
https://doi.org/10.1007/s10664-023-10410-y

An empirical study on the usage of mocking frameworks
in Apache software foundation

Lu Xiao1 · Gengwu Zhao1 · Xiao Wang1 · Keye Li1 · Erick Lim1 · Chenhao Wei1 ·
Tingting Yu2 · Xiaoyin Wang3

© The Author(s) 2024

Abstract
Mocking frameworks provide convenient APIs, which create mock objects, manipulate their
behavior, and verify their execution, for the purpose of isolating test dependencies in unit
testing. This study contributes an in-depth empirical study of whether and how mocking
frameworks are used in Apache projects. The key findings and insights of this study include:
First, mocking frameworks are widely used in 66% of Apache Java projects, with Mockito,
EasyMock, and PowerMock being the top three most popular frameworks. Larger-scale
and more recent projects tend to observe a stronger need to use mocking frameworks. This
underscores the importance of mocking in practice and related future research. Second,
mocking is overall practiced quite selectively in software projects—not all test files use
mocking, nor all dependencies of a test target are mocked. It calls for more future research to
gain a more systematic understanding of when and what to mock to provide formal guidance
to practitioners. On top of this, the intensity of mocking in different projects shows different
trends in the projects’ evolution history—implying the compound effects of various factors,
such as the pace of a project’s growth, the available resources, time pressure, and priority, etc.
This points to an important future research direction in facilitating best mocking practices
in software evolution. Furthermore, we revealed the most frequently used APIs in the three
most popular frameworks, organized based on the function types. The top five APIs in each
functional type of the three mocking frameworks usually take the majority (78% to 100%) of
usage in Apache projects. This indicates that developers can focus on these APIs to quickly
learn the common usage of these mocking frameworks. We further investigated informal
methods of mocking, which do not rely on anymocking framework. These informal mocking
methods point to potential sub-optimal mocking practices that could be improved, as well
as limitations of existing mocking frameworks. Finally, we conducted a developer survey
to collect additional insights regarding the above analysis based on their experience, which
complements our analysis based on repository mining. Overall, this study offers practitioners
profound empirical knowledge of how mocking frameworks are used in practice and sheds
light on future research directions to enhancing mocking in practice.

Communicated by: Dan Hao

B Lu Xiao
lxiao6@stevens.edu

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Empirical Software Engineering (2024) 29:39

Accepted: 10 October 2023 / Published online: 23 January 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10410-y&domain=pdf
http://orcid.org/0000-0002-3202-3077

Keywords Software testing ·Mocking frameworks · Apache open-source projects

1 Introduction

Software testing is the process of verifying and validating the functional and non-functional
attributes of a software system. Unit testing, the most fundamental phase of software testing,
targets at a software system as units, typically asmethods (Runeson 2006; Ieee standard 1990;
Kaner et al. 1999; Daka and Fraser 2014; Garousi and Zhi 2013). A unique challenge in unit
testing results from the inter-dependencies among the units (Runeson 2006; Bertolino 2007).
That is, one unit usually has dependencies to other units in the system, as well as to external
systems or third-party libraries. Therefore, it is inappropriate, and often impractical, to test a
system as completely separate units without considering their dependencies. For example, a
unit of function under test (FUT) may depend on an external database for data storage. This
dependency hinders the testing of the FUT. For instance the database may not be deployed
and ready for use; connecting to the database may not be affordable in continuous testing;
and bugs in the database may cause interference to the testing and debugging of the FUT.

In order to overcome these challenges, practitioners devised amechanism called mocking,
which replaces test dependencies of the FUT by creating mock objects (Spadini et al. 2017,
2019). That is, developers create a faked object and control its behavior to mimic the behav-
ior of a dependency for the testing purpose. For example, developers may leverage the file
system with hard-coded data items to replace the real database (Taneja et al. 2010). Mocking
helps to isolate dependencies and enforce true “unit” testing. Developers can test the system
as separate units in parallel, without having to wait for each other. If the dependency is to an
external system, such as database or an http server, mocking helps to avoid the long waiting
time to access external resources, which could be exorbitant in unit testing using the contin-
uous testing and integration flow. Furthermore, isolating test dependencies through mocking
can avoid bug interference in debugging the FUT. Without mocking the dependencies, bugs
outside of the FUT can also cause test failures, making debugging more confusing and less
efficient.

There exist dedicated mocking frameworks, such like Mockito, EasyMock, and Power-
Mock, for facilitating mocking in Java projects. They provide convenient APIs for creating
mocking objects, manipulating the behaviors of the mocking objects through method-
stubbing, and verifying the execution status and interactions of the mock objects. Despite
the various benefits of using these frameworks for mocking, there are also debates regarding
their usage, focusing on when and how mocking frameworks should be used. For example,
one of the main concerns is the raised bar for developers to contribute in open source projects,
and the lack of sufficient coverage in the current curriculum of software testing. We found
in our previous study (Wang et al. 2021) that developers sometimes turn to inheritance as a
way for mocking since it is more intuitive for developers who are not familiar with mocking
frameworks.

There currently is limited knowledge regarding whether and how mocking frameworks
are used in practice. Related empirical experience can benefit practitioners in learning and
adopting mocking frameworks in their projects. Mostafa and Wang (2014) conducted an
empirical study on howmocking frameworks are used in the GitHub community. Their study
focused on 5000 software projects from Git. Their study contributed several key findings:
459 (23%) projects, which contain test code, uses at least one mocking framework. Only
a small portion (17%) of all dependency classes are mocked in the projects. The top four

123

39 Page 2 of 53 Empirical Software Engineering (2024) 29:39

most popular frameworks used by projects on GitHub include, Mockito, EasyMock, JMock,
and JMockit. Software testers use advanced APIs, such as verify and spy, for specifying and
verifying the interactions between the FUT and the mock objects, instead of creating simple
test stubs or fake objects. Software testers tend to use 60% of the mock objects for replacing
source code classes and the remaining 40% for library classes.

At a high level, this study is motivated to investigate the usage of mocking frame-
works in Apache projects since Apache Software Foundation has been widely recognized
and researched as a distinguished example of successful open-source software communi-
ties (Mockus et al. 2002, 2000; Crowston and Howison 2006). Practitioners and researchers
have been gaining experience and insights from the successful practices of Apache projects
to lead the open-source movement (Rigby et al. 2008; Duenas et al. 2007; Weiss et al. 2006).
In addition, Apache provides a meeting point where engineers from large companies like
IBM, Google, Yahoo, Sun, and Oracle work as volunteers to build open-source software
infrastructure (Severance 2012). No prior studies have revealed how mocking is practiced
in Apache projects. Thus, we are motivated to fill this gap by providing empirical insights
regarding what project factors impact the adoption of mocking frameworks, as well as the
specifics of how mocking frameworks are adopted by Apache projects.

In this study, we specifically focus on the 246 Apache Java projects (Apache software
foundation projects list 2023), since Java has been one of the most widely used programming
languages in the past decades. To enable automated analysis of how mocking frameworks
are used in the hundreds of Java projects, many of which are complicated and large-scale,
we created a source code parser to search for the usage of related mocking framework APIs
based on the Eclipse JDT. This parser is language-dependent, and cannot be used directly for
another language, such as Python. The analysis of how mocking frameworks are being used
in other languages is also a valuable future direction but is out of the scope of this study.

This study contributes important empirical knowledge regarding the mocking practice, by
focusing on five complementary RQs that have not been sufficiently addressed in related prior
studies. More specifically, we summarize the key findings and insights of this study based
on the five RQ1. In RQ1, we investigated the overall adoption of mocking frameworks in
Apache projects.We found that 66% of Apache projects use at least one mocking framework,
with Mockit, EasyMock, and PowerMocknig being the most popular. In particular, larger-
scale and newer projects are more like to use a mocking framework. This highlights the
overall importance of mocking in practice and its related research, especially for modern,
large-scale, and complicated projects. InRQ2,we investigated the intensity ofmocking across
different projects.We found that mocking is practiced quite selectively in a project in general.
This points to important future research in providing formal guidance to facilitate mocking
practice, regarding when to mock, what to mock, and who should be in charge of mocking.
In RQ3, we examined the trends of mocking practice over the projects’ evolution history. We
found that the usage intensity of mocking in different projects shows different trends, and the
number of developers who worked on mocking was quite dynamic, in the evolution history.
The implication is that there are compound effects of various factors, such as the pace of
a project’s growth, available resources, time pressure, and project priority that impact the
dynamism of mocking in projects’ evolution. It calls for more future research to understand
these compound factors to facilitate mocking practice in the context of software evolution.
In RQ4, we revealed the most popular mocking function APIs from the three most popular
frameworks. This benefits practitioners with a “cheat sheet” to accelerate their learning curve
in using mocking frameworks. In RQ5, we discovered informal mocking methods that do
not rely on any mocking frameworks. These cases point to sub-optimal mocking practice, as
well as potential limitations of existing mocking frameworks. This RQ also sheds light on the

123

Page 3 of 53 39Empirical Software Engineering (2024) 29:39

future research direction regarding how to eliminate sub-optimal mocking and address the
limitations of existing frameworks. Finally, we complemented the repository-mining-based
analysis of the RQs through a survey participated by 17 Apache developers. The survey
confirmed our findings and also provided additional insights from real-world developers’
experience.

Despite numerous prior studies that focus on mocking, which are discussed in detail in
Section 9, the most relevant study to ours is by Mostafa and Wang (Mostafa and Wang
2014), which provides empirical experience regarding mocking frameworks in the GitHub
community. When comparing to Mostafa and Wang (2014), this study distinguishes itself in
the two aspects:

– Our study provides complementary knowledge toMostafa andWang’s study by focusing
on projects with different “demographics” features. the Apache software foundation
hosts many widely adopted, long-lived open-source projects, such as Cassandra, Tomcat,
Hadoop, etc. Not only are these projects contributed by large, geographically distributed
teams, but also they serve as the foundation for various commercial software systems
that greatly benefit society. In comparison, GitHub hosts smaller and individual-owned
projects. As highlighted in Section 6, we made a detailed, statistical comparison of the
“demographics” of projects on Apache and on GitHub, regarding the team size, activity
level, project history, and project scale. The findings underscore the different project
characteristics on these two platforms. Our assumption is that whether and howmocking
frameworks are adopted in these two communities could be impacted by the project
characteristics.

– The depth of this study is more significant in all the RQs compared to Mostafa and
Wang (2014), although our study only contains 193 Apache projects, while Mostafa and
Wang (2014) examined 5000 Github projects. More specifically, in RQ1, we conducted
a statistical analysis of what project factors may impact mocking framework adoption,
which is not available in Mostafa andWang (2014). In RQ2, we provided a more detailed
statistical analysis of the intensity ofmocking framework adoption from threemeasures—
the percentage of test files that usemock, the percentage ofmocked dependencies, and the
distribution of mock objects and mocked dependencies in files. In RQ3, we conducted a
thorough and quantitative investigation of how the mocking framework adoption evolved
over the projects’ history, which is not available in Mostafa and Wang (2014). In RQ4,
we conducted a systematic analysis of mocking framework APIs based on their functions
and revealed the top five frequently used APIs. In comparison, Mostafa andWang (2014)
only presented the top 10 APIs in each framework without qualitatively differentiating
different functions. In RQ5, we also investigate how practitioners may use informal
methods, instead of a mocking framework, for mocking practice. For example, creating
a sub-class as a mock object is common, which is commonly referred to as “stub” and
“fake” in the grey literature. Mostafa and Wang (2014) did not focus on these problems.
Finally, we conducted a survey to collect input from developers to confirm and deepen our
understanding of the RQs to better illuminate future research. This is also not available
in Mostafa and Wang (2014).

The rest of this paper is organized as follows. Section 2 discusses background information.
Section 3 presents the research questions we aim to address in this study. Section 4 introduces
our study process. Section 5 elaborates our findings. Section 6 compares our findings with
that of Mostafa and Wang’s study. Section 7 discusses the implications of this study and
future directions. Section 8 discusses limitations and threats to validity. Section 9 discusses
related work. Section 10 concludes this study.

123

39 Page 4 of 53 Empirical Software Engineering (2024) 29:39

2 Background

2.1 Motivating Example for Mocking

Figure 1a illustrates the concept of test dependencies in a real-life scenario. In an E-commerce
system, the Customer Service module is responsible of providing various services for cus-
tomers, such as subscribing a new customer to the system and sending an email confirmation.
In fulfilling its functions, it sends requests to and receives responses from aweb server, which
communicates with a SQL Database.

When testing the function of Customer Servicemodule as a unit, the tester must consider
its dependencies to the Web Server as well as the SQL Database. If these two dependencies
are not available, e.g. the server and the database are not deployed, the testers cannot test the
functions ofCustomer Service easily. If the tested function involved a large amount of network
data transmission, running the test cases forCustomer Service could lead to long waiting time
in the Continuous Integration Cycle. Finally, if theWeb Server or the SQL Database contains
bugs, these bugs could interfere the test cases of Customer Service—requiring extra effort in
the debugging of the Customer Service module.

Mock objects are designed to address the above challenges by isolating the function under
test from its dependencies. For example, as illustrated in Fig. 1b, in the unit testing of the
Customer Service module, the tester can create a fake server to replace the dependency on
the server. More specifically, instead of accessing a real web server, the Customer Service
talks to a fake server, which mocks the behavior of the real server in a controlled way, just for
the purpose of testing. For example, the fake server may return true to indicate the request
was successfully received and processed or return false to test the fault tolerant mechanism
for the customer services. As such, the tester can focus on the function under test with the
help of the mock server.

2.2 Mocking Frameworks

There is a number of mocking frameworks which are dedicated for creating, manipulating,
and verifying mock objects in unit testing. These frameworks provide a variety of convenient
APIs for three different aspects inmocking: 1) creationofmockobjects; 2)manipulationof the
behavior of mock objects; 3) verification of the interactions with and status of mock objects.
There are differentmocking frameworks for different programming languages, such asMock-
ito (mockito 2023), EasyMock (EasyMock 2023), PowerMock (PowerMock framework site
2023) and SpringframeworkMock (Maven Repository 2023) for Java; Mock (Unittest 2023)
for Python; NMock (NMock 2023), Moq (moq 2023) for C#. These frameworks are widely

Fig. 1 : Comparing Mock and Real Dependencies

123

Page 5 of 53 39Empirical Software Engineering (2024) 29:39

used in software projects to ease the process of unit testing (Henderson 2017; Hunt and
Thomas 2004; Marri et al. 2009).

Figure 2 is the implementation of the motivating example in the previous subsection,
implemented following the syntax of Mockito. The function under test (FUT) is the sub-
scribeCustomer method (called in line 31) in the CustomerService class. The FUT depends
on the EmailManager deployed on an external web server for sending emails to customers.
In this example, we create a mock object of EmailManager (line 26). And, we control the
behavior of EmailManager by stubbing its method subscribe and sendEmail (line 27 to 29).
That is, whenever emailManager.subscribe() is called, we invoke emailManager.sendEmail()
which always return true through the lambda expression. When acting the FUT, we pass the
mock object to isolate test dependency (line 31 and 32). Finally, we use the verify function
to check the execution of the two stubbed methods (line 33 and 34).

Note that despite the advantages of mocking frameworks, not all developers fully support
their use. For instance, Spadini’s study (Spadini et al. 2017, 2019) points out that usingmocks
canbring several challenges such asmaintaining the compatibility of themock’s behaviorwith
the original class, the relationship between the amount ofmocking required for a test class and
its code quality, and the (unfavorable) excessive use of mock objects to test legacy systems. In
communities like StackOverflow (Why is it so bad to mock classes? 2023), developers often
debate the use of mocks. Some argue that while stubs are often desirable, they are overused
through mocking frameworks, resulting in fragile tests. They find striking the right balance
challenging. Others emphasize programming to interfaces over implementations, viewing
frequent class mocking as a misuse. They also warn that excessive mocking necessitates
making virtually everything mockable, potentially disrupting the class design. Our research
question RQ5 also examines this phenomenon and has found instances of implementing
mocks through Customized Mock Classes rather than using mocking frameworks. We also
got related confirmation from the survey we designed for this study.

3 Research Questions

We ask the following research questions to understand the usage of mocking frameworks in
Apache projects.

– RQ1:Howpopular aremocking frameworks in Apache projects? The goal of this RQ is to
reveal the overall popularity of the mocking frameworks among all the Apache projects.
That is, what is the percentage of Apache projects that adopt a mocking framework? In
addition, we analyze this RQ in-depth in two parts:

Fig. 2 : Mocking by Mockito

123

39 Page 6 of 53 Empirical Software Engineering (2024) 29:39

– RQ1.1 What are the most popular mocking frameworks? This RQ helps identify
mocking frameworks that practitioners could prioritize based on popularity.

– RQ1.2 How do the characteristics of projects impact the adoption of mocking frame-
works? We assume that project scale, activity, age, and domain may have an impact
on the adoption of mocking frameworks. This provides empirical observation for
practitioners regarding what type of projects are likely to use a mocking framework.

– RQ2: What is the usage of mocking in Apache projects? This RQ shed light on the
intensity of mocking and what types of dependencies are usually mocked. It unfolds in
two sub-RQs:

– RQ2.1: How intensively do the projects use mocking frameworks? We assume that
mocking is only practiced selectively by some developers since it comes with a cost.
Here we aim to measure the intensity of mocking in the Apache projects to shed light
on related future research. In addition, we also aim to measure how many developers
in a project are usually engaged in using and maintaining mocking-related tests.

– RQ2.2: How often do developers mock external dependencies in Apache projects?
We analyzed the most frequently mocked classes to understand whether developers
tend to mock external library classes or the classes in their own projects. This shed
light on the motivation of using mocking.

