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Abstract

Static analysis tools are widely used for vulnerability detection as they can analyze programs
with complex behavior and millions of lines of code. Despite their popularity, static analysis
tools are known to generate an excess of false positives. The recent ability of Machine Learn-
ing models to learn from programming language data opens new possibilities of reducing
false positives when applied to static analysis. However, existing datasets to train models
for vulnerability identification suffer from multiple limitations such as limited bug context,
limited size, and synthetic and unrealistic source code. We propose Differential Dataset Anal-
ysis or D2A, a differential analysis based approach to label issues reported by static analysis
tools. The dataset built with this approach is called the D2A dataset. The D2A dataset is
built by analyzing version pairs from multiple open source projects. From each project, we
select bug fixing commits and we run static analysis on the versions before and after such
commits. If some issues detected in a before-commit version disappear in the corresponding
after-commit version, they are very likely to be real bugs that got fixed by the commit. We
use D2A to generate a large labeled dataset. We then train both classic machine learning
models and deep learning models for vulnerability identification using the D2A dataset. We
show that the dataset can be used to build a classifier to identify possible false alarms among
the issues reported by static analysis, hence helping developers prioritize and investigate
potential true positives first. To facilitate future research and contribute to the community,
we make the dataset generation pipeline and the dataset publicly available. We have also
created a leaderboard based on the D2A dataset, which has already attracted attention and
participation from the community.
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1 Introduction

The complexity and scale of modern software programs often lead to overlooked program-
ming errors and security vulnerabilities. Research has shown that developers spend more than
50% of their time detecting and fixing bugs (LaToza et al. 2006; Murphy-Hill et al. 2015).
In practice, they usually rely on automated program analysis or testing tools to audit the
code and look for security vulnerabilities. Among them, static program analysis techniques
have been widely used because they can understand nontrivial program behaviors, scale to
millions of lines of code, and detect subtle bugs (Ayewah et al. 2008, 2007; Yamaguchi et al.
2015; Fanetal. 2019). Although static analysis has limited capacity to identify bug-triggering
inputs, it can achieve better coverage and discover bugs that are missed by dynamic analysis
and testing tools. In fact, static analysis can provide useful feedback and has been proven to
be effective in improving software quality (Livshits and Lam 2005; Guarnieri et al. 2011).

Besides these classic usage scenarios, driven by the needs of recent Al research on source
code understanding and vulnerability detection tasks (Yiiksel and Sozer 2013a; Tripp et al.
2014; Koc et al. 2017b; Russell et al. 2018; Li et al. 2018; Sestili et al. 2018; Zhou et al. 2019;
Buratti et al. 2020; Suneja et al. 2020; Paletov et al. 2018), static analysis techniques have also
been used to generate labeled datasets for model training (Russell et al. 2018). As programs
exhibit diverse and complex behaviors, training models for vulnerability detection requires
large labeled datasets of buggy and non-buggy code examples. This is especially critical for
advanced neural network models such as CNN, RNN, GNN, etc. However, existing datasets
for vulnerability detection suffer from the following limitations:

— Almost all datasets are on a function level and do not provide context information (e.g.,
traces) explaining how a bug may happen. Besides, they usually do not specify the bug
types and locations. In many cases, the function-level example does not even include the
bug root cause.

— Some datasets (e.g. CGD Li et al. 2018) are derived from confirmed bugs in NVD (NIST
2023a). Although they have high-quality labels, the number of such samples is limited
and may be insufficient for model training.

— Synthetic datasets such as Juliet (NIST 2023b) and S-babi (Sestili et al. 2018) can be
large. However, they are generated based on a few predefined patterns and thus cannot
represent the diverse behaviors observed in real-world programs.

— There are also labeling efforts based on commit messages or code diffs. Predicting
code labels based on commit messages is known to produce low-quality labels (Rus-
sell et al. 2018). Code diff based methods (Zhou et al. 2019) assume all functions in a
bug-fixing commit are buggy, which may not be the case in reality. More importantly,
these approaches have difficulty in identifying bug types, locations, and traces.

On the other hand, static analysis can reason beyond function boundaries. It’s automated
and scales well enough to generate large datasets from programs in the wild. For example,
Russell et al. (2018) applied the Clang static analyzer (LLVM 2018), Cppcheck (Cppcheck-
team 2023), and Flawfinder (Wheeler 2023) to generate a labeled data set of millions of
functions to train deep learning models and learn features from source code. In some sense, it
is the most promising labeling approach as it can additionally identify bug types and locations
while using traces as context information.

Despite the popularity in these scenarios, static analysis tools are known to generate an
excess of false alarms. One reason is the use of approximation heuristics to reduce complexity
and improve scalability. In particular, static analysis tries to model all possible execution
behaviors and thus can suffer from the state-space blowup problem (Tripp et al. 2014). To
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handle industry-scale programs, static analysis tools aggressively approximate the analysis
and sacrifice the precision for better scalability and speed. For example, the path-sensitive
analysis does not scale well on large programs, especially when modeling too many path
states or reasoning about complex path constraints. Therefore, path insensitive analysis that
ignores path conditions and assumes all paths are feasible is commonly used in practice,
which obviously introduces false positives. False positives (FP) are issues reported by static
analyzers which can be ignored as they are not real bugs or vulnerabilities. Analogously,
true positives (TP) are issues reported by Static Analysis tools which are genuine bugs or
vulnerabilities.

These false positives greatly hinder the utilization of static analysis tools like Infer (Face-
book 2023a) as it is inefficient for developers to go through a long list of reported issues to
find only a few true positives (Johnson et al. 2013; Muske et al. 2013).

The analysis required to separate false positives from true positives is time consuming and
often requires expert developers. Suppressing false positives is a great way to improve devel-
oper productivity, increase adoption of static analyzers while at the same time improving
software security. To suppress false positives, various methods have been proposed (as sum-
marized in Muske and Serebrenik 2016). Among them, machine learning based approaches
(Kremenek and Engler 2003; Jung et al. 2005; Yiiksel and Sozer 2013b; Hanam et al. 2014;
Tripp et al. 2014; Koc et al. 2017a; Zhang et al. 2017; Reynolds et al. 2017; Raghothaman
et al. 2018; Koc et al. 2019) focus on learning to identify the patterns of false positives from
examples. However, training such machine learning models requires good labeled datasets.
Most existing works manually generate such datasets by reviewing the analyzed code and
the output of the static analysis, also called bug report.

In our experience, this review process is very labor-intensive and cannot scale. Therefore,
the datasets are relatively small and may not cover the diverse behaviors observed in reality.

To address the challenges of creating a large labelled vulnerability dataset, we propose
D2A, an approach to automatically label issues as true or false positives. This approach is
based on differential analysis and it generates labels to distinguish the issues that are more
likely to be true positives from the ones that are more likely to be false positives. Our goal
is to generate a large labelled dataset that can be used to train machine learning models
for (1) static analyzer false positive prediction, and (2) vulnerability detection tasks. We
demonstrate how such a dataset containing bug reports and code snippets can be helpful
for the false positive prediction task. With the D2A Leaderboard (Section 5) we show how
different pieces of information from the dataset can be used, either individually or combined,
for the broader task of vulnerability detection.

The differential analysis approach is described as follows: (i) We select projects with
commit histories and focus on commits which appear to be bug fixing code changes, as
opposed to code refactoring or new features. (ii) Instead of predicting labels based on commit
messages, we run static analysis on the versions before and after such commits. (iii) If any
issue detected in a before-commit version disappears in the corresponding after-commit
version, it is very likely to constitute a real bug fixed by the commit. If we analyze a large
number of consecutive version pairs and aggregate the results, some issues found in a before-
commit version never disappear in an after-commit version. We consider these issues not very
likely to be real bugs because they were never fixed. After the differential analysis process,
we de-duplicate the issues found in all versions and adjust their classifications according to
the commit history. Finally, we label the issues that are very likely to be real bugs as positives
and the remaining ones as negatives. We name the labeling mechanism auto-labeler.

We ran the Infer static analyzer on thousands of selected consecutive version pairs from
OpenSSL, FFmpeg, libav, httpd, NGINX and 1ibtiff, well known open source
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projects. Out of 349,373,753 issues reported by the static analyzer, after deduplication, we
labeled 18,653 unique issues as positives and 1,276,970 unique issues as negatives. Given
there is no ground truth, to validate the efficacy of the auto-labeler, we randomly selected
and manually reviewed 57 examples. The result shows that D2A improves the label accuracy
from 7.8% observed in the manual case study without our technique (Section 2.2.1) to 53%
based on the manual label validation of randomly selected samples in Table 4.

Although the D2A dataset is mainly for machine learning based vulnerability detection
methods, which usually require a large number of labeled samples, in this paper, we show
it can be used to help developers prioritize static analysis issues that are more likely to be
true positives. In particular, inspired by Tripp et al. (2014), we defined features from static
analysis outputs and source code and trained a static analysis false positive prediction model.
The result shows that we were able to significantly reduce false alarms, allowing developers
to investigate issues that are less likely to be false positives first. In summary, we make the
following contributions:

— We propose a novel approach to label static analysis issues based on differential analysis
and commit history heuristics.

— Given that it can take several hours to analyze a single version pair (e.g. 12hrs for
FFmpeg), we parallelized the pipeline such that we can process thousands of version
pairs simultaneously in a cluster, which makes D2A a practical approach.

