
https://doi.org/10.1007/s10664-023-10397-6

Detecting outdated code element references in software
repository documentation

Wen Siang Tan1 ·Markus Wagner2 · Christoph Treude3

© The Author(s) 2023

Abstract
Outdated documentation is a pervasive problem in software development, preventing effec-
tive use of software, and misleading users and developers alike. We posit that one possible
reason why documentation becomes out of sync so easily is that developers are unaware of
when their source code modifications render the documentation obsolete. Ensuring that the
documentation is always in sync with the source code takes considerable effort, especially
for large codebases. To address this situation, we propose an approach that can automati-
cally detect code element references that survive in the documentation after all source code
instances have been deleted. In this work, we analysed over 3,000 GitHub projects and found
that most projects contain at least one outdated code element reference at some point in their
history. We submitted GitHub issues to real-world projects containing outdated references
detected by our approach, some of which have already led to documentation fixes. As an
initiative toward keeping documentation in software repositories up-to-date, we have made
our implementation available for developers to scan their GitHub projects for outdated code
element references.

Keywords Software repositories · Outdated documentation · Outdated references ·
Code elements

Communicated by: Romain Robbes

B Wen Siang Tan
wensiang.tan@adelaide.edu.au

Markus Wagner
markus.wagner@monash.edu

Christoph Treude
christoph.treude@unimelb.edu.au

1 University of Adelaide, Adelaide, Australia

2 Monash University, Melbourne, Australia

3 University of Melbourne, Melbourne, Australia

0123456789().: V,-vol 123

Empirical Software Engineering (2024) 29:5

Accepted: 25 September 2023 / Published online: 21 November 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10397-6&domain=pdf
http://orcid.org/0000-0002-1503-8576

1 Introduction

Outdated documentation is a commonandwell-knownproblem in software development (Lee
et al. 2019). It hinders the effectiveness of documentation (Forward and Lethbridge 2002),
prevents developers from using APIs and libraries efficiently (Uddin and Robillard 2015),
contributes to software ageing (Parnas 1994) and confusion (Kajko-Mattsson 2005), and it
demotivates newcomers (Steinmacher et al. 2018). In a recent study on software documen-
tation issues, (Aghajani et al. 2019) found that “up-to-dateness problems” account for 39%
of documentation content issues. Previous studies also revealed that more than two-thirds of
participants surveyed believe that their system documentation is outdated (de Souza et al.
2005; Lethbridge et al. 2003). Despite these findings, outdated documentation has remained
an issue in the software engineering community due to the efforts needed to ensure that the
documentation is in sync with the source code. Unlike source code, software documentation
gets outdated “silently”, i.e., there are no crashes or error messages to indicate that docu-
mentation is no longer up-to-date.1 In many cases, developers are not aware that the source
code changes they made have rendered the documentation outdated.

As a step toward helping developers to keep their documentation up-to-date, we propose
an automated approach that detects outdated references in README file and wiki pages of a
GitHub project.We focus our analysis onGitHub since it gives us access to the documentation
of a large number of projects in a consistent format. We analysed the current state and full
history of documentation of more than 3,000 GitHub projects and found that 28.9% of the
most popular projects onGitHub currently contain at least one outdated reference,with 82.3%
of the projects being outdated at least once during the project’s history. These references were
typically outdated for years before they were noticed and fixed by project maintainers.

The remainder of the paper is structured as follows: We motivate our work through a real-
world example of outdated documentation in Section 2, explain our approach in Section 3,
and introduce the research questions in Section 4.We report our findings in Section 5, present
our publicly available implementation in Section 6, and interpret our findings in Section 7.
We discuss the threats to validity of our approach in Section 8 before we conclude the paper
with related and future work in Sections 9 and 10.

