
https://doi.org/10.1007/s10664-023-10408-6

On the adoption and effects of source code reuse on defect
proneness andmaintenance effort

Giammaria Giordano1 ·Gerardo Festa1 ·Gemma Catolino2 · Fabio Palomba1 ·
Filomena Ferrucci1 · Carmine Gravino1

© The Author(s) 2023

Abstract
Software reusability mechanisms, like inheritance and delegation in Object-Oriented pro-
gramming, are widely recognized as key instruments of software design that reduce the risks
of source code being affected by defects, other than to reduce the effort required to maintain
and evolve source code. Previous work has traditionally employed source code reuse met-
rics for prediction purposes, e.g., in the context of defect prediction. However, our research
identifies two noticeable limitations of the current literature. First, still little is known about
the extent to which developers actually employ code reuse mechanisms over time. Second,
it is still unclear how these mechanisms may contribute to explaining defect-proneness and
mainten0ance effort during software evolution. We aim at bridging this gap of knowledge,
as an improved understanding of these aspects might provide insights into the actual sup-
port provided by these mechanisms, e.g., by suggesting whether and how to use them for
prediction purposes. We propose an exploratory study, conducted on 12 Java projects–over
44,900 commits–of the Defects4J dataset, aiming at (1) assessing how developers use inher-
itance and delegation during software evolution; and (2) statistically analyzing the impact of
inheritance and delegation on fault proneness and maintenance effort. Our results let emerge
various usage patterns that describe the way inheritance and delegation vary over time. In
addition, we find out that inheritance and delegation are statistically significant factors that
influence both source code defect-proneness and maintenance effort.

Keywords Software reuse · Quality metrics · Software maintenance and evolution ·
Empirical software engineering

Communicated by: Terese Baldassarre, Mike Papadakis

This article belongs to the Topical Collection: Special Issue on Registered Reports.

B Giammaria Giordano
giagiordano@unisa.it

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Empirical Software Engineering (2024) 29:20

Accepted: 18 October 2023 / Published online: 12 December 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10408-6&domain=pdf
http://orcid.org/0000-0003-2567-440X
http://orcid.org/0000-0002-4689-3401
http://orcid.org/0000-0001-9337-5116
http://orcid.org/0000-0002-0975-8972
http://orcid.org/0000-0002-4394-9035

1 Introduction

Software reusability is the design principle that allows developers to reuse part of the existing
software to implement new features (Bieman and Zhao 1995; Soundarajan and Fridella 1998).
This practice is widely recognized as one of the key assets of software development, as
developers may have multiple benefits, such as the reduction of evolution time, effort, and
cost, other than the reduction of risks of source code being affected by defects (Singh et al.
2010; Lange and Moher 1989; Sharma et al. 2009).

When it turns to Object-Oriented programming languages, many software reuse mecha-
nisms have been provided over time. Design patterns (De Lucia et al. 2009; Gamma et al.
1993), third-party libraries (Zaimi et al. 2015; Salza et al. 2020), and programming abstrac-
tions (Sommerville 2011) are examples of these mechanisms. Focusing on Java, two very
well-known types of programming abstractions are provided to developers: inheritance and
delegation (Arnold et al. 2005). The former allows a class to take the properties and attributes
of another class, establishing a hierarchical relation between them. The latter refers to when
a class invokes an instance of another class to carry out operations without performing any
other type of action.

The importance of these mechanisms has been remarked several times by researchers. In
the early 90s, Chidamber and Kemerer (1994) included the Depth of Inheritance Tree (DIT),
i.e., a metric that measures the number of classes that inherit from another class, in their
Object-Oriented metrics suite. Later on, researchers suggested more ways to measure differ-
ent aspects of inheritance (Breesam 2007; Mal and Rajnish 2013; Rajnish and Bhattacherjee
2008) and delegation (Cherkaoui et al. 1998; Munro 2005; VanHilst and Fernandez 2007),
along with best and bad practices on how to use reusability mechanisms (Haefliger et al.
2008; Jalender et al. 2012; Mantyla et al. 2003; Palomba et al. 2014). From the empirical
standpoint, a noticeable amount of investigations targeted the role of inheritance and del-
egation in keeping source code quality under control. For instance, researchers have been
studying the relationship between these mechanisms and Object-Oriented metrics (Chhikara
et al. 2011; Chawla and Nath 2013; Abreu and Melo 1996), design patterns (Ampatzoglou
et al. 2015; Huston 2001), code complexity Albalooshi and Mahmood (2014), and source
code maintainability (Daly et al. 1996; Giordano et al. 2022; Prechelt et al. 2003). Perhaps
more interestingly, inheritance and delegation metrics have often been employed for building
software maintenance predictive models. The key example is defect prediction (Hall et al.
2011; Hosseini et al. 2017), where researchers assessed how reusability mechanisms might
contribute to the prediction of future source code defects (Basili et al. 1996; Singh et al. 2010;
Yu et al. 2002; Di Nucci et al. 2017; Palomba et al. 2017). Similarly, the contribution of inher-
itance and delegation has been experimented with for predicting maintenance effort change
(Catolino et al. 2020; Nagappan and Ball 2005), code smells (Arcelli Fontana et al. 2016;
Di Nucci et al. 2018), software vulnerabilities (Shin et al. 2010), and infrastructure-as-code
quality (Dalla Palma et al. 2021).

Despite the availability of a large body of knowledge on how inheritance and delegation
mechanisms contribute to the prediction of source code attributes, most of the prediction
models defined so far made a strong assumption: developersmake use of reusability principles
while evolving source code.

First, the extent to which these mechanisms are used in practice might notably impact
their contribution to prediction models. Second, it is unclear how the relationship between
reusability and source code attributes varies over time and, therefore, whether inheritance
and delegation mechanisms should still be considered for prediction purposes as the system
evolves.

123

20 Page 2 of 42 Empirical Software Engineering (2024) 29:20

In this paper, we propose an empirical investigation to fill the limitations of current research
concerning the adoption of reusability practices and their evolutionary effects on two specific
source code attributes such as defect proneness and maintenance effort. We select these
attributes as they represent two interesting use cases to assess reusability mechanisms. On the
one hand, these mechanisms are indeed supposed to reduce fault proneness and maintenance
effort (Singh et al. 2010; Lange and Moher 1989; Sharma et al. 2009). On the other hand,
several prediction models targeted the early location of defects and estimation of the effort
required to perform evolutionary tasks (Catolino et al. 2020; Pascarella et al. 2019; Nagappan
and Ball 2005).

Our study focuses on Java projects, as Java (1) offers mechanisms that encourage the use
of inheritance and delegation (Craig 2007; Tempero et al. 2013) and (2) is still among the most
popular programming languages used in industry.1 To conduct our experiment, we first mine
the Defects4J dataset to extract commit-level information on the reusability mechanisms
adoption. Then, we developed statistical models to assess the contribution of reusability
mechanisms on defect proneness—as indicated by the number of defects over time—and
maintenance effort—as indicated by the code churn of commits. The main results report on
the inheritance and delegation usage patterns of the 12 projects considered, highlighting that
(1) developers tend to frequently use these mechanisms and (2) their adoption varies over
time in a significant manner. Furthermore, we identify a statistical relation, corroborated by
a fine-grained qualitative investigation, between the adoption of inheritance and delegation
and both defect-proneness and maintenance effort, hence concluding that software reuse is
a relevant component that affects the way source code quality evolves.

This paper extends our registered report accepted at the 38th IEEE International Confer-
ence on Software Maintenance and Evolution (Giordano et al. 2022). While in our previous
work, we defined the research goals of the study and the envisioned data collected analysis
methods, this submission analyzes the study’s results achieved and discusses the implications,
lessons learned, and actionable items that our work has for researchers and practitioners.

Structure of the Paper Section 2 overviews the research literature connected to our work,
pointing out the main differences that let our investigation advance the state of the art.
Section 3 defines the study’s research questions, other than the research method applied to
address them. In Section 4, we discuss the study’s results, while in Section 5, we report on
the implications that our findings have for researchers and practitioners. The main limitations
of the study and the way we mitigated them are discussed in Section 6. Finally, Section 7
provides some final remarks.

2 Background and RelatedWork

In this section, we first provide background information on the most widely used mechanisms
in the Object-Oriented programming languages for reusing code: inheritance and delegation.
Then, we survey the related literature targeting code reusability and its impact on source code.

2.1 Background: Inheritance and DelegationMechanisms in JAVA

Our study focuses on Java and, for this reason, we describe the way inheritance and delegation
mechanisms can be employed in this programming language. In particular, in Java there are

1 Programming language ranking - Year 2021: https://www.tiobe.com/tiobe-index/

123

Page 3 of 42 20Empirical Software Engineering (2024) 29:20

https://www.tiobe.com/tiobe-index/

two forms through which it is possible to define a hierarchical dependency between two
classes:

‘extends’. Given two classes A and B, A is defined as super-class of B if B inherits
variables or methods by A. In Java to establish this super-class – sub-class relation the
sub-class must indicate it through the keyword “extends”.

‘implements‘. Given a class B, and an interface A, we will claim that B inherits from
A if B implements the interface A. In Java this mechanism is provided using the keyword
“implements”. In particular, when a class A inherits using an interface, it must provide a
concrete implementation of methods defined as a blueprint on interface.

These definitions recall the concept of reusability in terms of specification inheritance,
implementation inheritance, and delegation (Bruegge and Dutoit 2009). From a practical
point of view, the first one refers to the possibility of replacing an object A with an object B
using a combination of two principles:

– Strict Inheritance. When a sub-class B exposes behavior and properties of super-class
A without making any changes (Bruegge and Dutoit 2009).

– The Liskov Substitution Principle. According to Liskov and Wing (1994), given two
classes A and B, B is a sub-class of A if is possible to substitute the object A with the
object B every time that the object A was expected.

The implementation inheritance occurs when a class indirectly reuses a super-class source
code. The sub-class can wholly or partially override methods and/or properties and replace
the super-class’s original behavior with its own. However, the implementation inheritance
violates, by definition, the encapsulation principle because a sub-class could accidentally
invoke methods or use some proprieties of the super-class in a wrong manner (Bruegge and
Dutoit 2009). To avoid this, it is possible to replace the implementation inheritance with the
delegation in some cases. With this mechanism, a class B does not inherit anything from
another class A, but B invokes methods of A directly by declaring itself a variable of type A.

2.2 RelatedWork: The Impact of Inheritance and DelegationMechanisms on Source
Code Quality

Source code reusability has been the subject of several research in the last decades. These
touched various angles of the problem, by introducing novel metrics to capture inheritance
relations (Chidamber and Kemerer 1994; Breesam 2007; Mal and Rajnish 2013; Rajnish
and Bhattacherjee 2008) and delegation (Cherkaoui et al. 1998; Munro 2005; VanHilst and
Fernandez 2007), defining best design practices to exploit the benefits of reusability (Haefliger
et al. 2008; Jalender et al. 2012), or identifying a number of source code quality issues that
reusability can cause, e.g., code smells (Mantyla et al. 2003; Palomba et al. 2014; Fowler
2018). While the scope of our work targets inheritance and delegation mechanisms, it is
worth mentioning the existence of close research areas such as the analysis of design patterns
(Fontana et al. 2013; Zhang and Budgen 2013) and third-party libraries (Zhan et al. 2021).
These are additional perspectives that we plan to investigate as part of our future research
agenda, but that we leave out of the scope of this paper.

Reusability and Code Quality As for the themes of our study, Albalooshi and Mahmood
(2014) conducted an empirical analysis on the implementation inheritance by considering
three programming languages likeC++,Python, and Java. As a result, the authors found that
the mechanisms of Java to define inheritance tend to degrade source code quality. Goel and
Bhatia (2013) obtained similar results by analyzing the impact of multilevel inheritance on

123

20 Page 4 of 42 Empirical Software Engineering (2024) 29:20

reusability considering threeC++ projects. They found a negative correlation between the use
of inheritance and the quality of source code in terms of maintainability. Other research efforts
targeted the effect of inheritance and delegation on various aspects of source code quality.
Chhikara et al. (2011) conducted a case study on one small-scale software project, reporting
on the correlation between inheritance metrics and other metrics belonging to the Chidamber
and Kemerer suite. Chawla and Nath (2013) took a closer look at how inheritance and
delegation metrics may impact software coupling, concluding that these metrics can be useful
to assess code quality. Similar findings were reported by Abreu and Melo (1996). Additional
experiments were conducted to assess the relation between reusability and design patterns
(Ampatzoglou et al. 2015; Huston 2001) and code complexity (Albalooshi and Mahmood
2014): all these studies converged toward the relevance of inheritance and delegation. More
recently, we carried out a study to investigate the evolution of inheritance and delegation
and their impact on the severity of code smells (Giordano et al. 2022). The results revealed
that inheritance and delegation tend to increase over time, but not in a statistically significant
manner. However, increasing the adoption of these mechanisms tends to decrease code smells’
severity.

The potential benefits of reusability have led researchers to use inheritance and delegation
metrics within prediction models. In this respect, most of the defect prediction models include
reusability as a feature (Hall et al. 2011). Perhaps more importantly, these metrics have been
sometimes shown to significantly contribute to the predictions of those models: for instance,
Jureczko and Madeyski (2010) showed that the Depth of Inheritance Tree metric is among
the best predictors of source code defectiveness. These results were later confirmed by other
software maintenance and evolution researches (Singh and Chug 2017; Jureczko and Spinellis
2010).

Reusability and Maintenance Effort From an empirical side, Prechelt et al. (2003) carried
out two experiments to investigate the relation between inheritance metrics and maintenance
effort estimation. Their results revealed that maintaining a low level of inheritance depth
positively impacts the (decrease of) developer’s effort to maintain source code. Similarly,
Daly et al. (1996) showed that as the inheritance depth level increases, so does the effort of
developers to maintain code.

In terms of maintenance effort estimation, researchers have been mainly looking at
process-level information (e.g., team data and measurements of the development activities),
attempting to provide indications in terms of direct and indirect estimations of entire projects
under maintenance (Wu et al. 2016). Besides that, researchers have been also working on
effort prediction of maintenance activities, which revolves around the prediction of the effort
spent in performing specific activities such as code review (Mishra and Sureka 2014) and
bug fixing time (Anbalagan and Vouk 2009; Bougie et al. 2010). The contribution provided
by reusability metrics to those models are, however, unclear. Recently, Nagappan and Ball
(2005) and Liu et al. (2017) proposed the use of code churn, i.e., the amount of lines of code
modified within commits, as an alternative metric of maintenance effort which better aligns
with the actual effort spent by developers while performing evolutionary tasks.

Our work With respect to the papers discussed above, ours has multiple differences. First,
most of the previous work analyzed reusability by relying on the computation of metrics,
e.g., Depth of Inheritance Tree (DIT); as further elaborated in Section 3, we operationalize
reusability by means of specification inheritance, implementation inheritance, and delegation,
being able to better map the adoption of reuse mechanisms over time. Second, we conduct
a fine-grained analysis where the evolution and impact of reusability are investigated at
commit-level. Furthermore, we address a key limitation of most previous works proposing

123

Page 5 of 42 20Empirical Software Engineering (2024) 29:20

prediction models: the contribution of code reuse to their capabilities indeed assumes that
developers make use of reusability mechanisms. As such, our study provides more detailed
insights into the potential benefits brought by inheritance and delegation to state-of-the-art
prediction models.

3 Research Questions andMethods

The goal of the study was to (1) investigate the adoption of reusability mechanisms over time
and (2) assess their impact on defect-proneness and maintenance effort. The purpose was to
understand whether those mechanisms can provide developers with an indication of source
code quality variation—considering the defect-proneness and effort to fix faults of a project.
The quality focus was on the reusability in terms of implementation inheritance, specification
inheritance, and delegation and their evolution within software projects. The perspective was
that of practitioners and researchers: the former are interested in understanding whether the
reusability mechanisms can be suitable for monitoring the quality of a system, while the latter
are interested in improving their knowledge on how inheritance and delegation mechanisms
can vary over time and impact source code quality. The context of our investigation was
composed of publicly available Java projects, as detailed in Section 3.1.

Based on the goal of our study, we formulated three main research questions. The first
aimed at understanding the use of source code reusability mechanisms by developers during
software evolution. Specifically, we asked:

The goal of RQ1 was that of providing insights on the evolution of reuse mechanisms that
might later be exploited to better interpret the findings of RQ2 and RQ3. In other terms, the
patterns observed in the context of this research question will also be useful to understand the
effects of inheritance and delegation on defect-proneness and maintenance effort, e.g., should
we identify an exponential growth in the adoption of delegation, this would potentially make
this mechanism more relevant for software evolution, hence influencing more the amount of
effort required to apply modifications.

Since we analyze three mechanisms for reusability, i.e., specification inheritance, imple-
mentation inheritance, and delegation (Bruegge and Dutoit 2009), that can impact differently
on software evolution, we considered three sub-research questions:

RQ1.1. How does the use of implementation inheritance vary during software evolution?
RQ1.2. How does the use of the specification inheritance vary during software evolution?
RQ1.3. How does the use of delegation vary during software evolution?
Once the evolution of reusability mechanisms was analyzed, we investigated how the

evolution might affect code quality, initially measuring it in terms of fault-proneness. Hence,
we asked our second research question:

Finally, we assessed the impact of reusability mechanisms on the maintenance effort
required to fix faults. Among the various direct and indirect metrics available in literature

123

20 Page 6 of 42 Empirical Software Engineering (2024) 29:20

PyDriller

Source Code

Module -
CK Metrics

Module -
InhMetrics

Dataset

Dataset

Dataset

Data
Integration

RQ2. How do source code
reusability mechanisms
impact fault-proneness

over time?

