619–630
Savani Y, White C, Govindarajulu NS (2020) Intra-processing methods for debiasing neural networks. Adv

Neural Inf Process 33(2020):2798–2810
Speicher T, Heidari H, Grgic-Hlaca N, Gummadi KP, Singla A,Weller A, ZafarMB (2018) A unified approach

to quantifying algorithmic unfairness: Measuring individual & group unfairness via inequality indices.
In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining. 2239–2248

Tizpaz-Niari S, Kumar A, Tan G, Trivedi A (2022) Fairness-aware configuration of machine learning libraries.
arXiv:2202.06196

Udeshi S, Arora P, Chattopadhyay S (2018) Automated directed fairness testing. In Proceedings of the 33rd
ACM/IEEE international conference on automated software engineering. 98–108

Vargha A, Delaney HD (2000) A critique and improvement of the CL common language effect size statistics
of McGraw and Wong. J Educ Behav Stat 25(2):101–132

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer,
196–202

Zafar MB, Valera I, Rogriguez MG, Gummadi KP (2017) Fairness constraints: Mechanisms for fair classifi-
cation. In: Artificial intelligence and statistics. 962–970

Zemel R, Wu Y, Swersky K, Pitassi T, Dwork C (2013) Learning fair representations. In: International con-
ference on machine learning. 325–333

Zhang BH, Lemoine B, Mitchell M (2018) Mitigating unwanted biases with adversarial learning. In: Proceed-
ings of the 2018 AAAI/ACM conference on ai, ethics, and society. ACM, 335–340

Zhang J, Harman M (2021) Ignorance and Prejudice in Software Fairness. In: 2021 IEEE/ACM 43th interna-
tional conference on software engineering (ICSE). IEEE

Zhang JM, Harman M, Ma L, Liu Y (2020) Machine Learning Testing: Survey, Landscapes and Horizons.
IEEE Trans Softw Eng 1(1)

Žliobaite I, Kamiran F, Calders T (2011)Handling conditional discrimination. In: 2011 IEEE 11th international
conference on data mining. IEEE, 992–1001

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Page 33 of 33 36Empirical Software Engineering (2024) 29:36

https://github.com/propublica/compas-analysis/
https://github.com/propublica/compas-analysis/
http://arxiv.org/abs/2202.06196

	Search-based Automatic Repair for Fairness and Accuracy in Decision-making Software
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software Fairness
	2.2 Bias Mitigation Methods
	2.3 Fairness Measurement

	3 Proposed Approach
	3.1 Procedure
	3.2 Logistic Regression
	3.3 Decision Tree

	4 Experimental Setup
	4.1 Research Questions
	4.2 Datasets
	4.3 Benchmark Bias Mitigation Methods
	4.4 Validation and Evaluation Criteria
	4.5 Threats to Validity

	5 Results
	5.1 RQ1. Fairness-Accuracy Improvement
	5.2 RQ2. Comparison to Existing Bias Mitigation Methods
	5.2.1 RQ2-1. Comparison to Post-Processing Methods
	5.2.2 RQ2-2. Comparison to Pre- and In-Processing Methods

	5.3 RQ3. Impact on Fairness Metrics
	5.4 Parameter Analysis for Logistic Regression
	5.5 Advanced Classification Models

	6 Conclusions and Future Work
	Acknowledgements
	References