— Weran large-scale analyses on thousands of version pairs of real-world C/C++ programs,
and created a labeled dataset of millions of samples with the hope that the dataset can be
helpful to AI method on vulnerability detection tasks.

— Unlike existing function-level datasets, we derive samples from inter-procedural analysis
and preserve more details such as bug types, locations, traces, and analyzer outputs.

— We demonstrated a use case of the D2A dataset. We trained both classic machine learning
models and a deep learning model for the static program analysis false positive reduction
task, which can effectively help developers prioritize issues that are more likely to be
real bugs.

— We created a leaderboard based on the D2A dataset and made it public. It has already
attracted community attention and participation. Using the leaderboard, researchers can
compare their model performance on D2A with other models. The leaderboard can be
found at https://ibm.github.io/D2A.

— To facilitate future research, we make the D2 A dataset and its generation pipeline publicly
available at https://github.com/ibm/D2A.

In Section 2 we discuss the motivation for the paper in more depth. We describe the
generation of the D2 A Dataset in Section 3. In Section 4 we define the false positive prediction
problem and how we plan to use the D2A Dataset to tackle this problem with ML and
actually improve static analyzer output. To solve the false positive prediction problem we
try two approaches, feature engineering with Classical ML models (Section 4.3) and Deep
Learning (Section 4.4). In order to encourage community participation, we developed a
leaderboard which is discussed in Section 5. The results for Dataset Generation (Section 3.6),
FP Prediction (Section 4.5) and Leaderboard (Section 5.4) are discussed in their respective
sections. Related Work in different technologies and domains is covered in Section 6. We
end with the Conclusion in Section 8 and Threats to Validity in Section 7.
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2 Motivation

This section, describes the motivations behind this work. First, we show how existing datasets
to train ML models for vulnerability detection are not sufficient, and second, we show the
manual case study performed as a basis for the approach followed in this paper.

2.1 Existing Datasets for Al on Vulnerability Detection Task

Training ML models for code understanding and vulnerability detection requires large high-
quality datasets. Indeed, according to a recent survey (Lin et al. 2020), the lack of large
real-world datasets has become a major barrier for this field. Many existing works created
self-constructed datasets based on different criteria, however only a few fully released their
datasets.

Table 1 summarizes the characteristics of a few popular publicly available software vul-
nerability datasets. We evaluate these datasets and highlight the contributions D2A can make.

Juliet (NIST 2023b), Choi et al. (2017), and S-babi (Sestili et al. 2018) are synthetic
datasets that were generated from predefined patterns. Although their sizes are decent, the
main drawback is the lack of diversity comparing to real-world programs (Choi et al. 2017).

The examples in Draper (Russell et al. 2018) are from both synthetic and real-world
programs, where each example contains a function and a few labels indicating the bug types.
These labels were generated by aggregating static analysis results. Draper does not provide
details like bug locations or traces. For real-world programs, Draper does not maintain the
links to the original code base. If we want to further process the function-level examples
to obtain more information, it’s difficult to compile or analyze them without headers and
compiler arguments.

Table 1 Publicly available datasets for Al on C/C++ vulnerability detection

Dataset Type Level WDR Bug Bug Bug CT CE G.A. Labelling method
Type Line Trace
Juliet synthetic ~ function v/ v v X - VR predefined pattern
S-Babi synthetic ~ function v/ v v X - v v predefined pattern
Choi et.al synthetic  function v v X - v v predefined pattern
Draper mixed function v/ v X X X X X static analysis
Devign real-world function X b 4 X X X X X manual + code diff
CDG real-world  slice v b 4 b 4 b 4 X X v NVD + code diff
D2A real-world trace v v v v v v v differential analysis

To the best of our knowledge, there is no perfect dataset that is large enough and has 100% correct labels
for Al-based vulnerability detection tasks. Datasets generated from manual reviews have better quality labels
in general. However, limited by their nature, they are usually not large enough for model training. On the
other hand, the quality of the D2A dataset is bounded by the capacity of static analysis. D2A has better labels
comparing to datasets labeled solely by static analysis and complements existing high-quality datasets by the
size

WDR: Whole Dataset Released.

CT: Traceability to the code base, i.e. the commit version and location.

CE: Compilable example. i.e. possibility of compiling the file with bug with provided compilation arguments.
GA: Dataset generation implementation available
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The Devign (Zhou et al. 2019) dataset contains real-world function examples from com-
mits, where the labels are manually generated based on commit messages and code diffs. In
particular, if a commit is believed to fix bugs, all functions patched by the commit are labeled
as 1, which are not true in many cases. In addition, only a small portion of the dataset was
released.

CDG (Lietal. 2018) is derived from real-world programs. It’s unique because an example
is a subset of a program slice and thus not a valid program. Its label was computed based on
NVD: if the slice overlaps with a bug fix, it’s labeled as 1. Since the dataset is derived from
confirmed bugs, the label quality is better. However, the number of such examples is limited
and may not be sufficient for model training.

In fact, there is a pressing need for labeled datasets from real-world programs and encoding
context information beyond the function boundary (Lin et al. 2020; Zhou et al. 2019; Li
et al. 2018). It has been shown that preserving inter-procedural flow in code embedding
can significantly improve the model performance (e.g. 20% precision improvement in code
classification task) (Sui et al. 2020). To this end, D2A examples are generated based on inter-
procedural analysis, where an example can include multiple functions in the trace. D2A also
provides extra details such as the bug types, bug locations, bug traces, links to the original
code base/commits, analyzer outputs, and compiler arguments that were used to compile the
files having the functions. We believe they are helpful for Al for vulnerability detection in
general.

2.2 Manual Review and False Positive Reduction

We perform a manual review of the static analyzer output in order to evaluate their quality.
This review motivates our approach and in particular the use of ML algorithms to solve this
problem.

We start by running a state-of-the-art static analyzer on a large real-world program.
We select bug types that may lead to security problems and manually go through
each issue to confirm how many reported issues are real bugs. We include Infer bug
types based on the vulnerabilities reported as CWE (MITRETop25 (MITRETop25))
like NULI,_ DEREFERENCE (CWE476 (CWE476)), UNINITIALIZED_VALUE (CWE457
(2023)) and RESOURCE_LEAK (CWE400 (2023)).

The manual review allows us to understand the performance of a state-of-the-art static
analyzer for large real-world programs in terms of how many reported issues are real bugs.
This motivates the use of a ML approach that can improve the static analyzer output by
reducing the number of false positives.

2.2.1 Manual Case Study

Since we are interested in large C/C++ programs, we require that the static analyzer should
be able to handle industrial-scale programs and detect a broad set of bug types. To the best of
our knowledge, the Clang Static Analyzer (LLVM 2018) and Infer (Facebook 2023a) are two
state-of-the-art static analyzers that satisfy our needs. However, the Clang Static Analyzer
does not support cross translation unit analysis such that the inter-procedural analysis may
be incomplete. Therefore, we choose Infer in our experiments. We chose OpenSSL as a
benchmark because of its importance in the open-source security ecosystem and its long
commit history. We use OpenSSL version 7£0a8dc which has 1499 * . c/* . h files and
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513.6k lines of C code in total. We run Infer using its default setting and the results are
summarized in Table 2. Infer reported 492 issues of 4 bug types: 326 DEAD_STORE, 101
UNINITIALIZED_VALUE, 64 NULL_DEREFERENCE, and | RESOURCE_LEAK. Among
them, DEAD_STORE refers to issues where the value written to a variable is never used. Since
such issues are not security vulnerabilities and are in fact often intended to overwrite data
such as passwords to avoid leakage of sensitive data, their removal might create a security
issue so were excluded from the manual review. The remaining 166 issues may lead to
security-related problems and thus were included in the study.

The manual review was performed by 8 developers who are proficient in C/C++. We
started by understanding the bug reports produced by Infer. Figure 1 shows an example of
the bug report of a NULL_DEREFERENCE issue. It has two sections. The bug location, bug
type, and a brief justification why Infer thinks the bug can happen are listed in lines 1-3.
The bug explanation part can be in different formats for different bugs. In lines 6-27, the bug
trace that consists of the last steps of the offending execution is listed. Figure 1 shows 3 of
the 5 steps. In each step (e.g. line 6-11), the location and 4 additional lines of code that sit
before and after the highlighted line are provided.

We firstly had two rounds of manual analyses to figure out if the reported issue may
be triggered. Each issue was reviewed by two reviewers. If both reviewers agreed that the
reported bug can happen, we have an additional round of review and try to confirm the bug
by constructing a test case. If the two reviewers disagree, then a third reviewer is assigned to
act as a tie breaker. This process was very time consuming and challenging, especially when
reviewing a complex program with cryptography involved.

As shown in Table 2, out of 166 security vulnerability related issues, we confirmed that
13 (7.8 %) issues are true positives and 92.2% are false positives.

2.2.2 Feature Exploration for False Positive Reduction

During the manual review, we found we can make a good guess for some issues by looking
at the bug reports. Inspired by the existing false positive reduction works (Yiiksel and Sozer
2013b; Tripp et al. 2014), we explored the idea of predicting if the issues flagged by Infer
are true positives solely based on the bug reports as shown in Fig. 1.