2 Motivating Example

The google/glog project2 is one of the projects we found to contain outdated documentation.
We detected an instance of the code element DGFLAGS_NAMESPACE in the source code3 when
the documentation was last updated. On 1 June 2018, the code element was renamed to
DGLOG_GFLAGS_NAMESPACE in one of the commits.4 However, the documentation5 was not
updated to reflect the changes. In the same project, another code element fPIC was found 21

1 This is a well-known problem in software development, e.g., the documentation of tda-api states ‘TDA
might change them at any time, at which point this document will become silently out of date’, see https://
tda-api.readthedocs.io/en/latest/client.html.
2 https://github.com/google/glog
3 https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/cmake/
DetermineGflagsNamespace.cmake#L36
4 https://github.com/google/glog/commit/abce78806c8a93d99cf63a5a44ff09873f46b56f
5 https://github.com/google/glog/wiki/Installing-Glog-on-Ubuntu-14.04/aa4fc07826bca7edf4aae57acd531
19e515f9963

123

5 Page 2 of 25 Empirical Software Engineering (2024) 29:5

https://tda-api.readthedocs.io/en/latest/client.html
https://tda-api.readthedocs.io/en/latest/client.html
https://github.com/google/glog
https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/cmake/DetermineGflagsNamespace.cmake#L36
https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/cmake/DetermineGflagsNamespace.cmake#L36
https://github.com/google/glog/commit/abce78806c8a93d99cf63a5a44ff09873f46b56f
https://github.com/google/glog/wiki/Installing-Glog-on-Ubuntu-14.04/aa4fc07826bca7edf4aae57acd53119e515f9963
https://github.com/google/glog/wiki/Installing-Glog-on-Ubuntu-14.04/aa4fc07826bca7edf4aae57acd53119e515f9963

Fig. 1 Screenshot of the GitHub issue submitted

times in the source code6 when the documentationwas last updated, but the documentwas not
updated when all source code instances of the code element were deleted in this commit.7 We
reported the discrepancies by submitting a GitHub issue8 to the project’s repository (Fig. 1).
Following our report, the project maintainer fixed the outdated documentation by deleting
the document containing the two outdated references.

Much like this motivating example, source code and documentation often remain out of
sync for some time before getting discovered. Our approach can automatically detect such
discrepancies and enable project maintainers to monitor how source code and documentation
evolve. The next section will discuss our approach in detail: (1) the criteria used to select
documentation such as the README file and wiki pages in the project, (2) the method used
to detect code elements such as DGFLAGS_NAMESPACE and fPIC in the motivating example,
(3) the steps needed to match code element references to actual instances in the source code,
and (4) how the approach can be generalised to study the state of a project over time.

3 Approach

To detect outdated code element references in software repositories, relevant pieces of docu-
mentation need to be identified first. We extract from the documentation a list of potentially
outdated references to code elements and match them to actual instances in the source code.
If a reference remains in the documentation after all instances have been deleted from the

6 https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/m4/libtool.m4#
L3905
7 https://github.com/google/glog/commit/b539557b3692c9c68d4e91d3cc920e8d14490d46
8 https://github.com/google/glog/issues/750

123

Page 3 of 25 5Empirical Software Engineering (2024) 29:5

https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/m4/libtool.m4#L3905
https://github.com/google/glog/blob/921651e97c3892e656287f1cfa923319f0799729/m4/libtool.m4#L3905
https://github.com/google/glog/commit/b539557b3692c9c68d4e91d3cc920e8d14490d46
https://github.com/google/glog/issues/750

source code, we consider the documentation outdated. The rest of this section describes this
process in detail.

3.1 Identifying Documentation

GitHub provides two main forms of documentation for project maintainers to document
their projects. The README file is a convenient way to introduce the project to users and
contributors. In a study by Prana et al. (2019) to categorise different types of content found
in README files, the authors report that the majority of the README files from 393
randomly sampled projects contain some form of introduction or project background. In
addition, README files often contain information for issues that may be encountered while
using the project such as setup guides and API documentation. Project maintainers may also
opt to make use of the wiki section for hosting documentation, which typically describes
the project in more detail. One of the main differences between README and wiki is that
the wiki may contain many pages while README is a single file. As any file types can be
stored in GitHub wiki, only documentation written in file formats recognised by GitHub are
considered in this work.9