RQ3. How do source code
reusability mechanisms

impact code churn?

RQ1. How does the use of
source code reusability

mechanisms vary during
software evolution?

Reusability Metrics
Evolution

Building a Statistical
Model

Building a Statistical
Model

Defects4J

Fig. 1 Overview of the research process applied in the study

(Wu et al. 2016), we operationalize maintenance effort through code churn, that is, the amount
of lines of code modified within a commit. This is an indirect metric that can proxy the actual
effort spent by developers when maintaining source code (McIntosh et al. 2011; Munson and
Elbaum 1998; Wu et al. 2016). In particular, we asked:

Figure 1 overviews the research process applied to address our research questions. After a
first phase of data extraction, where we collected data about inheritance, delegation, and other
code quality indicators, we integrated the various pieces of information for further analysis. In
this way, the research questions were addressed by employing statistical tests and models (see
details in Section 3.3). To design and report the empirical study, we followed the guidelines
proposed by Wohlin et al. (2012) and the ACM/SIGSOFT Empirical Standards.2 We made
all the experimental materials (e.g., datasets, scripts) publicly available in an online appendix
(Giordano et al. 2022).

3.1 Context of the Study

The context of the study was composed of Java projects available within the Defects4J

dataset, which collects information on over 800 real bugs of open-source systems. According
to the official documentation3 each bug collected into the dataset is characterized by the
following properties:

1. It is reported in the issue tracker of the project, has an associated commit message for
resolution, and it is fixed in a single commit, i.e., the defect resolution never refers to
more than one commit;

2. It is associated to a triggering test case that allows its reproduction;
3. It is minimized, meaning that the Defects4J maintainers manually removed commits

that would have induced noise, namely commits that did not actually provide informa-
tion about the introduction of defects or fixing activity (e.g., commits where refactoring
activities were done);

2 Available at: https://github.com/acmsigsoft/EmpiricalStandards
3 https://github.com/rjust/defects4j

123

Page 7 of 42 20Empirical Software Engineering (2024) 29:20

https://github.com/acmsigsoft/EmpiricalStandards
https://github.com/rjust/defects4j

4. The fixing activities modified the source code. This means that the defect introduction can
be caused by several factors, e.g., wrong parameters in configuration files and problems
in the production class. However, the corresponding fixing only concerns changes within
the source code.

By design, the dataset does not include all the defects reported in the issue trackers of
the considered projects, but only those matching the inclusion criteria reported above. In this
respect, there are some considerations to make. First, these criteria led to the definition of a
set of defects having two key properties: (1) All the defects were true positives, verifiable, and
traceable, meaning that there exists at least one test case letting the defective behavior of the
code emerge, other than precise indications on the inducing-fix commit pairs reported by the
developers, which were instrumental for our analysis, as further discussed in the following
sections; (2) The dataset avoided, by design, possible bias due to the presence of uncontrolled
conditions, e.g., tangled changes (Herzig et al. 2016), that might have notably affected the
validity of the conclusions reported by our study, e.g., refactoring actions targeting inheritance
and delegation which were not related to defect fixing operations.

As a consequence of these two properties, the choice of Defects4J enabled the inves-
tigation of the impact of reuse mechanisms in a noise-free environment in which we could
have provided more precise insights into the actual role played by inheritance and delegation.
In any case, we are aware that the dataset contains a subset of the defects included in the
issue trackers of the considered projects and that the missing analysis of some defects might
potentially bias our conclusions. In response to this potential threat to validity, we (i) ana-
lyzed further the anatomy of the dataset to better characterize our sample - this is discussed
in the remainder of this section; and (ii) conducted additional analyses aiming at assessing
the types of defects that were not included in our analysis - these are part of Section 6.

In addition to the discussion on the use of Defects4J, it is worth remarking that, despite
the defects being carefully selected, those defects are of different types and natures, hence
representing various defects affecting real-world software systems (Sobreira et al. 2018).
Last but not least, Defects4J has been widely used in literature (e.g., Martinez et al. 2017;
Durieux et al. 2015), hence representing a valuable asset that enables us to build additional
knowledge on a state-of-the-art dataset - this would also be useful for other researchers
interested in building on top of our work.

As mentioned in Section 2, little has been done to analyze code reuse mechanisms over
time and how those may contribute to explaining fault-proneness and maintenance efforts
during software evolution. For this reason, our analysis focused on the analysis of code reuse
mechanisms from a low granularity perspective, i.e., commits. We analyzed over 44,900 com-
mits. With respect to our initial plan (Giordano et al. 2022), we had to discard five projects
from the total amount of systems available in the dataset. This was mainly due to repository
inconsistencies caused by developers’ removal of defective commits. Table 1 reports statistics
of the projects included in the Defects4J dataset. For each project, the table provides (i) the
number of defects, (ii) process metrics such as number of commits, number of pull requests,
and number of contributors; (iii) its minimum and maximum LOC; and (iv) if the project
could have been analyzed. More particularly, we exploited the latest version of Defects4J
(v2.0.0). The defects contained in this version were identified by the original authors using
Java 1.8, which is the Java version used by all the projects considered in the study. The
reliance on Java 1.8 had some implications on the number of defects reported in the dataset.
More particularly, some behavioral changes introduced under Java 8 did not allow to verify
anymore 29 of the defects reported in previous versions of Defects4J. As such, these 29
defects were considered deprecated and no longer relevant in Defects4J 2.0.0. In the light

123

20 Page 8 of 42 Empirical Software Engineering (2024) 29:20

Ta
bl
e
1

C
ha

ra
ct

er
is

tic
s

of
th

e
pr

oj
ec

ts
co

ns
id

er
ed

in
th

e
st

ud
y

Pr
oj

ec
tN

am
e

#
B

ug
s

Pu
ll

R
eq

ue
st

C
on

tr
ib

ut
or

s
St

ar
s

Fo
rk

s
C

om
m

its
B

ra
nc

he
s

L
O

C
A

na
ly

ze
d

C
om

m
on

s-
C

od
ec

18
9

40
36

4
20

7
2,

24
4

7
48

k-
34

k

C
om

m
on

s-
C

li
39

8
42

25
5

15
4

1,
16

9
4

5k
-1

6k

C
om

m
on

s-
C

ol
le

ct
io

ns
4

37
62

55
1

38
9

3,
72

9
8

49
k-

60
k

C
om

m
on

s-
C

SV
16

8
37

28
1

22
0

1,
79

6
4

16
6k

-1
66

k

C
om

m
on

s-
C

om
pr

es
s

47
9

67
23

1
21

0
3,

60
2

9
12

9k
-9

1k

G
so

n
18

15
1

12
5

21
,2

k
4,

1k
1,

66
8

14
68

k-
70

k

Ja
ck

so
n-

C
or

e
26

2
63

2.
1k

69
0

2,
12

4
21

33
k-

66
k

Ja
ck

so
n-

D
at

ab
in

d
11

2
19

19
8

3,
1k

1,
2k

6,
57

8
22

98
k-

23
5k

Ja
ck

so
n-

D
at

af
or

m
at

-X
M

L
6

3
26

49
7

18
9

1,
31

8
19

59
k-

11
7k

C
om

m
on

s-
JX

Pa
th

22
8

17
18

40
60

1
4

46
k-

26
k

Jo
da

-T
im

e
26

2
77

4,
8k

92
2

2,
19

6
6

10
3k

-1
64

k

C
lo

su
re

-C
om

pi
le

r
17

4
6

47
2

6,
5k

1,
1k

17
,9

62
76

60
k-

60
k

JS
ou

p
93

43
99

9,
6k

2k
1,

69
3

3
39

k-
34

k

C
om

m
on

s-
L

an
g

64
92

17
4

2,
3k

17
6

6,
85

9
8

16
0k

-1
90

C
om

m
on

s-
M

at
h

10
6

68
48

45
1

71
7,

00
4

17
58

k-
63

k

M
oc

ki
to

38
7

24
6

13
,1

k
2,

3k
5,

78
7

16
73

k-
94

k

JF
re

eC
ha

rt
26

22
24

86
6

35
5

42
18

3
25

0k
-2

90
k

T
he

co
lu

m
n

‘L
O

C
’

pr
ov

id
es

a
ra

ng
e

re
po

rt
in

g
th

e
m

in
im

um
an

d
m

ax
im

um
va

lu
es

ob
se

rv
ed

ov
er

th
e

hi
st

or
y

of
th

e
pr

oj
ec

ts

123

Page 9 of 42 20Empirical Software Engineering (2024) 29:20

of this consideration, we excluded them from our study. These defects indeed violated the
first property mentioned above: on the one hand, they were not verifiable; on the other hand,
they were not necessarily true positives, as they were re-labeled by the original authors as
non-defective when verifying them through the most appropriate Java version, namely the
one employed within the corresponding systems.

3.2 Data Extraction Procedure

To answer our research questions, we quantified the reusability mechanisms employed within
the considered software projects. To this aim, we operationalized three metrics capturing
reusability mechanisms such as implementation inheritance, specification inheritance, and
delegation. We did not rely on existing metrics, like the Depth of Inheritance Tree (DIT) or
the Number of Children (NoC) (Chidamber and Kemerer 1994), since we aimed at computing
metrics that could have directly expressed the adoption of reusability mechanisms. Indeed,
our metrics have a finer granularity and can indicate the exact constructs added by developers
during a change/commit, e.g., the inclusion of a new method that delegates its operations
or a change in the inheritance structure—this would not be possible using existing metrics,
as they just provide the result of the actions done by developers, e.g., the increase of the
depth of inheritance tree, without indications of how that was obtained. To compute the
implementation inheritance, specification inheritance, and delegation metrics, we used a tool
already validated in our previous work (Giordano et al. 2022). It was originally developed
by the first author of this paper and compute the metrics following these patterns:

Specification Inheritance.Given a classB, the tool considers the specification inheritance
as the arithmetical sum of each interface used by B. For instance, suppose that B inherits
methods from two interfaces A and C, and C in turn inherits methods from another interface
D. In this case, the specification inheritance for B is 3.

Implementation Inheritance. Suppose that B is a sub-class of A, the tool considers the
implementation inheritance as the arithmetical sum of each method in A called by some
method in B. For example, suppose that B is a class with N methods, and A a class with just
one method call bar(). To increase the number of implementation inheritance by one, one
of the methods in B must invoke bar().

Delegation. Given a class A, the tool considers the delegation metric as the arithmetical
sum of each non-primitive variable (i.e., variables different from int, double, String,
and so on) or variables that do not have a binding type provided by external libraries (e.g.,
Checkbox offered by javax.swing framework). For each variable, the tool verifies if it
is only used to invoke external objects.

The metrics were computed over all the commits of the considered systems and were
used to address RQ1. Specifically, for each commit we computed the sum of (i) specification
and implementation inheritance uses and (ii) delegation uses by statically analyzing the files
involved in the commit. As for RQ2 and RQ3, we collected information on defects and code
churn. To this aim, we mainly relied on the information made available by the Defects4J

dataset. In particular, for each project of the dataset, Defects4J assigns to each defect a
unique ID and stores an inducing-fixing commit pair, i.e., a pair of commits reporting when
the defect was introduced and fixed, respectively, over the history of the project. Starting from
these inducing-fixing commit pairs, we could reconstruct the defect history of each project
by overlaying them on the full set of commits of the project and considering as defective
all the commits between the inducing-fixing commit pairs. As for the code churn, these
were collected by exploiting PyDriller, an automatic static analysis tool that can analyze

123

20 Page 10 of 42 Empirical Software Engineering (2024) 29:20

Git repositories to extract information about commits, developers, modifications, diffs, and
source code.4 In our case, we run PyDriller over the commits of the considered systems
and extracted the number of modifications performed by developers, i.e., the code churn.

The data extraction process described above was curated by the first two authors of the
paper. More specifically, the first author was involved in the mining of the change history of
the projects, while the second author had the responsibility to write the scripts for mining
Defects4J.

3.3 Data Analysis Procedure

The collected data were further analyzed as follows:

1. RQ1 - Analysis of the evolution of reusability mechanisms over time. To address this
research question we analyzed how reusability metrics (implementation inheritance,
specification inheritance, and delegation) vary over the evolution of the software sys-
tems considered. In particular, we employed basic statistical analysis and visualized
results using plots.

2. RQ2 - Analysis of the impact on defect-proneness of reusability mechanisms over time.
In this respect, we built a statistical model to verify how reusability metrics impact the
variability of defects in the source code.

3. RQ3 - Analysis of the impact on maintenance effort of reusability mechanisms over time.
Similarly to RQ2, we built a statistical model to verify how reusability metrics impact
the maintenance effort to fix a bug.

Specifically, the statistical models were devised as reported in the following.
Independent Variables. According to our previous considerations, we used the reusabil-

ity metrics, i.e., implementation inheritance, specification inheritance, and delegation, as
independent variables.

Response Variable. In the context of RQ2 we were interested in understanding how the
reusability metrics impact the defect-proneness of software systems over time. Starting from
the defect history built by exploitingDefect4J, we modeled our response variable as follows.
Let Ci be a generic commit of the change history of the project P . The number of defects
affecting P at the time of Ci was computed through the #de f ects(Ci) function, which relies
on the following system of equations:

{
#de f ects(Ci) = #de f ects(D4JCi) − # f i xedDef ects(D4JCi), if i = 1;
#de f ects(Ci)=#de f ects(Ci−1)+(#de f ects(D4JCi)−# f i xedDef ects(D4JCi)), if i>1; (1)

where #de f ects(D4JCi) indicates the number of defects in Defects4J having as inducing
commitCi , # f i xedDef ects(D4JCi) indicates the number of defects fixed in the commitCi ,
computed as the amount of defects fixed according to Defects4J in Ci , and #de f ects(Ci−1)

indicates the number of defects affecting P at commit Ci−1. As shown, we had to distinguish
the case of the first commit (i=1) from the rest (i>1). When considering the first commit,
there cannot indeed be previous fixing operations that influenced the number of defects and,
as such, the number of defects at the first commit is only due to the difference between the
number of defects pointed out by Defects4J and the number of defects fixed in the same
commit. When considering the other commits, instead, the number of defects at the time of the
generic commit Ci is given by the total number of defects at time Ci−1 plus the operations

4 https://pydriller.readthedocs.io/en/latest/intro.html

123

Page 11 of 42 20Empirical Software Engineering (2024) 29:20

https://pydriller.readthedocs.io/en/latest/intro.html

performed within Ci , both in terms of defects introduced and fixed. After computing the
number of defects affecting the considered systems at each commit, we analyzed how this
number varied over time.

Let Ci and Ci+1 be two subsequent commits of the change history of the project
P; we labeled the commit pair (Ci ,Ci+1) as stable, increased, or decreased using the
label(Ci ,Ci+1) function described in the following:

label(Ci ,Ci+1) =
⎧⎨
⎩

‘Stable′ if #de f ects(Ci) = #de f ects(Ci+1);
‘I ncreased ′ if #de f ects(Ci) < #de f ects(Ci+1);
‘Decreased ′ if #de f ects(Ci) > #de f ects(Ci+1).

(2)

In other terms, we exploited the information previously collected on the number of defects
at each commit of the change history of the project P to describe how the amount of defects
varied over time.

In RQ3, instead, we were interested in assessing the effect of reusability metrics on the
effort required to fix defects, as measured by code churn. Starting from the defect history
of each project, we considered, as relevant for the research question, the commits marked
as fixing commits. Afterwards, we computed our response variable as the sum of the code
churn of the files involved in those commits.

Control Variables. We computed a number of control variables. This step was required
because the impact on the response variables of the statistical models might be due to vari-
ous additional factors other than the independent variables. As such, we first computed the
Chidamber and Kemerer (CK) metrics (Chidamber and Kemerer 1994), namely DIT (Depth
of Inheritance Tree), NOC (Number Of Children), LOC (Lines of Code), LCOM (Lack of
Cohesion of Methods), WMC (Weighted Methods per Class), RFC (Response for a Class),
and CBO (Coupling Between Objects).

In RQ2, we also considered the code churn as control variable as suggested by previous
findings in the literature (Nagappan and Ball 2005), i.e., we verified whether the variation
of the number of defects was due to the amount of changes performed by developers within
commits. This metric was not considered in RQ3, as it was directly connected to the response
variable and could, therefore, bias the conclusions.

With respect to the control variables considered in the study, it is important to discuss
the role of NOC and DIT. These two metrics are by definition connected to code reusabil-
ity and measure indeed two aspects related to how developers reuse existing source code
through inheritance. We included them with the intent of comparing their statistical power
to the reusability metrics considered as independent variables. In other terms, the inclusion
of NOC and DIT allowed us to assess the extent to which the reusability metrics we com-
puted represent relevant factors for the response variables when compared to state-of-the-art
metrics.

Before building the statistical models, we assessed the presence of possible multi-
collinearity concerns. These arise when two or more variables are excessively correlated,
possibly biasing the statistical model and the subsequent interpretation of the results (O’brien
2007). In this respect, we followed well-established guidelines (Allison 2012; Lieberman and
Morris 2014). For each pair of variables, we computed the Spearman’s correlation coefficient
(Taylor 1990). If this scored higher than 0.7, then we removed the variable having the most
complex definition to favor explainability-for instance, we preferred keeping the LOC metric
rather than WMC to make the interpretation of the results easier. The scripts used to compute
the dependent and control variables were developed by the second author of the paper, while
the independent variables were computed through the tool originally developed by the first
author.