Existing approaches are not directly applicable as they target different languages or static
analyzers. Following the observation from Tripp et al. (2014) and Du et al. (2019) that issues
with complex code are more likely to be false positives, we considered features in bug reports
and source code that may reflect code complexity. We explored the following 8 features that
belong to 3 categories: (1) error_line and error_char denote the location (line and column
number) where the bug occurs. (2) length, c_file_count and package_count denote the unique

Table 2 Manual Review: OpenSSL 7£0a8dc

Error type Reported Manual review

FP TP FP:TP
UNINITIALIZED_VALUE 101 101 0 -
NULL_DEREFERENCE 64 51 13 4:1
RESOURCE_LEAK 1 1 0 -
TOTAL 166 153 13 12:1

326 DEAD_STORE issues were excluded from manual review
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255
26.
27.

. crypto/initthread.c:385: error: NULL_DEREFERENCE

pointer “gtr® last assigned on line 382 could be null and is dereferenced
at line 385, column 53.

. Showing all 5 steps of the trace

. crypto/initthread.c:377:1: start of procedure init_thread_deregister()
. 375.
. 376. #ifndef FIPS_MODE

. 377. > static int init_thread_deregister(void *index, int all)
. 378.

. 379. GLOBAL_TEVENT_REGISTER *gtr;

. crypto/initthread.c:382:5:

. 380. int i;

. 381.

. 382. > gtr = get_global_tevent_register();

. 383. if (lall)

. 384. CRYPTO_THREAD_write_lock(gtr->lock);

. crypto/initthread.c:385:17:

. 383. if (lall)

. 384. CRYPTO_THREAD_write_lock(gtr->lock);
385. > for (i = @; i < sk_THREAD_EVENT_HANDLER_PTR_num(gtr->skhands); i++) {
386. THREAD_EVENT_HANDLER **hands
387. = sk_THREAD_EVENT_HANDLER_PTR_value(gtr->skhands, i);

Fig. 1 Infer bug report example

number of line numbers, source files and the directories respectively in the trace. (3) if_count
and function_count are the numbers of the branches and functions in the trace.

We extracted the features from the bug reports of 166 issues. After normalization, we
computed the average feature values of the 13 true positive issues and 153 false positive
issues. As shown in Fig. 2, the average feature values of true positives and false positives
are significantly different and easily separable for all 8 features, which suggests a good false
positive reduction classifier can perform very well.

0.6 oo

05 mmm TP Issues 0.5 0.5 0.5
7 mmm FP Issues

0.41 41
0.4 4 0.38
0.3 {
0.2
0-2 4 0.16 0.17
0.1 | 0.09
0.0

i /CO“‘“ \ e(\%&‘(\ ercor.) \in

AverageNormalizedValue

JSACII unt nt fun
cxion coV eﬂ or h\efo ac\ﬁae,e,cou or _POoS-
o

exf

Sample Feature

Fig.2 Feature Exploration. We experiment with a few features that may reflect the complexity of the issues.
After normalization, the averages of these 8 feature values for true positives and false positives are significantly
different, which suggests a classifier may achieve good performance
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3 D2A Dataset Generation

In this section, we present the differential analysis based approach that labels the issues
detected by the static analyzer. Then, we show how we generate two kinds of examples for
the D2A dataset based on the results obtained.

3.1 Overview

Figure 3 shows the overall workflow of D2A. The input to the pipeline is a URL to a git
repository. The output is examples generated by using the static differential analysis.

As the pre-processing step, based on the commit messages only, the Commit Message
Analyzer (Section 3.2) selects a list of commits that are likely to be bug fixes. Because it
can be very expensive to analyze a pair of consecutive versions, the goal of this step is to
filter out commits that are not closely related to bug fixes (e.g. documentation improvement
commits) and speed up the process.

For each selected commit, we obtain two sets of issues reported by the static analyzer
by running the analyzer on the before-commit and the corresponding after-commit versions.
The auto-labeler (Section 3.3) compares these two sets and identifies the issues that are fixed
by the commit.

After aggregating all such issues from multiple consecutive version pairs and filtering out
noises based on commit history, the auto-labeler labels issues that are very likely to be real
bugs as positives, and the issues that are never fixed by a commit as negatives because they
are very likely to be false positives. We further extract the function bodies according to the
bug traces and create the dataset.

3.2 Commit Message Analysis

We created the Commit Message Analyzer (CMA) to identify commits that are more likely
to refer to vulnerability fixes and not documentation changes or new features.

Using the NVD dataset (NIST 2023a), CMA can learn the language used in commits that
fix vulnerabilities. A pure ML approach would require a larger dataset than NVD, hence the
CMA uses a hybrid approach. This approach combines semantic similarity-based methods
(Chandrasekaran and Mago 2020) and snippet samples-based methods (Sahami and Heilman
2006) to identify relevant commit messages and their associated commits. From the commit
messages, we first filter out word-level noises such as code snippets, meaningless tokens,
names, email addresses, links, etc. Then, we identify commits that successfully fixed the
vulnerabilities in the NVD database. We extract the commit messages that describe the
vulnerabilities as well as the fixes. Then, we trained a model to learn the common keywords
that can be used as indicators to help recognize bug-fixing commits. Based on the semantic

labeled issue FP Reduction Al Model
X Auto-Labeler SR Model Training Training
i il version

Static analysis « Differential Analysis
repo Message pairs Analysis reports
Analysis

__
Dataset

* Filtering Heuristic based
on commit history

labeled issue Function labeled
type, loc, trace Extraction code snippet,
type, trace

commit history git repo

Fig.3 The overview of D2A dataset generation pipeline
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distribution of the vulnerable mentions, CMA identifies the category of the vulnerability and
ranks commits based on confidence scores, with a threshold set to 0.8.

Like any ML based technique, the quality of CMA model prediction is bounded by the
dataset, which in this case, refers to the NVD and commit messages. It’s possible some bugs
are fixed silently and the commits don’t have meaningful messages. The CMA will find
it hard to identify such fixes since the messages are uninformative and don’t contain any
useful signal that the model can exploit. We try to mitigate the number of uninformative
commits by excluding messages that are too short, however, this approach will not remove
all uninformative messages. The CMA will still produce useful results because NVD label
quality is relatively high and most of the commit messages in our experience are informative.

3.3 Auto-labeler

For each bug-fixing commit selected by CMA, we run the static analyzer on the
versions before and after the commit. We evaluated several static analyzers such as
CppCheck (Cppcheck-team 2023), Flawfinder (Wheeler 2023), Clang Static Analyzer
(LLVM 2018), and Infer (Facebook 2023a). We chose Infer because it’s arguably the state-
of-the-art inter-procedural static analysis engine that can detect non-trivial security related
bug types. Infer’s inter-procedural static analysis, as its name indicates, considers the inter-
actions between different procedures or methods, offering a more comprehensive view of
a program’s behavior. It is enhanced by the use of separation logic (O’Hearn et al. 2001)
and bi-abduction (Calcagno et al. 2011). Separation logic is about the ability to reason on
disjoint parts of memory, simplifying the analysis of intricate data structures, particularly
those involving pointers. Bi-abduction, an inference rule in separation logic, further aids in
deducing the best explanation for the state changes in memory across procedures by breaking
the large analysis of a large program in small independent analyses of its procedures. This
gives Infer the ability to scale independently of the size of the analyzed code.

Identify Fixed Issues in a Version Pair If we denote the issues found in the before-commit
version as Ipefore and the ones in the corresponding after-commit version as Iyfer, all issues
can be classified into three groups: (1) the fixed issues (Ipefore - lafter) that are detected in the
before-commit version but disappear in the after-commit version, (2) the pre-existing issues
(Lafter N Tvefore) that are detected in both versions, and (3) the introduced issues (Iafier - Inefore)
that are not found in the before-commit versions but detected in the after-commit version.
We are particularly interested in the fixed issues because they are very likely to be bugs fixed
by the commit. We use the infer-reportdiff tool (Facebook 2023b) to compute them.

Note that it’s possible that a fixed issue is not a real bug as the static analyzer may
make mistakes, e.g. omit an issue from the after-commit even though the code had not
changed. In our experience, an important reason is that Infer can exhibit non-deterministic
behaviors (Villard, 2023). And the non-determinism occurs more frequently when enabling
parallelization (Zheng 2023). In order to minimize the impact, we have to run Infer in single-
threaded mode. However, this setting brings in performance challenges and it takes several
hours to analyze a version pair. For example, on an IBM POWERS cluster, it takes 5.3 hrs
and 12 hrs to analyze a version pair of OpenSSL and FFmpeg, respectively, in single-thread
mode. As we will need to analyze thousands of version pairs, it’s impractical to do so on a
PC or a small workstation. Therefore, we parallelized the analysis to process more than a
thousand version pairs simultaneously in a cluster. The improvement in performance depends
on the availability of computation resources like CPUs and RAMs.
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Deduplicate Infer Issues Based on Commit History Afteridentifying fixed and pre-existing
(not-fixed) issues in each version pair, we deduplicate the issues that occur in multiple version
pairs. In particular, we compute a checksum of the bug report after removing location-related
contents (e.g, file names, line numbers, etc) and use it as the id for deduplication. The reason
we remove location-related contents is that another commit may have made changes earlier in
the file, changing the the line numbers in the bug report. The expected time-based sequence
for a real bug is for it to appear in a number of commit pairs, disappear from the after-
commit of a later pair, and never reappear. We sort all occurrences of the fixed issues based
on the author date of the commits and apply the following heuristics to eliminate any false
positives.