– RQ3: How has the usage of mocking in Apache projects evolved over time? This RQ
unfolds into three sub-RQs:

– RQ3.1: When did the projects first and last use mocking, and what has been the
duration (in years) of the usage in the projects’ history? We aim to identify the first
and the last years when a project was detected using mocking and calculate the years
in between, which is the duration of usage. This provides an understanding of the
overall history of mocking usage in the projects.

– RQ3.2:Howhas the usage intensity evolved over time?Here,wemeasure andmonitor
the mocking usage intensity in each project in each year, and observe the trend of
the usage intensity over the project history. This provides insights regarding whether
and to what extent the mocking usage increases, decreases, stabilizes, or fluctuates
with the growth and evolution of the projects.

– RQ3.3: How has the number of developers involved in mocking usage changed over
time? We estimate the number of developers who make contributions to mocking-
related test files each year, and observe the trend over time. This helps us understand
the dynamics of contributors to mocking usage and provides insights regarding the
effort and resources dedicated to mocking in the projects.

– RQ4: What are the most frequently used mocking APIs in Apache projects? This RQ
aims at revealing and analyzing the most frequently used APIs from the most popular
mocking frameworks revealed in RQ1. The assumption is that only a portion of APIs
are frequently used in practice. Revealing such could provide a learning cheat sheet for
practitioners.

– RQ5: Do developers always use a mocking framework when mocking is needed? We
observed that some test classes contain the keywords “mock” or “spy” in their names,
implying that they relate tomocking, but do not use anymocking frameworks. The goal is
to understand whether there are informal ways of mocking without relying on a mocking
framework and to shed light on how to enhance mocking practice.

123

Page 7 of 53 39Empirical Software Engineering (2024) 29:39

4 Study Process

This study focuses on the open source projects hosted on the Apache Software Foundation
website (Apache software foundation projects list 2023), which contains a total of 246 Java
projects for our study.We used the latest GitHub version as of October 2022. In order to
answer the above research questions, our study process contains seven main conceptual steps
illustrated in Fig. 3. Step 1: Basic Data Collection: We collect basic project information
about the study subjects. This step prepares the raw data for the following-up steps. Step 2:
Mock Frameworks Adoption Analysis (RQ1): We extract imported libraries in each project
and manually verify whether a mocking framework is used. Step 3: Mock Usage Analysis
(RQ2). We investigate to what extent mocking is practiced, and whether the mock objects are
internal to a project, or external libraries or resources. Step 4:MockUsageEvolutionAnalysis
(RQ3), we select one snapshot each year from a project’s history, and analyze the evolution
history of mocking usage in the projects. Here we focus on the most popular frameworks
identified in RQ1. Step 5: Mock API Analysis (RQ4). We extract and analyze the frequently
used mocking APIs from the most popular mocking frameworks. Step 6: Sub-optimal Mock
Identification (RQ5). We identify cases where developers leverage the concept of “mocking”
without relying on a mocking framework. Step 7: Developers Survey which reflects on the
RQs. We conduct a survey to gain a deeper understanding of the above research questions
from the developers’ perspective.

4.1 Step 1: Basic Data Collection

Firstly, we collect the source code of each project by cloning their git repository. In this study,
we used the latest version of each project, released by October 2022. The details of which are
listed here (List of releases for the project 2023).We find that 33 projects do not have a linked
git repository. In addition, in 4 projects, we do not identify any test cases since these projects
do not import JUnit at all. Next, we import each project to Eclipse and use eclipse JDT (Web
2013) to resolve the bindings among the software entities to prepare for the following-up

Step 1: Basic Data Collec�on 193 Projects: Code Repositories and Basic Informa�on

Step 2: Mocking Framework Adop�on Analysis

Framework
Iden�fica�on

Adop�on Factor
Analysis

RQ1.1 Ranked list of most popular mocking frameworks
RQ1.2 Framework adop�on percentage in projects of
different characteris�cs (scale, sage, and domain)

Step 3: Mocking Intensity and Type Analysis

Intensity
Analysis

Mock Type Analysis:
Internal or External

RQ2.1 Usage intensity, mocking intensity, # of
developers, # mock objects, # mocked dependencies
RQ2.2 Percentage of external mocks

Step 4: Mock Usage Evolu�on Analysis

Time-frame
Analysis

Intensity
Evolu�on
Analysis

Developer
Dynamism

Analysis

RQ3.1 Start and end year, and dura�on of adop�on
RQ3.2 Usage intensity trends in projects
RQ3.3 Contribu�ng developer trends in projects

Step 5: Mock API Extrac�on and Analysis

Tutorial Review and
API Categoriza�on

API Extrac�on
and Ranking

RQ4: “Cheat-sheet” of frequently used APIs in different
func�ons

Mockito EasyMock PowerMock

Step 6: Customized Mock Analysis

Customized
Mock Detec�on

Manual Inspec�on
of Samples

RQ5: Percentage of customized mocks and in-depth
design ra�onale of sample cases

Step 7: Developer Survey

SQ 1-3: Framework Adop�on
• Select the commonly used frameworks
• Have you used mul�ple frameworks in a

project? Please iden�fy combina�ons of
frameworks

• Please provide reasons for the combina�on

SQ 4-5 Mocking Intensity and Type
• How frequently do you mock?
• How likely will you mock different classes?

SQ 6-8 Mock API
• Select the most frequently used APIs
• Select from the APIs (i.e. 10 least used APIs)

if you frequently use any of them
• Explain why or why not they use the APIs

SQ 9-10 Customized Mock
• Have you used methods other than a

framework for mocking?
• List limita�ons with exis�ng mocking

frameworks

For the top 3 mocking frameworks

Fig. 3 : Study approach overview

123

39 Page 8 of 53 Empirical Software Engineering (2024) 29:39

analysis. This requires that the source code of a project be successfully compiled before being
able to process by JDT, and thus we further excluded 16 projects that we cannot successfully
configure and compile. Therefore, our dataset actually contains a total of 193 projects. We
collect some basic measurements of these 193 projects, including the number of Java source
files, the number of test files, the total LOC, the test LOC, the number of developers, and
the number of available versions. Table 1 summarizes the average, median, maximal, and
minimal of these measurements of the 193 projects.

Note that the number of test files is counted based on the import of JUnit library (JUnit
2023). If a .java file imports the JUnit APIs, we consider it as a test file for unit testing. The
reason is that JUnit is the most commonly used framework for unit testing in Java language.
Therefore, we assume that test files that import JUnit is for unit testing. As we will discuss
in more detail in Section 8, this may lead to some inaccuracy in counting the number of unit
test files, but should not impact the key findings and value of this study.

4.2 Step 2: Mocking Framework Adoption Analysis

In this step will first identify whether and which mocking framework(s) is used in each
project; then analyze how different project characteristics may impact the adoption of mock-
ing frameworks.

Framework Identification If a software project uses a mocking framework, it has to import
the related APIs. Thus, in order to investigate whether the 193 projects use existing mocking
frameworks, and what are these frameworks, we extract all the API calls from each test file
in a project. We leverage the eclipse JDT to resolve the bindings among software entities to
retrieve the full namespace of each API. Next, we use a simple keyword, “mock”, to search
for all potentially related framework names. To the best of our knowledge, the namespace of
well-known frameworks all contains this keyword, such asMockito, EasyMock, PowerMock,
etc.. Based on our observation, even if it is not in the name of the framework, it appears as part
of the import namespace. We use this method to search for potential mocking frameworks
to avoid missing ones that we are familiar with. Finally, we manually review the retrieved
namespaces that match the search keyword. For each identified item, we manually verify
whether it is a mocking framework by searching its information online. For the confirmed
mocking frameworks, we count and rank their popularity in the 193 projects. This helps us
to reveal which mocking frameworks are most popular.

Adoption Factor Analysis To help gain insights regarding how project characteristics
contribute to the adoption ofmocking frameworks,wefirst collect projectmeasures, including
the number of commits, the number of contributors, the number of files, LOC, the number
of test files, test LOC, and the project duration. Then, we conducted a pair-wise correlation

Table 1 : Basic information
of Mock usage empirical
study subjects

Basic information Avg. Med. Max. Min.

#Java Files 1,537 738 20,760 17

#Test Files 524 189 11,064 1

LOC 165,443 76,517 1,574,022 993

Test LOC 61,579 17,414 784,965 0

#Developers 110 44 2,488 2

#Versions 56 36 584 0

123

Page 9 of 53 39Empirical Software Engineering (2024) 29:39

analysis of these measures. The collected project measures were stored in an excel file,
with the measures of each project in a row. The correlation analysis was done using Python
Pandas library. We load the data using Python Pandas’ read_csv() API. Lastly, we use the
Pandas’ corr() API to calculate the pair-wise correlation co-efficiency. The results are shown
in Table 2. As we can see from the table that the top 6 of these 7 related factors have strong
positive correlations with each other, with co-efficiency between 0.5 and 0.96. In comparison,
project duration is not correlated with any of the other factors.

Therefore, in the rest of the study, wewill only investigate how the project scale (measured
by the number of Java files) and project duration impact the adoption ofmocking frameworks,
since the project scale strongly correlates with the other factors. We first divide the 127 into
three ranks—as small projects (<400 files), medium projects (400-1500 files), and large
projects (>1500 files). We make this division so that the number of projects in each rank is
approximately the same. Next, we also divided the 127 projects based on their age—dated
back to the year of the first code commit. As shown in Fig. 7c, the projects are in three groups:
first commit before 2005, first commit between 2005-2010, and first commit after 2010. Note
that the division is made so that the total number of projects in each bin is approximately the
same. In RQ1.2, we will analyze how the adoption of mocking frameworks changes among
projects of different scales and ages (i.e. duration).

Furthermore, we analyzed the tags associated with each project, provided by the official
Apache website here Projects by category (2023), such as “big data”, “sql”, “search”, etc.
The tags capture the domain of each project based on its functions and content. There are a
total of 30 unique tags provided on the website. The same tag may associate with different
projects, and a project may also associate with multiple tags, such as “big data”, and “cloud”.
To understand the impact of the project domain on the adoption of mocking frameworks
clearly, we grouped these 30 tags into four high-level categories as described below.

– Data Management contains tags related to handling, managing, and securing vari-
ous types of data (Briney 2015). For example, “big-data” deals with large data sets,
“distributed-sql-database” relates to database management. There are 56 projects in this
category.

– Development & Infrastructure contains tags related to the software development and
infrastructure libraries (Myers et al. 2004). For example, “Build-management” involves
compiling source code, “testing” covers software checks, and “library” relates to using
existing libraries for development. There are 68 projects in this category.

– Web Technologies includes tags associated with online content management (Barker
2016). Tags like “html” and “xml” are used for structuring online content, and “content”
and “web-framework” cover creating andmanaging digital content. There are 34 projects
in this category. There are 34 projects in this category.

– Networking& IoT contain tags related to networking, cloud services, and the Internet of
Things (Buyya and Dastjerdi 2016). For example, “Cloud” relates to online computing
resources, “network-client” and “network-server” cover device communication over a
network, and “iot” pertains to devices connected and exchanging data. There are 36
projects in this category.

4.3 Step 3: Mocking Intensity and Type Analysis

Intensity Analysis First, we collect three metrics that measure how intensely the projects
use mocking and the developers contribute to the usage of mocking. For each project, we
measure:

123

39 Page 10 of 53 Empirical Software Engineering (2024) 29:39

Ta
bl
e
2
:C

or
re
la
tio

n
be
tw
ee
n
di
ff
er
en
tf
ac
to
rs

C
om

m
its

C
on

tr
ib
ut
or
s

.ja
va

Fi
le
s

L
O
C

Te
st
Fi
le
s

Te
st
L
O
C

D
ur
at
io
n_

da
ys

C
om

m
its

1
0.
74

0.
81

0.
76

0.
75

0.
71

0.
02

C
on

tr
ib
ut
or
s

0.
74

1
0.
5

0.
5

0.
46

0.
52

0.
04

.ja
va

Fi
le
s

0.
81

0.
5

1
0.
92

0.
96

0.
9

-0
.1
7

L
O
C

0.
76

0.
5

0.
92

1
0.
83

0.
94

-0
.1
7

Te
st
Fi
le
s

0.
75

0.
46

0.
96

0.
83

1
0.
86

-0
.1
4

Te
st
L
O
C

0.
71

0.
52

0.
9

0.
94

0.
86

1
-0
.1
5

D
ur
at
io
n_

da
ys

0.
02

0.
04

-0
.1
7

-0
.1
7

-0
.1
4

-0
.1
5

1

123

Page 11 of 53 39Empirical Software Engineering (2024) 29:39

– U I , which stands for Usage Intensity, calculated as |mockFiles|/|allFiles|, where
mockFiles is the set of test files that use mocking, and allFiles is the set of all the
test files in the project. Thus U I measures what percentage of test files in a project use
mocking.

– MI , which stands for Mock Intensity among test files that use mocking. It is calculated
as Avg(MockedDPs)/Avg(DPs), where Avg(MockedDPs) is the average number
of mocked dependencies of all the test files that use mocking, while Avg(DPs) is the
average number of all dependencies referenced by the test files. As such, MI measures,
on average, what percentage of dependencies are mocked in test files with mocking.

– #d, which counts the number of developers in each project who worked on test files with
mocking.

Furthermore, we also investigate the intensity of mocking within individual test files that
are identified with mocking. We calculate two metrics for each test file:

– #MO , which counts the number of mock objects created in each test file.
– #MD, which counts the number of dependencies being mocked in each test file.

Note that multiple mock objects may be created for the same dependency multiple times in a
test file. Thus #MD is always<= #MO since the #MD only counts the number of mocked
dependencies regardless of how many mock objects are created for each dependency.

Mock Type Analysis Next, we look into whether the mocked object is an external library
or an internal function. We first need to understand what is the syntax for creating a mock
object using different frameworks. For this, we carefully review the official documentation of
each mocking framework and curate the APIs that can be used for mock object creations. For
instance, both Mockito and PowerMock uses mock(). By matching the mock object creation
APIs, we identify all the dependencies being mocked in a project. Next, we retrieved the full
namespaces of themocked dependencies. If a namespace is consistent with that of the project,
it implies that the object is internal to the project. For example, in PDFBox (Apache PDFBox
2023), all the internal objects have this namespace, “org.apache.PDFBox”. In comparison, an
external dependency has a different namespace from the project. We assume that there may
exist common external dependencies that developers need to mock, such as a database or an
HTTP server. Therefore, we further count themost frequentlymocked external dependencies.

4.4 Step 4: Mock Usage Evolution Analysis

This step aims to gain a deeper understanding of how mocking usage evolves over time in
projects, focusing on the top three frameworks.

First of all, for each project, P , in our dataset, we retrieve the last release, Pi in each year i
of its history. If there is no release in a particular year, we look for the first release of the next
year, as such we make sure that two selected releases have roughly a year in between. We
trace all the way back to the very first year of the project, as recorded by the git repository.
Thus, we analyze a total of n snapshots of P over its entire available history on Git. The
interval between two consecutive snapshots, Pi−1 and Pi , is roughly 1 year based on our
selection strategy.

Time-frame Analysis In RQ3.1, for each snapshot Pi of a project, we search for all the
test files that import mocking framework APIs, by matching the framework namespaces. The
matched file set is recorded as mockFilesPi , which contains all the test files with mocking.
We record the first year, s, when the mockFilesPs is detected not empty. It means that
the project started using mocking in year s; similarly, we record the last year, e, when the

123

39 Page 12 of 53 Empirical Software Engineering (2024) 29:39

mockFilesPe becomes empty after s. It means that the project stopped mocking in year e.
Note that if e is never detected, it indicates that the project keeps using mocking in the time
frame of our study, and thus e = 2022. We calculate the duration of mocking usage as e− s.

Intensity Evolution Analysis For RQ3.2, we calculate a mock usage intensity rate in
each year of each project, as Usage_I ntensi t ypi = |mockFilesPi |/|allFilesPi |, which
describes what percentage of test files in Pi actually uses mocking. Next, we draw a trend
line of how Usage_I ntensi t ypi changes over the years in each project. Furthermore, we
manually review the trend lines and categorize the projects as increasing, decreasing, stable,
or fluctuating usage intensity with the help of calculated regression models.

Developer Dynamism Analysis For RQ3.3, we record the number of developers, dpi , who
worked on test files with mocking in each year Pi . Similar to RQ3.2, we draw trend lines
of how dpi changes over the years, calculate the regression models and manually review
the trend lines to categorize the projects into increasing, decreasing, stable, or fluctuating
numbers of mocking-related developers.

4.5 Step 5: Mock API Extraction and Analysis

Here, we focus on the most popular mocking frameworks. It is of low value to investigate
the APIs of an uncommonly used mocking framework. We first carefully review the official
documentation and tutorials of the most popular mocking frameworks. This helps us to gain
a systematic understanding of the API functions offered by different frameworks. Based
on this understanding, we automatically extract all API usage instances from the Apache
projects. The extraction is based on automatically searching for APIs calls that match the
framework namespace. For example, Mockito’s APIs all start with org.mockito. Lastly, we
rank the APIs of the same function group from each mocking framework based on their
frequencies being used across all the projects. We will present the most frequently used APIs
in each function group. This empirical observation helps practitioners to prioritize APIs that
are most frequently used in practice.

4.6 Step 6: Sub-optimal Mock Analysis

In this step, we aim to reveal whether developers leverage the concept of mocking without
using any existing mocking frameworks. We call these classes Customized Mock Classes—
meaning that developers used their own customized approach for potentialmocking purposes.
This RQ focuses on revealing what are the common types of Customized Mock Classes
and whether they could be replaced by using a mocking framework, in particular Mokcito,
since it is the most popular framework. It is possible that developers create mock objects
using an informal approach, such as based on inheritance or by creating the mock objects
manually (Wang et al. 2021; Wang 2021). We believe that these cases may point to the sub-
optimal implementation of mock, due to various factors, such as a lack of related experience
in using a mocking framework or even limitations with an existing framework.