123

20 Page 12 of 42 Empirical Software Engineering (2024) 29:20

Choosing the Statistical Model. To address RQ2 we built a Multinomial Log-Linear
Model (Theil 1969). This model generalizes logistic regression to multi-class problems,
matching our need to have a model able to handle our response variable composed of three
values (“stable”, “increased”, “decreased”). As done in our previous work (Giordano et al.
2022), we used R for running the analysis using the function multinom available in the
package nnet. 5

In RQ3 we had to build a different model because of the nature of the response variable,
i.e., code churn. In particular, we built a Generalized Linear Model (Faraway 2016) using
the glm function available in R.

The first two authors of the paper were involved in the development of the statistical
models. In addition, the interpretation of the results involved all the authors of the paper:
these were involved through open discussions and regular meetings with the first two authors.

3.4 Public Availability of Data

To guarantee the replicability of our work and enable other researchers to build on top of our
analyses, we made all data and scripts publicly available in our online appendix (Giordano
et al. 2022).

4 Analysis of the Results

In the following sections, we report and discuss the results addressing the research questions
of the empirical study. For the sake of comprehensibility, we split the discussion by RQ.

4.1 RQ1 - On theVariation of Reusability Mechanisms in Source Code

Figure 2 shows how the three reusability mechanisms considered in our study, i.e., imple-
mentation inheritance, specification inheritance, and delegation, evolve over time in the
considered software projects. Each row of the figure reports the evolution of the metrics for
two projects separately. To facilitate the interpretation of the results and enable a more seam-
less comparison of evolutionary trends across diverse projects, we normalized the reusability
metrics by lines of code—in other terms, the figure shows the amount of implementation
inheritance, specification inheritance, and delegation mechanisms applied per line of code
over the evolution history of the considered projects. These trends were used to interpret the
results and address the specific sub-research questions defined in the context of RQ1.

4.1.1 RQ1.1 - variation of Implementation Inheritance Over Time

As for the implementation inheritance, the trends in Fig. 2 do not always follow a common
tendency among the projects.

Increasing - Decreasing Pattern As shown in Fig. 3, we discovered an initial increasing
trend in adopting implementation inheritance in seven projects, i.e., Closure- Compiler,
Commons- Cli,Commons- CSV,GSON, Jackson- Databind, Jackson- Dataformat-
XML, and Joda- Time, followed by a decreasing usage.

5 https://cran.r-project.org/web/packages/nnet/nnet.pdf

123

Page 13 of 42 20Empirical Software Engineering (2024) 29:20

https://cran.r-project.org/web/packages/nnet/nnet.pdf

DelegationImplnh SpecInh

0 200 400 600 800 10000
.0
0
0
6

0
.0
0
0
8

0
.0
0
1
0

0
.0
0
1
2

0
.0
0
1
4

0 200 400 600 800 1000

0
.0
0
2
6

0
.0
0
2
8

0
.0
0
3
0

0
.0
0
3
2

0
.0
0
3
4

0
.0
0
3
6

0 200 400 600 800 1000

0
.1
1
5

0
.1
2
0

0
.1
2
5

0
.1
3
0

Jackson-Dataformat-XML

0 500 1000 1500

0
.0
8
5

0
.0
9
0

0
.0
9
5

0
.1
0
0

0 500 1000 1500

0
.0
0
1
1
0

0
.0
0
1
2
0

0
.0
0
1
3
0

0
.0
0
1
4
0

0 500 1000 1500

0
.0
0
0
6
5

0
.0
0
0
7
0

0
.0
0
0
7
5

0
.0
0
0
8
0

0
.0
0
0
8
5

0
.0
0
0
9
0

Jackson-Core

0 500 1000 1500

0
.0
8

0
.0
9

0
.1
0

0
.1
1

0
.1
2

0 500 1000 1500

0
.0
0
2
0

0
.0
0
2
5

0
.0
0
3
0

0 500 1000 1500

0
.0
0
2
5

0
.0
0
3
0

0
.0
0
3
5

GSON

0 200 400 600 800 1000

0
.0
0
0

0
.0
0
1

0
.0
0
2

0
.0
0
3

0
.0
0
4

0 200 400 600 800 1000

0
.0
0
0

0
.0
0
1

0
.0
0
2

0
.0
0
3

0
.0
0
4

0 200 400 600 800 1000

0
.0
0

0
.0
5

0
.1
0

0
.1
5

Commons-Codec

Commons-Compress

0 500 1000 1500 2000 2500 3000

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0 500 1000 1500 2000 2500 3000

0
.0
0
0
8

0
.0
0
1
0

0
.0
0
1
2

0
.0
0
1
4

0
.0
0
1
6

0 500 1000 1500 2000 2500 3000

0
.0
0
1
0

0
.0
0
1
5

0
.0
0
2
0

0
.0
0
2
5

Joda-Time

0 500 1000 1500 2000

0
.0
0
1
7

0
.0
0
1
8

0
.0
0
1
9

0
.0
0
2
0

0
.0
0
2
1

0 500 1000 1500 2000

0
.0
8
0

0
.0
8
5

0
.0
9
0

0
.0
9
5

0 500 1000 1500 2000

0
.0
0
0
7

0
.0
0
0
8

0
.0
0
0
9

0
.0
0
1
0

0
.0
0
1
1

0
.0
0
1
2

Jackson-Databind

0 1000 2000 3000 4000 5000

0
.0
0
2
6

0
.0
0
2
8

0
.0
0
3
0

0
.0
0
3
2

0
.0
0
3
4

0 1000 2000 3000 4000 5000

0
.1
0
0

0
.1
0
5

0
.1
1
0

0
.1
1
5

0 1000 2000 3000 4000 5000

0
.0
0
1
2

0
.0
0
1
4

0
.0
0
1
6

0
.0
0
1
8

Commons-Collections

0 500 1000 1500 2000 2500 3000 35000
.0
0
0
5

0
.0
0
1
0

0
.0
0
1
5

0
.0
0
2
0

0
.0
0
2
5

0
.0
0
3
0

0
.0
0
3
5

0 500 1000 1500 2000 2500 3000 3500

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1
0

0 500 1000 1500 2000 2500 3000 3500

0
.0
0
0
5

0
.0
0
1
5

0
.0
0
2
5

0
.0
0
3
5

Commons-Cli

0 500 1000 1500 2000

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0 500 1000 1500 2000

0
.0
0
1
4

0
.0
0
1
6

0
.0
0
1
8

0
.0
0
2
0

0
.0
0
2
2

0
.0
0
2
4

0 500 1000 1500 20000
.0
0
1
0

0
.0
0
1
2

0
.0
0
1
4

0
.0
0
1
6

0
.0
0
1
8

0
.0
0
2
0

0
.0
0
2
2

Commons-CSV

0 500 1000 1500

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0 500 1000 1500

0
.0
0
0
0

0
.0
0
0
5

0
.0
0
1
0

0
.0
0
1
5

0
.0
0
2
0

0 500 1000 1500

0
.0
0
0
5

0
.0
0
1
0

0
.0
0
1
5

0
.0
0
2
0

Commons-JxPath

0 100 200 300 400 500 600

0
.0
8
5

0
.0
9
0

0
.0
9
5

0
.1
0
0

0
.1
0
5

0
.1
1
0

0 100 200 300 400 500 600

0
.0
0
1
1

0
.0
0
1
2

0
.0
0
1
3

0
.0
0
1
4

0
.0
0
1
5

0
.0
0
1
6

0 100 200 300 400 500 600

0
.0
0
2
0

0
.0
0
2
5

0
.0
0
3
0

Closure-Compiler

0 5000 10000 15000

0
.0
0
1
4

0
.0
0
1
5

0
.0
0
1
6

0
.0
0
1
7

0
.0
0
1
8

0
.0
0
1
9

0 5000 10000 15000

0
.0
0
1
1

0
.0
0
1
2

0
.0
0
1
3

0
.0
0
1
4

0
.0
0
1
5

0
.0
0
1
6

0 5000 10000 15000

0
.1
1

0
.1
2

0
.1
3

0
.1
4

0
.1
5

DelegationImplnh SpecInh

Fig. 2 RQ1. Adoption of reusability mechanisms over time

While the shape of the curves varies from case to case, we can still see a common pattern.
When we look more closely at these cases, we can identify a similar behavior among the
developers of those systems. In all the cases, the adoption of implementation inheritance
quickly increased during the first commits, suggesting that developers approached the design
of the systems to take reusability into account. Nonetheless, the trend quickly decreased after
a while, leading implementation inheritance to be used less and less over time.

This trend leads us to formulate two observations. Firstly, the decline in adoption follow-
ing a peak could be indicative of a phenomenon known as “design erosion” in the literature
(Van Gurp and Bosch 2002). Regardless of the intentions of developers and designers,
software design tends to degrade over time due to ongoing changes and increasing com-
plexity, as highlighted by Lehman’s laws (Lehman 1996). This erosion can also be attributed
to inadequate utilization of software quality measures, as emphasized in previous research
(Do LNQ et al. 2020; Vassallo et al. 2018, 2020). Our findings seem to suggest implemen-

123

20 Page 14 of 42 Empirical Software Engineering (2024) 29:20

Commons-Cli

0 500 1000 1500 20000.0
01

0
0.0

01
2

0.0
01

4
0.0

01
6

0.0
01

8
0.0

02
0

0.0
02

2

Commons-CSV

0 500 1000 1500

0.0
00

5
0.0

01
0

0.0
01

5
0.0

02
0

0 500 1000 1500

0.0
02

5
0.0

03
0

0.0
03

5

GSON

Closure-Compiler

0 5000 10000 15000

0.
00

14
0.
00

15
0.
00

16
0.
00

17
0.
00

18
0.
00

19

0 200 400 600 800 1000

0.0
02

6
0.0

02
8

0.0
03

0
0.0

03
2

0.0
03

4
0.0

03
6

Jackson-Dataformat-XML

Joda-Time

0 500 1000 1500 2000

0.0
01

7
0.0

01
8

0.0
01

9
0.0

02
0

0.0
02

1

Jackson-Databind

0 1000 2000 3000 4000 5000

0.0
02

6
0.0

02
8

0.0
03

0
0.0

03
2

0.0
03

4

Fig. 3 Increasing - Decreasing Pattern

tation inheritance is not exempt from this trend, and its adoption is likely to decrease over
time.

In the second place, the “increasing-decreasing” trend might have clear implications
on how reuse mechanisms should be considered within prediction approaches, e.g., defect
prediction. Indeed, the employment of implementation inheritance should be carefully con-
sidered, and perhaps the usage trend might even lead to the definition of novel feature selection
procedures that monitor the way developers are using certain programming constructs to
inform the model of the most promising features to consider in that evolution moment.

Steady-Increasing Pattern Looking at Fig. 2, we can identify three less common usage
patterns. In particular, two projects, namely Commons- Collections (3rd row) and
Commons- JxPath (4th row), appear to exhibit a “steady-increasing” trend. The nature of
these projects seems to offer a natural explanation for this trend. The former project provides
a framework to use efficient data structures in Java, while the latter implements an interpreter
of theXPath expression language. Both projects are structured so that most of the source code
relies on a core set of classes. For instance, in the Commons- Collections project, classes

123

Page 15 of 42 20Empirical Software Engineering (2024) 29:20

within the list package establish the foundation for creating various advanced element
lists. This seems encouraging developers to employ reuse mechanisms like implementation
inheritance.

Stable Pattern Two other projects, namely Commons- Codec (1st row) and Jackson-

Core (1st row) of Fig. 2, follow mostly a “stable” trend. In both cases, the amount of
implementation inheritance uses remains constant throughout the evolution. We analyzed
the repositories of those projects deeper to better understand this trend. While we could not
identify any specific tool or verification procedure conducted by developers to keep reusability
under control, we could observe that most of the commits performed over the last years were
peripheral (Amrit and Van Hillegersberg 2010), namely, they pertained to packages of the
systems other than core. This may explain the observed trend: developers did not modify any
central part of those systems, leaving the original design stable and avoiding an excessive
effect of design erosion.

Decreasing - Increasing Pattern Finally, the Commons- Compress project (5th row in
Fig. 2) exhibited an anomalous trend which we coined “decreasing-increasing”. After a
greater adoption of implementation inheritance, the trend steadily decreased before increas-
ing again, but at a lower rate. Also, in this case, we manually dived into the repository in
search of possible explanations. We discovered that after the release of the second version of
the project in 2010 (release commons-compress-1.1), the release engineering process
of the system changed, passing from annual to monthly releases. This switch caused a sub-
stantial rework of the original architecture, replacing existing code with third-party libraries.
Consequently, the overall amount of implementation inheritance uses suddenly decreased
in favor of other code reuse mechanisms. Afterward, the developers of the system kept the
implementation inheritance under control, leading to an increasing usage trend.

4.1.2 RQ1.2 - Variation of Specification Inheritance Over Time

When considering the specification inheritance, the usage patterns identified in RQ1.1 still
hold. In particular, we observed the same “increasing-decreasing” trend in Commons- Cli,
while inCommons- Codec a “stable” trend. These findings seem to suggest the existence of a
possible strict (cor)relation between implementation and specification inheritance throughout
the evolution of software systems, which might depend on the willingness of developers to
take (or not) code reusability into account when evolving source code. Part of our future
research agenda will consider the effects of this co-evolution of metrics on software quality.

4.1.3 RQ1.3 - Variation of Delegation Over Time

Regarding the delegation, we could observe similar usage patterns discussed above. Nonethe-
less, we could also discover situations where the evolution of delegation followed an opposite
trend with respect to implementation and specification inheritance ones. This is, for instance,
the case of Commons- Collections. Indeed, starting from a high adoption during the first
development phases, the amount of delegation used kept decreasing till reaching a stable
level. This result was, however, somehow expected as inheritance and delegation are alterna-
tives to each other (Bruegge and Dutoit 2009) and, therefore, an increasing use of one may
lead to a decreasing use of the other. Similar results were observed when analyzing other
projects, e.g., Closure- Compiler Jackson- Core and Compress.

The apparent synergy between inheritance and delegation could offer an opportunity for
source code quality predictive models. These models could decide which metrics to focus on

123

20 Page 16 of 42 Empirical Software Engineering (2024) 29:20

at different stages of development. In this way, the models could rely on metrics that can best
represent the current state of the system under analysis, potentially improving their predictive
capabilities.

4.2 RQ2 - The Impact of Reusability Metrics on Defect-Proneness

In this sub-section, we report the results when studying the impact of reusability metrics on
the defect-proneness of sourace code.

Multi-Collinearity Analysis Before discussing the results of the statistical model, it is worth
reporting the outcome of the multi-collinearity analysis—which was performed to make
sure that no correlated variables were employed within the statistical model and could bias
the interpretation of the results (see Section 3). Table 2 lists the variables removed after
the application of the correlation analysis. In the first place, we found that RFC was the
metric most often removed: in all the cases, it was correlated with LOC and, therefore, we
preferred keeping LOC because of its highest degree of interpretability. Secondly, in three
projects, i.e.,Commons- Collections, Jackson- Core, and Joda- Time, the WMC metric
was removed, again for its correlation with LOC. We also discovered correlations between

Table 2 RQ2. Variables removed
because of multi-collinearity

Project Discarded Variables

Commons-Codec RFC, NOC

Commons Cli DIT, NOC, InhImp

Commons-Collections WMC

Commons-CSV RFC

Commons-Compress RFC

Gson RFC

Jackson-Core WMC, RFC, DIT, InhImp

Jackson-Databind RFC

Jackson-Dataformat-XML WMC, RFC, DIT

Commons-JxPath DIT

Joda-Time WMC, RFC, DIT

Closure-Compiler RFC

123

Page 17 of 42 20Empirical Software Engineering (2024) 29:20

DIT and NOC in two projects such as Commons- Codec and Commons- Cli: we kept
NOC, namely the metric reporting the number of immediate subclasses of a class. In the
cases of Jackson- Dataformat- XML and Joda- Time, we found a correlation between
DIT and specification inheritance: as the latter was one of the independent variables, we
preferred keeping it. Finally, we identified correlations between specification and implemen-
tation inheritance in the projects Commons- Cli and Jackson- Core—these correlations
could be already hypothesized looking at the trends observed in the context of RQ1 : in these
two cases, we were obliged to remove one of the independent variables and decided to opt
for implementation inheritance.

Statistical Model Explanation Table 3 shows the results of the statistical models built in
RQ2. The independent variables and control variables are reported on the rows, while the
various considered systems are reported on the columns—empty cells indicate that a certain
variable was removed from the analysis of a specific system as a consequence of the multi-
collinearity analysis, while the number of observations (the commits analyzed) for each
project is reported in the header of each column. The statistical codes report the p-value for
each variable and each project and were used to interpret the results obtained. According to
the description reported in the last row of Table 3, a higher amount of ‘*’ implies a higher
statistical relevance of a variable with respect to decrease (↓) or increase (↑) of the likelihood
to affect the defect-proneness of source code.

Statistical Model Analysis Looking at the table, various considerations can be drawn. First
and foremost, in 10 out of the total 12 projects we found at least one of the inheritance metrics
to be a statistically significant factor to explain the defect-proneness of the considered systems.
The NOC metric, in particular, is the one being relevant in more systems. On 8 projects the
metric was observed to explain both the increase and decrease of defect-proneness.