— Fixed-then-unfixed issues: Because of some randomness in the way Infer selects code to
analyze, it may accidentally omit a bug from the after-commit version, falsely suggesting
that it was fixed by that commit. If a fixed issue reappears in a later commit pair, we
assume that it is a false positive caused by an error in the static analyzer. We change the
label of such cases and mark them as negative. (Note that this sequence could happen if
the suspect code was removed and then later re-introduced.)

— Untouched issues: For each fixed issue we check which parts of the code are patched by
the commit. If the commit code diff does not overlap with any step of the bug trace at
all, it’s unlikely the issue is fixed by the commit but more likely to be a static analyzer
error. We mark such cases negative as well.

After applying the above filters, the remaining issues in the fixed issues group are labeled
as positives (issues that are more likely to be buggy) and all other issues are labeled as
negatives (issues that are more likely to be non-buggy). We call these auto-labeler examples.
Because auto-labeler examples are generated based on issues reported by Infer, they all have
the infer bug reports.

After-fix Examples Due to the nature of the vulnerability detection task, the auto-labeler
produces many more negatives than positives such that the dataset of auto-labeler examples
is quite imbalanced. Given that the positive auto-labeler examples are assumed to be bugs
fixed in the after-commit versions, extracting the corresponding fixed versions produces
another kind of auto-labeler negative examples, which we call after-fix examples.

In particular, the auto-labeler works on two consecutive versions that are before and after
a commit. Given a particular issue detected in the before-commit version does not occur
in the after-commit version, the commit may have changed something that fixed the issue.
Therefore, given an issue that detected in the before version but disappeared in the after
version, if we know the commit changed some code in the trace reported by static analyzer,
extracting the corresponding parts from the after-commit version may reveal how the issue
is fixed and thus gives us a negative example. More details and a concrete example could be
found at https://github.com/IBM/D2A/blob/main/README.md#sample-types.

There are two benefits: (1) Since each negative example corresponds to a positive example,
the dataset of auto-labeler positive examples and after-fix negative examples is balanced. (2)
The after-fix negative examples are closely related to the positive ones so that they may
help models focus on the delta parts that fixed the bugs. Note that the after-fix examples do
not have a static analysis bug report because the issue does not appear in the after-commit
version.
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3.4 Infer’s Bug Trace

Infer static analysis produces many output files. For our purposes, the bug trace text file is
particularly interesting. As illustrated in Fig. 1, features reflecting the static analysis logic
and rules can be extracted from the bug trace file. The bug trace starts with the location
where the static analyzer believes the error to have originated, and lists all the steps up to
the line generating the error. Many of the bugs are inter-procedural, so the bug trace cuts
across many files and functions. For each step in the flow, the trace contains 5 lines of code
centered on the statement involved, the location of the file and function in the project, and a
brief description of the step. At the top of the trace, the file and line of code where the bug
occurred are mentioned along with the bug type (error type). There is also a short description
of the bug. The bug trace is therefore a combination of different types of data like source
code, natural language, numeric data like line numbers, and file paths.

3.5 An Example in the D2A Dataset

Figure 4 shows a D2A example, which contains bug-related information obtained from the
static analyzer, the code base, and the commit meta-data.

In particular, every example has its label (0 or 1) and label_source (‘“auto_labeler” or
“after_fix_extractor”) to denote how the example was generated and if it is buggy. bug_type,
bug_info, trace and zipped_bug_report are obtained from the static analyzer, which provides
details about the bug types, locations, traces, and the raw bug report produced by Infer. This
information can be useful to train models on bug reports.

For each step in the trace, if it refers to a location inside a function, we extract the function
body and save it in the functions section. Therefore, an example has all functions involved in
the bug trace, which can be used by function level or trace level models. Besides, we cross-
check with commit code diff. If a function is patched by the commit, the fouched_by_commit
is true.

In addition, the compiler arguments used to compile the source file are saved in the
compiler_args field. They can be useful when we want to run extra analysis that requires
compilation (e.g. libclang Clang 2023 based tools).

3.6 Dataset Generation Results
3.6.1 Dataset Statistics

The dataset generation pipeline is written in python and runs on a POWERS cluster, where
each node has 160 CPU cores and 512GB RAM. We analyzed 6 open-source programs
(namely, OpenSSL, FFmpeg, httpd, NGINX, 1ibtiff, and 1ibav) and generated the
initial version of the D2A dataset. In particular, Infer can detect more than 150 types of
issues in C/C++/Objective-C/Java programs (Infer Infer). However, some issues detectors
are not ready for production and thus disabled by default. In the pipeline, we additionally
enabled the detection of all issue types related to buffer overflows, integer overflows, and
memory/resource leaks, even though some of them may not be production-ready.

Table 3 summarizes the dataset generation results. The column CMA Version Pairs shows
the number of bug-fixing commits selected by the commit message analyzer (Section 3.2). For
each selected commit, we run Infer on both the before-commit and after-commit versions. We
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02. "id": "httpd_9b3a5feffd8ec787cf645f97902582acb3234d96_1",
03. "label": 1,

04. "label_source": "auto_labeler",

05. "bug_type": "BUFFER_OVERRUN_U5",

06. "project": "httpd",

07. "bug_info": {

08. "qualifier": "Offset: [@, +o0] Size: 10 by call to ...",
9. "loc": "modules/proxy/mod_proxy_ fcgi.c:178:31",

1e. "url": "https://github.com/apache/httpd/blob/..."

1. 3},

12. "versions": {

13. "before": "545d85acdaa384a25ee5184a8ee671al8ef5582f",
14. "after": "2c70ed756286b2adf81c55473077698d6d6d16al"

15. 3},

16.  "trace": [

17.

18. "description": "Array declaration",

19. "loc": "modules/proxy/mod_proxy_fcgi.c:178:31",

20. "func_key": "modules/proxy/mod_proxy fcgi.c@167:1-203:2",
21. }

20 g

23.  "functions": {

24. "modules/proxy/mod_proxy_fcgi.c@167:1-203:2": {

258 "name": "fix_cgivars",

26. "touched_by_commit": true,

27. "code": "static void fix_cgivars(request_rec *r, "
28. }

29. 3},

30.  "commit": {

31. "url": "https://github.com/apache/httpd/commit/2c70ed7",
32. "changes": [

33.

34. "before": "modules/proxy/mod_proxy_fcgi.c",

358 "after": "modules/proxy/mod_proxy_ fcgi.c",

36. "changes": ["177,1~177,5"]

By

38. ]

39. ),

40. "compiler_args": {

41. "modules/proxy/mod_proxy_fcgi.c": "-D_REENTRANT -I./server ...",
42. },

43. "zipped_bug_report": "..."

44. }

Fig.4 A simplified example in D2A dataset

drop a commit if Infer failed to analyze either the before-commit version or the after-commit
version. Column Infer shows the number of commits or version pairs Infer successfully
analyzed. For auto-labeler examples (Section 3.3), column Issues Reported and unique auto-
labeler examples - all shows the number issues Infer detected in the before-commit versions
before and after deduplication, which will be labeled as positives and negatives as shown
in column Positives and Negatives. For after-fix examples (Section 3.3), column Negatives
shows the number of examples generated based on the auto-labeler positive examples. In
total, we processed 11,846 consecutive versions pairs. Based on the results, we generated
1,295,623 unique auto-labeler examples and 18,653 unique after-fix examples.

The data described in Table 3 is further processed before used for training. The train-
ing dataset is described in Section 4.5.1 and training data statistics, including statistics for
security-related bug types can be found in Table 7.
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Table 3 Dataset generation results

Project Version pairs Issues reported ~ Unique auto-labeler examples Unique after-fix
CMA Infer All Negatives ~ Positives ~ Negatives

OpenssL 3,011 2,643 42,151,595 351,170 343,148 8,022 8,022

FFmpeg 5932 4930 215,662,372 659,717 654,891 4,826 4,826

httpd 1,168 542 1,681,692 12,692 12,475 217 217

NGINX 785 635 3,283,202 18,366 17,945 421 421

libtiff 144 144 525,360 12,649 12,096 553 553

libav 3,407 2,952 86,069,532 241,029 236,415 4,614 4,614

Total 14,447 11,846 349,373,753 1,295,623 1,276,970 18,653 18,653

CMA: The number of bug-fixing commits identified by the commit message analyzer.
Infer: The number of version pairs successfully analyzed by Infer.
Issues Reported: The number of issues in the before-commit versions before deduplication

3.6.2 Manual Label Validation

As there is no ground truth, to evaluate the label quality we randomly selected 57 examples
(41 positives, 16 negatives) with a focus on positives. We gave more weights to positive
examples because they are more important for our purpose. As mentioned in Section 4.1,
labeling a non-buggy example as buggy is against the goal of false positive reduction. But it’s
acceptable if we miss some of the real bugs. If we select examples according to the overall
dataset distribution, we will have too few positive examples. Each example was independently
reviewed by 2 reviewers.