The heuristic we leverage in this step is that, we identify test files with keyword “mock” or
“spy” in their names, but does not import any APIs from existing mocking frameworks. We
acknowledge that it is possible that developersmay not always include the keyword “mock” or
“spy” in such cases. Thus, we may not be able to retrieve all related cases using the searching
heuristic. Once we identify such cases, we randomly select sample cases and review how
developers use the concept of mocking without a mocking framework. For each Customized
Mock Class, we examine their definition and how they support a test case. The high-level

123

Page 13 of 53 39Empirical Software Engineering (2024) 29:39

purpose of a mocking framework is to help isolate test dependencies, i.e. replacing objects
that the function under test depends on with “mock” objects. We first examine whether the
Customized Mock Classes are intended to test dependency isolation, which aligns with the
purpose of a mocking framework. For those that are not for dependency isolation, we inspect
the class and summarize what is its intention. For those that are for dependency isolation, we
analyze what is their design mechanism for achieving this purpose, and whether it is possible
to replace them by using Mockito. In particular, Xiao et al. Wang et al. (2022) has discovered
that inheritance is a common approach for mocking without using a mocking framework.
Furthermore, Xiao et al. Wang et al. (2022) contributed an automated tool for replacing the
inheritancemocking by usingMockito.Wewill apply Xiao’s tool to our dataset. This helps us
to understand gaps in open-source developers’ expertise and even gaps in existing mocking
frameworks.

4.7 Step 7: Developer Survey

This step conducts a survey involving developers who are likely to have experience with
mocking. The objective is to gain a deeper understanding of the research questions by taking
developers’ input.

Participation InvitationOur target is developers who have prior experience with mocking.
To effectively identify potential participants, we first download the entire Git revision logs
of all the projects in our dataset. From the revision log of each project, we identify the names
and emails of the developers who made commits to test files with mocking (according to our
analysis of RQ2). We rank all the developers across all the projects based on the number of
changes to mocking-related files. However, we noticed that the email contacts mined from
the revision log are mostly affiliated with “apache.org”, which are not the personal emails
of the developers and are not likely to be the best way to reach them. Thus, we extend our
invitation to the top 300 developers in order to possibly increase the number of responses
we receive. Figure 4 shows that these 300 developers actually made almost 80% of commits

Fig. 4 : Cumulative distribution of top developers to Mocks

123

39 Page 14 of 53 Empirical Software Engineering (2024) 29:39

to the test files with mocks. Thus, this pool should quite comprehensively cover the most
significant contributors tomocking. The survey is completely anonymous and does not collect
participants’ identities. As such, we have zero knowledge of who actually participated in the
survey. The survey was initially sent on 5/25/2023 and results were collected on 7/15/2023,
with three reminders in between.

Survey QuestionsWe ask a total of 10 survey questions (SQs) grouped into four parts that
correspond to the research questions so that we can get validation and additional insights
from developers. We will elaborate on the survey questions and the rationale behind them:

– SQ 1-3: Framework Adoption: This part asks about developers’ experience with com-
monly used frameworks and their combinations, and thus provides additional insights to
RQ1:

– SQ1: Please select the commonly used frameworks.Here we provide the list of mock-
ing frameworks identified in our study and also provide an option for the participants
to add new frameworks that are not listed.

– SQ2: Have you used multiple frameworks together in your project(s)? If yes, please
check the ones that were used together. Here we allow the participants to check
multiple frameworks together.

– SQ3: If yes to SQ2, please talk about why multiple frameworks are used in your
project(s)? The goal is to obtain insights from developers, which could be subjective
and cannot be comprehensively and accurately identified through purely quantitative
repository mining in the RQ.

– SQ 4-5: Mocking Intensity and Type: This part investigates developers’ perception of
intensity and type of mocking, which maps to RQ2:

– SQ4: Based on your experience, please rate on how frequently do you mock in your
project(s)?Here we ask the participants to estimate the scale between 0% to 100% in
two aspects in 1) the percentage of test files that usemocking; and 2) the percentage of
dependencies being mocked. These are actually the Usage Intensity and theMocking
Intensity metrics (defined in Section 4.3) we used in RQ2. Also, we provide an option
for the participants to add any additional information they would like to provide here.

– SQ5: How likely will you mock different classes?Here we ask the participants to rate
the likelihood of mocking internal and external classes, respectively, on a percent-
age scale (0% to 100%). We also provide an option for the participants to provide
additional comments on this question.

– SQ6-8:Most and Least FrequentUsedAPIs:This part examines developers’ perception
of the most and the least frequently used APIs of their primary framework.

– SQ6: Please select the most frequently used APIs. Here we ask the developers to list
the top 5 most frequently used APIs based on their experience.

– SQ7: Please select the ones from the APIs below that you frequently use.We provide
the least 10 frequently used APIs from each framework to the participants and ask
them to check the ones that they actually frequently use. The objective is to confirm
if their perceptions of the least frequently used APIs deviate from the mined results.

– SQ8: Can you explain why you did not use the ones from SQ7. Here we ask the
participants to share more detailed explanations for the ones that they did not choose
in SQ7. This helps us understand why the APIs are less frequently used in practice.

123

Page 15 of 53 39Empirical Software Engineering (2024) 29:39

– SQ 9-10: Experience with Customized Mock: This part aims to achieve additional
insights regarding when and why developers use customized mocks presented in RQ5:

– SQ9: Have you used methods other than a framework for mocking? If so, can you
describe the methods you have used? We want to know if developers are aware of
alternatives to mocking frameworks, especially if it is intentional to use customized
mocks represented in RQ5.

– SQ10: Can you talk about limitations with existing mocking frameworks? We aim
to understand what limitations are encountered by developers to shed light on future
research.

Of particular note, we did not design any questions that map to RQ3 (mocking evolu-
tion analysis). The reason is that evolution is long-term and high-level, of which individual
developers may not have a direct perception. In specific, RQ3.1 focuses on objective facts of
when a project starts to use mocking APIs, which was recorded by the repository. Individual
developers join and leave the project and their knowledge represents their own experience,
but not project history. RQ3.2 and RQ3.3 focus on the evolutionary trends, which represent
the entire project, its history, and all its contributors as a whole. It would be biased to ask
individual developers related questions.

5 Study Results

5.1 RQ1: Adoption of Mocking Frameworks

Overall, in the 193 projects, 127 (66%) projects use at least one mocking framework. This
indicates that mocking frameworks are generally commonly used in Apache projects. Based
on these 127 projects that use mocking frameworks, we further investigate two sub-RQs:

RQ1.1 What are the most popular mocking frameworks? Table 3 shows the popularity
of different mocking frameworks. As we can see, among the 127 projects using mocking
frameworks, Mockito is the most popular—used in 98 (77%) projects. EasyMock and Pow-
erMock, ranking in second and third place, are used in 28% and 12% projects, respectively.
As shown in the last column, the top 3 most frequently used mocking frameworks, namely
Mockito, EasyMock, and PowerMock, together are used in 90% of projects.

It is worth noting that 47 (37%) projects use more than one mocking framework. Upon
further investigation, we found that the number of adopted frameworks positively correlates

Table 3 : Popularity of Mocking frameworks

Mocking framework #Projects % Projects Acc. % Projects

Mockito 98 74% 77%

EasyMock 36 28% 93%

PowerMock 16 12% 94%

jMock 11 8% 97%

Others 34 27% 100%

Total 127

Multiple Mocking Frameworks 47 (37%)

123

39 Page 16 of 53 Empirical Software Engineering (2024) 29:39

with the number of files, the LOC, and the number of commits, with co-efficiency of 0.71,
0.65, and 0.62 respectively. Thus, we imply that larger-scale and more complicated projects
are more likely to adopt multiple mocking frameworks to leverage the complementary fea-
tures. The majority of projects adopt two (in 33 projects) or three (in 9 projects) frameworks,
and it is rare to adopt more than three frameworks.

The most common combination is Mockito and EasyMock in 10 projects. In 6 projects,
EasyMock is the primary framework; and in 4 projects, Mockito is the primary framework.
Primary framework means that the project uses this framework most of the time. Actually,
Mockito and EasyMock offer comparable functions, except thatMocito supports spies, which
is not available in EasyMock. We conjecture that Mockito and EasyMock are used together
sinthe ce the different expertise/preferences of individual developers, as well as the migration
between frameworks.

The second most common combination is Mockito and PowerMock, which appeared in
7 projects. This combination offers complementary functions from both frameworks. As
discussed in RQ3, PowerMock typically offers more advanced functions to complement
Mockito.

Less common combinations include EasyMock-PowerMock (3 projects) or Mockito-
WireMock (3 projects). PowerMock provides advanced functions to complement EasyMock;
while WireMock complements Mocito for mocking HTTP services. Thus, a project may use
multiple frameworks as a result of different factors, including developers’ preferences and
expertise, migration of frameworks, as well as complementary functions.

RQ1.2Howdo the characteristics of projects impact the adoption ofmocking frameworks?
Aswe can see fromFig. 5a, 88%of large-scale projects, 65%ofmedium projects, and only

34% of small projects use mocking frameworks. The implication is that project scale is an
important factor that contributes to the adoption ofmocking frameworks. Large-scale projects
see a stronger need for a mocking framework, compared to small-scale projects. This aligns
with one’s intuitive understanding since large-scale projects tend to have higher complexity
in production dependencies that need the help of a mocking framework. As discussed above,
we focus on the project scale, which strongly correlates with five other factors.

In addition, as shown inFig. 7c,we observe that “younger” projects aremore likely to adopt
a mocking framework. 73% of projects “born” after 2010, 63% of projects “born” between
2005-2010, and only 46% of projects “born” before 2005 adopt a mocking framework.
Note that the earliest release of Mockito dates back to 2008 (Mockito release notes 2023).
Therefore, newer projects are more likely to adopt mocking frameworks.

Lastly, Fig. 5c shows the percentage of projects in different problem domains that adopted
amocking framework. Only 50%of “Development&Testing” projects use amocking frame-
work. In comparison, the majority of projects in the other three domain categories, i.e. 72%
of “Networking&IoT” projects, 73% of “Web Technologies” projects, and 83% “Data Man-

Fig. 5 : % of framework adoption in projects of different characteristics

123

Page 17 of 53 39Empirical Software Engineering (2024) 29:39

agement” projects, use mocking frameworks. This aligns with our findings to be presented
in RQ2 that external dependencies, such as HTTP service and database, are more likely to
be mocked, compared to internal dependencies in the projects.

RQ1: Take-aways:

1. Mocking frameworks arewidely us66%ed inApache Javaprojects—66%ofprojects
use a mocking framework.

2. The most popular mocking frameworks are Mockito, EasyMock, and PowerMock,
which are used in 94% of projects collectively. Thus, it is recommended that prac-
titioners should prioritize these three frameworks due to their popularity.

3. Larger-scale, more recent, and certain domain (e.g. networking, data) software
projects tend to observe a stronger need in using mocking frameworks.

5.2 RQ2: Intensity and Type of Mocking

RQ2.1: How intensively do the projects use mocking frameworks? First, we show the overall
distribution of mocking intensity in the projects in Fig. 6. This is measured in three aspects
byUsage Intensity (UI),Mocking Intensity (MI), as well as the # of Developers (#d) (defined
in Section 4.3), shown in Fig. 6a, b and c respectively.

From Fig. 6, we can observe that: 1) in most projects (70%), less than 10% of test
files use mocking, implying that mocking is only practiced quite selected in some files.
In comparison, in 9 projects, 30% to 60% of test files use mocking, implying more intensive
usage. Upon further investigation, those withUI greater than 40% include Tiles, CloudStack,
Commons-DbUtils, and HttpComponents-Client, targeting different areas such as web inter-
faces, databases, HTTP clients, and cloud fundamentals that are more likely to use mocking
as shown in RQ1. 2) from the perspective ofMI, in most projects (65%), between 5% to 15%
of dependencies are mocked—also implying that mocking is overall quite selective. Lastly,
3) in most projects (53%), less than 10 developers worked on mocking, given that these
projects could have hundreds of developers in total. The implication is that not all test files
use mocking and not all dependencies are mocked. This points to future research direction
for practitioners and researchers in investigating which dependencies should be mocked, and
what characteristics of a dependency necessitate the usage of mocking.

Furthermore, Table 4 shows the distribution of test files with cummulative #MO (column
1 to column 3) and and #MD (column 4 to column 6). We find that the majority (58.5%)
of mockFiles create three or fewer mocking objects. However, in 13.4% of test files with
mocking, developers may create more than ten mock objects. In addition, when counting
the number of mocked dependencies, in non-trivial test files (36.7%), only one dependency

Fig. 6 : Distribution of mocking intensity in projects

123

39 Page 18 of 53 Empirical Software Engineering (2024) 29:39

Ta
bl
e
4
:C

um
m
ul
at
iv
e
di
st
ri
bu
tio

n
of

#M
O
an
d
#M

D
in

te
st
fil
es

#
M
oc
k
O
bj
ec
ts

#F
ile
s
(%

)
C
um

ul
at
iv
e
(%

)
#
M
oc
ke
d
D
ps

#F
ile
s
(%

)
C
um

ul
at
iv
e
(%

)

1
10

63
(2
7.
7%

)
27

.7
%

1
13

28
(3
6.
7%

)
36

.7
%

2
72

1
(1
8.
8%

)
46

.5
%

2
73

6(
20

.3
%
)

57
.0
%

3
46

0
(1
2.
0%

)
58

.5
%

3
46

1(
12

.7
%
)

69
.7
%

4
37

3
(9
.7
%
)

68
.2
%

4
27

7(
7.
6%

)
77

.3
%

5
22

2
(5
.8
%
)

74
%

5
21

2(
5.
9%

)
83

.2
%

6
17

4
(4
.5
%
)

78
.5
%

6
13

3(
3.
7%

)
86

.9
%

7
11

7
(3
.1
%
)

81
.6
%

7
11

5(
3.
2%

)
90

.0
%

8
10

6
(2
.8
%
)

84
.4
%

8
69

(1
.9
%
)

91
.9
%

9
87

(2
.3
%
)

86
.7
%

9
58

(1
.6
%
)

93
.5
%

10
+

51
2
(1
3.
4%

)
10

0%
10

+
23

4(
6.
5%

)
10

0.
0%

123

Page 19 of 53 39Empirical Software Engineering (2024) 29:39

Ta
bl
e
5
:E

xt
er
na
ld

ep
en
de
nc
ie
s
in

A
pa
ch
e
pr
oj
ec
ts

(a
)
L
ib
ra
ry

cl
as
s
m
oc
ks

A
vg

.
M
ed
.

M
ax
.

M
in
.

#M
oc
ke
d
lib

ra
ry

cl
as
se
s

25
.4

9
62
2

0

Pr
op

or
tio

n
of

lib
ra
ry

cl
as
se
s

61
.1
%

65
.2
%

10
0%

0%

123

39 Page 20 of 53 Empirical Software Engineering (2024) 29:39

Ta
bl
e
5
:c
on
tin

ue
d

(b
)
M
os
tF

re
qu
en
tly

M
oc
ke
d
L
ib
ra
ry

C
la
ss
es
.

C
la
ss

na
m
e

Fr
eq
ue
nc
y

ja
va
x.
se
rv
le
t.h

ttp
.H
ttp

Se
rv
le
tR
eq
ue
st

50
3

ja
va
x.
se
rv
le
t.h

ttp
.H
ttp

Se
rv
le
tR
es
po
ns
e

29
9

or
g.
os
gi
.f
ra
m
ew

or
k.
B
un

dl
e

13
4

ja
va
x.
se
rv
le
t.S

er
vl
et
C
on
te
xt

11
4

ja
va
.u
til
.M

ap
10
0

ja
va
.io

.F
ile

97

co
m
.g
oo
gl
e.
in
je
ct
.I
nj
ec
to
r

96

or
g.
ap
ac
he
.o
lin

go
.c
om

m
on

s.
ap
i.e
dm

.E
dm

92

ja
va
x.
pe
rs
is
te
nc
e.
E
nt
ity

M
an
ag
er

85

co
m
.g
oo
gl
e.
in
je
ct
.P
ro
vi
de
r

82

123

Page 21 of 53 39Empirical Software Engineering (2024) 29:39

is mocked. In the remaining 63.3% (1-36.7%) test files, multiple dependencies are mocked.
Particularly, in 6.5% of test files, more than 10 different dependencies are mocked in them.
The implication is that there are often multiple dependencies that developers need to isolate,
andmultiplemockobjects created, for unit testing, and thusmultiplemockobjects are created.

RQ2.2: How often do developers mock external dependencies in Apache projects? Table 5
shows the average, medium, maximal and minimal number (row 1) of mocked library depen-
dencies in the Apache projects, as well as the percentage (row 2) among all mock objects. On
average, the majority (61.1%) of the mocked objects are for isolating dependencies to exter-
nal libraries. In some projects, this percentage reaches 100% (i.e. maximal). This indicates
that mocking is an important way to isolate dependencies to external libraries.

Furthermore, Table 5 lists the most frequently mocked external libraries, which are related
to HTTP request/response, Database, and IO/File System.We imply that a key motivation for
Apache developers to use a mocking framework is to 1) prevent interference from external
libraries and 2) improve the testing performance by avoiding accessing a real HTTP server,
database, or file system.

RQ2 Take-aways:

1. Mocking is practiced selectively. In most of the Apache projects, less than 10% of
test files use mocking, less than 15% of dependencies are mocked, and less than 10
developers worked on mocking. It remains open research regarding when, where,
and who should use mocking in testing practice.

2. Developers from Apache projects tend to mock more library classes (61.1%) than
the classes in their own package (38.9%). The most frequently mocked library API
is HTTP request/response. It indicates that a keymotivation for mocking is to isolate
external functions from the function under test in Apache projects.