We consider two datasets in this paper. The first dataset consists of the 1,000 most popular
projects on GitHub, ranked by the number of stars.10 The second dataset consists of all
2,279 GitHub projects from Google.11 Figures 2, 3, 4 to 5 show some key statistics of
the projects. The top1000 projects are generally larger in size compared to google projects
(median of 31.7MiB compared to 1.5MiB), existed longer (median of 7.6 years compared
to 4.4 years), and have more developers contributing (median of 181 compared to 4).12

Meanwhile, programming languages such as JavaScript, Python, Java and Go are popular
choices for both top1000 and google projects. This roughly matches the top programming
languages used on GitHub in 2022.13 The list of project names for both datasets can be found
in our online appendix.14

3.2 Extracting Code Elements

In Section 3.1, we identified a list of relevant documents from which we can extract poten-
tial outdated code element references. In this subsection, we outline the steps needed to
extract such references from the documentation. These outdated references include vari-
ables, functions and class names found in the documentation. In this work, we use regular
expressions to extract references to code elements in the documentation. Unlike parsers that
are language-dependent, regular expressions can be used to extract possible candidates of
outdated references in the documentation and matched to any source code files. We build
on the work of Treude et al. (2014) to extract code elements from the documentation using
regular expressions, in which the authors have created a list of regular expressions to detect
code elements.15 For the scope of this paper, we define code elements as syntactic compo-

9 https://github.com/github/markup
10 https://gitstar-ranking.com/repositories, project names collected on 20 June 2022
11 https://github.com/orgs/google/repositories, project names collected on 20 June 2022
12 Number of contributors collected at a later date on 5 May 2023 for paper revision
13 https://octoverse.github.com/2022/top-programming-languages
14 https://zenodo.org/record/7384588
15 https://www.cs.mcgill.ca/~swevo/tasknavigator/

123

5 Page 4 of 25 Empirical Software Engineering (2024) 29:5

https://github.com/github/markup
https://gitstar-ranking.com/repositories
https://github.com/orgs/google/repositories
https://octoverse.github.com/2022/top-programming-languages
https://zenodo.org/record/7384588
https://www.cs.mcgill.ca/~swevo/tasknavigator/

Fig. 2 Project size distributions (GiB) for top1000 and google projects in log scale

Fig. 3 Project age in years for top1000 and google projects

Fig. 4 Number of contributors for top1000 and google projects in log scale

123

Page 5 of 25 5Empirical Software Engineering (2024) 29:5

Fig. 5 Top 10 programming languages used in top1000 and google projects

nents of programming languages and URLs matched by regular expressions as well as other
tokens such as file names present in the repository.

To help improve the quality of the list of code element references extracted from the
documentation, i.e. code elements that are also found in the source code, we extracted a list
of code elements using the original regular expression list and manually annotated if the
reference is outdated. Each author annotated the same 50 randomly selected code elements
detected from the google projects to measure the inter-rater agreement. We achieved an
‘almost-perfect’ (McHugh 2012) free-marginal kappa of 0.92 when deciding whether the
case is a true positive.

1. We consider a code element reference as not outdated (false positive) if it fits any of the
following criteria:

(a) The source code file and documentation have identical content, e.g. one of the projects
in our dataset contained their entire documentation corpus twice: once in the wiki
and once as .md files in the source code repository.

(b) The code element reference extracted is a common word within the project (e.g.
project name), a capitalised commonword (PRIMARY, INACTIVE), an abbreviation
(API, iOS), or a word that is not specific to the project (Data, User).

(c) The code element reference extracted from the documentation is a URL or URL alt
text.

(d) The source code file is a text file that supposedly documents the project, e.g., an
HTML file.

(e) The code element matched in the source code is part of a source code comment.

2. A reference is considered outdated (true positive) if the code element was found in a
previous revision but has since been deleted:

(a) The source code file exists in the current revision but the code element instance is
deleted.

(b) The source code file is deleted in the current revision.