Table 4 shows the label validation results. On this biased sample set, the accuracy with
and without the auto-labeler is 53% and 35% respectively. Note the accuracy on an unbiased

Table 4 Auto-labeler manual validation results

Positives Negatives All

# A D # A D # A D
BUFFER_OVERRUN_L1 2 0 2 1 1 0 3 1 2
BUFFER_OVERRUN_L2 3 1 2 1 1 0 4 2 2
BUFFER_OVERRUN_L3 6 1 5 4 4 0 10 5 5
BUFFER_OVERRUN_S2 0 0 0 1 0 1 1 0 1
INTEGER_OVERFLOW_L1 3 2 1 1 1 0 4 3 1
INTEGER_OVERFLOW_L2 13 6 7 3 3 0 16 9 7
INTEGER_OVERFLOW_R2 1 1 0 0 0 0 1 0
MEMORY_LEAK 1 1 0 1 1 0 2 0
NULL_DEREFERENCE 2 1 1 1 0 1 1 2
RESOURCE_LEAK 1 1 0 1 1 0 2 0
UNINITIALIZED_VALUE 9 3 6 1 1 0 10 4 6
USE_AFTER_FREE 0 0 0 1 1 0 1 1 0
ALL 41 17 24 16 13 3 57 30 27
ALL 100% 41% 59% 100% 81% 19% 100% 53% 47%

#: the issue count; A/D: manual review agrees/disagrees with the auto-labeler label
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sample set is expected to be higher as there should be more negative examples. Take the
OpenSSL study in Section 2.2 as an example. Without auto-labeler, the accuracy was
only 7.8% observed in the manual case study of a set of 166 security-related examples
(Section 2.2.1).

4 Using D2A for FP Prediction

The D2A dataset can be used to train ML models, which can operate on code directly or
which can be used to improve static analyzer output. In this work we present Augmented
Static Analysis, which is one way to improve the static analyzer output by using ML models
trained on D2A data to predict false positives. We chose this task because we felt this would
be the fastest way to improve developer productivity and experience as static analyzers are
already part of their workflow. Our approach, uses the D2A dataset to train ML models and
then uses one of the Infer output files called the Bug Trace, for inference. In the following
subsections, we define the augmented static analysis problem (Section 4.1) and then provide
some details about the Infer Static Analyzer output (Section 4.2), which becomes input to
our trained ML models. ML models are discussed in depth in Sections 4.3 and 4.4. Then in
Section 4.5 we discuss the results of various models on the FP prediction problem.

4.1 Problem Statement

As observed previously (Johnson et al. 2013; Muske et al. 2013), an excessive number of
false positives greatly hinders the utilization of static analyzers as developers get frustrated
and do not trust the tools. To this end, we aim to define a process that can identify a subset
of the reported issues that are more likely to be true positives, and use it as a prioritization
tool. The model will rank issues based on the increasing likelihood of being false positives
or decreasing likelihood of being true positives. Developers may focus on the issues likely to
be true positives first and then move to remaining issues which are likely to be false positive,
if they have the time.

We treat the static analyzer as a black box and train a false positive prediction model based
on the bug reports and source code. Our goal is to achieve a balance between a large number
of predicted positives and a high false positive reduction rate. We want developers to see
more real bugs at the start of the prioritized list of issues. An example of this is shown in our
libtiff case study in Table 9.

4.2 Problem Dataset

As described in Section 3.3, the original dataset has two types of negative examples, before-
fix and after-fix. For these experiments, we built a dataset using the positive samples and the
before-fix negative examples. We are not interested in the after-fix negative examples since
these samples don’t have bug traces produced by static analysis. In every project, the number
of negative labels is very large compared to the number of positive labels, as can be seen in
Table 7.
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4.3 FP Prediction with Classical Machine Learning

In this section, we discuss how we identify useful features from bug trace and source code,
and then train machine learning models for the false positive prediction task.

4.3.1 Feature Engineering

Our primary assumption when coming up with features was that complex code is more likely
to have bugs and/or is more likely to be classified as having bugs by a static analyzer, because
it is highly probable that the developer failed to consider all possible implications of the
code. Complex code is also more difficult for other developers to understand, increasing the
chance of their introducing bugs. We extract features based on this assumption and taking
inspiration from Flynn (2016) and Du et al. (2019).

One indication of complexity is the size of the bug trace. A long bug trace indicates that
the control passes through many functions, files or packages. The location of the bug could
also indicate the complexity of the code. The line number is indicative of the size of the file,
and the column number indicates the length of the line of the code where the bug occurred.
The depth of the line of code could indicate how entrenched the problematic code happens to
be. Conditional statements cause many branches of execution to emerge and these can lead
to convoluted and buggy code. One way to estimate the complexity is to count the number
of times conditional statements occur and also the occurrences of OR/AND conditions. The
error type is also a major feature that we consider, as well as the number of C keywords used.
Table 5 lists the features we extract from bug reports.

Although bug reports contain some code and we can extract features from them, the
context is generally limited to only a few lines. In order to better capture code complexity,
we decided to design features that used more of the surrounding context of the lines of code
that appear in bug reports. Apart from bug reports, D2A includes the full source code of each
function that occurs in the bug report, including the buggy function identified by the static
analyzer. The URL of the file which contains the buggy function is also available and can be
easily downloaded. The source code from functions and the file provides additional context
which can be used to design features.

Table 6 shows the features, which are extracted from source code. This includes features
extracted the source code of all the functions in the bug trace (“_functions” suffix), from the
source code of the buggy function (“_bug_function” suffix), from the source code of the file
which contains the buggy function (“_bug_code” suffix). There are 4 code features, for each
of these 3 code subsets of functions, bug function and bug file. The Cyclomatic Complexity
of pure code data (no bug reports) was calculated using the Lizard (Yin 2019) tool. All the
bug report and source code features are extracted, normalized and saved in the features file.
We analyze the relative importance of these features in Section 4.5.3.

The features are designed for Infer bug report and/or C/C++ source code. Generalizing
these features to other static analyzers and programming languages would require careful
examination of each feature and would be highly dependent on the characteristics of the static
analyzer and the programming language.

4.3.2 Model Selection
We experimented with 13 well-known machine learning models. Namely the Scikit-learn

(Pedregosa et al. 2011) implementations of Decision Trees, K-means, Random Forest, Extra-
trees, Gradient Boosting, Ada Boost, Linear Classifiers, Gaussian Naive Bayes, Multinomial
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Table 5 Features extracted from infer bug report

Feature

Description

Feature

Description

error

error_line_len

average_error_line_depth

error_pos_fun
max_code_line_length
code_line_count
arithmetic_count
call_count

for_count
keywords_count
question_count
size_calculating_count
offset_added

max_if OR_count
avg_if OR_count

variable_changed

Infer bug/issue type
length of error line

average indent of code
lines

position of error
within function

max length of lines in
flow

the number of flow
lines

average operators /
step

fraction of call steps

the number of for
loops in report

the number of C
keywords

fraction of ‘?7” steps

average size
calculations / step

the number of “offset
added”s in report

Max logical ORs in an
if statement

Avg logical ORs in an
if statement

Number of variables
that changed value

error_line
error_line_depth
max_error_line_depth
average_code_line_length
length

alias_count
assignment_count
cfile_count
infinity_count
package_count
return_count
parameter_count
max_if AND_count
avg_if AND_count

error_char

line number of the
error

indent for the error
line text

max indent of code
lines

average length of lines
in flow

the number of lines of
code

the number of address
assignment lines

fraction of
Assignment steps

the number of
different .c files

fraction of +00 steps

the number of
different directories

average branches /
step

fraction of parameter
steps

Max logical ANDs in
an if statement

Avg logical ANDs in
an if statement

char number of the
error in trace

Naive Bayes, and Complement Naive Bayes. And also XGBoost (Chen and Guestrin 2016),
Catboost (Dorogush et al. 2018) and LightGBM (Ke et al. 2017).

We ranked these models based on both their AUC and F1 scores and selected the four
best models for Voting and Stacking ensembles, discussed later. The four best models were,
Random Forest, Extra Trees, LightGBM and Catboost.

4.3.3 Evaluation Metrics

In order to evaluate different models, because of the imbalance in the dataset, we used the Area
Under the Curve (AUC score, Fig. 5), a threshold-invariant metric that visualizes the trade-off
when we want to reduce the false positive rate while maintaining a good true positive rate.
Since the main task is to reduce the number of False Positives, we calculate the percentage
reduction in False Positives on the test set. Relying too much on this metric can bias towards
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Table 6 Features extracted from source code

Feature Description Feature Description
CC_bug_code Cyclomatic params_bug_code Number of parameters
complexity of in buggy file
buggy file
loop_num_bug_code Number of loops in IFwoELSE_bug_code Number of if without
buggy file else statements in
buggy file
CC_functions Cyclomatic params_functions Number of parameters

loop_num_functions

CC_bug_function

loop_num_bug_function

complexity of trace
functions

Number of loops in
trace functions

Cyclomatic
complexity of
buggy function

Number of loops in
buggy function

IFwoELSE_functions

params_bug_function

IFwoELSE_bug_function

in trace functions

Number of if without
else statements in
trace functions

Number of parameters
in buggy function

Number of if without
else statements in

buggy function

models, which make very few accurate predictions. To make sure this is not the case, we also
calculate the total percentage of True Positives which are predicted by the model. An ideal
model would have a very high AUC Score, low False Positive rate, and high True Positives
rate. One choice for the threshold is the point which minimizes the distance from the top-left
corner (all true positives and no false positives). Once this threshold-point is chosen we also
present F1-score as the average of each class F1-score since our goal is to reduce the number
of false positives while preserving the real ones.