To understand how the metric affects the phenomenon of interest, we analyzed the sign
of the coefficients. Specifically, the coefficients of a Multinomial Log-Linear model relate
to a reference category and indicate how the variables change the chances of the dependent
variable being affected with respect to the reference category—which was set to “stable”
in our case. As for the columns “↓” of Table 3, this means that a negative coefficient for a
variable X suggests that for one unit increase of X , the chances that the defect-proneness of
source code varies toward a decrease are estimated in the amount indicated by the coefficient,
i.e., the higher the coefficient the higher the chance that the variable contributes to decrease
the defect-proneness of source code. On the contrary, a positive coefficient implies that for
one unit increase of X , the chances that the defect-proneness of source code varies toward
the stability are estimated in the amount indicated by the coefficient, i.e., the higher the
coefficient the higher the chance of defect-proneness being stable over time. Similarly, in the
case of the columns “↑”, a negative coefficient for X implies that the chances that the defect-
proneness of source code varies toward the stability are estimated in the amount indicated by
the coefficient, i.e., the higher the coefficient the higher the chance of defect-proneness being
stable over time. A positive coefficient would instead indicate that the chances of defect-
proneness increasing are estimated in the amount indicated by the coefficient, i.e., the higher
the coefficient the higher the defect-proneness of source code.

According to this interpretation, the signs of the coefficients for NOC over the various
projects did not report a common pattern. For example, inCommons- compresswe observed
a positive coefficient of the variable for “↓” and a negative coefficient for “↑”, meaning
that the variable statistically influences the stability of defect-proneness over time. On the
contrary, on the Closure- compiler project the coefficients are positive for both “↓” and
“↑”, meaning that the variable tends to influence the increase of defect-proneness, overall.

123

20 Page 18 of 42 Empirical Software Engineering (2024) 29:20

Ta
bl
e
3

R
Q

2
.R

es
ul

ts
of

th
e

st
at

is
tic

al
m

od
el

C
om

.-
C

od
ec

N
=

2,
13

4
C

om
.-

C
li

N
=

1,
09

9
C

om
.-

C
ol

.N
=

3,
56

0
C

om
.-

C
SV

N
=

1,
63

4
C

om
p.

N
=

3,
30

5
G

so
n

N
=

1,
47

8

↓
↑

↓
↑

↓
↑

↓
↑

↓
↑

↓
↑

D
if

fW
M

C
−1

0.
09

8
2.

28
0

−0
.6

91
2.

41
6

−3
.5

39
0.

62
7

−5
.2

48
∗∗

∗
−1

.9
03

3.
26

1
−1

.3
05

(7
.4

95
)

(1
0.

98
1)

(3
.4

34
)

(3
.6

02
)

(2
.5

59
)

(5
.1

36
)

(0
.0

33
)

(4
.3

87
)

(3
0.

89
9)

(2
5.

90
7)

D
if

fN
O

C
-0

.0
38

0.
00

4
-4

.4
13

**
*

1.
05

2*
**

10
.1

88
**

*
-5

.6
53

**
*

-0
.1

59
1.

53
6*

**

(0
.0

50
)

(0
.0

13
)

(0
.1

56
)

(0
.1

76
)

(0
.0

02
)

(0
.0

51
)

(0
.2

75
)

(0
.4

15
)

D
if

fL
C

O
M

0.
09

2
0.

05
4

0.
16

6
-0

.7
44

**
*

0.
42

2
0.

47
6

-0
.0

56
-0

.0
40

-0
.0

66
0.

04
6

0.
01

3
-0

.1
59

(0
.1

40
)

(0
.2

61
)

(0
.2

56
)

(0
.2

44
)

(0
.8

08
)

(2
2.

61
5)

(0
.0

66
)

(0
.1

30
)

(0
.3

35
)

(0
.1

25
)

(1
.2

42
)

(1
.1

57
)

D
if

fD
IT

11
.9

27
−0

.1
83

**
*

0.
01

2
-0

.0
00

3
0.

01
2

-0
.0

00
3

-4
.5

26
**

*
0.

66
1*

**
12

.5
11

**
*

-5
.1

51
**

*
0.

69
6

1.
89

6*
**

(0
.2

69
)

(0
.0

33
)

(5
.8

30
)

(0
.0

23
)

(5
.8

30
)

(0
.0

23
)

(0
.2

38
)

(0
.1

69
)

(0
.0

02
)

(0
.1

25
)

(0
.4

66
)

(0
.7

98
)

D
if

fC
B

O
-5

.4
34

-9
.7

29
**

*
-0

.6
45

-5
.9

47
-0

.8
78

-0
.4

95
**

*
-0

.9
94

-3
.4

84
-4

.1
63

**
*

1.
46

7
-1

7.
97

7
-3

.4
72

(5
.8

98
)

(0
.2

43
(3

.6
17

)
(3

.8
21

)
(5

8.
06

9)
(0

.1
03

)
(4

.4
85

)
(8

.7
28

)
(0

.0
21

)
(2

.7
17

)
(1

2.
46

2)
(1

2.
55

3)

D
if

fR
FC

4.
12

3
-0

.0
30

-0
.0

14
4.

12
3

1.
01

3
1.

92
4

(5
.7

84
)

(1
.1

06
)

(1
.0

27
)

(5
.7

84
)

(6
.0

87
)

(1
4.

54
8)

D
if

fL
O

C
0.

00
5

0.
07

5
0.

00
2

0.
05

6
-0

.6
11

-0
.0

99
0.

17
5

0.
04

5
0.

02
4

0.
14

9*
0.

11
5

0.
68

9

(0
.3

02
)

(0
.3

46
)

(0
.1

39
)

(0
.2

00
)

(1
.0

53
)

(1
1.

15
3)

0.
12

1)
(0

.2
36

)
(0

.0
90

)
(0

.1
04

)
(1

.2
73

)
(1

.3
73

)

D
if

fD
el

eg
at

io
ns

0.
05

8
-0

.0
60

0.
01

7
0.

00
1

-0
.0

69
0.

00
4

0.
03

1
-0

.0
58

0.
01

3
-0

.0
03

0.
06

8
-0

.0
18

(0
.0

49
)

(0
.0

77
)

(0
.0

22
)

(0
.0

25
(0

.1
37

)
(0

.6
54

)
(0

.0
76

)
(0

.1
47

)
(0

.0
17

)
(0

.0
13

)
(0

.0
59

)
(0

.0
78

)

D
if

fS
pe

cI
nh

-1
.7

91
-1

.5
10

0.
07

0
1.

38
2*

**
1.

01
3

1.
92

4
-0

.5
71

-1
.4

95
-0

.1
87

-0
.1

48
-0

.3
56

0.
22

6

(1
.6

85
)

(3
.3

95
(0

.6
18

)
(0

.5
42

)
(6

.0
87

)
(1

4.
54

8)
(5

.2
67

)
(1

0.
17

8)
(0

.8
62

)
(0

.6
37

)
(3

.6
32

)
(1

.8
65

)

D
if

fim
pI

nh
-0

.0
60

0.
04

6
0.

76
7

0.
77

1
-1

.1
41

-0
.0

94
-0

.3
37

0.
15

4
0.

04
7

0.
26

7

(0
.9

40
)

(2
.1

34
(3

.4
57

)
(1

3.
55

7)
(2

.9
23

)
(4

.4
32

)
(0

.4
88

)
(0

.3
83

)
(2

.1
05

)
(1

.7
13

)

C
hu

rn
s

-0
.0

02
-0

.0
02

-0
.0

02
-0

.0
05

-0
.0

26
-0

.1
00

-0
.0

04
-0

.0
09

-0
.0

03
-0

.0
00

3
-0

.0
15

-0
.0

07

(0
.0

03
)

(0
.0

04
)

(0
.0

02
)

(0
.0

04
)

(0
.0

38
)

(0
.1

27
)

(0
.0

07
)

(0
.0

13
)

(0
.0

02
)

(0
.0

01
)

(0
.0

14
)

(0
.0

09
)

C
on

st
an

t
-4

.7
62

**
*

-4
.7

17
**

*
-3

.4
72

**
*

-3
.4

48
**

*
6.

42
9*

**
-6

.2
30

**
*

4.
60

5*
**

4.
52

0*
**

-4
.2

36
**

*
-4

.3
27

**
*

-4
.9

10
**

*
-5

.0
51

**
*

(0
.2

48
)

(0
.2

46
)

(0
.1

87
)

(0
.1

87
)

(0
.5

36
)

(0
.5

27
)

(0
.2

65
)

0.
26

4)
(0

.1
60

)
(0

.1
59

)
(0

.3
69

)
(0

.3
72

)

123

Page 19 of 42 20Empirical Software Engineering (2024) 29:20

Ta
bl
e
3

co
nt

in
ue

d Ja
ck

.-
C

or
e

N
=

1,
54

3
Ja

ck
.-

D
at

ab
.N

=
5,

22
8

Ja
ck

.-
X

M
L

N
=

1,
12

8
C

om
.-

Jx
Pa

th
N

=
59

8
Jo

da
-T

im
e

N
=

2,
09

4
C

lo
.-

C
om

pi
le

r
N

=
17

,1
71

↓
↑

↓
↑

↓
↑

↓
↑

↓
↑

↓
↑

D
if

fW
M

C
-2

.3
30

3.
34

4*
*

-1
4.

45
2*

**
41

.5
77

**
*

-8
.3

02
**

*
-3

.8
41

**
*

(1
.5

46
)

(1
.6

19
)

(2
.9

14
)

(3
.5

03
)

(0
.0

06
)

(0
.0

04
)

D
if

fN
O

C
-3

7.
08

5*
**

-9
3.

80
7*

**
-5

8.
83

6*
**

-1
52

.5
98

**
*

-0
.0

66
**

*
-0

.2
35

**
*

4.
20

3*
**

-1
.7

98
**

*
-1

.0
01

**
*

-0
.7

23
**

*
0.

61
7*

**
2.

75
0*

**

(0
.3

59
)

(0
.3

72
)

(0
.0

37
)

(0
.0

43
)

(0
.0

20
)

(0
.0

07
)

(0
.1

13
)

(0
.0

40
)

(0
.0

07
)

(0
.0

21
)

(0
.0

00
3)

(0
.0

00
3)

D
if

fL
C

O
M

-0
.0

24
-0

.0
08

0.
15

5*
**

0.
17

9*
**

-0
.0

16
-0

.4
20

0.
21

7
-1

.1
67

-0
.8

35
-0

.2
55

0.
07

6
0.

03
4

(0
.0

29
)

(0
.0

31
)

(0
.0

49
)

(0
.0

45
)

(0
.2

44
)

(0
.4

78
)

(1
.1

61
)

(1
.5

09
)

(0
.8

67
)

(2
.2

34
)

(0
.0

86
)

(0
.0

69
)

D
if

fD
IT

-7
0.

76
3*

**
-1

24
.1

04
**

*
0.

39
1

**
*

-0
.6

65
**

*

(0
.0

28
)

(0
.0

29
)

(0
.0

00
3)

(0
.0

00
2)

D
if

fC
B

O
-2

.8
40

-8
.3

86
1.

06
2

2.
26

1*
-1

.1
62

18
.6

73
*

-1
1.

52
1

-2
8.

86
7*

**
5.

64
2*

**
-7

.7
46

**
*

-7
.8

95
**

*
3.

86
0*

**

(5
.3

29
)

(5
.8

59
)

(0
.9

79
)

(1
.1

94
)

(3
.5

28
)

(1
0.

14
2)

(1
2.

92
8)

(9
.4

82
)

(0
.3

19
)

(0
.0

28
)

(0
.0

03
)

(0
.0

02
)

D
if

fR
FC

8.
15

2
-4

7.
30

3*
**

(7
.4

83
)

(8
.6

90
)

D
if

fL
O

C
-0

.0
39

0.
03

9
-0

.0
45

-0
.0

13
-0

.0
09

0.
07

7
-3

.0
04

*
5.

67
4*

**
(1

.4
28

)
1.

56
4

0.
61

5*
**

0.
03

5

0.
64

5
(0

.0
53

)
(0

.0
47

)
(0

.1
47

)
(0

.1
41

)
(0

.2
28

)
(0

.6
39

)
(1

.7
36

)
(0

.6
99

)
(2

.3
64

)
(0

.1
53

)
(0

.1
16

)

D
if

fD
el

eg
at

io
ns

0.
00

1
0.

00
3

-0
.0

05
-0

.0
10

**
*

0.
02

7
0.

00
5

0.
20

1*
0.

39
9*

**
0.

03
2

-0
.0

74
-0

.0
03

0.
00

2

(0
.0

03
)

(0
.0

03
)

(0
.0

03
)

(0
.0

03
)

(0
.0

43
)

(0
.0

66
)

(0
.1

04
)

(0
.1

00
)

(0
.0

51
)

(0
.1

17
)

(0
.0

02
)

(0
.0

02
)

D
if

fS
pe

cI
nh

-0
.3

71
0.

49
1

0.
10

9
-0

.0
65

-0
.4

89
1.

15
9

-4
.6

86
*

0.
16

1
-1

.6
33

-6
.1

70
**

*
0.

00
2

-0
.0

48

(0
.4

39
)

(0
.4

07
)

(0
.0

95
)

(0
.1

00
)

(2
.9

84
)

(5
.1

70
)

(2
.7

42
)

(1
.7

19
)

(3
.8

75
)

(0
.2

50
)

(0
.2

78
)

(0
.2

68
)

D
if

fim
pI

nh
0.

01
8

0.
34

1*
**

-0
.4

61
-0

.4
30

-2
.3

14
-1

5.
48

2*
**

-1
.3

13
1.

20
0

0.
13

3
-0

.0
34

(0
.0

99
)

(0
.0

90
)

(1
.0

68
)

(2
.1

08
)

(1
.7

18
)

(4
.8

00
)

(2
.3

17
)

(4
.5

09
)

(0
.1

18
)

(0
.0

96
)

C
hu

rn
s

-0
.0

01
-0

.0
04

-0
.0

01
-0

.0
04

**
0.

00
2

-8
.8

72
**

*
-0

.0
15

*
-0

.0
26

**
*

-0
.0

06
(0

.0
06

)
-0

.0
19

-0
.0

01
-0

.0
00

01

(0
.0

02
)

(0
.0

04
)

(0
.0

01
)

(0
.0

02
)

(0
.0

06
)

(0
.0

01
)

(0
.0

08
)

(0
.0

07
)

(0
.0

13
)

(0
.0

00
4)

(0
.0

00
1)

C
on

st
an

t
-4

.1
83

**
*

-4
.0

82
**

*
-4

.0
48

**
*

-4
.0

43
**

*
-5

.3
12

**
*

-5
.3

46
**

*
-3

.3
45

**
*

-3
.3

23
**

*
-4

.5
45

**
*

-4
.4

62
**

*
-4

.6
24

**
*

-4
.6

54
**

*

(0
.2

37
)

(0
.2

37
)

(0
.1

18
)

(0
.1

27
)

(0
.4

40
)

(0
.5

18
)

(0
.2

62
)

(0
.2

64
)

(0
.2

43
)

(0
.2

51
)

(0
.0

81
)

(0
.0

80

Si
gn

ifi
ca
nc
e
co
de
s:

*p
<

0.
1;

**
p<

0.
5;

**
*p

<
0.

1

123

20 Page 20 of 42 Empirical Software Engineering (2024) 29:20

As such, we could not delineate a common behavior for NOC. Likely, its impact depends on
the peculiarities of the development process in place in the different projects rather than on
more general aspects.

As for the independent variables considered in our study, namely inheritance and dele-
gation, the discussion is similar. On the one hand, the impact of these metrics is limited to
a few projects, suggesting that the defect-proneness of source code is only partially depen-
dent on reusability metrics. On the other hand, the coefficients of the metrics vary without a
common pattern. As an example, the coefficient for specification inheritance was positive for
“↑” in Commons- Cli and negative in Joda- Time. On the same line, implementation inher-
itance had a slightly positive coefficient for “↑” in Jackson- Databind, while a negative
coefficient in JxPath. As for the delegation, this turned to be statistically relevant on just
two projects, i.e., Jackson- Databind and JxPath without a consistent sign. Hence, we
could conclude that the reusability metrics themselves have a limited connection to defect-
proneness. Other indicators, like the structure of the hierarchies computed by NOC, seem to
have more statistical power. As such, it is not the amount of reusability mechanisms used by
developers to influence the defect-proneness of source code, but rather the way these mech-
anisms are used in the specific cases. This result has two main implications. First, we could
not identify a drawback in the use of inheritance and delegation with respect to software
reliability: hence, the application of reusability mechanisms is not per se something to avoid.
However, this result represents a call to researchers in software quality, who are required to
devise novel quality checkers and/or empirical investigations to monitor the way code reuse
is implemented and how it may negatively affect the defect-proneness of source code.

Another valuable consideration can be drawn when considering the control variables.
According to our results, none of them seems to be statistically impactful on defect-proneness.
We believe this is a relevant result for the software maintenance and evolution research
community as a whole. Code quality metrics have been indeed often used to estimate and/or
predict defects: our results indicate the lack of statistical significance and possibly imply that
the set of metrics considered within defect prediction models should be reconsidered - in
this sense, we corroborate previous findings on the limited value of the Chidamber-Kemerer
metric suite for defect prediction (He et al. 2015; Jureczko 2011; Radjenović et al. 2013) as
well as further stimulate the research on alternative predictors (Bird et al. 2011; Di Nucci et
al. 2017; Palomba et al. 2017; Posnett et al. 2013).

4.3 RQ3. On the Impact of Reusability Mechanisms in Code Churns

Table 4 reports the statistical results obtained when building a Generalized Linear model
on the data collected for RQ3. Differently from RQ2, the dependent variable was the code
churn, namely a numerical variable.

123

Page 21 of 42 20Empirical Software Engineering (2024) 29:20

Ta
bl
e
4

R
Q

3
.R

es
ul

ts
of

th
e

st
at

is
tic

al
m

od
el

C
om

.-
C

od
ec

N
=

2,
13

4
C

om
.-

C
li

N
=

1,
09

9
C

om
.-

C
ol

.N
=

3,
56

0
C

om
.-

C
SV

N
=

1,
63

4
C

om
p.