5.3 RQ3: Mocking Framework Usage Evolution

RQ3.1: When did the projects first and last use mocking, and what has been the duration (in
years) of the usage in the projects’ history? Fig. 7 shows the history of the adoption of the top
three mocking frameworks in projects. Figure 7a shows the distribution of when the projects
first started to adopt a mocking framework; Fig. 7b shows the distribution of when the last
code commit that relates to the mocking framework was made; Fig. 7c shows the distribution
of the duration, measured by the time between the first adoption and the last related commit,
of mocking framework adoption in the projects.

Fig. 7 : Adoption history of the top 3 mocking frameworks

123

39 Page 22 of 53 Empirical Software Engineering (2024) 29:39

From Fig. 7a, we can observe that 12 projects are early adopters, which started using
a mocking framework between 2005 and 2009, almost two decades ago. The majority, 61,
projects started using a mocking framework between 2009 and 2014, about a decade ago
from the time of this writing. There are also “laggers”, i.e. 29 projects first started to use
mocking frameworks between 2014 and 2019 (less than a decade); while the remaining 13
projects first started to use mocking frameworks between 2019 and 2022 in recent 5 years.

As shown in Fig. 7b, the majority of the projects, 75 out of 115, are still actively using
mocking frameworks in 2022, when is our study dated back to. In comparison, the other
projects stopped using a mocking framework in an earlier year. For example, in 15 projects,
no usage of mocking frameworks is detected in these projects between 2019 and 2022.

Finally, Fig. 7c shows that the largest group with 46 projects have been using a mocking
framework for 6 to 10 years; 36 projects have been using a mocking framework for 5 years
or less; 33 projects have been using a mocking framework for more than 10 years.

RQ3.2: How has the mocking usage intensity evolved over time? Figure 8 shows examples
(Fig. 8a, b, c and d) and the overall distribution of different types of mocking framework
usage evolution patterns (Fig. 8e) we observed among the projects which have been detected
to use a mocking framework. We observed that, during the traceable evolution history of a
project, the mocking framework adoption intensity (i.e. percentage of test files that involve
using mocking framework APIs) may remain stable, decrease, increase, or fluctuates over
the years of the history.

Figure 8a shows the trend of the adoption intensity in Apache Fluo remains quite stable
over five snapshots (i.e. each snapshot represents one year in its traceable history on Git).
According to Fig. 8e, 19 out of the 109 projects (note that here we only consider projects
that used the top 3 mocking frameworks) that have used a mocking framework show this
stable usage. There could be two possible scenarios behind these projects: 1) the project itself
has been stable over the years and so does the mocking framework usage; 2) the usage of
mocking frameworks grows consistently with the growth of the project.

Fig. 8 : Mocking usage intensity over time: examples and distribution

123

Page 23 of 53 39Empirical Software Engineering (2024) 29:39

Figure 8b shows the trend in Apache Giraph, where about 30% of the test files in it involve
mocking framework APIs in a snapshot; while as the project grows over the years, only about
10% of the test files use mocking framework APIs in year 6. As a reminder, as introduced
in RQ 2.1, 10% is the average adoption intensity over the projects. We conjecture that a
decreasing trend is a possible indication of a potential lack of support in mocking usage to
match the pace of growth of the project. This could be caused by various factors, such as lack
of mocking experts, time pressure, higher priorities in the projects, etc.

Figure 8c shows the opposite trend in Apache Spark that the mocking usage intensity
increases over time—from 0% in year 1 to 9% in year 13, with fast increases between year 1
and year 3, and slow-down and stabilize afterward. This example represents a typical scenario
that a project quickly picks up using mocking framework over the years and maintains its
usage stably for its needs. As shown in Fig. 8e, a non-trivial number of projects, 36 (out of
109) projects, show an increasing usage over time. In particular, the increasing trends are
further observed in three types as shown on the right side pie-chart of Fig. 8e. They are:
linear increasing in 25 projects—indicating continuous and ongoing increasing usage; expo-
nential increasing in 5 projects—representing ever-faster increasing usage; or logarithmic in
6 projects—fast increasing first and stabilizing later, such as shown in Fig. 8c. Overall, an
increasing trend indicates a growing commitment in using and maintaining mocking frame-
work usage that matches the projects’ interests. While, the different slopes of trends (i.e.
linear, exponential, and logarithmic) may entail more detailed factors behind projects that
incentivize the usage of mocking frameworks to different levels in different phases. We will
leave a more in-depth analysis of these factors in our future research.

Lastly, Fig. 8d shows that, in Apache SkyWalking, there were some fluctuations in the
usage intensity of mocking frameworks. Between year 3 to year 4, the usage intensity
increases drastically from 7% to 45%; while between year 6 to year 7, it drops from 45% to
18%. Upon further investigation of SkyWalking’s revision history, especially in year 3 and
year 7, we found that the fluctuation is associated with the focus on the project. In year 3, the
project added a significant number of mock files because of updates and fixes to the local/exit
span operation name registermechanism and client-side endpoint register in the servicemesh,
so the overall usage intensity increases this year. Year 7’s release records showed that Sky-
Walking implemented a number of fixes and upgrades in areas such as storage and query
optimization and the Kubernetes Java client. Based on our conclusions in RQ2, we found that
databases, filesystems, and HTTP web servers were more likely to use mock. Therefore, we
believe that these function changes resulted in a large number of deletions of mock-related
files. This led to a decrease in the usage intensity.

RQ3.3: How has the number of developers involved in mocking usage changed over time?
Figure 9 shows how the numbers of mocking-related contributors change over time in the

Fig. 9 : Involved developers over time: examples and distribution

123

39 Page 24 of 53 Empirical Software Engineering (2024) 29:39

history of the projects. Similar to above, here we show examples of different types of trends
of: 1) increasing number of contributors in Fig. 9a, 2) decreasing number of contributors in
Fig. 9b, and 3) fluctuating number of contributors in Fig. 9c. In addition, we also show the
overall distribution of the different types of trends in Fig. 9d.

From Fig. 9d, we can see that the significant majority, 83 out of 94, projects have a
fluctuating number of contributors who work on mocking-related files over time. Note that
the total number of projects is 94 here since we only consider projects that 1) used the top
3 mocking frameworks in their history and 2) had at least 3 developers. The implication is
that the number of developers who actually worked on or maintained the usage of mocking
frameworks is quite dynamic in the projects, possibly depending on various factors, such
as the stability of the test cases that rely on the mocking functions, as well as developers’
availability and project phase and priority. In 4 projects, the number of involved developers
decreases over time;while in the other 7, the number increases over time. For example, Fig. 9a
shows the number of related developers in Apache Hudi, which steadily increased from 0 in
year 1 to about 30 developers in year 7—indicating robustly increasing commitment of the
development team on mocking. In comparison, Fig. 9b shows that, in Apache Olingo-Odata,
the number of developers who work on mocking functions decreases from 7 in year 1 to 1 in
year 9, indicating reduced effort in using/maintaining mocking functions.

RQ3 Take-aways:

1. Most (53%) projects started to use mocking frameworks between 2009 and 2014;
early adopters (10%) started between 2005 and 2009; and “laggers” started within
the past decade (25% projects) or five years (11% projects). Themajority of projects
(65%) are still usingmocking frameworks as of 2022when this studywas conducted.
Most projects (69%) accumulated 6 or more years and 29% of projects accumulated
more than 10 years of experience, in using mocking frameworks.

2. The usage intensity of mocking functions in different projects shows different
trends in the projects’ evolution history, i.e. increasing, decreasing, stable, and
fluctuating—implying the compound effects of various factors, such as the pace of
a project’s growth, the available resources, time pressure, and project priority. More
specifically, 42% of projects experienced fluctuating usage over time—implying
that different factors may come to play at different phases of the projects. 33%
of projects experienced increasing usage—implying an increasing need for mock-
ing. 18% of the projects showed stable usage over time—implying balanced use
of mocking with the growth and evolution of the project. Finally, a small portion
(7%) of projects experienced decreasing usage of mocking frameworks—indicating
a possible insufficient mocking that falls behind the pace of project growth.

3. In most projects (88%), the number of developers who worked on or maintained
mocking-related test files is quite dynamic over the projects’ history. This indicates
such the effort required and/or the available resource for supporting mocking could
be quite dynamic in Apache projects.

5.4 RQ4: Most Frequently UsedMocking APIs

This RQ focuses on analyzing the most frequently used APIs from the three frameworks,
Mockito, EasyMock, and PowerMock.We found that there are a total of 317APIs inMockito,
278 APIs in EasyMock, and 311 APIs in PowerMock, which are the three most popular

123

Page 25 of 53 39Empirical Software Engineering (2024) 29:39

mocking frameworks. But only 109 (34.5%), 68 (24.5%), and 75 (24.1%) APIs in these
three frameworks, respectively, are actually used by Apache projects. The implication is that
developers who want to maximize the learning outcomes of how to use a mocking framework
should start from the ones that are more frequently used, and leave the ones that are not likely
to be used in practice.

RQ4.1: What are the most frequently used APIs in Mockito? After reviewing the official
tutorial of Mockito, we found that its APIs are generally in five categories for:

1. Creating mock objects (3/317, 1% APIs);
2. Stubbing the behavior of the mock objects(36/317, 11% APIs);
3. Verifying the execution of mock objects (40/317, 13% APIs);
4. Managing the arguments of mock objects before or after its execution (54/317, 17%

APIs);
5. Other more specific behaviors. For example, initMocks(), isSpy() and isMock() are get-

ting and controlling the mock objects, which do not belong to any of the first four types
(184/317, 58% APIs);

Figure 10a shows the distribution of the usage of APIs in these five categories based
on Apache projects. As we can see that, stubbing APIs have the highest usage— covering
49% API calls; creation, verification, and argument APIs are used roughly equally, in 14%,
16%, and 20% of the total API calls. Other APIs have used rarely only 1% API calls. The
implication is that developers extensively leverage the stubbing APIs to set up the behavior
of the mocked object.

Table 6 list the most frequently used APIs for verification, creation, method stubbing,
managing arguments. As we can see that the top five APIs in each group usually cover the
majority of usage. Thus, developers can refer to these APIs as a quick cheat-sheet for learning
how to use Mockito APIs.

RQ4.2:What are themost frequently used APIs in EasyMock?Based on the official tutorial
of EasyMock, its APIs are in the same types as Mockito as: 1) Creating mock objects; 2)
Stubbing the behavior of the mock objects; 3) Verifying the execution of mock objects;
4) Managing the arguments of mock objects before or after its execution; and 5) Other
behaviors. Figure 10b shows the distribution of the usage of the five types of APIs, which
shows highly consistent distribution as Mockito (see Fig. 10a). The Stubbing APIs are used
most frequently in 50% cases. Considering the observations in Fig. 10b and a, we can imply
that manipulating the behavior of mock objects is the most significant part of using mocking
frameworks. This suggests that developers frequently manipulated different behaviors for the
same mock object.

Fig. 10 : API type usage distribution in Mockito, EasyMock, and PowerMock

123

39 Page 26 of 53 Empirical Software Engineering (2024) 29:39

Ta
bl
e
6
:T

op
fiv

e
A
PI
s
in

ea
ch

ca
te
go
ry

in
M
oc
ki
to

To
p
fiv

e
st
ub
in
g
A
PI
s
In

M
oc
ki
to

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

th
en
R
et
ur
n

15
,5
13

74
.9
6%

St
ub

th
e
re
tu
rn

va
lu
e
fo
r
a
no

n-
vo
id

m
et
ho

d

do
R
et
ur
n

2,
19

1
85

.5
5%

St
ub

th
e
re
tu
rn

va
lu
e
fo
r
an
y
m
et
ho

d.

do
N
ot
hi
ng

38
9

87
.4
3%

Se
tti
ng

vo
id

m
et
ho

ds
to

do
no

th
in
g.

do
A
ns
w
er

35
4

89
.1
4%

St
ub

a
m
et
ho

d
w
ith

ge
ne
ri
c
A
ns
w
er

th
en
T
hr
ow

32
3

90
.7
0%

Se
ts
a
T
hr
ow

ab
le
ty
pe

to
be

th
ro
w
n
w
he
n
th
e
m
et
ho

d
is
ca
lle

d

ot
he
rs

19
25

10
0.
00

%
A
PI

fo
r
al
lo

th
er

st
ub

be
r
be
ha
vi
or
s

To
p
fiv

e
ve
ri
fic
at
io
n
A
PI
s
In

M
oc
ki
to

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

ve
ri
fy

7,
72

6
61

.0
8%

V
er
if
y
a
sp
ec
ifi
c
be
ha
vi
or

of
th
e
m
oc
k
ob

je
ct

tim
es

3,
72

1
90

.5
0%

V
er
if
y
ex
ac
tn

um
be
r
of

in
vo
ca
tio

ns
fo
r
th
e
m
et
ho

ds
of

a
m
oc
k
ob

je
ct

ne
ve
r

66
0

95
.7
2%

M
ak
in
g
su
re

in
te
ra
ct
io
n(
s)
ne
ve
r
ha
pp

en
ed

on
m
oc
k

ve
ri
fy
N
oM

or
e-
In
te
ra
ct
io
ns

17
4

97
.0
9%

C
he
ck
s
if
an
y
of

gi
ve
n
m
oc
ks

ha
s
an
y
un
ve
ri
fie

d
in
te
ra
ct
io
n.

at
L
ea
st
O
nc
e

10
4

97
.9
1%

V
er
ifi
es

th
at
th
er
e
is
at
le
as
t1

in
vo
ca
tio

n
du

ri
ng

th
e
gi
ve
n
pe
ri
od

.

ot
he
r

26
4

10
0.
00

%
A
PI

fo
r
al
lo

th
er

ve
ri
fic

at
io
n
be
ha
vi
or
s

123

Page 27 of 53 39Empirical Software Engineering (2024) 29:39

Ta
bl
e
6
:c
on
tin

ue
d

To
p
fiv

e
st
ub
in
g
A
PI
s
In

M
oc
ki
to

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

To
p
fiv

e
ar
gu
m
en
ts
A
PI
s
In

M
oc
ki
to

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

an
y

6,
33

2
38

.7
5%

M
at
ch
es

an
yt
hi
ng

,i
nc
lu
di
ng

nu
lls

an
d
va
ra
rg
s.

eq
2,
59

2
54

.6
1%

A
rg
um

en
tt
ha
ti
s
eq
ua
lt
o
th
e
gi
ve
n
va
lu
e.

an
yL

on
g

1,
81

6
65

.7
2%

A
ny

lo
ng

or
no

n-
nu

ll
L
on

g.

an
yS

tr
in
g

1,
43

9
74

.5
3%

A
ny

no
n-
nu

ll
St
ri
ng

ca
pt
ur
e

58
7

78
.1
2%

U
se

it
to

ca
pt
ur
e
th
e
ar
gu

m
en
t.

ot
he
r

35
75

10
0.
00

%
A
PI

fo
r
al
lo

th
er

A
rg
um

en
ts
be
ha
vi
or
s

To
p
fiv

e
cr
ea
tin

g
M
oc
ks

A
PI
s
In

M
oc
ki
to

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

m
oc
k

10
,7
95

92
.5
4%

C
re
at
e
an

em
pt
y
m
oc
k
ob

je
ct
.

sp
y

84
3

99
.7
7%

C
re
at
e
a
sp
y
ob

je
ct

m
oc
kS

ta
tic

27
10

0.
00

%
C
re
at
es

a
th
re
ad
-l
oc
al
m
oc
k
co
nt
ro
lle

r
fo
r
al
ls
ta
tic

m
et
ho

ds

123

39 Page 28 of 53 Empirical Software Engineering (2024) 29:39

We can see in Table 7 the top five most frequently used APIs of each type of APIs in
EasyMock. We can make consistent observations that the top few APIs usually are used
extensively, and thus practitioners could focus on these few APIs to accelerate the learning
process.

RQ4.3: What are the most frequently used APIs in PowerMock? PowerMock is an exten-
sion to EasyMock and Mockito PowerMock framework site (2023). Functionally, it can be
divided into Mockito extensions, EasyMock extensions, and other general APIs that can be
used to support both Mockito and EasyMock. Figure 10c shows the usage distribution of
these three types of APIs: 55% usage on Mockito-related APIs, 34% usage on EasyMock-
related APIs, and 11% usage on other general APIs. Of particular note, as shown in Table 3,
EasyMock is only used in 28% projects, while Mockito is used in 74% projects. This aligns
with the fact that EasyMock-supporting APIs have lower usage than Mockito-supporting
APIs.

Table 8 summarizes the top five most frequently used APIs in each of the three groups
from PowerMock. Of particular note, PowerMock contains APIs that match the original
APIs from Mockito or EasyMock for which it provides support. For example, the when in
Mockito is replicated in PowerMock’s namespace to be used together with other extension
APIs. Here, we only list the top five extension APIs since the replicated APIs have exactly the
same functions as in the original framework.We can reach the same observation as in RQ-2.1
(Mockito) and RQ-2.2 (EasyMock) that the top five APIs in each category usually merit the
majority of usage in PowerMock. Thus, one can refer to this table as a quick cheat sheet for
getting started on PowerMock. For an additional note, we also observed that a key extended
usage of PowerMock relates to supporting mocking static objects (such as mockStatic and
verifyStatic), which is not supported in the original Mockito or EasyMock.

RQ4 Take-aways:

1. Among the total 317 APIs in Mockito, 278 APIs in EasyMock, and 311 APIs in
PowerMock, which are the three most popular mocking frameworks, only 34.5%,
24.5%, and 24.1% APIs, respectively, are actually used by Apache projects.

2. TheMockito andEasyMockAPIsmainly provide four types of functions for creating
mock objects, stubbing behaviors, verifying execution, and managing arguments of
mock objects. While PowerMock provides extensions to Mockito and EasyMock
APIs.