In this work, we deviate from Zheng et al. (2021) and change the threshold-point to be
where the False Positive Rate (FPR) is 5%. The 5% point was chosen arbitrarily, based on
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Fig.5 The blue X marks the point on the ROC curve that minimizes the distance from the top-left corner. The
green dot indicates the point where the False Positive Reduction Rate is 95%. This figure is for the Classical
ML model described in Section 4.3
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our assumption of how much false positives the users would be willing to tolerate. This point
is indicated by the green dot in Fig. 5 while the blue cross indicates the previous threshold-
point, closest to the top-left corner. The False Positive Reduction Rate (FPRR) at the new
threshold-point (green dot) is 95% (100 - FPR). The F1 score is also calculated based on this
point. Setting the threshold-point to FPRR 95% sets a standard for models and makes the
comparison between them easier. The models also become more selective causing a reduction
in the number of positive predictions and consequently a lower True Positive Rate (TPR) but
also a much lower FPR. The lower TPR can be mitigated by model improvement.

4.3.4 Voting

Real-world datasets present a high imbalance between real bugs and false positives. Also,
the projects used to derive the datasets proposed in this work vary in size yielding different
dataset sizes. Therefore, it’s not easy to choose the model which does the best on all the
datasets. While on a specific dataset a model can perform greatly, it could work poorly in
another: to mitigate such a problem we applied a soft-voting strategy, based on Scikit-learn,
which averages the scores of each classifier, which should produce a more stable behavior
across datasets.

4.3.5 Stacking Ensemble

Voting ensemble gives us good results but it is better suited for combining the predictions of
a group of classifiers which perform equally well. If there is a difference in the performance
of classifiers, or certain classifiers outperform others, it’s better to use an ensemble that can
learn from the predictive behavior of individual classifiers. For this purpose, we also used
a stacking ensemble (Wolpert 1991) which has a logistic regression classifier that is trained
with base model predictions as features.

Figure 6 shows the latest ensemble architecture we use to make predictions. Trace features,
combined with Bug function features, trace functions features and bug file features are fed
into the base models. Base model predictions are then combined using the scikit-learn Vot-
ing(soft) or Stacking classifiers, and scored with their predict_proba function. predict_proba
is a function supported by scikit-learn models which returns the probability of different labels.

4.4 FP Prediction with Deep Learning

Zheng et al. (2021) showed that feature engineering for source code analysis can be an
effective way to predict false positives. Deep learning is a powerful and a more generalizable
technique that has been applied to source code related tasks (Feng et al. 2020; Guo et al.
2021; Wang et al. 2021). Both approaches come with their limitations and trade-offs. While
ml ensembles are light weight and give very good results, they rely on hand crafted features
which require expertise and time to develop, and are not easily generalizable. On the other
hand, deep learning models are more generalizable, but have greater hardware requirements,
limits on input size and may not be able to learn strong features like cyclomatic complexity.
In Section 5 we show how different models perform on different types of data.

In this section, we discuss training BERT, which is a deep learning model, on both source
code and static analyzer bug reports for the FP prediction task. BERT does not require
hand crafted features and hence is more generalizable to other static analyzer outputs and

@ Springer



48 Page 20 of 38 Empirical Software Engineering (2024) 29:48
Trace + Bug Function + Functions + Bug Code
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Fig. 6 Stacking and Voting Ensemble architecture with different Tree, Boosting base models. Features from
different types of data can be taken as input

programming languages. Related work, Section 6, has more details about BERT (Devlin et al.
(2019)) and self-supervised learning.

BERT has proven to be very successful in NLP classification tasks. The bidirectional
nature of BERT suits defect detection because both front and back contexts are important in
defect analysis. Since D2A contains C/C++ data only, we decided to use C-BERT (Puri et al.
2021; Buratti et al. 2020) which is a BERT-based model trained only on C source code.

Any BERT model, including C-BERT, can be trained in two phases. The first phase is
unsupervised and involves training with a large quantity of text data. In case of C-BERT
the text data was C source code. More details about this process can be found in Devlin
et al. (2019), Buratti et al. (2020) and Puri et al. (2021). The second phase, fine-tuning, is
supervised and task dependent. We use the D2A dataset in the fine-tuning phase.

Fine-tuning is performed on one single Nvidia V100 GPU. We fine-tune for 10 epochs,
using a small learning rate of 0.000008 to avoid destroying the knowledge acquired during
pre-training. Batch size is set to 16 and the typical fine-tuning time ranges between 30 minutes
to a couple of hours (for bigger datasets such as OpenSSL and 1ibav).

Like all transformer-based models, C-BERT has a limitation on the input size, which is
the maximum size of the input text, measured in tokens, that can be fed into the model. The
maximum size of input text that can be fed into the C-BERT model is 512 tokens. In other
words, the input context window size of C-BERT is 512 tokens. If the input code snippet or
bug report, after preprocessing with Sentencepiece (Kudo and Richardson 2018), is longer
than 512 tokens, it will be truncated.

Due to the same input size limitation, we can not fit all data into the context window.
Therefore, as shown in Fig. 7, we explored multiple options to combine several types of the
data in the D2A dataset and evaluated their performances:

— Trace only: the bug trace produced by Infer only (e.g., Fig. 1). It’s a mixture of source
code and natural language.

— Single bug function: the particular function body where the bug occurs per the Infer
report. It’s only source code.
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Fig.7 Due to input size restriction for fine-tuning, we have to pick just a subset of the available data in the D2A
dataset. We tried to combine all the information that are useful for a BERT-like model in different ways and
evaluated their performance. For bug trace and bug function, we had two special tokens ([CLS] and [SEP]) to
let the model know where the input starts and where it ends. For list of functions, since it’s a concatenated list,
we separate each of them with the special token [SEP] and we do the same to concatenate the bug trace and the
bug function. After the input is built with the special tokens, it is tokenized and sent to the model. As designed
by the original BERT model, the special token [CLS] is sent to a standard linear layer that will perform the
final binary classification. It should be noted that the different alternatives in input at the tokenization block
are never given to the model together, since it can see only one modality at a time

False Positive
True Positive

— Functions: concatenating all the functions that appeared in the Infer trace. It’s only source
code.

— Trace + Bug Function: besides the Infer trace, we additionally include the function body
where the bug occurs per the Infer report. It’s a mixture of source code and natural
language.

While a detailed evaluation of C-BERT performances can be found in Section 4.5, we
highlight here a few interesting findings. We observed that option of Trace+Bug Function
consistently outperformed other options, which confirms our intuition that C-BERT can
leverage the bi-modal data of natural language and code. Another interesting result is that
only modeling the list of functions in trace usually gave the worst results, which is expected
since concatenating multiple functions could be too long for the limited input size.

4.5 False Positive Prediction Results

In this section, we show the evaluation results of the Al-based static analysis false positive
prediction as a use case to demonstrate how D2A dataset can be helpful.

4.5.1 Dataset

To facilitate reproducibility, we defined and plan to release a split for each project. In par-
ticular, we drop bug types without any positive examples and split each project’s data into
train:dev:test sets (80:10:10) while maintaining the distribution of bug types. We use the
same split in this experiment. The model will be trained on the train + dev sets and tested on
the test set.
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We observed that some FFmpeg and 1ibav examples are quite similar as 1ibav was
forked from FFmpeg (Wiki 2023). We dropped FFmpeg examples so that the all-data
combined experiment would be fair. FFmpeg examples are more imbalanced compared to
libav and we leave it for future work.

Although we collect examples generated for many bug types that are not production-ready
and are disabled by default in Infer, for the initial experiments, we considered just the 18
security-related bug types that are enabled by default. These results are in Table 8. When
trained and tested on all bug types, not just security related, the classical ml models and the
original set of bug report features described in Zheng et al. (2021) did not perform very well
on the large OpenSSL and 1ibav datasets, as can be seen in Table 9. With C-BERT and
improved ensemble models with new code features, the results improved on the full dataset
with all error types. Table 7 shows the statistics of the full train:dev:test data used in the
experiments.

4.5.2 Results

The results show the impact of different ML techniques and different features on the FP
prediction problem. We try three models, a voting ensemble trained with old set of features
described in Zheng et al. (2021) (vote), the C-BERT model which extracts features automat-
ically from bug reports and source code (c-bert) and finally a voting ensemble trained with
new features (vote-new). The new set of features are the full set of bug report features as well
features extracted directly from source code.

We trained Random Forest using 1000 estimators, Extra Trees with 500. For the Boosting
algorithms, we used 500 estimators, learning rate 0.03, importance type gain for the LGBM
classifier, and the same number of estimators for Catboost. For C-BERT and Vote ensemble
on new features, we fix the threshold-point to 0.05 FPR. Because this point has changed
compared to Vote ensemble applied on initial set of trace features, we omit FPRR and F1
columns from the results Tables 8 and 9. We also omit Predicted Negatives (N) and Correct
Negative (TN) columns since they can be calculated from other metrics. Since voting ensem-
ble improvement reflects improvement in base models, we omit the base model results as
well.