N
=

3,
30

5
G

so
n

N
=

1,
47

8

D
if

fW
M

C
16

3.
95

1
26

.2
63

−2
0.

37
5

−2
0.

37
5

−1
,9

88
.9

19
**

*
−3

77
.0

39

(1
05

.2
95

)
(2

27
.4

57
)

(5
6.

96
5)

(5
6.

96
5)

(2
10

.7
22

)
(2

69
.2

03
)

D
if

fN
O

C
10

,2
13

.0
80

**
*

−1
32

.0
74

−1
0,

74
0.

97
0*

**
17

,8
27

.5
70

**
*

(2
,3

41
.1

43
)

(1
,3

57
.6

14
)

(1
,6

99
.3

69
)

(3
,2

88
.2

30
)

D
if

fL
C

O
M

1.
38

3
−1

2.
15

4
7.

79
9*

10
.6

73
**

*
26

.2
85

**
*

−1
5.

48
8

(2
.7

13
)

(1
6.

16
9)

(4
.6

80
)

(1
.9

05
)

(6
.0

21
)

(1
2.

95
5)

D
if

fD
IT

3,
34

1.
22

8*
**

−2
,3

78
.4

89
−1

,7
87

.1
67

52
,8

52
.5

30
**

*
−6

,9
58

.2
31

**

(9
03

.7
32

)
(1

,4
97

.2
70

)
(1

,1
92

.1
99

)
(2

,8
13

.1
41

)
(2

,8
26

.6
73

)

D
if

fC
B

O
1,

02
1.

35
7*

**
−1

08
.0

63
6,

71
7.

22
5*

**
−5

6.
28

2
5,

52
9.

11
5*

**
1,

91
6.

42
8*

**

(1
50

.1
61

)
(1

34
.4

20
)

(6
52

.1
91

)
(9

4.
95

8)
(3

07
.0

03
)

(1
45

.9
44

)

D
if

fR
FC

19
2.

61
1*

**
4.

68
2

(5
7.

09
4)

(6
0.

01
2)

D
if

fL
O

C
1.

29
3

−9
.9

92
*

−5
8.

84
0*

**
2.

99
4

5.
76

9
46

.6
04

**
*

(2
.1

58
)

(5
.2

54
)

(1
0.

76
0)

(2
.6

93
)

(5
.4

71
)

(1
0.

89
4)

D
el

eg
at

io
n

0.
01

7
−0

.6
97

**
*

−0
.0

03
0.

16
5

−0
.0

80
**

*
−0

.1
19

**

(0
.0

45
)

(0
.2

29
)

(0
.0

57
)

(0
.1

24
)

(0
.0

22
)

(0
.0

50
)

Sp
ec

In
h

−1
.2

17
39

.5
95

**
*

1.
14

3
−6

.8
89

−0
.7

10
1.

41
5

(3
.1

45
)

(1
1.

91
5)

(1
.2

11
)

(6
.9

84
)

(1
.9

50
)

(1
.3

01
)

Im
pI

nh
−0

.1
31

−1
.0

26
−0

.3
86

3.
65

3*
**

2.
08

0

(1
.7

47
)

(0
.8

70
)

(4
.3

87
)

(1
.0

93
)

(2
.2

26
)

B
ug

D
ec

re
as

e
1.

43
3

−7
4.

15
9

−1
06

.1
39

−1
.2

72
−2

6.
20

8
−6

.1
28

(3
7.

64
1)

(1
02

.9
78

)
(6

20
.9

95
)

(6
9.

68
5)

(8
5.

33
0)

(9
0.

98
5)

123

20 Page 22 of 42 Empirical Software Engineering (2024) 29:20

Ta
bl
e
4

co
nt

in
ue

d

B
ug

In
cr

ea
se

−2
0.

19
1

−7
0.

79
9

−1
11

.8
54

-1
4.

89
2

−1
5.

85
6

−1
4.

03
1

(3
7.

62
0)

(1
01

.5
93

)
(6

20
.9

96
)

(6
9.

65
2)

(8
6.

31
1)

(9
6.

40
8)

C
on

st
an

t
52

.9
48

**
*

12
6.

28
8*

*
10

3.
34

9
11

.1
61

91
.2

71
**

*
11

1.
10

0*

(1
5.

91
8)

(5
1.

41
3)

(7
7.

15
5)

(2
0.

00
3)

(2
5.

69
3)

(6
3.

05
4)

Ja
ck

.-
C

or
e

N
=

1,
54

3
Ja

ck
.-

D
at

ab
.N

=
5,

22
8

Ja
ck

.-
X

M
L

N
=

1,
12

8
C

om
.-

Jx
Pa

th
N

=
59

8
Jo

da
-T

im
e

N
=

2,
09

4
C

lo
.-

C
om

pi
le

r
N

=
17

,1
71

D
if

fW
M

C
85

3.
62

7*
**

−8
89

.0
89

-3
5,

48
5.

19
0

**
*

(7
1.

34
7)

(1
,2

08
.3

43
)

(1
,0

24
.1

24
)

D
if

fN
O

C
21

,5
88

.5
20

**
*

22
,8

30
.4

30
**

*
33

3.
78

6
24

,7
86

.9
20

**
*

54
,1

04
.7

60
**

*
20

4,
77

6.
10

0*
**

(1
,2

12
.5

95
)

(1
,5

64
.3

18
)

(5
09

.6
49

)
(5

,7
60

.2
88

)
(3

,8
64

.8
15

)
(2

5,
37

7.
82

0)

D
if

fL
C

O
M

1.
24

1
−2

8.
86

2*
**

-8
.2

69
**

*
21

.5
01

**
*

18
9.

72
0*

**
45

4.
24

3*
**

(0
.7

65
)

(1
.2

08
)

(0
.9

92
)

(5
.5

05
)

(2
3.

53
6)

(9
.8

41
)

D
if

fD
IT

50
,7

82
.4

60
**

*
30

5,
84

6.
90

0*
**

(1
,7

12
.7

23
)

(2
7,

22
5.

78
0)

D
if

fC
B

O
1,

68
2.

68
7*

**
3,

14
7.

44
9*

**
23

9.
22

9*
**

3,
50

4.
46

2*
**

−3
1,

92
9.

67
0*

**
-4

72
.8

42

(1
31

.8
99

)
(7

4.
44

0)
(1

9.
89

2)
(3

63
.9

97
)

(2
,8

14
.5

95
)

(6
43

.1
45

)

D
if

fR
FC

1,
35

8.
53

2*
**

(3
63

.7
35

)

D
if

fL
O

C
28

.5
85

**
*

−8
.3

53
**

*
8.

56
8*

**
−1

58
.2

55
**

*
34

4.
71

5*
**

1,
02

8.
92

2*
**

(1
.3

71
)

(3
.0

29
)

(0
.9

46
)

(1
2.

87
5)

(4
2.

97
8)

(3
8.

58
0)

D
el

eg
at

io
n

-0
.0

12
0.

01
0*

−0
.0

96
**

−0
.5

98
**

−0
.5

80
**

*
-0

.0
14

*

(0
.0

17
)

(0
.0

06
)

(0
.0

44
)

(0
.2

94
)

(0
.1

07
)

(0
.0

08
)

123

Page 23 of 42 20Empirical Software Engineering (2024) 29:20

Ta
bl
e
4

co
nt

in
ue

d

Sp
ec

In
h

2.
70

1
−1

.2
81

**
*

−2
.8

47
6.

77
3

−1
56

.4
45

**
*

0.
86

8

(3
.6

77
)

(0
.3

05
)

(2
.3

24
)

(1
4.

13
3)

(2
2.

02
6)

(0
.7

37
)

Im
pI

nh
−0

.1
40

3.
00

1*
*

0.
94

2
17

9.
74

5*
**

0.
40

6

(0
.4

99
)

(1
.4

08
)

(3
.5

59
)

(2
0.

29
4)

(0
.4

07
)

B
ug

D
ec

re
as

e
83

.8
85

*
28

.2
36

19
.8

31
-4

1.
14

7
−6

25
.9

49
-7

3.
09

4

(4
8.

15
6)

(1
9.

49
2)

(2
3.

73
8)

(1
49

.8
00

)
(6

02
.6

12
)

(9
1.

94
0)

B
ug

In
cr

ea
se

−5
1.

82
0

−7
.0

43
−2

0.
62

4
14

.0
86

−6
90

.3
21

-5
2.

40
3

(4
8.

18
1)

(2
0.

35
9)

(2
6.

00
5)

(1
49

.6
26

)
(6

18
.4

44
)

(9
1.

95
4)

C
on

st
an

t
25

.5
37

18
2.

66
4*

**
57

.9
31

**
*

1,
56

1.
44

9*
**

-6
,7

29
.3

63
**

*
89

.8
24

(4
7.

50
5)

(5
7.

98
7)

(9
.4

13
)

(3
87

.6
16

)
(7

06
.4

42
)

(7
6.

82
4)

Si
gn

ifi
ca
nc
e
co
de
s:

*p
<

0.
1;

**
p<

0.
05

;*
**

p<
0.

01

123

20 Page 24 of 42 Empirical Software Engineering (2024) 29:20

Statistical Model Explanation The statistical model output a single coefficient for each
independent variable: this coefficient corresponds to the impact of a one-unit increase on the
amount of code churn. Also in this case, the statistically significant coefficients are highlighted
with a ‘*’ symbol - a higher amount of ‘*’ implies a higher statistical relevance of a variable
with respect to the code churn computed on a defect-fixing commit i . The variables discarded
through the multi-collinearity are the same as RQ2.

Statistical Model Analysis Looking at the table, we can draw various conclusions. As
expected, the LOC metric was found to be statistically significant in 9 systems out of 12.
The coefficients are also relatively high in all cases, meaning that larger classes are typi-
cally harder to maintain - in this respect, we could corroborate previous findings in literature
(Hayes et al. 2004; Sjøberg et al. 2012). The CBO metric, which computes the coupling
between objects, was also statistically significant in nine projects, confirming that developers
spend more effort in fixing defects pertaining to highly-coupled classes (Leach 1990). Other
code quality metrics were not statistically significant. So, in conclusion of this first point of
discussion, we could report that, besides LOC and CBO, the role of code metrics to estimate
the maintenance effort seems to be limited. Once again, this finding is of the interest of the
software maintenance and evolution research community, which might be called to define
novel metrics and/or instruments to monitor maintenance effort over time.

Turning the focus on our independent variables, we could find similar conclusions as in
RQ2 when considering inheritance. Both specification and implementation inheritance were
indeed most not statistically significant, with some exceptions. The former was relevant for
the projects Commons- Cli, Jackson- Dabind, and Joda- Time. However, the sign of the
coefficients revealed that the metric was statistically related to the increase of code churn only
in the case of Commons- Cli. By analyzing this case further and relating the statistical result
with the trend analysis conducted in RQ1, we could better understand the reason behind this
correlation. Most of the defects available for Commons- Cli were introduced and fixed after
the design erosion discussed inRQ1. It is therefore reasonable to believe that it was the lack or
the decrease in the use of inheritance mechanisms which caused a higher maintenance effort
when fixing defects. This interpretation is in line with what observed on the other systems,
i.e., Jackson- Dabind and Joda- Time, where the specification inheritance was negatively
correlated to maintenance effort, meaning that this was a significant factor to reduce the code
churn required to fix defects.

Implementation inheritance was found to be statistically relevant in just two cases, i.e.,
on Jackson- Databind and JxPath. While in the former case the coefficient was close
to zero—indicating little to no correlation to the dependent variable—, it was of -15.482 in
the second case. Hence, also in this case we could conclude that this metric was negatively
correlated to the maintenance effort. Enlarging the discussion to the other inheritance metrics
subject of the study, namely NOC and DIT, we could discover similar results as RQ2. Both
NOC and DIT were positively correlated to the dependent variable and the coefficients were
relatively large in all cases: these results imply that the structure of hierarchies might strongly
influence the maintenance effort to fix defects, hence corroborating the results obtained in
our previous research question, other than the results of empirical studies reporting how NOC
and DIT could worsen software maintainability (Daly et al. 1995, 1996; Prechelt et al. 2003).

As for delegation, the coefficients were mostly negative, even if relatively small. Hence,
we could conclude that there exist a small negative correlation between the metric and main-
tenance effort, which implies that the use of delegation may decrease the overall amount of
code churn required to fix defects.

123

Page 25 of 42 20Empirical Software Engineering (2024) 29:20

5 Discussion and Implications

The results of our study revealed a number of insights which are worth to further discuss.
This section elaborates on the analyses conducted and discusses the key implications of our
findings for researchers and practitioners.

5.1 Further Discussion and Analyses

In this respect, there are three main points to discuss.

Relation to Existing Literature In the first place, it is worth discussing the way our findings
relate to previous research on the matter. As discussed already in Section 2, various empirical
studies have linked implementation and specification inheritance to source code quality. Some
of them, like the works by Albalooshi and Mahmood (2014) and Goel and Bhatia (2013),
discovered negative correlations between the use of those reuse instruments and source code
quality. Our results could not corroborate those observations: according to our analyses,
indeed, implementation and specification inheritance are mostly correlated with positive
improvements of source code. As such, we could instead confirm the “common wisdom” for
which a higher degree of reusability leads to a higher maintainability of source code (Bruegge
and Dutoit 2009). At the same time, we could extend the set of observations conducted on
implementation and specification inheritance with respect to our previous work (Giordano
et al. 2022): not only those mechanisms tend to decrease the severity of code smells over
time, but also other desirable software maintenance properties, like defect-proneness and
effort to fix defects. Last but not least, the statistical results provide additional insights to
the body of knowledge on software evolution and maintenance effort estimation. In the
former case, our commit-level analysis could provide finer-grained information on how the
adoption of the three considered code reuse mechanisms evolves over time. In the latter case,
instead, the results of our RQ3 unveiled the actual relation between code reuse and corrective
maintenance—this represents a premier of our study.

Making Sense of the Statistical Data By definition, our empirical study had a statistical
connotation and aimed at analyzing patterns and correlations extracted through the mining of
software repositories. As such, the relation between code reuse and defect-proneness has been
observed quantitatively. The nature of such an analysis naturally brings some considerations
about the reliability of the conclusions provided. In particular, the independent variables in
our statistical exercise were computed by means of metrics accounting for their adoption
and were assessed against defect-proneness through statistical correlations. The relations
unveiled might therefore due to spurious correlations among metrics rather than being the
result of causal inference. To account for this potential threat to validity and strengthen the

123

20 Page 26 of 42 Empirical Software Engineering (2024) 29:20

conclusions of the study, we conducted an additional qualitative analysis aimed at assessing
the relation between code reuse and defects. In particular, starting from the dataset considered
in the study, we (1) computed the number of cases in which defect-inducing and defect-
fixing commits involved the variation of inheritance and delegation metrics and (2) manually
analyzed those cases to better understand the way these metrics can affect defect-proneness of
source code. Such an analysis allowed us to verify more closely which kind of modifications
have been applied by developers in terms of inheritance and delegation and how these led to
the variations of defect-proneness. The analysis was led by the first author of the paper, who
selected the relevant commits and analyzed the diffs between these and their predecessor.
To support the manual investigation, the inspector employed automated static analysis tools
such as RefactoringMiner (Tsantalis et al. 2020) and SonarQube (Lenarduzzi et al.
2022)—these tools were used to the sole scope of extracting additional information on the
code changes applied within the commits.

Such an additional analysis first revealed that in a non-negligible amount of cases, i.e., in
about 50% of the defect-fixing commits, the changes applied by developers included modi-
fications that impacted inheritance and delegation metrics. Perhaps more importantly, those
modifications were instrumental to accommodate the defect-fixing activities. For instance,
let consider the commit 40689aa of the project JXPath. This commit addressed a defect
concerning the evaluation of strings as boolean expressions. To fix it, the developer moved
methods from the subclassesCoreOperationEqual andCoreOperationNotEqual
to the abstract superclass CoreOperationCompare, and add a parameter in the super
method of the subclass CoreOperationNotEqual. These operations had the effect of
modifying the implementation inheritance relations of the CoreOperation hierarchy.
This example well shows how code reuse is employed in practice to reduce the overall com-
plexity of the system and possibly reduce defect-proneness. Indeed, the developer exploited
code reuse to let propogate the fix to all subclasses that would have possibly been affected
by the string evaluation defect, hence reducing defect-proneness while improving software
maintainability. We observed similar cases in the dataset, particularly in 75% of the commits
where inheritance and delegation metrics varied as a consequence of defect-fixing activities
- for the sake of completeness, we report the details of this qualitative investigation in our
online appendix Giordano et al. (2022).

On Metrics and Their Relation to Defect-Proneness The last point to further discuss is
concerned with the role of the considered metrics with respect to their relation to defect-
proneness. In this respect, two observations should be made. In the first place, we discovered
that our inheritance and delegation metrics, coming from the operationalization of the
reusability mechanisms used by developers, have a relatively low impact on defect-proneness.
In the second place, we found out that the control variables of our statistical analysis, namely
the metrics pertaining to the Chidamber and Kemerer (1994) metric suite, have also a lim-
ited connection to defect-proneness. Both findings are somehow surprising: these metrics
were indeed experimented in plenty of studies on source code quality and researchers have
been often analyzing the extent to which they can support the monitoring and prediction of
defect-proneness of source code (Basili et al. 1996; Gyimóthy et al. 2005).

To provide further, more actionable insights into our findings and better understand the
extent to which our statistical analysis would be actually corroborated when considering the
impact of code quality metrics on defect prediction, we conducted an additional analysis
where we (i) built a defect prediction model and (ii) assessed whether the findings obtained
in the context of RQ2 might have been confirmed.