3. The top five APIs in each functional type of the three mocking frameworks usually
take the majority (78% to 100%) of usage in Apache projects. This indicates that
developers can focus on these APIs to quickly learn the common usage of these
mocking frameworks. Tables 6, 7, and 8 provides a quick cheat-sheet to these APIs
for practitioners.

5.5 RQ5: Mocks without LeveragingMocking Frameworks

We identified all the Customized Mock Classes in the 193 Apache projects. We found that
143 out of the 193 projects include CustomizedMock Classes. Table 9 shows the comparison
of the number of classes using Customized Mocks vs. that using mocking frameworks. The
first row shows that there are a total of 2,237 CustomizedMock Classes in these 143 projects,
as well as the average, maximal, minimal, and median, of the number of Customized Mock
Classes, identified across the 143 projects. In addition, the second row shows the number

123

Page 29 of 53 39Empirical Software Engineering (2024) 29:39

Ta
bl
e
7
:T

op
Fi
ve

A
PI
s
in

ea
ch

ca
te
go
ry

in
E
as
yM

oc
k

To
p
Fi
ve

St
ub
bi
ng

A
PI
s
in

E
as
yM

oc
k

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

an
dR

et
ur
n

12
,1
34

94
%

Se
ts
a
re
tu
rn

va
lu
e
th
at
w
ill

be
re
tu
rn
ed

fo
r
th
e
ex
pe
ct
ed

in
vo
ca
tio

n

ex
pe
ct
L
as
tC
al
l

88
6

97
%

R
et
ur
ns

th
e
ex
pe
ct
at
io
n
se
tte

r
fo
r
th
e

la
st
ex
pe
ct
ed

in
vo
ca
tio

n
in

th
e
cu
rr
en
tt
hr
ea
d

an
dS

tu
bR

et
ur
n

34
1

98
%

Se
ts
a
st
ub

re
tu
rn

va
lu
e
th
at
w
ill

be
re
tu
rn
ed

fo
r
th
e
ex
pe
ct
ed

in
vo
ca
tio

n

re
se
t

16
5

99
%

W
ill

re
se
tc
ap
tu
re

to
a
“n
ot
hi
ng

ca
pt
ur
ed

ye
t”
st
at
e

an
dT

hr
ow

15
4

99
%

Se
ts
a
th
ro
w
ab
le
th
at
w
ill

be
th
ro
w
n
fo
r
th
e
ex
pe
ct
ed

in
vo
ca
tio

n

ot
he
r

15
3

10
0%

A
PI

fo
r
al
lo

th
er

A
PI

fo
r
St
ub

bi
ng

be
ha
vi
or
s

To
p
Fi
ve

V
er
ifi
ca
tio

n
A
PI
s
in

E
as
yM

oc
k

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

an
yT

im
es

5,
95
1

53
.8
4%

E
xp
ec
tt
he

la
st
in
vo
ca
tio

n
an
y
tim

es

ve
ri
fy

1,
46

1
67

.0
6%

V
er
ifi
es

th
at
al
le
xp

ec
ta
tio

ns
w
er
e
m
et

an
d
th
at
no

un
ex
pe
ct
ed

ca
ll
w
as

pe
rf
or
m
ed

at
L
ea
st
O
nc
e

1,
43
4

80
.0
3%

E
xp
ec
tt
he

la
st
in
vo
ca
tio

n
at
le
as
to

nc
e

on
ce

1,
41

9
92

.8
7%

E
xp

ec
tt
he

la
st
in
vo
ca
tio

n
on

ce
.

ve
ri
fy
A
ll

41
3

96
.6
1%

V
er
ifi
es

al
lr
eg
is
te
re
d
m
oc
k
ob
je
ct
s
ha
ve

th
ei
r

ex
pe
ct
at
io
ns

m
et
an
d
th
at
no

un
ex
pe
ct
ed

ca
ll
w
as

pe
rf
or
m
ed

tim
es

37
5

10
0.
00

%
E
xp

ec
tt
he

la
st
in
vo
ca
tio

n
an
y
tim

es

To
p
Fi
ve

A
rg
um

en
ts
A
PI
s
in

E
as
yM

oc
k

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

an
yO

bj
ec
t

1,
45

8
33

%
E
xp

ec
ts
an
y
O
bj
ec
ta
rg
um

en
t

eq
1,
06

9
57

%
E
xp

ec
ts
th
at
is
eq
ua
lt
o
th
e
gi
ve
n
va
lu
e

ca
pt
ur
e

50
8

68
%

E
xp

ec
ta
ny

ob
je
ct
bu
tc
ap
tu
re
s
it
fo
r
la
te
r
us
e

ne
w
C
ap
tu
re

44
3

78
%

C
re
at
e
a
ne
w
ca
pt
ur
e
in
st
an
ce

th
at
w
ill

123

39 Page 30 of 53 Empirical Software Engineering (2024) 29:39

Ta
bl
e
7
:c
on
tin

ue
d

To
p
Fi
ve

St
ub
bi
ng

A
PI
s
in

E
as
yM

oc
k

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

ke
ep

on
ly

th
e
la
st
ca
pt
ur
ed

va
lu
e.

an
yS

tr
in
g

28
5

85
%

E
xp
ec
ta
ny

st
ri
ng

w
ha
te
ve
r
its

co
nt
en
ti
s.

ot
he
r

67
6

10
0%

A
PI

fo
r
al
lo

th
er

A
rg
um

en
ts
be
ha
vi
or
s

To
p
Fi
ve

C
re
at
in
g
M
oc
ks

A
PI
s
in

E
as
yM

oc
k

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

cr
ea
te
N
ic
eM

oc
k

3,
87
1

47
%

C
re
at
e
an

em
pt
y
m
oc
k
ob
je
ct
w
ith

de
fa
ul
tr
et
ur
ns

cr
ea
te
M
oc
k

3,
57

1
91

%
C
re
at
e
an

em
pt
y
m
oc
k
ob

je
ct
w
ith

ou
td

ef
au
lt
re
tu
rn
s

cr
ea
te
St
ri
ct
M
oc
k

46
4

97
%

C
re
at
es

a
m
oc
k
ob
je
ct
th
at
im

pl
em

en
ts
th
e

gi
ve
n
in
te
rf
ac
e,
or
de
r
ch
ec
ki
ng

is
en
ab
le
d
by

de
fa
ul
t

cr
ea
te
M
oc
kB

ui
ld
er

13
6

99
%

C
re
at
e
a
m
oc
k
bu
ild

er
al
lo
w
in
g
to

cr
ea
te
a

pa
rt
ia
lm

oc
k
fo
r
th
e
gi
ve
n
cl
as
s
or

in
te
rf
ac
e

ni
ce
M
oc
k

55
99
%

C
re
at
es

a
m
oc
k
ob
je
ct
th
at
im

pl
em

en
ts
th
e
gi
ve
n

in
te
rf
ac
e,
or
de
r
ch
ec
ki
ng

is

di
sa
bl
ed

by
de
fa
ul
t,
an
d
th
e
m
oc
k
ob

je
ct
w
ill

re
tu
rn

0,

nu
ll
or

fa
ls
e
fo
r
un

ex
pe
ct
ed

in
vo
ca
tio

ns

ot
he
r

57
10

0%
A
PI

fo
r
al
lo

th
er

A
PI

fo
r
C
re
at
m
oc
k
be
ha
vi
or
s

123

Page 31 of 53 39Empirical Software Engineering (2024) 29:39

Ta
bl
e
8
:D

is
tr
ib
ut
io
n
of

Po
w
er
M
oc
k’
s
m
os
tp

op
ul
ar

A
PI
s

To
p
Fi
ve

M
oc
ki
to
-r
el
at
ed

A
PI
s
in

Po
w
er
M
oc
k

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

m
oc
kS

ta
tic

18
0

44
%

E
na
bl
e
st
at
ic
m
oc
ki
ng

fo
r
al
lm

et
ho
ds

of
a
cl
as
s.

w
he
nN

ew
63

59
%

St
ub

be
ha
vi
or

fo
r
co
ns
tr
uc
to
r.

ve
ri
fy
St
at
ic

61
74

%
V
er
ifi
es

ce
rt
ai
n
be
ha
vi
or

of
th
e
m
oc
ke
dC

la
ss

w
ith

A
rg
um

en
ts

38
83

%
Sp

ec
if
y
in
pu

ta
rg
um

en
ts
fo
r
co
ns
tr
uc
to
r
st
ub

bi
ng

.

w
ith

A
ny
A
rg
um

en
ts

38
93

%
A
cc
ep
ta
ny

in
pu

ta
rg
um

en
ts
fo
r
co
ns
tr
uc
to
r
st
ub

bi
ng

.

ot
he
r

30
10
0%

A
ll
ot
he
r
A
PI
s

To
p
Fi
ve

E
as
yM

oc
k-
re
la
te
d
A
PI
s
in

Po
w
er
M
oc
k

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

m
oc
kS

ta
tic

52
66
%

E
na
bl
e
st
at
ic
m
oc
ki
ng

fo
r
a
cl
as
s

ex
pe
ct
N
ew

14
84

%
St
ub

be
ha
vi
or

fo
r
co
ns
tr
uc
to
r.

ex
pe
ct
Pr
iv
at
e

5
90

%
St
ub

be
ha
vi
or

fo
r
pr
iv
at
e
st
at
ic
m
et
ho

ds

m
oc
kS

ta
tic
Pa
rt
ia
l

2
92
%

M
oc
k
a
si
ng
le
st
at
ic
m
et
ho
d

cr
ea
te
St
ri
ct
M
oc
k-
A
nd
E
xp
ec
tN
ew

2
95
%

C
on
ve
ni
en
ce

m
et
ho
d
fo
r
cr
ea
te
St
ri
ct
M
oc
k
fo
llo

w
ed

by
ex
pe
ct
N
ew

ot
he
r

4
10
0%

A
ll
ot
he
r
A
PI
s

To
p
Fi
ve

O
ht
er

Su
pp
or
tA

PI
s
in

Po
w
er
M
oc
k

A
PI

Fr
eq
ue
nc
y

Pe
rc
en
ta
ge

D
es
cr
ip
tio

n

se
tI
nt
er
na
lS
ta
te

75
42
.1
3%

Se
tt
he

va
lu
e
of

a
fie
ld

us
in
g
re
fle
ct
io
n.

su
pp

re
ss

25
56

.1
8%

Su
pp

re
ss

a
sp
ec
ifi
c
m
et
ho

d

m
et
ho

ds
14

64
.0
4%

G
et
an

ar
ra
y
of

M
et
ho

d’
s
th
at
m
at
ch
es

th
e
su
pp

lie
d
lis
to

f
m
et
ho

d
na
m
es

ge
tI
nt
er
na
lS
ta
te

12
70
.7
9%

G
et
th
e
va
lu
e
of

a
fie
ld

us
in
g
re
fle
ct
io
n

m
et
ho

d
11

76
.9
7%

G
et
a
m
et
ho

d
w
ith

ou
th

av
in
g
to

sp
ec
if
y
th
e
m
et
ho

d
na
m
e.

ot
he
rs

41
10

0.
00

%
O
th
er

m
et
ho

ds
of

ex
pa
ns
io
n

123

39 Page 32 of 53 Empirical Software Engineering (2024) 29:39

Table 9 : # classes using customized mocks vs. using mocking frameworks

Avg. Max. Min. Mid. Total

Customized Mock Classes 16 400 1 6 2237

Classes Using Customized Mocks 81 6066 1 6 9697

Classes Using Mocking Frameworks 201 4828 1 15 28792

% of Customized Mock Usage 44% 100% 0% 27% 25%

of test classes that use the Customized Mocks. For example, a total of 9,697 test classes use
the 2,237 Customized Mocks. This indicates that a Customized Mock Object could be used
by multiple (average 4 = 9,697/2,237) test classes. In comparison, the third row shows the
number of classes that use mocking framework APIs. That is, a total of 28,792 test classes
across the 143 projects use mocking framework functions for mocking. Thus, the last row
highlights the percentage of Customized Mock usage across projects (i.e. classes that use
either Customized Mock or framework together as the base). On average, 44% of classes in a
project may use Customized Mocks. While across the 143 projects, a total of 25% test classes
use Customized Mocks. Thus, we conclude that Customized Mock Classes are not rare, and
they are non-trivially used by test classes in practice. This motivates us to investigate the
internal design of the Customized Mock Classes.

To gain an in-depth understanding of how the Customized Mock Classes, we randomly
sampled 2% classes from the total 2,237 Customized Mock Classes—this provides us a
sample dataset of 44 such classes. Actually, we started the analysis by randomly sampling
about 1% classes and then increased the sample to 2%,which did not reveal any new scenarios
and types of Customized Mock Classes. Thus, we stopped at 2%. Though we acknowledge
that we cannot guarantee that this has covered all possible scenarios of customized mock
classes, our analysis should have revealed the main scenarios that developers should be
aware of. Following the rationale described in Section 4, we classify the 44 sample cases as
shown in Fig. 11.

For 40 CustomizedMock Classes (the left child of the root node in Fig. 11), we confirmed
that these classes are indeed created for test dependency isolation. Namely, we were able
to identify which dependency they are trying to isolate in test cases. Interestingly, all of

Fig. 11 : Classification of the 44 sample classes

123

Page 33 of 53 39Empirical Software Engineering (2024) 29:39

Fig. 12 : Customized mock examples: override JDK and self-reference

them involve using inheritance for test dependency isolation. That is, the developer creates
a sub-class of a production class and uses method overriding to control the behavior for
testing purposes. In the test case, whenever the parent class should be used, the sub-class is
actually used so that the test case no longer depends on the parent class (i.e. test dependency
isolation). We applied Xiao et. al’s tool on the 40 classes. We found that the tool is applicable
to 20 (50%) cases. The remaining 20 cases are not able to apply Xiao et. al’s tool because
of three general reasons: 1) they are related to the limitations of Mockito; 2) the refactoring
is not necessary or beneficial; and 3) the tool has its limitation to handle the particular case.
Following, we list the details regarding the 20 cases:

– Six classes cannot be refactored because of the limitation of Mockito:

Fig. 13 : Customized mock example: override protected method

123

39 Page 34 of 53 Empirical Software Engineering (2024) 29:39

Fig. 14 : Customized mock examples: inherit multiple classes and inner class

– Two classes override JDK APIs, and thus cannot be replaced by Mockito, since
Mocktio’s implementation depends on JDKAPIs. For instance, in Fig. 12a, test target
ProductionService has a method to sort products based on the product’s hashCode
(lines 1-8). In order to test sortProductsmethod, the developer creates aMockProduct
which extends Product and override hashCode, which is a JDK API (line 11-21). In
the test case testProductService, the developer instantiates 2MockProducts (line 26-
27), call sortProducts (line 30), and assert the order of the product list on line 31-32.
Mockito is built upon the two JDKAPIs, namely equals() and hashCode() 1.Mocking
the behavior of these two APIs will endanger the normal functions of Mockito.

– Two classes have self-reference, butMockito cannot handle self-reference. For exam-
ple, in Fig. 12b, test target ProductionService has a method copyProducts to deep
copy a list of products (line 2-8). In order to test this method, the developer creates a
MockProduct to extend the Product and override deepCopy to create an instance of
itself, leading to the self-referencing of MockProduct (lines 20-22). In the test case,
the developer creates a list containing 2 MockProducts (line 31) and calls the test
target copyProducts (line 32). Then the developer further asserts the copied products
are identical to the original products (lines 33-34) and verifies that they are not the
same instance (lines 35-36).

– Two classes override a protected attribute/method. Mockito does not support access-
ing protected attributes/methods. But one could mitigate this by using PowerMock.
For instance, as shown in Fig. 13, ProductService has a method filterProducts to filter
the given list of products based on the given product tag (line 1-8). In order to test
this method, the developer creates a subclass of Product, named MockProduct, to
override getProductTags, which is protected (line 16-26). Then in the test case, the
developer creates a list of mocked products as a parameter for filterProducts (line
35). The developer further verifies the filtered list size and product instance (lines
36-37).

1 https://github.com/mockito/mockito/wiki/FAQ#what-are-the-limitations-of-mockito

123

Page 35 of 53 39Empirical Software Engineering (2024) 29:39

https://github.com/mockito/mockito/wiki/FAQ#what-are-the-limitations-of-mockito

– In 13 classes, the refactoring is not beneficial or necessary:

– Two classes are not instantiated anywhere and thus refactoring is not necessary. Due
to its simplicity, we do not provide a code snippet example here.

– Six classes inherit/implement multiple production classes (PowerMock framework
site 2023), indicating theymock the behavior ofmultiple objects. It is a general design
principle not to mock multiple different classes when using a mocking framework.
For instance, as illustrated in Fig. 14a, ProductService has a method getProductPrice
(line 1-10) to calculate a product’s label price based on the import price and delivery
cost. If a product is a Carriage, meaning it was shipped from another location, the
label price needs to include the shipping cost. To test this function, the developer
creates aMockProduct to extend Product, which then implements Carriage (lines 19
- 24). Thus MockProduct both implement and inherit two other classes, making it
cannot be replaced by using Mockito. Then in the test case, the developer creates
an instance of MockProduct and calls the test target method getProductPrice (line
31) with the MockProduct instance and a certain delivery distance (i.e. 20.0), the
developer then asserts the price with the expected value.

– Five classes contain complicated design features, such inner classes and collection
of classes, such that after the refactoring the test case will become more complicated,
and thus it is not beneficial to refactor. For example, as illustrated in Fig. 14b,Product-
Service containsmethod decorateProduct (line 1-6). The developer creates a subclass
MockProduct for testing this method. To facilitate the logic, the developer further
creates an internal interface ProductDecoratorSupplier (line 26-28) and provides the
implementation of this interface to manipulate how to decorate a given product (line
20) for testing purpose. In the test case, the developer creates theMockProduct with
a self-defined decorator (line 34) and calls the test target decorateProduct (line 36).
The developer further asserts the decorated product’s price attribute (line 37). In such
an example, the developer can extract the interface and still be able to use a mocking
framework with a hard-coded Supplier, however, the case would be more compli-
cated. Defining an interanl interface can make the behavior of theMockProductmore
flexible.