During the manual annotation, we noticed that developers often use backticks (`) in
Markdown to indicate code elements. We also observed that extracting URLs from the doc-
umentation produced many code element references that are not matched to source code

123

5 Page 6 of 25 Empirical Software Engineering (2024) 29:5

Table 1 List of updated regular expressions and examples of whole word, case-sensitive, and exact string
matched text

Regular expression Example matched text

(?<=(?<!‘)‘)[!-_a-∼]+(?=‘) ‘abcdef‘

[A-Z][a-zA-Z]+ ?<[A-Z][a-zA-Z]*> ArrayList<String>

[a-zA-Z0-9\.]+[(][a-zA-Z_,\.]*[)] Promise.reject(err)

[a-zA-Z]+\.[A-Z]+ Pattern.MULTILINE

[@][a-zA-Z]+ @types

([a-zA-Z]{3,}\.[A-Za-z]+_[a-zA-Z_]+) request.iter_idx

([A-Z]{2,}) JSON

([A-Z]+_[A-Z0-9_]+) GIT_DIR

([a-z]+_[a-z0-9_]+) node_modules

\w{3,}:\w+[a-zA-Z0-9:]* sdk:stable

([A-Z]+[a-z0-9]+[A-Z][a-z0-9]+\w*) KeyboardEvent

([A-Z]{3,}[a-z0-9]{2,}\w*) IOException

([a-z0-9]+[A-Z]+\w*) querySelector

(\w+\([ˆ)]*\)) createElement(’div’)

([A-Z][a-z]+[A-Z][a-zA-Z]+) HttpClient

([a-z]+[A-Z][a-zA-Z]+) addEventListener

\{\{[ˆ\}]*\}\} {{ end }}

\{\%[∧\%]*\%\} {% endif %}

‘[ˆ’]*’ ‘unknown’

__[∧_]*__ __init__

\$[A-Za-z_]+ $working_dir

instances in a later stage. With the manual annotation data, we made a few modifications to
the regular expression list:

1. A regular expression to capture text enclosed in backticks is added. Code blocks (```) are
not added as they often contain longer texts that are less likely to be matched.

2. A regular expression used to detect URLs in the original list is removed, URLs enclosed
in backticks are still extracted.

3. Many regular expression groupings in the original list are modified to extract only the
code element, preventing additional spaces that are not part of the code element from
getting extracted.

The updated regular expression list used in this paper (Table 1) can also be found in our
online appendix.16

3.3 Matching Code Elements

In the previous step, a list of potentially outdated references was extracted from the docu-
mentation using regular expressions. This subsection will describe the process of how these
references are matched to actual instances in the source code to determine if they are out-
dated. In this work, a reference is considered outdated if the code element was found in both

16 https://zenodo.org/record/7384588

123

Page 7 of 25 5Empirical Software Engineering (2024) 29:5

https://zenodo.org/record/7384588

Table 2 What is outdated? Before After

Documentation ✓ ✓

Source code ✓ ✗

source code and documentation when the documentation was last updated, but the reference
remains in the latest version of the documentation after all source code instances have been
deleted (Table 2).

To determine if a reference is currently outdated, we compare the number of instances
found in two repository revisions. The first revision is the snapshot of the repository of
when the documentation was last updated, and the second revision corresponds to the current
revision of the repository. An instance is counted if it is a whole word, case-sensitive, and
exact string match of the code element reference. If the number of source code instances
goes from a positive integer (i.e. at least one code element instance was found in the source
code when the documentation was updated) to a zero (i.e. all source code instances have
been deleted in the current revision), we flag the reference as outdated. Going back to the
motivating example, the two code element references flagged as outdated have the following
number of instances found in the snapshot and the current repository revision (Table 3).

Linking references On GitHub, a project’s source code and wiki are stored separately in
different Git repositories. We can get the snapshot of a project by interleaving the commit
histories of both Git repositories: given a particular version of the documentation that is
under investigation, we retrieve the most recent source code repository revision that was
committed prior (Fig. 6). In cases where the documentation is updated after the current
repository revision, the snapshot refers to the current repository revision; this means that
the number of instances found in both revisions are the same and the reference will not be
flagged as outdated. This process is repeated for each code element reference extracted from
the documentation to determine if the reference is currently outdated. Note that, as each page
in the documentation may be updated at different times, code element references extracted
from different pages may have a different repository snapshot.