123

Page 27 of 42 20Empirical Software Engineering (2024) 29:20

More specifically, given that our analysis granularity level was the commit and that we
needed to account for the time relations between commits, we focused on the so-called just-
in-time defect prediction (Kamei et al. 2012), that is, the creation of defect prediction models
able to assess the defectiveness of individual code commits based on the data collected
through the analysis of previous commits.

To make our analysis as precise and sound as possible, we conducted a partial replication of
the work by Pascarella et al. (2019), who experimented with a large set of features composed
of 24 process, product, and developer-oriented metrics to capture the defectiveness of code
commits. As product metrics, the original authors used the metrics also employed within
our study. Through this replication, we could therefore assess the role of these metrics when
considering their contribution to defect prediction, other than comparing such a contribution
with respect to additional metrics typically used in defect prediction, hence enlarging our
overview on the value of the considered metrics. While Pascarella et al. (2019) mainly focused
on a variant of the problem of just-in-time defect prediction aiming at predicting defective files
within commits rather than defective commits, they also compared against a standard just-
in-time defect prediction model, hence enabling an analysis at commit-level. The reason for
relying on this work was threefold. In the first place, Pascarella et al. (2019) released an online
appendix with all the scripts used in their study and documentation that enables the exact
replication of their work: as such, we avoided possible bias due to the re-implementation of
the defect prediction model. Second, one of the authors of the work by Pascarella et al. (2019)
is also a co-author of this submission: as a consequence, we could exploit his knowledge in
case of replication issues. Third, Pascarella et al. (2019) took into account a large amount
of metrics having different nature and coming from previous literature on defect prediction
(Kamei et al. 2012; Rahman and Devanbu 2013): as such, we could conduct a larger and
sound experimentation of how quality metrics affect the performance of just-in-time defect
prediction. To conduct our analysis, we performed the following steps:

– For each project considered in our study, we mined all the commits to compute the 24
process, product, and developer-oriented metrics. Since the metrics were computed on
the files modified within the considered commits, we aggregated them to have a unique
commit-level value for each metric. This was done using the “group by” operation,
considering the commit hash as the primary key, and applying the mean and median over
all the metrics;

– We merged the information collected with the one available in our dataset: for each
project and for each commit, we combined the 24 process, product, and developer-
oriented metrics with the inheritance and delegation metrics;

– We trained and tested a Random Forest classifier, i.e., the best classifier identified in the
work by Pascarella et al. (2019), by applying a Time Series Split validation. This is a
time-aware variant of the cross-fold validation that (i) divides the dataset into K (in our
case, K = 10) folds and (ii) in the kth split, it returns first k folds as train set and the
(k+1)th fold as test set.6

– This validation can be applied when the time order may impact the results and avoid
training the model using future commits to predict the defectiveness of past commits.
The performance of the model was assessed through multiple evaluation metrics such as
precision, recall, F-Measure, and AUC-ROC.

We investigated two predictive configurations. In the first one, we devised a binary defect
prediction model that predicts a commit as defective or not, i.e., the standard defect prediction

6 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html

123

20 Page 28 of 42 Empirical Software Engineering (2024) 29:20

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html

scenario. In the second configuration, we devised a multi-class defect prediction model able
to assess how the source code defectiveness varies over the evolution of the project, i.e., a
defect prediction scenario where the task is to foresee the defectiveness trend in terms of
increase, decrease, or stability of the number of defects within a software project. This latter
scenario is closer to the research methods employed in our study and was set up with the
aim of embedding additional evolutionary considerations within the defect prediction model
and investigating the contribution of code quality metrics to assess the overall defectiveness
of a software project. From a more technical perspective, the model was devised to assign a
commit to a categorical variable within the set {‘Increased’, ‘Decreased’, ‘Stable’}, namely
the same variables used within the Multinomial Log-Linear statistical model built to address
RQ2.

For both predictive scenarios, we ran the model twice: the first time relying on all the
metrics and the second time relying on all metrics but those concerned with inheritance and
delegation. This was done in an effort to more closely monitor the impact of the main variables
of our work, i.e., inheritance and delegation metrics, by quantifying the accuracy gain/drift
achieved when considering them as features of the defect prediction models. In addition,
we also computed the feature importance to verify which metrics were most relevant for the
experimented models.

In terms of results, we could draw multiple considerations. When considering the binary
defect prediction scenario, the performance achieved was close to 94% in terms of F-Measure
both when considering the models with and without inheritance and delegation metrics. On
the one hand, this result seems to indicate that the overall defect prediction capabilities cannot
be improved through the use of reusability metrics, hence confirming the results of RQ2,
i.e., inheritance and delegation metrics have a limited connection to defect proneness. On
the other hand, it is worth observing that improving over an F-Measure of 94% is always
particularly tough: in this sense, the contribution given by inheritance and delegation metrics
may be somehow “hidden” by the high performance of the defect prediction model. As a
consequence, a more reasonable way to assess the contribution of reusability metrics was to
assess the feature importance of the metrics considered by the model relying on inheritance
and delegation indicators. Through this analysis, we discovered that (1) the Random For-
est classifier never selects specification and implementation inheritance among the top-20
features to use for predicting defective commits in the considered projects; (2) the amount
of delegations was in the top-15 features employed by the model in all the projects; (3) the
specification and implementation inheritance metrics had limited predictive power, with other
inheritance metrics such as NOC and DIT having a slightly higher impact on the predictions.
These findings were perfectly in line with the observations reported in RQ2: we could indeed
further corroborate that the defect-proneness of source code is only partially dependent on
reusability metrics and that, instead, the way developers structure hierarchies might impact
defects more than the specific reusability mechanisms employed.

In addition, our RQ2 revealed that the control variables used in our statistical analysis, i.e.,
the Chidamber-Kemerer metrics, were not statistically impactful on defect proneness. The
defect prediction investigation confirmed these findings as well. Indeed, the feature impor-
tance analysis constantly reported process metrics such as the entropy of changes (Hassan
2009), the scattering of code changes (Di Nucci et al. 2017), and commit date (Rahman and
Devanbu 2013) as the most impactful features. In the first place, our findings corroborate
previous research showing that process metrics can better predict defects with respect to tra-
ditional code quality attributes (Rahman and Devanbu 2013) and, as a consequence, provides
additional support to the research field involved in the definition of process and developer-
oriented metrics for defect prediction. Secondly, our research outlines that the use of code

123

Page 29 of 42 20Empirical Software Engineering (2024) 29:20

quality metrics, including the inheritance and delegation ones, to assess the defectiveness of
source code may result in suboptimal recommendations for developers and, for this reason,
these metrics should be used for different purposes and/or for different use cases: for instance,
our previous work (Giordano et al. 2022) revealed that quality, inheritance, and delegation
metrics can positively contribute to the evolutionary analysis of code smells.

A similar discussion could be done when considering the multi-class prediction model.
Also in this case, we found that the models relying and not on reusability metrics had similar
performance in terms of F-Measure (94%), with inheritance and delegation metrics that were
selected by the Random Forest classifier for all projects. While they had a lower predictive
power than NOC and DIT, we found that both inheritance and delegation metrics were more
impactful than cohesion, coupling, and complexity metrics, e.g., LCOM, CBO, WMC. As
such, we could further corroborate that quality, inheritance, and delegation metrics have a
limited connection to defect proneness. Similarly to the previous experiment, the entropy of
changes (Hassan 2009), the scattering of code changes (Di Nucci et al. 2017), and commit
date (Rahman and Devanbu 2013) were the most important characteristics to predict defective
commits, hence suggesting that evolutionary considerations on the defect proneness of source
code should be made through the analysis of historical information coming from the the
complexity of the development process.

All in all, our findings corroborated the negative results obtained by previous researchers
who experimented with code quality metrics in defect prediction (He et al. 2015; Jureczko
2011; Radjenović et al. 2013). While this is already worrisome for the entire software main-
tenance and evolution research community, our findings should be considered as even more
worrisome because of the granularity of the analysis conducted. We indeed elaborated on the
change history information of software projects, analyzing how code quality metrics were
related to defect-proneness throughout the evolution of the considered projects, discovering
that none of them was statistically correlated to the variation of defect-proneness. As such, our
results represent an additional alarm signal for the research community. Our future research
agenda includes experimentations aiming at elaborating on code quality metrics and their
actual relation to software maintenance. For the sake of completeness, we report the details
of this analysis in our online appendix (Giordano et al. 2022).

5.2 Implications of the Study

On the basis of the results achieved and the additional discussion points elaborated in the
previous section, we identified a number of implications for researchers and practitioners.

Monitoring Usage Trends to Improve Software Quality The usage trends elicited in the
context of RQ1 revealed various forms in which code reusability mechanisms are employed
throughout software evolution, while the results obtained inRQ2 andRQ3 - and the additional
qualitative analysis discussed in Section 5.1 - pointed out the benefits reusability may have
to reduce both risks connected to poor software reliability and effort required for corrective
maintenance activities.

Altogether, these findings seem to suggest that an advanced knowledge on how to improve
software quality might be obtained by exploiting precious pieces of information coming from
the analysis of the change history of software projects. For instance, we envision the definition
of monitoring techniques that, by exploiting the way developers use to adopt code reusability
mechanisms, may recommend the most appropriate actions to conduct while performing
corrective maintenance. Similarly, we can envision the definition of novel approaches based
on nudge-theory (Brown 2019) to stimulate developers toward the more frequent or most

123

20 Page 30 of 42 Empirical Software Engineering (2024) 29:20

appropriate adoption of code reuse to reduce the overall defect-proneness of source code. To
make our conjectures more tangible, let us consider the scenario depicted in Fig. 4, which
represents the way we envision a monitoring system may support developers during software
maintenance and evolution. More specifically, suppose that a system ‘S’ contains a module
‘A’ having (1) multiple submodules, i.e., ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’ and ‘L’ in
Fig. 4, each either directly or indirectly inheriting from ‘A’; (2) some operations through
which the submodules delegate operations to ‘A’. In such a scenario, a regular monitoring of
reusability metrics or the prediction of usage trends may allow the developer to observe or
predict the way the inheritance and delegation relations vary over time, possibly detecting or
even preventing the increasing complexity affecting ‘A’ and its submodules, other than the
presence of suboptimal design decisions that would require some refactoring actions.

For instance, suppose that in the scenario proposed in Fig. 4 a monitoring system realizes
that the amount of functionalities provided by ‘A’ is steadily increasing, with the frequency of
‘A’ being reused decreasing in the submodules—this case may indicate that the system is in the
descending path of a ‘increasing-decreasing’ implementation inheritance pattern identified
in RQ1. This may indicate a suboptimal use of inheritance and delegation: ‘A’ offers more
services, but the submodules inheriting from it do not fully exploit them, suggesting that
they are not properly exploiting the inheritance mechanism—note that a similar scenario has
been associated with multiple risks for software reliability, including an increasing change-
and defect-proneness (Palomba et al. 2018) and a higher likelihood of the system being
maliciously attacked because of the suboptimal visibility granted to fields and operations
(Spooner 1988). By monitoring reusability metrics, multiple insights may be provided. On
the one hand, developers may be informed of the evolution of reusability metrics and exploit
such an information to schedule quality assurance sessions aiming at reducing quality and
security concerns, e.g., code review targeting ‘A’ and the way the submodules interact with
it. On the other hand, automated instruments might exploit reusability metrics to recommend
refactoring actions aiming at simplifying the hierarchy: for instance, the situation described
above, i.e., submodules not fully exploiting the features of ‘A’, may suggest the presence

Fig. 4 Use case scenario in which the monitoring of reusability metrics might be exploited

123

Page 31 of 42 20Empirical Software Engineering (2024) 29:20

of a Refused Bequest smell (Fowler 2018), whose refactoring may either consist of defining
a new superclass only containing the fields and operations that are actually needed to the
submodules, i.e., Extract Superclass refactoring, or replacing the inheritance mechanism
with delegations, Replace Inheritance with Delegation refactoring.

On the basis on the considerations above, the multifaceted ways our findings can be
exploited therefore represent a call for researchers in the field of software quality and software
maintenance and evolution.

Code Reuse and Its Adoption: Two Sides of the Same Coin Our empirical investigation
(RQ2 and RQ3) revealed a dichotomy between the concept of code reusability and its actual
application. In particular, we found that while reusability itself is a useful instrument to
improve software quality and reduce maintenance effort, an inappropriate adoption of these
mechanisms may have negative implications. This is indeed the case observed with DIT
and NOC in our statistical exercise, two well-known metrics that measure the extent of
the hierarchical relations among classes. We found that increases in terms of hierarchical
relations lead to negative variations of the defect-proneness of software artifacts. As such, we
argue the need for further research, especially in terms of software refactoring optimization.
Researchers are indeed called to better investigate the reasons behind the misuse of inheritance
and delegation mechanisms and when and why these can deteriorate software quality. These
investigations would be instrumental to the definition of novel refactoring techniques that
may support developers while optimizing hierarchies of classes.

At the same time, our findings provide two key implications for practitioners. On the one
hand, an improved knowledge of the usage patterns might be beneficial to understand the
way code reusability evolves in their own projects: practitioners would therefore put in place
monitoring instruments to verify the evolution of inheritance and delegation uses and assess
how the usage trends co-evolves with software quality. On the other hand, our results might
be exploited by practitioners to reason on the use and misuse of inheritance and delegation
mechanisms, other than on how the creation of complex hierarchies might possibly worsen
source code quality and increase corrective maintenance effort.

Prediction of Code Quality Properties: The Road Ahead Another aspect to consider is
the one concerned with the prediction of code quality properties. In this respect, the findings
coming from our research questions altogether contribute to increase the research community
awareness with respect to the need for novel code quality prediction techniques and tools.
First, the traditional code quality metrics employed in prediction models have little to no
correlation to defect-proneness. Second, code reusability mechanisms might potentially boost
the code quality analysis and possibly being used within predictive modeling techniques. In
addition, the usage trends can be exploited to recommend which of the features would be
more worth to use in specific moments of the evolution. All these aspects, emerged from our
analyses, represent future perspectives that our research community would like to further
investigate. We envision multiple experimentations aiming at revisiting previous findings
obtained in literature to account for the evolutionary nature of software - the research method
employed in our study, which took the change history information into account, may indeed
be generalized to understand how different code quality metrics evolve over time and how
they impact software quality. In our opinion, analyses of this type would potentially lead to
revolutionize code quality as we know, revealing insights driven by the actual adoption of
code metrics by developers.

At the same time, we envision novel techniques that, by analyzing the evolutionary devel-
opment context, may feed predictive models with the most relevant metrics to predict source
code quality. Also in this case, we believe that an evolution- and context-aware view of pre-

123

20 Page 32 of 42 Empirical Software Engineering (2024) 29:20

dictive software maintenance might potentially substantially boost the support that we, as
researchers, may provide to practitioners.

These observations represent the road ahead of software quality prediction models and
are part of our future research agenda on the matter.

On the Teaching of Reusability Mechanisms From an educational perspective, our find-
ings provided multiple insights that may be useful to guide or tune the teaching of reusability
mechanisms. In the first place, the findings coming from RQ1 reported that inheritance and
delegation instruments typically follow four well-defined adoption patterns, each of them
having implications on source code quality and being motivated by contextual development
factors. For instance, we observed that a “decreasing-increasing” pattern in terms of inheri-
tance adoption might be motivated by the substantial rework required to include third-party
libraries or adapt the architecture of the system being developed and may naturally favor
these complex modifications. As a consequence, teaching the contextual circumstances mak-
ing these patterns instrumental for software maintenance and evolution tasks may potentially
increase the awareness of the next generation of software engineers toward the adoption of
reusability mechanisms, other than increasing their willingness to actually employ them in
practice. In other terms, rather than teaching reusability on its own, our findings suggest
that an improved way of teaching those principles might involve more complex scenarios
where students are exposed to contextual situations requiring them to understand the bene-
fits and drawbacks of reusability, other than the impact that reusability may have on other
evolutionary tasks.

Also, RQ2 showed that the defect-proneness of source code is not influenced by the
reliance on inheritance and delegation mechanisms, but rather by the specific adoption of
these mechanisms. In our opinion, this is a key finding from the educational perspective:
we argue that case-based learning (Eshach and Bitterman 2003) might be a notable advance
to let students reason on the effects that reusability may have in specific use cases, hence
having a tangible and concrete understanding of the implications of reusability for software
quality. In this sense, the use of gamification (Caponetto et al. 2014) might further stimulate
the capabilities of students to distinguish when and why reusability may represent a valuable
tool to improve software quality and reduce risks to software reliability. On a similar note, the
results of RQ3 indicated that the adoption of inheritance and delegation may reduce the effort
required to fix defects. Also in this case, the use of case-based learning and gamification may
allow students to work on specific, ad-hoc use cases where they are required to fix defects
through the use of reusability mechanisms and assess the impact of their actions on software
quality and reliability.

It is our hope that the insights of our study can be of inspiration for educators, who
may partially redesign their courses to account for our findings, and software engineering
education researchers, who may further investigate the way teaching reusability differently
impacts the students’ abilities to use inheritance and delegation instruments in practice.

6 Threats to Validity

A number of potential threats might have biased the study. This section discusses them and
reports the mitigation strategies applied.

Threats to Construct Validity Threats in this category refer to a possible mismatch between
theory and observation. In this respect, the selection of the dataset represents a crucial point

123

Page 33 of 42 20Empirical Software Engineering (2024) 29:20

for which there are various observations and remarks to make. We used Defects4J (version
2.0.0), which has been already widely used by the research community in several previous
studies (e.g., Jiang et al. 2019; Perera 2020; Sobreira et al. 2018) and that reduced possible
bias due to the presence of uncontrolled conditions, e.g., tangled changes (Herzig et al.
2016), allowing us to investigate the impact of reuse mechanisms on defect-proneness and
maintenance effort more precisely.