– One class contains syntax that is not captured by Xiao’s tool, and thus the refactoring
is not successful. This is specific to the tool, and not relevant to the general practice of
mocking, thus we do not provide the example here.

The remaining four classes are not (directly) for test dependency isolation. Following, we
provide a more detailed discussion of each class. However, due to the unique complexity
of these cases, we are not able to provide illustrating examples. However, the readers can
explore the original, detailed code with the links if they are interested.

– The first case is MockAsBeanTest from Apache Camel. This class extends ContextTest-
Support, which contains basic supporting functions for testing (such as customized
assertions and common arrangements). Thus, ContextTestSupport serves as a test base
class.MockAsBeanTest contains “Mock” in its name because it is for testing the produc-
tion class MockEndpoint, which is a Singleton scope bean.

– Thesecondcase isMockImplementation1_EventAnnotationsBase fromApacheCayenne.
This class is created to provide input to the target functionDefaultInjector. It is mocking
a random implementation of a method with a special annotation, @BeforeScopeEnd,

123

39 Page 36 of 53 Empirical Software Engineering (2024) 29:39

https://github.com/apache/camel/blob/80b92e3624ae5db59a1a24a441f1b10b39eaa1a5/core/camel-core/src/test/java/org/apache/camel/component/mock/MockAsBeanTest.java
https://github.com/apache/camel/blob/main/core/camel-core/src/test/java/org/apache/camel/ContextTestSupport.java
https://github.com/apache/camel/blob/main/components/camel-mock/src/main/java/org/apache/camel/component/mock/MockEndpoint.java
https://github.com/apache/cayenne/blob/b156addac1c8e4079fa88e977fee609210c5da69/cayenne-di/src/test/java/org/apache/cayenne/di/mock/MockImplementation1_EventAnnotationsBase.java

which is the target of execution to verify the dependency injection mechanism. Thus, this
case is a new class created for providing input to a testing scenario.

– The third case is MockRequestMatcher from Apache KNOX. It is aggregated in
Mockservlet from MockInteraction, which uses inheritance to isolate its parent class
HttpServlet from the test target. Thus, strictly speaking, MockRequestMatcher itself is
not for test dependency isolation, but it supports another class for dependency isolation
by focusing on customized assertions.

– The last one is AgentDataMock in SkyWalking. This class is not a unit test. It contains
a main program that connects several MockServices through ManagementService-
BlockingStub. To our best understanding, this class is a smoke test to verify that the
ManagementServiceBlockingStub has the ability to connect multiple MockServices in a
sequence and use StreamObserver to monitor the execution for each service. Therefore,
it is not for test dependency isolation, but for simulating an integration test scenario in a
main function.

We acknowledge that these four cases are not comprehensive in covering all possible
scenarios of “mock” without test dependency isolation. But the findings could point to more
future research regarding how developers use the concept of “mock” when it is not (directly)
relevant to test dependency isolation as what is currently supported by mocking frameworks.

RQ5 Take-aways:

1. Using inheritance for mocking is a common design for test dependency isolation
without relying on a mocking framework. But, it is not always possible to use
a mocking framework to replace inheritance due to various reasons, such as the
limitations of the mocking frameworks and the complexity of the cases. More future
research could be beneficial to understand the limitations in different scenarios.

2. Developers may use the concept of “mocking” which is not (directly) relevant to test
dependency isolation at all. It requires a more systematic and in-depth investigation
to understand the different interpretations of mocking in practice.

5.6 Survey Results

We received a total of 17 responses from the 300 invitations sent out, thus the response rate
is 5.7%. Given that the survey is completely anonymous, we are not aware of who are these
participants.With this low response rate, we conjecture that this could be due to three reasons:
1) the contact emails mined from git logs are mostly affiliated with “apache.org”, which
may not be the best contact to reach the developers; 2) the open-source developers are quite
dynamic, and thusmay not always still active. 3)Our emailsmay not be successfully delivered
to developers because they are recognized as spam. However, Fosnacht’s study Fosnacht et al.
(2017) suggests that a response rate above 5% should be able to provide similar results as
a higher response rate of up to 75%, therefore, we believe this still provides representative
results. Following, we will present the survey results. In particular, we will focus on how this
validates or provides additional input to each RQ, for the sake of illuminating future research.

SQ 1-3: Framework Adoption For SQ1 (selection of commonly used frameworks), there
were a total of 42 selection counts from the 17 participants, since a participant was allowed
to select multiple frameworks. Overall, Mockito, EasyMock, and PowerMock received the
highest number of 17, 11, and 6 votes respectively, which add up to 80% of all ballots.
In other words, Mockito, EasyMock, and PowerMock were selected by 100%, 64.7%, and

123

Page 37 of 53 39Empirical Software Engineering (2024) 29:39

https://github.com/apache/knox/blob/9e2b831343974670057c24ea590cb942f2433be3/gateway-test-utils/src/main/java/org/apache/knox/test/mock/MockRequestMatcher.java
https://github.com/apache/knox/blob/cd8849314b5d2a516d353554f9a1d140a36a58cb/gateway-test-utils/src/main/java/org/apache/knox/test/mock/MockServlet.java
https://github.com/apache/skywalking/blob/f3b567160ce61675cb692c3417101162d67093de/oap-server/server-receiver-plugin/skywalking-trace-receiver-plugin/src/test/java/org/apache/skywalking/oap/server/receiver/trace/mock/AgentDataMock.java

35.3% of the 17 participants. This is consistent with our finding of the top 3 popular mocking
frameworks in RQ1.

For SQ2 about the combination of multiple frameworks, 15 (88.2%) participants acknowl-
edge that their projects have used a combination of multiple frameworks. This percentage
doubles the 37% of projects with multiple frameworks reported in RQ1. We believe that this
discrepancy is likely to be the result of the bias caused by the participants. We conjecture
that developers who work on projects with stronger needs for mocking are more likely to
participate in our survey, and thus the results tend to be skewed by developers whomockmore
intensively. We observe the same direction of discrepancy in the SQ4 (mocking intensity),
which we will discuss later in more detail.

The most common combination is Mockito as the primary framework, and EasyMock
or PowerMock as the secondary framework, which takes a total of 67% selections. This is
highly consistent with our findings in RQ1 as well. The participants provided the following
explanation for the combinations: 1) Providing a more powerful mock with the combination:
“Mockito is the main mock framework, PowerMock is only used to mock static methods.”,
“PowerMock is more of a club that is used along with EasyMock or Mockito to mock out
objects that you otherwise could not (usually involving classloader tricks, like dealing with
static objects)”; 2) Framework migration: “EasyMock mostly is legacy”, “EasyMock has
been used from a very beginning, and Mockito wasn’t available then, I started using Mockito
and replacing EasyMock with Mocktio as it constantly evolves”, “EasyMock is like Mockito.
Many projects migrate gradually to Mockito.”; and 3) Complementary mocking functions:
“This comparison is a bit apples to oranges Mockito, EasyMock, JMock would be used
for mocking Java objects, whereas MockWebserver and WireMock are for stubbing out web
servers.” and “Mockito is the most preferred one for mocking Java interfaces/classes. Wire-
Mock is used for REST APIs mocking.”

SQ 4-5: Mocking Intensity and Type For SQ4, as shown in Fig. 15a, participants report
that the Usage Intensity (UI) ranges from 18% to 76%, with an average perception of 55%—
meaning that participants believe that on average more than half of the test files in their
projects use mocking. Similarly, the Mocking Intensity (MI) ranges from 9% to 75%, with
an average of 44%—meaning that participants believe that on average 44% of dependencies
are mocked in testing. The perception of the participants is significantly higher than the
results we collected from RQ2, where the average UI and MI are 10% and 11% respectively
among the projects. We believe this discrepancy is the result of the bias of the participants.
As we mentioned earlier, we conjecture that developers who practice mocking intensively
are more likely to participate in our survey. Also, the input provided by developers could be

Fig. 15 : Perception of mocking intensity and type

123

39 Page 38 of 53 Empirical Software Engineering (2024) 29:39

Table 10 : Popularity scores
of the most popular APIs

TOP Mockito EasyMock

1 when() expect()

2 thenReturn() replay()

3 mock() andReturn()

4 verify() verify()

5 any() createMock()

6 doReturn() createNiceMock()

7 times() anyTimes()

8 eq() anyObject()

9 spy() once()

10 anyString() atLeastOnce()

skewed subjectively; while the mining results from RQ2 are more objective by its nature.
The implication is that mocking could be perceived more intensively than it actually is by
developers.

In SQ5, participants evaluated the likelihood of mocking the three different types of
dependencies. As shown in Fig. 15b, on average 63.4% of the mocked dependencies are
external; while on average 48.8% of the mocked dependencies are internal projects. This is
highly consistent with our findings in RQ2.

SQ 6-8: Most and Least Frequent Used APIs: In SQ6, participants were asked to list
their top frequently used APIs based on their selected primary framework. Based on the
participants’ input, we rank the overall popularity of the nominated APIs. Table 10 shows the
ranking based on the survey forMockito andEasyMock respectively. The top 10 popularAPIs
selected by developers from the survey are the same as the overall top 10 APIs (combining
all function groups) we counted in RQ4. This suggests that our findings in RQ4 match the
experience of the participants. Note that we did not receive responses for PowerMock, as
quoting from a participant again that “PowerMock is more of a club that is used along with
EasyMock or Mockito ” as we mentioned in SQ2.

In SQ7, when we present the 10 least frequently used APIs based on the analysis of
RQ4 to participants, the overall selection rate of these APIs is fairly low, which aligns
with the message from RQ4. More specifically, for the top 10 least used APIs in Mockito,
only 7 APIs were selected mostly once or twice, with an average selection rate of 9.9%.
Similarly, the average selection rate for the 10 least frequently used APIs in EasyMock is
9.9% as well. The implication is that on average only 1 in 10 developers may use the 10 least
frequently used APIs mined from RQ4. Note that as we discussed earlier, the participants are
likely to use mocking more intensively (see SQ4) than average. Thus, the overall developer
population is even less likely to use these APIs than reflected by this survey result. Through
SQ8, participants explained that they do not know or are not familiar with these APIs (64%
participants) or that these APIs are often not useful in their projects (35% participants).

SQ 9-10: Customized Mock and Limitations: For SQ9, 33% of the participants confirmed
that they used informalmethods other thanmocking frameworks. There are two suchmethods
mentioned in the open-ended follow-up question. The first method is to create a completely
new class for creating stubs or test doubles for testing. The other method is to define test-
only sub-classes, such as implementing interfaces, abstract methods, overriding methods,
etc. In our RQ5, the majority (40 out of 44) of the sampled Customized Mocks rely on the
second method mentioned by the participants. Furthermore, to our best understanding, one

123

Page 39 of 53 39Empirical Software Engineering (2024) 29:39

of the remaining four sample cases, namelyMockImplementational1_EventAnnotatonsBase
should align with the first method of creating completely new classes as test doubles/stubs.
The reason is this class is created to provide input to the target function DefaultInjector, i.e.
a random implementation of a method with a special annotation, @BeforeScopeEnd. For the
remaining three cases, each of them associates with the concept of “mock” due to the unique
complexity of the testing purposes. This aligns with the input for SQ10 discussed below, that
mocking frameworks are often challenged by complicated testing scenarios.

For SQ10, we received three responses that pointing to three different limitations of
mocking frameworks: 1) constructing complicated object structures for mocking, such as
employing a builder pattern, is challenging using mocking frameworks; 2) mocking static
methods and constructors are still difficult with mockito-inline; and 3) Usingmocking frame-
works is VERY hard to maintain. These call for more future research to address these
limitations.

Survey Take-aways:

1. The survey confirmed that Mockito, EasyMock, and PowerMock are the top 3
commonly used frameworks. However, the perception of usingmultiple frameworks
in a project more than doubles the percentage discovered in RQ1 (i.e. 87.5% vs.
37%).The reasonbehind usingmultiple frameworks is three-fold: usingPowerMock
to backupMockito or EasyMock, frameworkmigration fromEasyMock toMockito,
and mocking complementary aspects with different frameworks.

2. The perception of mocking intensity based on the survey is significantly higher than
the results in RQ2 based on repository mining. It is possible that participants who
practice mocking more intensively than average are more likely to participate in our
survey. The mocking type (interval vs. external) from the survey is consistent with
the finding of RQ2. The takeawaymessage is that, although developers usemocking
selectively in their projects (based on RQ2), this could drastically vary based on the
developers’ expertise and experience. Thus, there is a non-technical dimension in
terms of when to mock. This is a very rich research question to explore more deeply
in future studies.

3. Regarding the most and least frequently used mocking APIs, the survey and RQ4
provide quite consistent observations. This underscores the reliability of our sug-
gested API lists in RQ4 as a “cheat sheet” for practitioners.

4. Developers are aware of the methods behind the Customized Mocks we discovered
in RQ5. They pointed to three limitations of existing frameworks that potentially
motivate them to the informal mockingmethods. These call for more future research
to better understand and provide solutions for these challenges.

6 Comparison withMostafa andWang’s Study

We compared the list of projects included in Mustafa and Wang’s study and the Apache
projects in our study, there are 8 Apache projects that overlap in both studies, which is trivial
compared to the total 246 Apache projects. This is because Mustafa and Wang randomly
sampled projects on Github, and many Apache projects were not included, and also many
Apache projects were gradually moved to Github after 2014 whenMustafa andWang sample

123

39 Page 40 of 53 Empirical Software Engineering (2024) 29:39

their projects. In order to make a meaningful comparison of our study results with that
of Mostafa and Wang (2014), we first conduct a comparison of the characteristics of the
GitHub projects in Mostafa andWang (2014) and the Apache projects in our study, from the
number of developers, number and time of commits, project duration, project scale, and test
code scale, which may have an impact on the adoption of mocking frameworks. Next, we
will make a one-on-one comparison of the findings of this paper vs. the paper of Mostafa
and Wang (2014).

6.1 Comparison of Apache and GitHub Projects

Number of Developers: Figure 16a compares the number of developers who contributed
to the projects on Apache and to the project on Git. We observe that the majority (86%)
of GitHub projects have less than 25 developers; while a relatively small portion (31%)
of Apache projects have less than 25 developers. In addition, only about 7% (100%-93%)
GitHub projects contain more than 50 developers; while close to half (40% = 100%-60%)
Apache projects have more than 50 developers. Overall, Apache projects have on average 4
(4=69/17) times more developers than GitHub projects.

Number and Time of Commits: Figure 16b compares the total number of commits in
Apache projects and that in GitHub projects. We notice that the majority (88%) of GitHub
projects have less than 1k total commits; while only 20% Apache projects have less than 1k
commits. About 26% (100%-74%) Apache projects have more than 5k commits, but only
3% (100%-97%) GitHub projects have more than 5k commits. This indicates that Apache
projects are going through more code revisions than GitHub projects, which could be the

Fig. 16 : GitHub project vs. Apache project in different dimensions

123

Page 41 of 53 39Empirical Software Engineering (2024) 29:39

result of longer history. In addition, Apache projects on average have 6.4 times of commits
compared to GitHub projects.

In addition, Fig. 16c compares the date of the most recent commits in Apache projects and
that in GitHub projects. In 84% GitHub projects, the most recent commit happened before
2020; while in 78% (100%-22%) Apache projects, the most recent commits happened after
2020. This indicates that most Apache projects still remain activity in the past two years;
while most GitHub projects are no longer active in the past two years.

Project Duration: Figure 16d compares the duration (# of years from the start date to
the end date) of the projects on Apache and that of the project on Git. We observe that the
majority (76%) of GitHub projects have less than five years of history; while only 6%Apache
projects have less than five years of history. In addition, the majority (71% = 100%-29%) of
Apache projects have more than ten years of history; while only 10% (100%-90%) of GitHub
projects have more than ten years of history. Overall, the Apache projects are on average age
4 (4=12/3) times compared to GitHub projects.

Project Scale: Figure 16e compares the number of .Java files in Apache projects and that
in GitHub projects. We notice that Apache projects overall contain more Java source file than
GitHub projects. More specifically, 83% of the GitHub projects have less than 200 Java files,
while only 21% of Apache projects have less than 200 Java files. Likewise, only 2% (2% =
100% - 98%) of GitHub projects had more than 2000 Java files. And 22% (22%=100%-78%)
of Apache projects had more than 2000 Java files.

In addition, Fig. 16f compares the lines of code (LOC) of the two communities. Similar
to the results of the Java file analysis, the Apache project has more LOCs. More specifically,
87% of the GitHub projects are less than 50KLOC, while only 39% of Apache projects are
less than 50 KLOC. In addition, 2% (2%=100%-98%) of GitHub projects are greater than
300 KLOC while 15% (15%=100%-85%) of Apache projects are greater than 300 KLOC.

The above observations regarding number of files and LOC indicate that the Apache
projects have larger code size than the GitHub projects. Overall, Apache projects on average
have 4.75 times of LOCs compared to GitHub projects. And, Apache projects on average
have 7.14 times of .Java files compared to GitHub projects.

Test Code Scale: Figure 16e compares the number of test files in Apache projects and that
in GitHub projects. Apache projects have more test files compared to GitHub projects. For
example, 93% of the GitHub projects have less than 100 test files; while only 35% of Apache
projects have less than 100 test files. Likewise, less than 0.1% of GitHub projects had more
than 1000 Test files; but 14% (14%=100%-86%) of Apache projects had more than 1000
test files. Overall, Apache projects on average have 17.76 times of the number of test files
compared to GitHub projects.