C-BERT outperforms vote ensemble on datasets with all error types. This could be because
large datasets require more features to correctly classify samples. C-BERT also outperforms
vote on small project datasets with default security error types, but since these datasets are
small the results are not too reliable. In both the tables we can see that vote-new AUC scores
are much better than vote. This improvement is because of new features. The new features

Table 7 Production-ready security related error types filtering

All errors Prod-ready sec Errs

Negatives Positives N:P Negatives Positives N:P
OpenSsL 341,625 7916 43:1 27,227 797 34:1
libav 235,369 4,585 51:1 14,954 280 53:1
NGINX 1,7829 417 43:1 1,446 36 40:1
libtiff 11,720 552 21:1 1,185 27 44:1
httpd 11,511 208 55:1 174 11 16:1
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Table 8 Default security error types false positive classification results

Model D2A Predicted Correct D2A AUC
Positives Positives Positives Negatives
OpenSSL vote 81 506 58 2711 0.83
c-bert 81 170 36 2711 0.80
vote-new 81 168 43 2711 0.86
libav vote 28 254 21 1495 0.89
c-bert 28 53 20 1495 0.87
vote-new 28 35 21 1495 0.91
NGINX vote 5 54 4 145 0.78
c-bert 5 9 3 145 0.82
vote-new 5 6 2 145 0.89
libtiff vote 3 7 2 118 0.97
c-bert 3 7 2 118 0.96
vote-new 3 4 2 118 0.98
httpd vote 2 6 1 17 0.85
c-bert 2 2 2 17 1
vote-new 2 2 1 17 1
combined vote 119 814 82 4486 0.84
c-bert 119 224 63 4486 0.83
vote-new 119 291 70 4486 0.87

The released dataset has train/dev/test splits for each project. The combined files are the union of corre-
sponding sets of all projects. The models are trained on train + dev sets and tested on the test set. The D2A
positive/negative labels are derived from differential analysis of commit pairs.

vote: voting ML ensemble with initial features.

vote-new: voting ML ensemble with initial features and new code-focused features.

c-bert: c-bert finetuning with Code + Trace configuration.

also help the voting ensemble outperform the more sophisticated C-BERT model across the
board.

4.5.3 Feature Importance

In order the better understand the impact of features on model performance we rank the
features according to their importance in Fig. 8. The initial set of bug report features from
Zheng et al. (2021) are shown in green and the new bug report and source code features are
show in blue. Line number of the error in the file and the number of lines of code in the bug
report and average length of line of code are significant bug report features perhaps suggesting
that large files and complex bug reports distinguish real errors. The new code based features
have a significant impact as they account for 4 of the top 5 features. The “If without else”
count in trace functions and Cyclomatic complexity of the buggy file are the most important
features after error line number. Features based on the buggy file and functions in bug reports
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Table 9 All error types false positive classification results

Model D2A Predicted Correct D2A AUC
Positives Positives Positives Negatives
OpenSSL vote 793 34251 792 34149 0.69
c-bert 793 2034 333 34149 0.75
vote-new 793 1854 146 34149 0.73
libav vote 458 8 8 23536 0.61
c-bert 458 1297 171 23536 0.68
vote-new 458 1294 143 23536 0.73
NGINX vote 42 315 29 1783 0.77
c-bert 42 106 26 1783 0.89
vote-new 42 90 33 1783 0.93
libtiff vote 58 198 44 1171 0.89
c-bert 58 98 41 1171 0.94
vote-new 58 111 54 1171 0.98
httpd vote 20 263 13 1150 0.77
c-bert 20 43 10 1150 0.82
vote-new 20 64 12 1150 0.90

The released dataset has train/dev/test splits for each project. The models are trained on train + dev sets and
tested on the test set. The D2A-truth labels are derived from differential analysis of commit pairs. Models as
defined in Table 8

seem to have a bigger impact than features based on buggy function alone. This highlights
the importance of additional context.

4.5.4 Libtiff Results Analysis

An interesting projectis 1ibti f £ for which all models achieve very good AUC. To analyze
this result further, in Fig. 9 we plot the cost of finding each True Positive in terms of False
Positives for 1ibtiff with the Vote-soft ensemble on all error types. The X-axis shows
True Positives in decreasing order of model confidence. The Y-axis plots the count of new
False Positives since the last True Positive. The purple line represents the cumulative number
of False Positives, while the dotted purple line parallel to the x-axis indicates the 95% FP
Reduction line or 5% FP rate, indicating that 95% of False Positives lie above this line.
As mentioned before, this arbitrary point is our guess of how much false positives users
would be willing to tolerate. The plot indicates that the model is confident in its prediction
of True Positives to a considerable degree. The first 27 highly ranked samples are all TPs.
This analysis is useful because it justifies providing a prioritized list of static analyzer output
to developers so that they can focus first on those samples which a model confidently thinks
are TP.
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Fig. 8 Feature Importance of Random Forest algorithm trained on OpenSSL Default Security errors after

including new features (shown in blue)

5 D2A Leaderboard

With Stacking ensemble, C-BERT and Voting Ensemble we had multiple models for identi-
fying False Positives, each with its own strength. In order to compare the model performance

False Positives
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Fig.9 Cost of each TP in new FPs

True Positives (in rank order)
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on different types of input data from D2A, we decided to create a leaderboard (https://github.
com/ibm/D2A). Generally, a leaderboard shows the top scoring competitors in a tournament.
This idea has been adopted in the Al domain, where a leaderboard will show the top per-
forming models and teams for a given dataset. With the D2A leaderboard we could see how
different models perform on tasks which cater to different types of D2A data. We have also
made this leaderboard public so that others can participate and compare their model perfor-
mance on D2A with other models. Table 10 summarizes the leaderboard tasks and available
data.

The leaderboard is meant to demonstrate how the D2A dataset can be used both in terms
of the different types of D2A data and alternative but related tasks to FP Reduction, like
Vulnerability Detection. It is conceivable that the dataset can be used for more code related
tasks like Bug Localization and Bug Fixing, which we do not explore in this work.

5.1 Data

All the leaderboard data is derived from the original D2A dataset which contains different
program elements to help with program analysis. In order to understand the impact of different
program elements on predictions, we use them in isolation and in combination. The D2A
dataset contains labels derived from two sources, the auto-labeler and the after-fix extractor.
The leaderboard makes use of both kinds of labels where each label indicates if a sample
represents a real (1) or false (0) report of a bug.

Details of different kinds of data and the corresponding labels are given below.

— Infer Bug Reports (Trace): This dataset consists of Infer bug reports, which are a com-
bination of English language and C Programming language text.

— Bug function source code (Function)

— Bug function source code, trace functions source code and bug function file URL (Code)

The D2A dataset contains a lot more information which we did not use in the leaderboard
tasks.

5.2 Tasks

Tasks require the use some of the different program and program analysis elements that D2A
contains.

— Trace: Bug trace or a bug report contains both natural language and code. The code is
limited to code snippets from different functions and files. Models are expected to work
with a combination of natural language and code snippets to make the prediction.

Table 10 Tasks and data summary for D2A leaderboard

Task Metrics Total samples Train / dev / test N:P
Code + Trace AUROC, F1-5%FPR 45,957 36,719 /4,634 / 4,604 39:1
Trace AUROC, F1-5%FPR 45,957 36,719 /4,634 / 4,604 39:1
Code AUROC, F1-5%FPR 45,957 36,719 /4,634 / 4,604 39:1
Function Accuracy 5,857 4,643/ 596/ 618 0.9:1
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— Code: Models can use source code from bug function, all the bug trace functions and
the file in which the bug function occurs to make the prediction. The file pointed to by
bug_url must be downloaded in order to be used.

— Trace + Code: Models can use all the fileds from the previous 2 tasks to make the
prediction.

— Function: Models can use only the source code from the bug function to make the pre-
diction. The functions have been derived from a different subset of the full D2A dataset
chosen to achieve a more balanced dataset.

Most publicly available defect detection datasets contain only a single function. We include
a single function task, but also include multiple functions for cross functional defects and
bug reports. Different types of models may be suited for different tasks and the goal is to
highlight this and encourage models that perform well across different tasks.

5.3 Metrics

The datasets for the Code + Trace, Trace and Code tasks are derived from the auto-labeler
generated samples, and are quite unbalanced with a 0:1 ratio of about 40:1. The Function
datasets contain functions marked ‘1’ by the auto-labeler plus the matching after-fix 0’
functions, so are well balanced with a 0:1 ratio of about 8:9. Because of these different
distributions we use different metrics to measure the performance of models on different
tasks.

— Balanced Data: For the balanced dataset we use Accuracy to measure model performance.

— Unbalanced Data: Because the dataset is so heavily unbalanced, we cannot use Accuracy
since the model predicting only O would have a 98% accuracy. Instead we use the two
metrics described below.

— AUROC: Many open source project datasets are huge with hundreds of thousands
of examples and thousands of positive examples. The cost associated with verifying
every label is high, which is why it is important to rank the models in the order of
their overall model confidence. We use AUROC percentage for this purpose.

— F1 - 5% FPR: The macro-average F1 score is generally considered a good metric
for unbalanced datasets. We want the AUROC curve to peak as early as possible so
we calculate the macro-average F1-score percentage at 5% FPR point indicated in
Fig. 5.

— Overall: To get the overall model performance, we calculate the simple average percent-
age of all the scores across all the tasks.