As for the defects considered, the Git repositories of the considered projects may contain
more issues than those reported in Defects4J. However, there are two observations to make
in this respect. First, a notable amount of these issues do not actually pertain to defects
but to other maintenance and evolution tasks. For instance, let us consider the case of the
commons- collections project, i.e., the project having the least amount of defects in our
study. According to the issue tracker,7 the project has a total of 787 issues (filtering by
Type=‘All’ and Status=‘All’): of those, only 374 pertain to defects (filtering by Type=‘Bug’
and Status=‘All’), while the remaining 413 issues refer to enhancements, implementation
of new features, and other evolutionary tasks. As such, the set of candidate defects that we
might have considered is much lower in size with respect to the raw data reported on the
issue trackers. In the second place, a number of issues do not report reliable information.
Still taking the commons- collections project as an example, we noticed that 159 of the
issues marked as ‘Closed’ or ‘Resolved’ (filtering by Type=‘Bug’ and Status=‘Resolved,
Closed’) report the strings “Invalid”, “Not a Bug”, “Won’t Fix”, “Cannot Reproduce”, and
“Duplicate” as actual resolution, hence indicating that these defects were false positives,
not taken into account by the developers, or already addressed as part of duplicated issue
reports. As a conclusion, we found out that issue trackers contain a non-negligible amount
of noise that would require substantial filtering and data quality procedures, which is indeed
what Defects4J guarantees.

Still reasoning on the number of issues reported on the issue trackers of the considered
systems, it is worth remarking that the candidate set of defects was limited by the types of
defects and the types of fixes performed. We should distinguish multiple cases. First, some
defects may not pertain to production code, e.g., test code defects, or might relate to the update
of third-party libraries or configuration files. As explained in Section 3.1, these defects were
not considered by Defects4J and, as a consequence, by our work. However, these defects
would have not created any noise for our analysis: indeed, our work aims at understanding
how reusability metrics affect the defect proneness of the production code and, for this reason,
all the defects that are not related to production code cannot affect our measurements. Second,
some defects might not be verifiable or not traceable, even though they relate to the production
code. As for the former, they might either represent true defects that developers did not have
enough time to deal with or false positives, namely defects that developers ignored and that
were marked as ‘Resolved’ or left opened in the issue tracker without any further action:
considering these defects in our analysis would have caused some degree of uncertainty in
terms of number of defects considered and, for this reason, we would have likely introduced
some bias. As for the latter, these are defects that we could not trace back in the history of the
considered projects and, as such, we could not technically analyze without approximation
or heuristics that would have, again, introduced some degree of uncertainty. Last but not
least, the candidate set of defects might have been limited by the types of fixing activities:
Defects4J indeed discards defects whose fixes were performed along with other maintenance
and evolution activities, e.g., tangled changes. Among the various cases discussed, this latter

7 The commons- collections issue tracker: https://issues.apache.org/jira/projects/COLLECTIONS/
issues/.

123

20 Page 34 of 42 Empirical Software Engineering (2024) 29:20

https://issues.apache.org/jira/projects/COLLECTIONS/issues/
https://issues.apache.org/jira/projects/COLLECTIONS/issues/

was the most critical in our case, as it refers to real defects that were not considered in
the scope of the analysis and that might have biased the computation of the number of
defects in the change history of the projects considered. A systematic assessment of the
noise caused by these missing defects would have required the definition of dedicated data
quality protocols through which we could have (i) systematically classified real defects among
those not considered by Defects4J; (ii) analyzed the corresponding fixes to understand
their nature; and (iii) assessed the extent to which our findings varied when considering the
newly classified defects. To the best of our knowledge, the current literature does not offer
any (semi-)automated instrument to perform a similar assessment nor guidelines to follow.
We deemed the research investigation and methods required to perform such a systematic
assessment as out of scope. Nonetheless, to partially analyze the potential noise given by
those missing defects, we have attempted to estimate the noise of our analysis in the case of
the commons- collections project through a simple, likely suboptimal approach based on
text mining and manual analysis. We first (i) mined the summary of each of the 215 marked
as ‘Closed’ or ‘Resolved’ defects having as resolution the string “Fixed”, and (ii) used a
keyword-based approach to classify those issues according to their type. More specifically,
we classified an issue as ‘test-related’ if the summary contained the keyword “test”, as
‘documentation-related’ if it contained keywords such as “JavaDoc” and “comment”, and
as ‘configuration-related’ if it contained keywords such as “JDK”, “compil*”, “build”, and
“CI”. In this way, we could estimate the amount of issues whose fixes did not modify the
production code, hence covering the first case described above. Afterwards, we manually
went through the summaries of the remaining issues to assess how many of them revolved
around modifications that were not verifiable, not traceable, or that performed modifications
other than defect fixes—hence covering the other possible cases of noise. As a result, we
discovered that 181 issues were not considered within Defects4J. Among them, 1% referred
to Continuous Integration concerns, 7% to JDK compilation issues, 13% to test code defects,
e.g., flaky tests, and 17% to documentation issues, e.g., unclear JavaDoc comments. Hence, 69
of them (38%) of the discarded defects did not concern production code. From the subsequent
manual analysis, we discovered that 21 were untraceable (19%), while 84 were issues raised
by specific users that the maintainers of the system solved by recommending configuration
changes, hence not making any change to the system itself (46%). The remaining 7 defects
were not correctly classified by the keyword-based approach and pertaining to documentation
or configuration issues - in these cases, the summaries reported keywords different from those
used by the classifier, e.g., “typo”. Perhaps more interestingly, we found that 34 defects
matched the requirements of Defects4J: yet, six were reported between November 2020
and June 2023, namely after the release of Defects4J 2.0.0 (issued on September 15, 2020),
while 24 were part of the defects deprecated by Defects4J. As such, the set of defects
actually analyzable was four, which is exactly the number of defects we analyzed. While such
an additional analysis was not performed on all the considered systems, it let us provide some
insights on the noise possibly affecting our results. While we acknowledge that our study took
into account only a subset of defects having specific properties, it actually contains most of the
real defects that should be taken into account. The noise caused by the presence of additional
issues on the issue trackers is likely to be limited, as most defects and corresponding fixes
are not related to production code. In conclusion, we argue that our conservative approach
in terms of defect selection, i.e., that of relying on the defects pointed out by Defects4J,
represents the best option to properly measure the extent to which reusability mechanisms
impact the defect proneness of source code. As a side result of our additional analysis, we
could also further corroborate the validity of Defects4J - which we consider as a valuable
outcome for our research community.

123

Page 35 of 42 20Empirical Software Engineering (2024) 29:20

A second threat to validity relates to the selection of the metric used to operationalize
maintenance effort. We used code churn (Munson and Elbaum 1998): we are aware that this
metric can only proxy the actual effort spent when maintaining source code, yet this choice is
required in our case because of the unavailability of precise data regarding the maintenance
effort in our dataset. Nonetheless, proxy measurements are still used and considered in the
field (Shihab et al. 2013). The tool we used to extract metrics, e.g., reusability or CK metrics,
represents another potential threat to validity. We used tools already validated and used by
the research community (Giordano et al. 2022; Spadini et al. 2018). Finally, as mentioned
in Section 3.1, in Defects4j a single bug can be introduced by multiple factors, but its
resolution will always occur within a Java file. Thus, to avoid possible threats to contraction
validity, we discard commits that introduced defects caused by issues not involving source
code. This allowed us to only focus on defects introduced and resolved through changes to
the source files.

Threats to Internal Validity These threats refer to factors that might have impacted the
results of the study. In our context, these might be connected to the selection of the metrics
used to build the statistical models. On the one hand, we were interested in understanding
the role of reusability metrics and, for this reason, we operationalized implementation and
specification inheritance, other than delegation, following their exact definition. On the other
hand, we used control variables previously shown to be significantly correlated to source
code quality (Tamburri et al. 2020; Succi et al. 2005; Chhikara et al. 2011; Daly et al. 1996).
Through these actions, we could rely on a set of independent variables and control metrics
which come from either our working hypotheses or the state of the art.

Threats to Conclusion Validity Threats related to this category refer to the selection and the
use of the statistical test. When addressingRQ2 we modeled the problem using a Multinomial
Logistic Linear model (Theil 1969), while we built a Generalized Linear model (Faraway
2016) in the context of RQ3. These choices come from the nature of our response variables,
i.e., multiclass and continuous, respectively. Moreover, the research community used these
types of model in similar contexts (Catolino et al. 2021; Giordano et al. 2022; Lambiase et al.
2022). The empirical analysis conducted in this study had a quantitative connotation and, in
particular, we sought to understand the relation between code reusability and defects through
statistical modeling. Nonetheless, we are aware that more qualitative investigations aiming at
linking the root cause of defects with the reuse mechanisms might potentially reveal further
insights into the matter. While a more complete overview of this type is part of our future
research agenda, in the context of this work we already provided some preliminary insights
through the manual analysis discussed in Section 5. Such an analysis was in line with the
statistical conclusions drawn when addressing RQ2 and RQ3, increasing our confidence in
the results reported in the paper.

Threats to External Validity As for the generalizability of the results, the main threat might
be connected to the target of our work. In particular, we focused on 12 Java projects having
more than 44,900 commits and coming from the Defects4J dataset. As such, our work was
based on the analyses conducted on a sample: our generalization strategy can be identified
within the sample-based generalization strategies proposed by Wieringa and Daneva (2015).
In particular, among those strategies, the “statistical learning” seems to be the most appro-
priate. Wieringa and Daneva (2015) reported that the “descriptions of statistical sample
phenomena can be used to predict similar phenomena in new samples. [...]. The goal is not
to generalize to a population, but to generalize to the next few cases”. This strategy is basi-
cally in line with the generalizing by similarity principle described by Ghaisas et al. (2013).

123

20 Page 36 of 42 Empirical Software Engineering (2024) 29:20

When contextualizing those strategies in our case, it is likely that similar results might be
obtained in projects having similar characteristics with respect to those analyzed in our work
(see Table 1). Therefore, we cannot claim the generalizability of our findings to projects
having different properties or even written in different programming languages. Replications
in these contexts would still be desirable and already part of our future research agenda.

7 Conclusion

In this paper, we empirically assessed the evolution of reusability metrics and their impact on
defect-proneness and maintenance effort to fix defects. To conduct our analysis, we focused
on two specific reusability metrics such as inheritance and delegation. Our empirical study
was conducted on the projects available inDefects4J, a well-known dataset reporting a set of
Java projects along with their own defects. Notably, we conducted the study using a commit-
level granularity, in an effort of providing finer-grained observations into the relevance of
reusability mechanisms for handling defects.

In the first place, the results let emerge five usage patterns through which specification
inheritance, implementation inheritance, and delegation are used throughout software evo-
lution. Secondly, we discovered that the reusability mechanisms are, overall, associated to a
decrease of defect-proneness and maintenance effort. At the same time, we found out that
other inheritance metrics, like NOC and DIT, relate more to the dependent variables, hence
suggesting that it is not the reuse itself that influences defects, but rather the way these
mechanisms are used by developers to create hierarchies. These findings raised a number
of implications for researchers and practitioners, especially with respect to the need for (1)
novel code quality checkers that might monitor how developers adopt reuse mechanisms
and how these impact on source code quality; (2) revising previously proposed code quality
prediction models on the basis of how code reuse evolves over time.

To sum up, this article proposed the following contributions:

1. The first large-scale empirical study conducted at commit-level to understand how
reusability mechanisms are employed by developers over time;

2. Statistical insights into the relation between three code reuse mechanisms, i.e., imple-
mentation inheritance, specification inheritance, and delegation, and defect-proneness
of source code, both considering the likelihood of code being defective and the effort
required to fix defects;

3. A publicly available replication package (Giordano et al. 2022), which releases data and
scripts used to conduct this study and that can be used by fellow researchers to replicate
the study and build on top of our findings.

Our future research agenda will be devoted to the replication of the analyses conducted
on different datasets—including projects written in different programming languages—and
considering a larger amount of code reuse mechanisms, e.g., design patterns. In addition,
we plan to conduct qualitative investigations to corroborate the findings of the study. Last
but not least, we will work toward the definition of novel code quality monitoring systems
and prediction models that exploit the results of our empirical study to improve the support
provided to practitioners.

Acknowledgements Gemma is partially supported by the European Commission grant no. 825040 (RADON).
Fabio is supported by the Swiss National Science Foundation through the SNF Project No. PZ00P2 186090
(TED)

123

Page 37 of 42 20Empirical Software Engineering (2024) 29:20

Author Contributions Giammaria Giordano: Formal analysis, Investigation, Data Curation, Validation, Writ-
ing - Original Draft, Visualization. Gerardo Festa: Data Curation, Validation, Writing - Original Draft,
Visualization. Gemma Catolino: Supervision, Resources, Writing - Review & Editing. Fabio Palomba: Super-
vision, Resources, Writing - Review & Editing. Filomena Ferrucci: Supervision, Resources, Writing - Review
& Editing. Carmine Gravino: Supervision, Resources, Writing - Review & Editing.

Funding Open access funding provided by Università degli Studi di Salerno within the CRUI-CARE Agree-
ment.

DataAvailibility The manuscript has data included as electronic supplementary material. In particular: datasets
generated and analyzed during the current study, detailed results, as well as scripts and additional resources use-
ful for reproducing the study are available as part of our online appendix https://giammariagiordano.github.io/
On_the_Adoption_and_Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

e Abreu FB, Melo W (1996) Evaluating the impact of object-oriented design on software quality. In: Proceed-
ings of the 3rd international software metrics symposium, pp. 90–99. IEEE

Albalooshi F, Mahmood A (2014) A comparative study on the effect of multiple inheritance mechanism in
java, c++, and python on complexity and reusability of code. Int J Adv Comput Sci Appl 8(6):109–116

Allison P (2012) When can you safely ignore multicollinearity. Statistical horizons 5(1):1–2
Ampatzoglou A, Chatzigeorgiou A, Charalampidou S, Avgeriou P (2015) The effect of gof design patterns on

stability: a case study. IEEE Trans Software Eng 41(8):781–802
Amrit C, Van Hillegersberg J (2010) Exploring the impact of soclo-technlcal core-periphery structures in open

source software development. journal of information technology 25(2):216–229
Anbalagan P, Vouk M (2009) On predicting the time taken to correct bug reports in open source projects. In:

IEEE International Conference on Software Maintenance, pp. 523–526
Arcelli Fontana F, Mäntylä MV, Zanoni M, Marino A (2016) Comparing and experimenting machine learning

techniques for code smell detection. Empir Softw Eng 21(3):1143–1191
Arnold K, Gosling J, Holmes D (2005) The Java programming language. Addison Wesley Professional
Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality indicators.

IEEE Trans Software Eng 22(10):751–761
Bieman JM, Zhao JX (1995) Reuse through inheritance: A quantitative study of c++ software. ACM SIGSOFT

Software Engineering Notes 20(SI):47–52
Bird C, Nagappan N, Murphy B, Gall H, Devanbu P (2011) Don’t touch my code! examining the effects of

ownership on software quality. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pp. 4–14

Bougie G, Treude C, German DM, Storey MA (2010) A comparative exploration of freebsd bug lifetimes. In:
IEEE Working Conference on Mining Software Repositories (MSR), pp. 106–109. IEEE

Breesam KM (2007) Metrics for object-oriented design focusing on class inheritance metrics. In: Inter. con-
ference on dependability of computer systems (DepCoS-RELCOMEX’07), pp. 231–237. IEEE

Brown C (2019) Digital nudges for encouraging developer actions. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 202–205. IEEE

123

20 Page 38 of 42 Empirical Software Engineering (2024) 29:20

https://giammariagiordano.github.io/On_the_Adoption_and_Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/
https://giammariagiordano.github.io/On_the_Adoption_and_Effects_of_Source_Code_Reuse_on_Defect_Proneness_and_Maintenance_Effort/
http://creativecommons.org/licenses/by/4.0/

Bruegge B, Dutoit AH (2009) Object-Oriented Software Engineering Using UML, Patterns, and Java, 3rd edn.
Prentice Hall, USA

Caponetto I, Earp J, Ott M (2014) Gamification and education: A literature review. In: European Conference
on Games Based Learning, vol. 1, p. 50. Academic Conferences International Limited

Catolino G, Palomba F, Fontana FA, De Lucia A, Zaidman A, Ferrucci F (2020) Improving change prediction
models with code smell-related information. Empir Softw Eng 25(1):49–95

Catolino G, Palomba F, Tamburri DA, Serebrenik A (2021) Understanding community smells variability:
A statistical approach. In: International Conference on Software Engineering: Software Engineering in
Society, p. 77–86

Chawla S, Nath R (2013) Evaluating inheritance and coupling metrics. Int J Eng Trends Technol 4(7):2903–
2908

Cherkaoui O, Obaid A, Serhouchni A, Simoni N (1998) Qos metrics tool using management by delegation.
In: IEEE Network Operations and Management Symposium, vol. 3, pp. 836–839. IEEE

Chhikara A, Chhillar R, Khatri S (2011) Evaluating the impact of different types of inheritance on the object
oriented software metrics. International Journal of Enterprise Computing and Business Systems 1(2):1–7

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Software Eng
20(6):476–493

Craig ID (2007) Inheritance and delegation. In: Object-Oriented Programming Languages: Interpretation, pp.
83–128. Springer