Summary of Comparison between Apache projects and GitHub projects:

1. Apache projects have on average 4 times more developers than GitHub projects.
2. Apache projects have on average 6.4 times of commits compared toGitHub projects;

and most Apache projects still remain active commits, but many GitHub projects
became inactive, in the past two years.

3. Apache projects are on average age 4 times compared to GitHub projects;
4. Apache projects are on average 7 times the scale of GitHub projects, measured by

the number of Java files in a project.
5. Apache projects on average have 17 times of test files compared to GitHub projects.

This indicates that Apache projects probably conduct testing more thoroughly com-
pared to GitHub projects.

123

39 Page 42 of 53 Empirical Software Engineering (2024) 29:39

Based on the above observation from the comparison, we envision that Apache projects
will have higher adoption of mocking frameworks due to their overall larger scale and
higher activity level.

6.2 Comparison of Results

Mostafa and Wang’s study Mostafa and Wang (2014) focused on overlapping research ques-
tions in our study, including RQ1 (overall framework adoption), RQ2 (mocking intensity
and type), and RQ4 (frequently used APIs). Later in this section, we will compare how our
findings differ and complement (Mostafa and Wang 2014) in these RQs. We would like to
also clarify that there are 9 years between the two studies. The highlighted differences of
findings could be the result of the time difference.

In addition, we would like to highlight that our study presents more thorough aspects of
mocking usage, which are not available in Mostafa and Wang (2014). They include RQ3
(mocking adoption evolution), RQ5 (informal mocking methods), as well as a survey that
confirms and deepens our findings in the RQs by taking survey input from developers.

Adoption ofMockingFrameworks (RQ1): InMostafa andWang’s studyMostafa andWang
(2014), about 23% projects use mocking frameworks. In comparison, 66% of the Apache
projects in our study use mocking frameworks. To understand this difference, we provided
a quantitative measure of project characteristics, and investigate how they correlate with
the adoption rate in projects as shown in RQ 1.2 (Adoption Factor Analysis), which is not
available in Mostafa and Wang (2014). We believe that this higher adoption of mocking
frameworks in our dataset is determined by the larger project scale—projects in our dataset,
on average, aremore than six times the size of the projects in the prior study. This is consistent
with our finding in RQ-1.2 that larger-scale and newer projects are in greater need of mocking
frameworks.

Intensity ofMocking (RQ2): InRQ2, both our study andMostafa andWang’s studyMostafa
and Wang (2014) revealed that mocking is used selectively among test files and to mock
selective dependencies. The intensity of usage could drastically depend on the project. It
indicates that the use of mocking could depend on the concrete context. Furthermore, in
our dataset, the majority (61.1%) of the mocked objects are for replacing library classes.
In comparison, in the prior study, a smaller portion (39.4%) of the mocked objects are for
library classes. We believe that this is relevant to the project domains. Our study subjects
contain many web applications such likeWink dev (2023) and StrutsWelcome to the Apache
(2023), which frequently mock web services. It remains open research regarding the context
of when and where mocking should be used in testing practice.

Frequently Used APIs (RQ4):Mostafa and Wang’s study Mostafa and Wang (2014) ana-
lyzed the top 10 most popular APIs in EasyMock and Mockito. In comparison, our study
conducted a more in-depth analysis of the most frequently used APIs in three aspects. We
looked into the three most popular APIs, namely Mockito, EasyMock, and PowerMock. We
provided a systematic analysis of the functional categorization of the APIs in each frame-
work by inspecting the official documents. We revealed the most frequently used APIs in
each functional group and found that they usually account for the majority of practical use.
Thus, our study provides more in-depth empirical observation of how mocking framework
APIs are used compared to Mostafa and Wang’s study Mostafa and Wang (2014). This pro-
vides a more actionable cheat sheet for developers who want to quickly learn how to use the
most popular mocking frameworks. Practitioners can further benefit from the common API

123

Page 43 of 53 39Empirical Software Engineering (2024) 29:39

sequences for mock object creation, manipulation, and verification. It is still open to future
research to extract the most common API sequences to facilitate the learning and usage of
popular mocking frameworks.

7 Implications and FutureWork

In RQ1, we reported that large-scale and more recent projects are more likely to adopt a
mocking framework. However, more in-depth and qualitative investigation in future research
could benefit practitioners in guiding the adoption of a proper mocking framework for their
projects, such as when and which framework to adopt based on what characteristics of their
projects. In particular, Mockito and EasyMock are the most popular mocking frameworks.
Thus, it is most beneficial for software engineering educators to develop related curriculum
materials regarding the usage of mocking frameworks based on Mockito and EasyMock.

In RQ2, we revealed that mocking is practiced overall quite selectively in projects. But
in some cases, mock objects are used intensively for some test classes. However, there
remains open research regarding the context of when and where mocking should be used
in testing practice in a particular project. More empirical knowledge regarding which types
of dependencies should or should not be mocked could facilitate the practice of mocking for
practitioners.

In RQ3, we revealed different evolution patterns of how the mocking intensity changes
over time in projects’ history. The usage intensity of mocking functions in different projects
shows different trends in the projects’ evolution history, i.e. increasing, decreasing, stable,
and fluctuating—implying the compound effects of various factors, such as the pace of a
project’s growth, the available resources, time pressure, and project priority. It calls for more
future research to help projects cope with the needs of the mocking with the growth of
priorities of the projects.

In RQ4, we revealed “cheat sheets” of the most frequently used APIs based on functions
from the top three most popular mocking frameworks. However, mocking APIs are usually
used in typical patterns of three steps: 1) create a mock object; 2) stub the mock behavior;
and 3) verify the mock object execution. The APIs are not used separately by themselves.
It is still open to future research to extract the most common API sequences to facilitate the
learning and usage of popular mocking frameworks.

In RQ5, we revealed that the concept of “mock” may not always align with the concept of
test dependency isolation. Developers may interpret it differently in different contexts. There
is still very limited knowledge of the other types of “mock” besides test dependency isolation,
and how we can provide more support on these aspects if existing mocking frameworks are
not applicable. In addition, inheritance is a common approach for mocking without using
a mocking framework. The adoption of inheritance for mocking could be the result of the
limitations of existing mocking frameworks. It is open to future research to systematically
investigate such limitations of existing mocking frameworks.

The survey results which represent developers’ experience mostly aligned with our study
results based on repository mining. One interesting discrepancy is with regard to the intensity
ofmocking. The perception of themocking intensity is significantly higher thanwhat ismined
from the repository. On the one hand, this could be caused by the bias of the participants
that they participated in the survey due to their more intense mocking practice. On the other
hand, it is possible that developers may perceive more intensive mocking than reality. The
implication is that research about mocking practice contains a non-technical dimension that

123

39 Page 44 of 53 Empirical Software Engineering (2024) 29:39

involves developers’ experience, background, and preference. It remains an open research to
investigate the non-technical aspects of mocking practice.

8 Limitations and Threat to Validity

We cannot guarantee that the scripts we created for extracting and analyzing the usage
of mocking frameworks are free of bugs. To mitigate this threat, we conducted manual
verification of the experiment results based on sampled projects in each of the study steps.
We were able to identify and fix several minor issues in the scripts that lead to inaccuracy of
our results. Thus, we believe that the study results presented in this paper are reliable. We
have publicized our data here https://github.com/gzhao9/Mock-Apache-Empirical-Study.
git.

The key motivation of this study is to understand how mocking frameworks are used to
support test dependency isolation in unit test cases. As explained in Section 4.1, we identify
all the test files that import JUnit from each project since JUnit is the most commonly used
framework for unit testing in Java language. However, we acknowledge that this may be an
internal threat to validity because of two reasons. First, this may include false positives since
some other types of tests, such as integration, may also import JUnit sometimes. Second, this
may include test utility files for creating mock objects and these files may not be test files by
themselves.We did not strictly distinguish potential different types of tests and different types
of files for supporting tests. However, the findings from this paper still represent valuable
empirical knowledge and insights regarding how mocking frameworks are used for test
dependency isolation in unit testing. We acknowledge that there are other frameworks like
TestNG and Spock. In specific, TestNG is used to support different types of tests, such as
integration, and end-to-end; while Spock contains built-in mocking functions compared to
Junit. We did not consider these frameworks since they are out of the scope of this study.
However, we acknowledge that it is a valuable future direction to study in specific.

It is a limitation that we were not able to analyze 16 projects due to issues in the project
configuration. As mentioned earlier, our analysis scripts are based on Eclipse JDT libraries.
We were not able to successfully import these projects to proceed with our analysis. We
admit that our study results would be more comprehensive if these projects were successfully
analyzed. However, we believe that this would not affect the overall findings of this study,
since the 193 projects are already great representation.

Another limitation is that this study only focuses on projects implemented in Java. There-
fore, themocking frameworks and their APIs are also based on Java.We cannot guarantee that
similar results would hold for projects implemented in a different programming language.
There are frameworks that dedicated to other languages such as Python and JavaScript, which
are out of the scope of this study. We believe that the programming language may have an
impact on the convention of how mocking is done. We plan to explore this further in future
studies.

Our analysis, exceptRQ3 focusing on project evolution, is based on themost recent version
of the code base of the Apache Java projects. Since Apache is quite an active community, its
projects are undergoing continuous changes. That means, if, in the future, other researchers
try to replicate our study, we cannot guarantee that the same conclusions will be found.
We also admit that it is a potential threat to validity that when analyzing the number of
developers who worked on mocking, we did not accurately track the evolution of all the

123

Page 45 of 53 39Empirical Software Engineering (2024) 29:39

https://github.com/gzhao9/Mock-Apache-Empirical-Study.git
https://github.com/gzhao9/Mock-Apache-Empirical-Study.git

mock objects across project history and who edited the mock objects. Instead, our heuristic
is that developers who worked on test files with mocking functions should also likely be in
charge of maintaining mock objects. The reason is that it requires compiling and configuring
each version of a project to accurately identify mock objects and track their evolution. We
believe that the heuristic we employed may include some inaccuracy, but it should not impact
the overall conclusion of the paper. That is, only a limited and changing number of developers
are involved in maintaining mocks in projects’ history.

In RQ3.2, we examined the evolution of mocking intensity using the metric of the per-
centage of files with mocks.We admit that this is a potential threat to validity since the metric
may be skewed if a project goes through significant refactoring. For instance, if a test file
is refactored and broken down into five files, it is possible that all five files still use mocks;
it is also possible that only a subset of them, e.g. one file, still use mocks. In the latter, the
mocking intensity metric would become much lower because of this refactoring, but this
does not necessarily mean that mocking intensity has truly significantly reduced. We have
not accurately examined refactorings in projects and how they may impact the measured
intensity.

In RQ5, we search for potential CustomizedMock Classes by looking for test files match-
ing the keyword “mock” or “spy” in the names but do not import any mocking framework
APIs. Admittedly, on the one hand, it is possible that some Customized Mock Classes may
not contain any related keywords; on the other hand, some identified cases are for mocking as
intended by a mocking framework. For example, in our manual inspection of the 44 sample
cases, 4 cases are not for mocking due to different reasons that are unique to each case. We
acknowledge that we did not manually review and inspect all 2,237 cases that match the
search criteria in this study. This merits another dedicated study for a more comprehensive
and in-depth investigation.

Finally, Apache projects are in different scales and ages, and they cover a variety of
problem domains, such as big data, build management, cloud, database, geospatial projects,
graphics, etc. Thus, given the diversity of Apache projects, we believe that this study provides
representative empirical experience regarding how mocking frameworks are being used in
practice by large-scale and long-lived projects. With that being said, we cannot guarantee
that the observations we made based on Apache projects will hold and generalize to a set of
projects with completely different characteristics. For example, as we explicitly discussed
in Section 6, we compared the different observations we made based on Apache projects
and Github projects based on Mustafa and Wang’s study. How developers use mocking
frameworks may be impacted by project characteristics, such as size and domain.

9 RelatedWork

In the past decade, research related to mocking in software testing has drawn increasing
interests. Freeman et al. (2004) was one of the first to propose the basic idea of mocking in
unit testing. They contributed a mocking framework named jMock for Java (Freeman et al.
2004).

In following years, researchers start to expand the usage of mocking in the unit testing
of new domains, such as embedded systems, cloud computing, and mobile applications.
Karlesky et al. (2007) introduced mocking in testing embedded software systems. They pro-
posed a holistic set of practices, tools, and a new design pattern to apply the Test-Driven

123

39 Page 46 of 53 Empirical Software Engineering (2024) 29:39

Development with mocking frameworks in embedded software systems. Their methodology
can reduce the software flaws and improve the progress in data-driven project management
in embedding software development. Kim (2016) explored the challenges of mocking frame-
work in the unit testing of embedded systems as well. The study pointed out that embedded
software was tightly coupled with target hardware. They showed how mocking frameworks
could help to improve the design process, the architecture of the software components, and
protect the system against regression defects. Svensgård and Henriksson (2017) proposed
the idea of using mocking frameworks in testing SaaS cloud platform. The study leverages
mock objects for replacing the dependency to cloud data instance in unit testing. The study
showed that testing based on mocking can find the same faults as testing against the real
cloud, and at the same time keep the same code coverage. Fazzini et al. (2020) proposed
an improved mocking framework MOKA, which is specialized in generating reusable mock
objects for mobile apps unit testing. It uses component-based program synthesis to leverage
existing test executions to create mock objects automatically. The study shows that this helps
developers to repair the tests that have external data dependency. Another study of Fazzini
et al. (2022) focused on test doubles used inAndroid apps, examining their creation and usage
in 1,006 apps. The study identified commonly used frameworks and methods, analyzing the
specifics of 2,365 test doubles across 10 apps with the highest usage. The paper concludes
that Android’s test doubling practices diverge significantly from traditional Java, potentially
leading to test smells and errors.

With the prevalent usage of mocking framework, researchers also started to focus on
improving the education and design of mock objects. Nandigam et al. (2009) shared the
teaching experience of implementing mock objects in a interface-based system. The study
showed that implementing mock objects can helps students to test their system as units in
isolation and develop code that adheres to the critical principles of reusable object-oriented
objects. Solms and Marshall (2016) proposed a contract-based design to reuse the mock
objects in the services-oriented development. Mock objects were tested against the com-
ponent contracts, which improved the re-usability of the mock objects in both the unit test
and integration test. However, this also required more code to be developed for specifying
mocking behavior. Pereira and Hora (2020) investigated the design of hand-coded mocking
objects in modern projects. The study pointed out the over creation of private mock classes is
widespread. Marri et al. (2009) investigated the benefits of using mock objects when testing
the file-system-dependent software. The study identified two benefits: mock objects enable
unit testing of the code that interacts with external APIs, and improve the code coverage in
unit testing.

In recent years, automated tools for enforcing the usage of mocking frameworks started
to emerge. Arcuri et al. (2017) incorporated a mocking framework to automated unit test
generation. Their study confirmed the anticipated improvements in code coverage and bug
detection. Zhu et al. (2020) introduced a new machine learning based tool to identify and
recommend mocks for unit tests. The tool requires only the class under test and the class’s
dependency information as the input. It outperformed three baseline approaches: existing
heuristics, EvoSuitemock list, and empirical rules.Wang et al. (2021) contributed an approach
to automatically identify and refactor the test cases using inheritance with mock objects
using Mockito. The refactoring tool reduced code complexity, provided efficient run-time
performance in real-life projects, and was applicable to general datasets.

Studies that are closest to ours include (Mostafa andWang2014; Spadini et al. 2017, 2019),
which all presented empirical studies regarding howmocking is practiced. Of particular note,

123

Page 47 of 53 39Empirical Software Engineering (2024) 29:39

our study is most similar to study (Mostafa and Wang 2014) in that both investigated how
mocking frameworks are used in open-source communities. As presented in Section 6, we
provided a very detailed comparison of our study andMostafa andWang (2014), highlighting
our unique contributions in that 1) we focused on a different community which provides
findings that complement (Mostafa and Wang 2014); and 2) we conducted more thorough
investigations regarding factors that impact framework adoption, the evolution of mocking
framework adoption, informal mocking methods other than mocking frameworks, as well
as a survey focuses on developers’ perception of mocking framework usage, which is not
available in Mostafa and Wang (2014).

Furthermore, Spadini et al. (2017, 2019) investigated the usage of Mockito and the evolv-
ing process of mock objects in three OSS projects and one industrial system. The key focus
of their studies Spadini et al. (2017, 2019) is on gaining an in-depth understanding of what
types of objects are more likely to be mocked. The result revealed that developers frequently
mock dependencies that make testing difficult and prefer not to mock classes that encapsulate
domain concepts/rules of the system. In comparison, our study presented a more compre-
hensive investigation of mocking practiced in 193 Apache projects. Our study answers a
broad range of research questions that cover: 1) the overall adoption of different mocking
frameworks across the entire community, how different project factors impact the adoption
of mocking frameworks; 2) the intensity of mocking in projects and type of objects being
mocked, which is most relevant to Spadini et al. (2017, 2019), but we based on a much larger
dataset (i.e. 193 projects vs. 4 projects); 3) the overall evolution trends of mocking frame-
work adoption in projects in the community; 4) the most frequently usedmocking APIs in the
top 3 most popular frameworks (Mocito, EasyMock, and PowerMock); 5) informal methods
for mocking other than using a framework; and lastly, 6) a survey that involves developers
to confirm and deepen our understanding of the above aspects. Therefore, we believe that
our study provides significant new and complementary knowledge that is not available in
existing, similar empirical studies Mostafa and Wang (2014); Spadini et al. (2017, 2019).