File references A code element reference may be incorrectly flagged as outdated when doc-
umentation references a file in the source code because file paths are often not explicitly
written in the source code. To avoid flagging these cases as outdated, each variant of the file
path that is an exact match of a code element reference is treated as an additional source
code instance. In our implementation, a file path is considered a variant if it is a component
of the file path including an optional slash at the beginning. For example, if the source code

Table 3 Number of source code instances for the two code element references from the motivating example

Code element Repository snapshot Current revision

DGFLAGS_NAMESPACE 1 0

fPIC 21 0

123

5 Page 8 of 25 Empirical Software Engineering (2024) 29:5

Fig. 6 Linking the current documentation version to (1) repository snapshot and (2) current repository revision

contains a file named path/to/file.py, all of the following variants are added to the list
of code elements:

• /path/to/file.py
• path/to/file.py
• /to/file.py
• to/file.py
• /file.py
• file.py

3.4 Extending the Analysis

The approach outlined in the previous subsections can be generalised to analyse the state of
documentation throughout a project’s entire history. To help describe the state of a reference
to code element C at the time of revision R and in document D, we designed a symbolic
representation for the extended analysis:

• . (dot) In revision R of the source code, document D did not exist.
• - (dash) In revision R of the source code, document D existed and it did not contain any
references to C.

• 0 In revisionRof the source code, documentD existed and contained at least one reference
to C and the source code did not contain any instances of C.

• N In revision R of the source code, document D existed and contained at least one
reference to C and the source code contained N instances of C.

Table 4 Summary of symbolic representation used in the extended analysis

Document existed
in revision R

Document has at least one
reference

Number of source code
instances

. (dot) ✗

- (dash) ✓ ✗

0 ✓ ✓ 0

N ✓ ✓ N

123

Page 9 of 25 5Empirical Software Engineering (2024) 29:5

Table 5 Example of symbolic representation

. - - - - - - - - - - - - - - - - - - 3 3 3 3 3 3 3 0 0 0 0 - - - - - - - -

The symbolic representation can be summarised in Table 4. As an example, the first 50
revisions of the code element renderFiles(‘./files’) in the README file from the
vuejs/vue-cli project17 have the following symbolic representation (Table 5):

• In the first 13 revisions, there is a dot (.) indicating that the README file did not yet
exist.

• From revisions 14 to 31, there is a dash (-) indicating that the reference to the code
element did not exist in the documentation (i.e., could not possibly be outdated).

• From revisions 32 to 38, there is a three (3) indicating that the reference to the code
element existed in the documentation and was matched to three instances in the source
code.

• From revisions 39 to 42, there is a zero (0) indicating that the reference to the code
element existed in the documentation, but was no longer found in the source code (i.e.,
documentation was outdated).

• From revision 43 onward, there is a dash (-) again, indicating that the reference to the
code element does not exist in the documentation anymore (i.e., documentation is no
longer outdated).

Extending the linking process To analyse the state of documentation throughout a project’s
history,we link each repository revision in themain branch to the next version of the documen-
tation. Consistent with the method in Section 3.3, the current version of the documentation is
linked to the same repository revisions. Figure 7 shows the links between repository revisions
and their corresponding documentation versions.

Flagging as outdated Consider a scenario where the symbolic representation of a particular
code element in seven consecutive revisions is 2 0 0 . 0 0 0. Two source code instances
were found in the first revision and subsequently removed. The documentation was acciden-
tally deleted in the fourth revision (indicated by the dot) and then restored (back to zero).
Following the definition of outdated in Section 3.3 (positive integer followed immediately by
a zero) will fail to flag this code element as outdated. Even though no source code instances
are found in the latest revision, the reference still remains in the documentation. Using the
symbolic representation, we can more accurately define ‘outdated’ in the extended analysis.
A code element is considered outdated if a positive integer is somewhere in front of a zero,
even if it is not directly before the zero.

Creating a report To make observing the trend of a code element throughout the project’s
history easier, we can record the number of code element instances found in each revision of
the repository in a tabular form, grouped by their names and the documents from which they
were extracted. Table 6 shows a small section of the report from the vuejs/vue-cli project. We
can see that three instances of the code element renderFiles(‘./files’) were found in
revisions 37 and 38 followed by four zeros, which indicates that the code element reference
was outdated from revisions 39 to 42. This was fixed in revision 43 when the outdated
reference was deleted.