Dalla Palma S, Di Nucci D, Palomba F, Tamburri DA (2021) Within-project defect prediction of infrastructure-
as-code using product and process metrics. IEEE Transactions on Softw. Engineer. pp. 1–1

Daly J, Brooks A, Miller J, Roper M, Wood M (1995) The effect of inheritance on the maintainability of
object-oriented software: an empirical study. In: Proceedings of International Conference on Software
Maintenance, pp. 20–29. IEEE

Daly J, Brooks A, Miller J, Roper M, Wood M (1996) Evaluating inheritance depth on the maintainability of
object-oriented software. Empir Softw Eng 1(2):109–132

De Lucia A, Deufemia V, Gravino C, Risi M (2009) Design pattern recovery through visual language parsing
and source code analysis. J Syst Softw 82(7):1177–1193

Di Nucci D, Palomba F, De Rosa G, Bavota G, Oliveto R, De Lucia A (2017) A developer centered bug
prediction model. IEEE Trans Software Eng 44(1):5–24

Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018) Detecting code smells using machine
learning techniques: are we there yet? In: International conference on software analysis, evolution and
reengineering (SANER), pp. 612–621. IEEE

Do LNQ, Wright J, Ali K (2020) Why do software developers use static analysis tools? a user-centered study
of developer needs and motivations. IEEE Transactions on Software Engineering

Durieux T, Martinez M, Monperrus M, Sommerard R, Xuan J (2015) Automatic repair of real bugs: An
experience report on the defects4j dataset

Eshach H, Bitterman H (2003) From case-based reasoning to problem-based learning. Acad Med 78(5):491–
496

Faraway JJ (2016) Extending the linear model with R: generalized linear, mixed effects and nonparametric
regression models. Chapman and Hall/CRC

Fontana FA, Maggioni S, Raibulet C (2013) Design patterns: a survey on their micro-structures. Journal of
Software: Evolution and Process 25(1):27–52

Fowler M (2018) Refactoring: improving the design of existing code. Addison-Wesley Professional
Gamma E, Helm R, Johnson R, Vlissides J (1993) Design patterns: Abstraction and reuse of object-oriented

design. In: European Conference on Object-Oriented Programming, pp. 406–431. Springer
Ghaisas S, Rose P, Daneva M, Sikkel K, Wieringa RJ (2013) Generalizing by similarity: Lessons learnt from

industrial case studies. In: 2013 1st International Workshop on Conducting Empirical Studies in Industry
(CESI), pp 37–42 IEEE

Giordano G, Fasulo A, Catolino G, Palomba F, Ferrucci F, Gravino C (2022) On the evolution of inheritance
and delegation mechanisms and their impact on code quality. In: IEEE Inter. Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 1–12

Giordano G, Festa G, Catolino G, Palomba F, Ferrucci F, Gravino C (2022) On the Adoption and Effects of
Source Code Reuse on Defect Proneness and Maintenance Effort. arXiv:2208.07471

Giordano G, Festa G, Catolino G, Palomba F, Ferrucci F, Gravino C (2022) On the adoption and effects of
source code reuse on defect proneness and maintenance effort. arXiv:2208.07471

Goel BM, Bhatia PK (2013) Analysis of reusability of object-oriented systems using object-oriented metrics.
ACM SIGSOFT Software Engineering Notes 38(4):1–5

Gyimóthy T, Ferenc R, Siket I (2005) Empirical validation of object-oriented metrics on open source software
for fault prediction. IEEE Trans Software Eng 31(10):897–910

123

Page 39 of 42 20Empirical Software Engineering (2024) 29:20

http://arxiv.org/abs/2208.07471
http://arxiv.org/abs/2208.07471

Haefliger S, Von Krogh G, Spaeth S (2008) Code reuse in open source software. Manage Sci 54(1):180–193
Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011) A systematic literature review on fault prediction

performance in software engineering. IEEE Trans Software Eng 38(6):1276–1304
Hassan AE (2009) Predicting faults using the complexity of code changes. In: 2009 IEEE 31st international

conference on software engineering, pp. 78–88. IEEE
Hayes JH, Patel SC, Zhao L (2004) A metrics-based software maintenance effort model. In: Eighth European

Conference on Software Maintenance and Reengineering, 2004. CSMR 2004. Proceedings., pp. 254–258.
IEEE

He P, Li B, Liu X, Chen J, Ma Y (2015) An empirical study on software defect prediction with a simplified
metric set. Inf Softw Technol 59:170–190

Herzig K, Just S, Zeller A (2016) The impact of tangled code changes on defect prediction models. Empir
Softw Eng 21(2):303–336

Hosseini S, Turhan B, Gunarathna D (2017) A systematic literature review and meta-analysis on cross project
defect prediction. IEEE Trans Software Eng 45(2):111–147

Huston B (2001) The effects of design pattern application on metric scores. J Syst Softw 58(3):261–269
Jalender B, Govardhan A, Premchand P (2012) Designing code level reusable software components. Interna-

tional Journal of Software Engineering & Applications 3(1):219
Jiang J, Xiong Y, Xia X (2019) A manual inspection of defects4j bugs and its implications for automatic

program repair. Sci. China Inf. Sci. 62(10):200102:1–200102:16
Jureczko M (2011) Significance of different software metrics in defect prediction. Software Engineering: An

International Journal 1(1):86–95
Jureczko M, Madeyski L (2010) Towards identifying software project clusters with regard to defect prediction.

In: International conference on predictive models in software engineering, pp. 1–10
Jureczko M, Spinellis D (2010) Using object-oriented design metrics to predict software defects. Models and

Methods of System Dependability. Oficyna Wydawnicza Politechniki Wrocławskiej pp. 69–81
Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2012) A large-scale empirical

study of just-in-time quality assurance. IEEE Trans Software Eng 39(6):757–773
Lambiase S, Catolino G, Tamburri DA, Serebrenik A, Palomba F, Ferrucci F (2022) Good fences make good

neighbours? on the impact of cultural and geographical dispersion on community smells. In: IEEE/ACM
International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS), p. to
appear. ACM

Lange BM, Moher TG (1989) Some strategies of reuse in an object-oriented programming environment. In:
Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 69–73

Leach RJ (1990) Software metrics and software maintenance. J Softw Maint Res Pract 2(2):133–142
Lehman MM (1996) Laws of software evolution revisited. In: European Workshop on Software Process

Technology, pp. 108–124. Springer
Lenarduzzi V, Pecorelli F, Saarimaki N, Lujan S, Palomba F (2022) A critical comparison on six static analysis

tools: detection, agreement, and precision. Journal of Systems and Software p. 111575
Lieberman MG, Morris JD (2014) The precise effect of multicollinearity on classification prediction. Multiple

Linear Regression Viewpoints 40(1):5–10
Liskov BH, Wing JM (1994) A behavioral notion of subtyping. ACM Transactions on Programming Languages

and Systems (TOPLAS) 16(6):1811–1841
Liu J, Zhou Y, Yang Y, Lu H, Xu B (2017) Code churn: A neglected metric in effort-aware just-in-time

defect prediction. In: ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 11–19

Mal S, Rajnish K (2013) New quality inheritance metrics for object-oriented design. International Journal of
Software Engineering and Its Applications 7(6):185–200

Mantyla M, Vanhanen J, Lassenius C (2003) A taxonomy and an initial empirical study of bad smells in code.
In: International Conference on Software Maintenance (ICSM), pp. 381–384. IEEE

Martinez M, Durieux T, Sommerard R, Xuan J, Monperrus M (2017) Automatic repair of real bugs in java: A
large-scale experiment on the defects4j dataset. Empir Softw Eng 22(4):1936–1964

McIntosh S, Adams B, Nguyen TH, Kamei Y, Hassan AE (2011) An empirical study of build maintenance
effort. In: 2011 33rd International Conference on Software Engineering (ICSE), pp. 141–150. IEEE

Mishra R, Sureka A (2014) Mining peer code review system for computing effort and contribution metrics for
patch reviewers. In: IEEE Workshop on mining unstructured data, pp. 11–15. IEEE

Munro MJ (2005) Product metrics for automatic identification of" bad smell" design problems in java source-
code. In: IEEE International Software Metrics Symposium (METRICS’05), pp. 15–15. IEEE

Munson JC, Elbaum SG (1998) Code churn: A measure for estimating the impact of code change. In: Pro-
ceedings. International Conference on Software Maintenance (Cat. No. 98CB36272), pp. 24–31. IEEE

123

20 Page 40 of 42 Empirical Software Engineering (2024) 29:20

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In: Interna-
tional conference on Software engineering, pp. 284–292

O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Quality & quantity
41(5):673–690

Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A (2018) On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empir Softw Eng 23(3):1188–1221

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A (2014) Mining version histories for
detecting code smells. IEEE Trans Software Eng 41(5):462–489

Palomba F, Zanoni M, Fontana FA, De Lucia A, Oliveto R (2017) Toward a smell-aware bug prediction model.
IEEE Trans Software Eng 45(2):194–218

Pascarella L, Palomba F, Bacchelli A (2019) Fine-grained just-in-time defect prediction. J Syst Softw 150:22–
36

Perera A (2020) Using defect prediction to improve the bug detection capability of search-based software
testing. In: IEEE/ACM Inter. Conf. on Automated Software Engineering (ASE), pp. 1170–1174

Posnett D, D’Souza R, Devanbu P, Filkov V (2013) Dual ecological measures of focus in software development.
In: 2013 35th International Conference on Software Engineering (ICSE), pp. 452–461. IEEE

Prechelt L, Unger B, Philippsen M, Tichy W (2003) A controlled experiment on inheritance depth as a cost
factor for code maintenance. J Syst Softw 65(2):115–126

Prechelt L, Unger B, Philippsen M, Tichy W (2003) A controlled experiment on inheritance depth as a cost
factor for code maintenance. J Syst Softw 65(2):115–126

Radjenović D, Heričko M, Torkar R, Živkovič A (2013) Software fault prediction metrics: A systematic
literature review. Inf Softw Technol 55(8):1397–1418

Rahman F, Devanbu P (2013) How, and why, process metrics are better. In: 2013 35th International Conference
on Software Engineering (ICSE), pp. 432–441. IEEE

Rajnish K, Bhattacherjee V (2008) Class inheritance metrics-an analytical and empirical approach. INFO-
COMP J Comput Sci 7(3):25–34

Salza P, Palomba F, Di Nucci D, De Lucia A, Ferrucci F (2020) Third-party libraries in mobile apps. Empir
Softw Eng 25(3):2341–2377

Sharma A, Grover P, Kumar R (2009) Reusability assessment for software components. ACM SIGSOFT
Software Engineering Notes 34(2):1–6

Shihab E, Kamei Y, Adams B, Hassan AE (2013) Is lines of code a good measure of effort in effort-aware mod-
els? Inf Softw Technol 55(11):1981–1993. https://doi.org/10.1016/j.infsof.2013.06.002. https://www.
sciencedirect.com/science/article/pii/S0950584913001316

Shin Y, Meneely A, Williams L, Osborne JA (2010) Evaluating complexity, code churn, and developer activity
metrics as indicators of software vulnerabilities. IEEE Trans Software Eng 37(6):772–787

Singh PD, Chug A (2017) Software defect prediction analysis using machine learning algorithms. In: Inter.
Conf. on Cloud Computing, Data Science & Engineering-Confluence, pp. 775–781. IEEE

Singh S, Singh S, Singh G (2010) Reusability of the software. Inter. journal of computer applications 7(14):38–
41

Singh Y, Kaur A, Malhotra R (2010) Empirical validation of object-oriented metrics for predicting fault
proneness models. Software Qual J 18(1):3–35

Sjøberg DI, Yamashita A, Anda BC, Mockus A, Dybå T (2012) Quantifying the effect of code smells on
maintenance effort. IEEE Trans Software Eng 39(8):1144–1156

Sobreira V, Durieux T, Madeiral F, Monperrus M, de Almeida Maia M (2018) Dissection of a bug dataset:
Anatomy of 395 patches from defects4j. In: 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 130–140. IEEE

Sobreira V, Durieux T, Madeiral F, Monperrus M, de Almeida Maia M (2018) Dissection of a bug dataset:
Anatomy of 395 patches from defects4j. In: International Conference on Software Analysis, Evolution
and Reengineering, SANER, pp. 130–140. IEEE Computer Society

Sommerville I (2011) Software engineering 9th edition. ISBN-10 137035152:18
Soundarajan N, Fridella S (1998) Inheritance: From code reuse to reasoning reuse. In: International Conference

on Software Reuse (Cat. No. 98TB100203), pp. 206–215. IEEE
Spadini D, Aniche M, Bacchelli A (2018) Pydriller: Python framework for mining software repositories. In:

ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 908–911

Spooner DL et al (1988) The impact of inheritance on security in object-oriented database systems. In: DBSec,
pp. 141–150. Citeseer

Succi G, Pedrycz W, Djokic S, Zuliani P, Russo B (2005) An empirical exploration of the distributions of the
chidamber and kemerer object-oriented metrics suite. Empir Softw Eng 10(1):81–104

123

Page 41 of 42 20Empirical Software Engineering (2024) 29:20

https://doi.org/10.1016/j.infsof.2013.06.002
https://www.sciencedirect.com/science/article/pii/S0950584913001316
https://www.sciencedirect.com/science/article/pii/S0950584913001316

Tamburri DA, Palomba F, Kazman R (2020) Success and failure in software engineering: A followup systematic
literature review. IEEE Transactions on Engineering Management

Taylor R (1990) Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical
sonography 6(1):35–39

Tempero E, Yang HY, Noble J (2013) What programmers do with inheritance in java. In: European Conference
on Object-Oriented Programming, pp. 577–601. Springer

Theil H (1969) A multinomial extension of the linear logit model. Int Econ Rev 10(3):251–259
Tsantalis N, Ketkar A, Dig D (2020) Refactoringminer 2.0. IEEE Transactions on Software Engineering
Van Gurp J, Bosch J (2002) Design erosion: problems and causes. J Syst Softw 61(2):105–119
VanHilst M, Fernandez EB (2007) Reverse engineering to detect security patterns in code. In: International

Workshop on Software Patterns and Quality. Information Processing Society of Japan. Citeseer
Vassallo C, Palomba F, Bacchelli A, Gall HC (2018) Continuous code quality: are we (really) doing that? In:

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, pp.
790–795

Vassallo C, Panichella S, Palomba F, Proksch S, Gall HC, Zaidman A (2020) How developers engage with
static analysis tools in different contexts. Empir Softw Eng 25(2):1419–1457

Wieringa R, Daneva M (2015) Six strategies for generalizing software engineering theories. Sci Comput
Program 101:136–152

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Wu H, Shi L, Chen C, Wang Q, Boehm B (2016) Maintenance effort estimation for open source software: A
systematic literature review. In: IEEE international conference on software maintenance and evolution
(ICSME), pp. 32–43

Yu P, Systa T, Muller H (2002) Predicting fault-proneness using oo metrics. an industrial case study. In:
European Conference on Software Maintenance and Reengineering, pp. 99–107. IEEE

Zaimi A, Ampatzoglou A, Triantafyllidou N, Chatzigeorgiou A, Mavridis A, Chaikalis T, Deligiannis I, Sfetsos
P, Stamelos I (2015) An empirical study on the reuse of third-party libraries in open-source software
development. In: Balkan Conference on Informatics Conference, pp. 1–8

Zhan X, Liu T, Fan L, Li L, Chen S, Luo X, Liu Y (2021) Research on third-party libraries in android apps:
A taxonomy and systematic literature review. IEEE Transactions on Software Engineering

Zhang C, Budgen D (2013) A survey of experienced user perceptions about software design patterns. Inf Softw
Technol 55(5):822–835

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Giammaria Giordano1 · Gerardo Festa1 · Gemma Catolino2 ·
Fabio Palomba1 · Filomena Ferrucci1 · Carmine Gravino1

Gerardo Festa
g.festa22@studenti.unisa.it

Gemma Catolino
g.catolino@tilburguniversity.edu

Fabio Palomba
fpalomba@unisa.it

Filomena Ferrucci
fferucci@unisa.it

Carmine Gravino
gravino@unisa.it

1 Software Engineering (SeSa) Lab-University of Salerno, Salerno, Italy
2 Jheronimus Academy of Data Science & Tilburg University, Tilburg, The Netherlands

123

20 Page 42 of 42 Empirical Software Engineering (2024) 29:20

http://orcid.org/0000-0003-2567-440X
http://orcid.org/0000-0002-4689-3401
http://orcid.org/0000-0001-9337-5116
http://orcid.org/0000-0002-0975-8972
http://orcid.org/0000-0002-4394-9035

	On the adoption and effects of source code reuse on defect proneness and maintenance effort
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background: Inheritance and Delegation Mechanisms in Java
	2.2 Related Work: The Impact of Inheritance and Delegation Mechanisms on Source Code Quality

	3 Research Questions and Methods
	3.1 Context of the Study
	3.2 Data Extraction Procedure
	3.3 Data Analysis Procedure
	3.4 Public Availability of Data

	4 Analysis of the Results
	4.1 RQ1 - On the Variation of Reusability Mechanisms in Source Code
	4.1.1 RQ1.1 - variation of Implementation Inheritance Over Time
	4.1.2 RQ1.2 - Variation of Specification Inheritance Over Time
	4.1.3 RQ1.3 - Variation of Delegation Over Time

	4.2 RQ2 - The Impact of Reusability Metrics on Defect-Proneness
	4.3 RQ3. On the Impact of Reusability Mechanisms in Code Churns

	5 Discussion and Implications
	5.1 Further Discussion and Analyses
	5.2 Implications of the Study

	6 Threats to Validity
	7 Conclusion
	Acknowledgements
	References