Finally, while the popular mocking frameworks provide comprehensive tutorials to teach
practitioners how to use them, practitioners still could benefit greatly from our study in the
following aspects. First, the tutorials provide basic concepts of when and what to mock;
while our study shares rich empirical experience from hundreds of projects, with quantitative
measures regarding what project factors contribute to the adoption of mocking frameworks,
the different types of objects frequently being mocked, as well as informal methods for
mocking other than using a framework. Practitioners could gain more practical experience
fromour study. Second, the tutorials provide very detailed descriptions of each singlemocking
API. As presented earlier, there are a total of 317 APIs in Mockito, 278 APIs in EasyMock,
and 311 APIs in PowerMock, which are the three most popular mocking frameworks. But
only 109 (34.5%), 68 (24.5%), and 75 (24.1%) APIs in Mocito, EasyMock, and PowerMock,
respectively, are actually used by Apache projects. In our RQ4, we derived key function
categories provided by the APIs based on the tutorial and mined the top 5 frequently used
APIs in each functional group. This short-list of APIs takes the majority (78% to 100%) of
usage in Apache projects. Therefore, this provides a quick “cheat sheet” to potentially help
practitioners accelerate the learning process.

123

39 Page 48 of 53 Empirical Software Engineering (2024) 29:39

10 Conclusion

This study contributes an in-depth empirical study to reveal whether and howmocking frame-
works are used in Apache projects. This study contributes valuable findings and implications
to practitioners who are interested in learning and using mocking frameworks, and to those
who are interested in related future research directions. The key findings and contributions
of this study include the following.

First, mocking frameworks are widely used in 66% of Apache projects, with higher adop-
tion among larger-scale and newer projects. Thus, developers who work on real-life, modern
software projects should generally be prepared to use mocking frameworks. Practitioners
and educators should prioritize Mockito, EasyMock, and PowerMock since they are the top
three most popular mocking frameworks.

Second, mocking could be practiced selectively in general, but also intensively in cases—
varying based on specific contexts. More research is needed to investigate when and what to
mock in software testing, and by whom.

We also revealed that projects could show different evolution patterns of framework
adoption—increasing, decreasing, stable, and fluctuating. It points to a future direction to
gain a deeper understanding of what impacts the evolution of mocking framework adoption,
and how to help projects in need to keep a healthy pace in using mocking that match the
growth of the projects.

Furthermore, given the hundreds of totalAPIs in amocking framework, developers usually
only need to focus on the top five APIs for creating mock objects, stubbing mock behaviors,
and verifying mock execution, to handle the majority of usage scenarios in practice. This
study provides quick cheat sheets of those APIs for Mockito, EasyMock, and PowerMock.

Despite the power functions of mocking frameworks, we found that inheritance is a com-
mon informal method of enabling test dependency isolation, which aligns with the goal of
mocking frameworks. But it is not always possible or beneficial to replace inheritance using
a mocking framework. Also, developers may have other interpretations of mocking, other
than test dependency isolation supported by existing mocking frameworks. It calls for more
future research to understand the current limitations of mocking frameworks to better support
various, complicated mocking needs in practice.

Finally, the developer survey provided confirmation and additional insights into the find-
ings of our study, which could illuminate various potential future research questions related
to mocking usage in practice.

Acknowledgements This work was supported in part by the U.S. National Science Foundation (NSF) under
grants CCF-1909085 and CCF-1909763.

Data Availability We have published all the raw and generated data on GitHub https://github.com/gzhao9/
Mock-Apache-Empirical-Study.git. The data is organized based on the structure of the research questions.

Declarations

Conflicts of interest The authors declared that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

123

Page 49 of 53 39Empirical Software Engineering (2024) 29:39

https://github.com/gzhao9/Mock-Apache-Empirical-Study.git
https://github.com/gzhao9/Mock-Apache-Empirical-Study.git

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Apache PDFBox | a java PDF library. https://pdfbox.apache.org/
Apache software foundation projects list. https://projects.apache.org/projects.html. Accessed 8 May 2023
Arcuri A, Fraser G, Just R (2017) Private api access and functional mocking in automated unit test generation.

In: 2017 IEEE international conference on software testing, verification and validation (ICST), IEEE, pp
126–137

Barker D (2016) Web content management: systems, features, and best practices. “ O’Reilly Media, Inc.”
Bertolino A (2007) Software testing research: achievements, challenges, dreams. In: Future of software engi-

neering (FOSE’07), IEEE, pp 85–103. https://doi.org/10.1109/FOSE.2007.25
Briney K (2015) Data Management for Researchers: Organize, maintain and share your data for research

success. Pelagic Publishing Ltd
Buyya R, Dastjerdi AV (2016) Internet of Things: Principles and paradigms. Elsevier
Crowston K, Howison J (2006) Assessing the health of open source communities. Computer 39(5):89–91
Daka E, Fraser G (2014) A survey on unit testing practices and problems. In: 2014 IEEE 25th International

symposium on software reliability engineering, IEEE, pp 201–211. https://doi.org/10.1109/ISSRE.2014.
11

dev: Apache wink – index. https://wink.apache.org/
Duenas JC, Cuadrado F, Santillán M, Ruiz JL et al (2007) Apache and eclipse: comparing open source project

incubators. IEEE Soft 24(6):90–98
EasyMock. https://easymock.org/
Fazzini M, Choi C, Copia JM, Lee G, Kakehi Y, Gorla A, Orso A (2022) Use of test doubles in android testing:

an in-depth investigation. In: Proceedings of the 44th international conference on software engineering,
pp 2266–2278

Fazzini M, Gorla A, Orso A (2020) A framework for automated test mocking of mobile apps. In: 2020 35th
IEEE/ACM International conference on automated software engineering (ASE), IEEE, pp 1204–1208

Fosnacht K, Sarraf S, Howe E, Peck LK (2017) How important are high response rates for college surveys?
Rev Higher Educ 40(2):245–265

Freeman S, Mackinnon T, Pryce N, Walnes J (2004) jmock: supporting responsibility-based design with mock
objects. In: Companion to the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pp 4–5

Freeman S, Mackinnon T, Pryce N,Walnes J (2004)Mock roles, not objects. In: Companion to the 19th annual
ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications, pp
236–246. https://doi.org/10.1145/1028664.1028765

Garousi V, Zhi J (2013) A survey of software testing practices in Canada. J Syst Softw
86(5):1354–1376. https://doi.org/10.1016/j.jss.2012.12.051. https://www.sciencedirect.com/science/
article/pii/S0164121212003561

Henderson F (2017) Software engineering at google. arXiv:1702.01715
Hunt A, Thomas D (2004) Pragmatic unit testing in c# with nunit. Pragmatic Programmers
Ieee standard glossary of software engineering terminology (1990) IEEE Std 610(12–1990):1–84. https://doi.

org/10.1109/IEEESTD.1990.101064
JUnit 5. https://junit.org/junit5/
Kaner C, Falk J, Nguyen HQ (1999) Testing computer software. John Wiley & Sons
KarleskyM,WilliamsG,BerezaW, FletcherM (2007)Mocking the embeddedworld: test-driven development,

continuous integration, and design patterns. Proc. Emb. Systems Conf, CA, USA, pp 1518–1532
Kim SS (2016) Mocking embedded hardware for software validation. Ph.D. thesis
List of releases for the project. https://github.com/gzhao9/Mock-Apache-Empirical-Study/blob/main/RQ1/

project%20tags_info.csv
Marri MR, Xie T, Tillmann N, De Halleux J, Schulte W (2009) An empirical study of testing file-system-

dependent software with mock objects. In: 2009 ICSE Workshop on automation of software test, IEEE,
pp 149–153. https://doi.org/10.1007/s10664-018-9663-0

Maven Repository: org.springframework » spring-mock. https://mvnrepository.com/artifact/org.springframe
work/spring-mock

123

39 Page 50 of 53 Empirical Software Engineering (2024) 29:39

http://creativecommons.org/licenses/by/4.0/
https://pdfbox.apache.org/
https://projects.apache.org/projects.html
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11
https://wink.apache.org/
https://easymock.org/
https://doi.org/10.1145/1028664.1028765
https://doi.org/10.1016/j.jss.2012.12.051
https://www.sciencedirect.com/science/article/pii/S0164121212003561
https://www.sciencedirect.com/science/article/pii/S0164121212003561
http://arxiv.org/abs/1702.01715
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
https://junit.org/junit5/
https://github.com/gzhao9/Mock-Apache-Empirical-Study/blob/main/RQ1/project%20tags_info.csv
https://github.com/gzhao9/Mock-Apache-Empirical-Study/blob/main/RQ1/project%20tags_info.csv
https://doi.org/10.1007/s10664-018-9663-0
https://mvnrepository.com/artifact/org.springframework/spring-mock
https://mvnrepository.com/artifact/org.springframework/spring-mock

Mockito release notes. https://code.google.com/archive/p/mockito/wikis/ReleaseNotes.wiki. Accessed 8May
2023

mockito. https://site.mockito.org/
Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development: Apache

and mozilla. ACM Trans Softw Eng Methodol (TOSEM) 11(3):309–346
Mockus A, Fielding RT, Herbsleb J (2000) A case study of open source software development: the apache

server. In: Proceedings of the 22nd international conference on software engineering, pp 263–272
moq. https://github.com/moq/moq4
Mostafa S, Wang X (2014) An empirical study on the usage of mocking frameworks in software testing.

In: 2014 14th international conference on quality software, IEEE, pp 127–132. https://doi.org/10.1109/
QSIC.2014.19

Myers GJ, Badgett T, Thomas TM, Sandler C (2004) The art of software testing, vol 2. Wiley Online Library.
https://doi.org/10.1002/9781119202486

Nandigam J, Gudivada VN, Hamou-Lhadj A, Tao Y (2009) Interface-based object-oriented design with mock
objects. In: 2009 Sixth international conference on information technology: new generations, IEEE, pp
713–718. https://doi.org/10.1109/ITNG.2009.268

NMock: A Dynamic Mock Object Library for .NET. https://nmock.sourceforge.net/
Pereira G, Hora A (2020) Assessing mock classes: an empirical study. In: 2020 IEEE International con-

ference on software maintenance and evolution (ICSME), IEEE, pp 453–463. https://doi.org/10.1109/
ICSME46990.2020.00050

PowerMock framework site. https://powermock.github.io/
PowerMock framework site. https://powermock.github.io/
Projects by category in apache software foundation. https://projects.apache.org/projects.html?category
Rigby PC, German DM, Storey MA (2008) Open source software peer review practices: a case study of the

apache server. In: Proceedings of the 30th international conference on Software engineering, pp 541–550
Runeson P (2006) A survey of unit testing practices. IEEE Softw 23(4):22–29. https://doi.org/10.1109/MS.

2006.91
Severance C (2012) The apache software foundation: Brian behlendorf. Computer 45(10):8–9
Solms F, Marshall L (2016) Contract-based mocking for services-oriented development. In: Proceedings of

the annual conference of the south african institute of computer scientists and information technologists,
pp 1–8

Spadini D, AnicheM, BruntinkM, Bacchelli A (2019) Mock objects for testing java systems. Empirical Softw
Eng 24(3):1461–1498. https://doi.org/10.1007/s10664-018-9663-0

Spadini D, AnicheM, BruntinkM, Bacchelli A (2017) Tomock or not tomock? an empirical study onmocking
practices. In: 2017 IEEE/ACM 14th International conference on mining software repositories (MSR),
IEEE, pp 402–412. https://doi.org/10.1109/MSR.2017.61

Svensgård S, Henriksson J (2017) Mocking saas cloud for testing
Taneja K, Zhang Y, Xie T (2010) Moda: automated test generation for database applications via mock objects.

In: Proceedings of the IEEE/ACM international conference on Automated software engineering, pp
289–292

Unittest.mock - mock object library. https://docs.python.org/3/library/unittest.mock.html#module-unittest.
mock

WangX (2021) Understanding and facilitating the usage of mocking frameworks for test dependency isolation.
Ph.D. thesis, Stevens Institute of Technology

Wang X, Xiao L, Yu T, Woepse A, Wong S (2022) From inheritance to mockito: An automatic refactoring
approach. IEEE Trans Softw Eng 1–23. https://doi.org/10.1109/TSE.2022.3231850

Wang X, Xiao L, Yu T, Woepse A, Wong S (2021) An automatic refactoring framework for replacing test-
production inheritance by mocking mechanism. In: Proceedings of the 29th ACM joint meeting on
european software engineering conference and symposium on the foundations of software engineering,
pp 540–552

Web E (2013) Eclipse JDT™(Java development tools). https://projects.eclipse.org/projects/eclipse.jdt
Weiss M, Moroiu G, Zhao P (2006) Evolution of open source communities. In: Open source systems: IFIP

working group 2.13 foundation on open source software, June 8–10, 2006, Como, Italy 2, Springer, pp
21–32

Welcome to the Apache Struts project. https://struts.apache.org/
Why is it so bad to mock classes? — stackoverflow.com. https://stackoverflow.com/questions/1595166/why-

is-it-so-bad-to-mock-classes. Accessed 19 Jul 2023
Zhu H, Wei L, Wen M, Liu Y, Cheung SC, Sheng Q, Zhou C (2020) Mocksniffer: characterizing and recom-

mendingmocking decisions for unit tests. In: Proceedings of the 35th IEEE/ACMinternational conference
on automated software engineering, pp 436–447

123

Page 51 of 53 39Empirical Software Engineering (2024) 29:39

https://code.google.com/archive/p/mockito/wikis/ReleaseNotes.wiki
https://site.mockito.org/
https://github.com/moq/moq4
https://doi.org/10.1109/QSIC.2014.19
https://doi.org/10.1109/QSIC.2014.19
https://doi.org/10.1002/9781119202486
https://doi.org/10.1109/ITNG.2009.268
https://nmock.sourceforge.net/
https://doi.org/10.1109/ICSME46990.2020.00050
https://doi.org/10.1109/ICSME46990.2020.00050
https://powermock.github.io/
https://powermock.github.io/
https://projects.apache.org/projects.html?category
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1007/s10664-018-9663-0
https://doi.org/10.1109/MSR.2017.61
https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock
https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock
https://doi.org/10.1109/TSE.2022.3231850
https://projects.eclipse.org/projects/eclipse.jdt
https://struts.apache.org/
https://stackoverflow.com/questions/1595166/why-is-it-so-bad-to-mock-classes
https://stackoverflow.com/questions/1595166/why-is-it-so-bad-to-mock-classes

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Lu Xiao is an Assistant Professor in the School of Systems and Enter-
prises at Stevens Institute of Technology. Her research interests lie in
the broad area of software engineering, particularly in software archi-
tecture, software economics, cost estimation, and software ecosys-
tems. She is an awardee of NSF CAREER project in 2021. She has
published her work in different conferences and journals, including
TSE, ICSE, FSE, and ICSA, etc.. She completed her PhD in Computer
Science at Drexel University in 2016. She received the first-place prize
at the ACM Student Research Competition in 2015.

Gengwu Zhao is a Ph.D. candidate advised by Dr. Lu Xiao at the
School of Systems and Enterprises, Stevens Institute of Technology.
His research interest is software testing.

Xiao Wang received the PhD degree in system engineering with a con-
centration on software engineering from the Stevens Institute of Tech-
nology, in 2022, advised by Lu Xiao. He is a Senior Software Devel-
opment Engineer with Amazon. His research interests lie in software
architecture, software refactoring, software testing and cyber-physical
systems. He published his work in different journals and conferences,
including IEEE Transactions on Software Engineering, ICSE, FES
Journal of Engineering Sciences, and International Chinese Statistical
Association.

123

39 Page 52 of 53 Empirical Software Engineering (2024) 29:39

Keye Li is a Master’s student at the Computer Science & Engineer-
ing department at University of California, San Diego. He obtained
his Bachelor’s degree in Software Engineering at Stevens Institute of
Technology in 2022. His current research interests lie in distributed
systems.

Erick Lim received his Bachelor’s degree in Software Engineering in
2022 and a Masters’ Degree in Computer Science in 2023, both from
Stevens Institute of Technology.

Authors and Affiliations

Lu Xiao1 · Gengwu Zhao1 · Xiao Wang1 · Keye Li1 · Erick Lim1 · Chenhao Wei1 ·
Tingting Yu2 · Xiaoyin Wang3

Gengwu Zhao
gzhao9@stevens.edu

Xiao Wang
xwang97@stevens.edu

Chenhao Wei
cwei7@stevens.edu

Tingting Yu
tingting.yu@uc.edu

Xiaoyin Wang
xiaoyin.wang@utsa.edu

1 School of Systems and Enterprises, Stevens Institute of Technology, Castle Point Terrace,
Hoboken NJ 07030, USA

2 University of Cincinnati, 2600 Clifton Ave, Cincinnati OH 45221, USA
3 University of Texas at San Antonio, 1 UTSA Circle, San Antonio TX 78249, USA

123

Page 53 of 53 39Empirical Software Engineering (2024) 29:39

http://orcid.org/0000-0002-3202-3077

	An empirical study on the usage of mocking frameworks in Apache software foundation
	Abstract
	1 Introduction
	2 Background
	2.1 Motivating Example for Mocking
	2.2 Mocking Frameworks

	3 Research Questions
	4 Study Process
	4.1 Step 1: Basic Data Collection
	4.2 Step 2: Mocking Framework Adoption Analysis
	4.3 Step 3: Mocking Intensity and Type Analysis
	4.4 Step 4: Mock Usage Evolution Analysis
	4.5 Step 5: Mock API Extraction and Analysis
	4.6 Step 6: Sub-optimal Mock Analysis
	4.7 Step 7: Developer Survey

	5 Study Results
	5.1 RQ1: Adoption of Mocking Frameworks
	5.2 RQ2: Intensity and Type of Mocking
	5.3 RQ3: Mocking Framework Usage Evolution
	5.4 RQ4: Most Frequently Used Mocking APIs
	5.5 RQ5: Mocks without Leveraging Mocking Frameworks
	5.6 Survey Results

	6 Comparison with Mostafa and Wang's Study
	6.1 Comparison of Apache and GitHub Projects
	6.2 Comparison of Results

	7 Implications and Future Work
	8 Limitations and Threat to Validity
	9 Related Work
	10 Conclusion
	Acknowledgements
	References