5.4 Leaderboard Results

Table 11 shows the result of the Stacking ensemble (stacking), C-BERT (c-bert), and the
Voting ensemble (vote-new) on the 4 Leaderboard tasks. Both ensemble models are trained
on the full set of features including bug report features and source code features. Overall
Stacking and C-BERT models perform the best, with Voting scoring less than both the models.
The C-BERT model performs very well on trace and single function tasks. This could be
because the function and trace data fit within the context window of C-BERT, while the full
list of functions and code does not. Also, as indicated by Fig. 8, some important features
are based on the buggy file and its functions, which are not input to C-BERT because of the
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Table 11 D2A Leaderboard

Code + Trace Trace Code Function Overall score
F1 AUC F1 AUC F1 AUC Accuracy Average
stacking 63.4 83.6 61.1 81.2 65.8 85.2 55.2 70.8
c-bert 66.1 81.7 62.4 80.4 62.4 80.2 60.2 70.5
vote-new 64.3 85.0 61.3 80.2 65.2 85.7 45.6 69.6

stacking indicates stacking ensemble with base models trained on new features. Other models as defined in
Table 8. Over all tasks stacking is the best performing model

context window limitation. Ensembles do better than C-BERT for Code and Code + trace
because they can use features from all sources and are not restricted by context window size.

6 Related Work

Datasets for Al-based Vulnerability Detection Juliet (NIST 2023b), Choi et al. (2017), and
S-babi (Sestili et al. 2018) are synthetic datasets. They are generated based on predefined
patterns and cannot represent real-world program behaviors. Draper (Russell et al. 2018),
Devign (Zhou et al. 2019) and CDG (Li et al. 2018) were generated from real-world programs.
However, as discussed in Section 2, they suffer from labeling or source limitations. In fact,
lacking good real-world datasets has become a major barrier for this field (Lin et al. 2020).
D2A is automated and scales well on large real-world programs. It can produce more bug
related information. We believe it can help to bridge the gap.

Al-based Static Analysis FP Reduction Static analysis is known to produce a lot of false
positives. To suppress them, several machine learning based approaches (Kremenek and
Engler 2003; Jung et al. 2005; Yiiksel and Sozer 2013b; Hanam et al. 2014; Tripp et al. 2014;
Kocetal.2017a; Zhangetal. 2017; Reynolds et al. 2017; Flynn et al. 2018; Raghothaman et al.
2018; Koc et al. 2019) have been proposed. Because they either target different languages or
different static analyzers/model, they are not directly applicable. Inspired by their approaches,
we designed and implemented a false positive reduction model for Infer as a use case for
the D2A dataset. Besides the classic machine learning models presented in Section 4.3 that
leverage the manually picked features, we further explored the direction of using deep learning
model to learn from both the code and text in the bug report for the static analysis false positive
reduction task. To the best of our knowledge, this is the first attempt along this direction.

Defect Detection Leaderboard The only other defect detection leaderboard is CodeXGLUE
(Luetal.2021) Defect Detection (Code-Code) based on the Devign dataset. Since the samples
in this dataset are limited to a single function, it is ideally suited for transformer based models
and we see this reflected in the top performing models on the leaderboard, which includes
C-BERT. D2A Leaderboard contains abundant information of various types of program and
program analysis elements, which makes it is more challenging and levels the playing field
for different machine learning approaches.

Features for Vulnerability Detection Du et al. (2019) suggest some interesting features

that they extract using Joern (Yamaguchi et al. 2014). We extract some similar features but
using either simple string matching or using the Lizard (Yin 2019) tool. Inspired by their
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findings, we additionally included other relevant features that were extracted from both the
source code and the static analysis report.

Contextual Representation with BERT BERT (Devlin et al. 2019) is a bidirectional encoder
based on the transformer architecture (Vaswani et al. (2017)) that can create a meaningful
representation for every token by looking at both left and right context. As a result, every
token will have a contextual representation of its neighbors such that the final representation
of a word changes if its context changes. The learning phase of BERT can be divided into
two phases, pre-training and fine-tuning:

— Pre-training is a self-supervised process, with a goal to build a general language rep-
resentation that is not connected to specific tasks. To learn the statistical properties of
source code, parts of the input are masked and then the model is asked to predict them
back (Feng et al. 2020; Kanade et al. 2020).

— Fine-tuning is a supervised phase and requires task-related labels, so every downstream
task, like vulnerability detection, needs a specific fine-tuning dataset.

Self-supervised Learning for Code Existing works (Hindle et al. 2012; Allamanis et al.
2018; Ray et al. 2016) have shown that source code is natural. Similar to speech and natural
language, source code tends to be repetitive and predictable. This naturalness can be exploited
such that the statistical distribution of source code can be learned from a huge amount of
data available on sites like GitHub. Compared to feature engineering based learning, which
requires labeled data, the most appealing advantage of self-supervised deep learning is that
the models can extract features automatically from unlabelled data. Once the model has been
trained on generic source code, it only needs a small amount of labeled data to be fine-tuned
for a specific task.

Self-supervised learning based language models (Devlin et al. 2019; Liu et al. 2019;
Vaswani et al. 2017) have already been successful in the field of natural language processing
for tasks like text classification, question & answering, text completion, etc. And now, it is
possible to see the same trend for code-related tasks, as shown by the popular leaderboard
CodeXGlue (Lu et al. 2021), where most of the top performing models are based on such
architectures but trained specifically on source code.

7 Threats to Validity

Initial Manual Analysis The initial manual analysis of Infer output was done on one project,
OpenSSL, for only 4 bug types. The reason is the high amount of time needed from expert
developers - it took around 10 hours for each of the 8 developers to label 166 candidate
vulnerabilities in total. Ideally, such manual analysis should be applied to more projects
and more bug types. However, while we cannot always expect the same label accuracy
improvement across different projects (from 7.8% in initial manual analysis to 53% in manual
label validation of randomly selected samples), we think the jump is wide enough that the
tool remains useful to save developers’ time.

Commit Message Analyzer Like all ML models, the quality of the Commit Message Ana-

lyzer is bounded by the dataset, which in our case, are the NVDs and their commit messages.
It is possible that in any given repository, some bugs are fixed silently and the commits
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don’t have meaningful messages. Some of these commits can be some real fixes with poorly
worded commit messages. The CMA will not be able to identify such fixes.

Reliance on NVDs and the inability to recognize silent fixes or fixes from uninformative
commit messages also introduces bias in the CMA. However, due to the lack of an oracle
that can cover all possible scenarios (which is true for both traditional rule-based or ML-
based detectors), it’s unlikely to have a prefect bug detection dataset. Our goal is to create a
reasonably large-scale dataset that can facilitate sophisticated model exploration and adoption
and CMA helps us create such a dataset.

Result Manual Analysis Because manual analysis is an expensive process, D2A result vali-
dation was done for only 57 samples. Although we have only a very small number of curated
labels, the improvements we report in the predictions of D2A labels should be useful in
practice.

Data Splitting We have partitioned the dataset into train:val:test splits randomly. However,
to correctly align with real life use case we should partition the data according to time,
which would mean the test set consists of latest issues and train would consist of older
issues. Nie et al. (2021) talk about the impact of choosing different evaluation methodologies
on code summarization and show that not considering time to split the data will inflate or
underestimate the result. They experiment with a strategy similar to our balanced random
splits, which they call mixed project evaluation and they show that this approach inflates the
results. We wish to perform a similar study for vulnerability analysis using D2A dataset.
With D2A, the number of samples we generate from a repository depends on the number of
commits in the repository and the number of fixes. To generate time based data splits, we
will have to regenerate data by identifying a point in time and use it to partition between train
and test. However this may result in too few or too many samples in train or test and we will
need multiple generation attempts to arrive at the right balance. Once done, we will have to
rerun all the experiments on multiple repositories for all three models. This is an interesting
and ideal approach which we hope to explore in the future.

8 Conclusion

In this paper, we propose D2A, a novel approach to label static analysis issues based on differ-
ential analysis and build a labeled dataset from real-world programs for Al-based vulnerability
detection methods. We ran D2A on 6 large programs and generated a labeled dataset, called
the D2A dataset, of more than 1.3M examples with detailed bug related information obtained
from the inter-procedural static analysis, the code base, and the commit history. By manually
validating randomly selected samples, we show D2A significantly improves the label quality
compared to static analysis alone. This dataset contains varied data which can be used for
Vulnerability Analysis.

We define the false positive reduction problem to showcase the utility of the dataset in
improving developer productivity. We train both classic machine learning models as well as
a deep learning model for the static program analysis false positive prediction task on the
D2A dataset, which can effectively help developers prioritize and investigate potential true
positives first. By further analyzing the results of 1ibtiff, we show how a prioritized list
of static analyzer issues can be helpful for developers.
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By combining hand-crafted features from bug reports and source code, we show that
machine learning ensembles can perform well on default security errors and on relatively
smaller projects like 1ibtiff, ht tpd and NGINX. More importantly, we show that adding
more features leads to model performance improvement on harder data from relatively large
projects like OpenSSL and 1ibav with all error types. We show how C-BERT, a transformer
based deep learning model can be used to train with D2A data. Deep learning models are
more generalizable than hand crafted features and show good performance on D2A data.

The D2A dataset can also be leveraged in different ways to tackle the more general
problem of vulnerability detection. In order to show how this can be done and to encourage
community participation, we created a leaderboard based on the D2A dataset and made it
publicly available. The leaderboard can be used to compare the performance of different
models.

Data availability The datasets generated during and/or analysed during the current study are available in the
IBM Data repository, https://developer.ibm.com/exchanges/data/all/d2a/.
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