17 https://github.com/vuejs/vue-cli

123

5 Page 10 of 25 Empirical Software Engineering (2024) 29:5

https://github.com/vuejs/vue-cli

Fig. 7 Linking each repository revision to a corresponding documentation version for repository commits
made (1) before and (2) after the current documentation version

4 Research Questions

RQ1 What is the current state of documentation?
RQ1.1 In termsof references to code elements, howmanyprojects/documents are currently

outdated?
RQ1.2 In terms of references to code elements, how long have these projects/documents

been outdated?

Our first research question investigates the current state of documentation in open-source
projects on code element, document and project levels. This includes the number of
projects/documents/references that are currently outdated and the duration for which they
have been outdated.
RQ2 What was the state of documentation during the projects’ history?

RQ2.1 In terms of references to code elements, how many projects/documents were out-
dated at some point in their history?

RQ2.2 In terms of references to code elements, how long have these projects/documents
been outdated?
This research question aims to further explore the state of documentation by analysing
the entire history of open-source projects. Similar to RQ1, we investigate the number of
projects/documents/references that were outdated at some point in the project’s history and
the duration for which the outdated references typically survived in the documentation before
getting fixed.
RQ3 How is outdated documentation resolved in projects?
After investigating the state of documentation in RQ1 and RQ2, we ask RQ3 to gain insights
on how outdated documentation is typically fixed in real-world open-source projects by

Table 6 A small section of the report generated from analysing the vuejs/vue-cli project (revision 37 to 43 for
five code element references)

code element R37 R38 R39 R40 R41 R42 R43

projectOptions - - - - - - 7

render(‘./template’) - - - - - - 3

renderFiles(‘./files’) 3 3 0 0 0 0 -

vue 198 205 205 205 205 210 210

vue-cli-service 14 14 14 14 14 15 15

123

Page 11 of 25 5Empirical Software Engineering (2024) 29:5

comparing the number of outdated references resolved by updating the source code, deleting
the outdated code element reference, or by deleting the documentation.
RQ4 How do open source projects respond to issues about outdated documentation?
Our final research question examines how open-source project maintainers respond to our
approach by creating GitHub issues highlighting the potentially outdated code element ref-
erences detected in their projects.

5 Results

This section will discuss the research questions raised in the previous section: (1) the current
state of documentation, (2) the state of documentation over time, (3) how outdated documen-
tation is commonly fixed, (4) and the responses of open source projects to our approach.

We ran our analysis on projects in the two datasets introduced in Section 3.1.When cloning
the repositories, one project18 failed due to a large number of files. In the top1000 dataset,
the analyses of 8 projects were terminated after failing to finish in a day. Among the 991
successfully analysed projects, 265 projects contained at least one outdated reference in their
current version, 653 projects did not contain any outdated references and the documentation
of 73 projects did not contain any matches to any code element in the source code. In
addition, 90.4% (896/991) of the top1000 projects contained a README.md file and 60.0%
(595/991) had at least one wiki page at the time of analysis. In the google dataset, the analysis
of 1 project19 was terminated after three days, leaving 2277 projects. The documentation of
101 projects was found to contain at least one outdated reference to a code element, the
documentation of 1778 projects was up-to-date and the documentation of 398 projects did
not contain code element references thatwerematched to the source code. 88.7% (2019/2277)
projects used a README.md file and 13.0% (297/2277) used the wiki. Figure 8 shows the
breakdown of the projects’ statuses.

5.1 RQ1:What is the Current State of Documentation?

To investigate the current state of documentation in open-source projects, we scanned projects
using the approach described in Section 3 and counted the number of projects for which the
documentation contained at least one outdated code element reference (see Fig. 8). The same
process is repeated at the document level to calculate the percentage of outdated documents.
In addition, we can calculate the duration each code element reference is outdated for using
the project’s commit history.

In the top1000 dataset, 3.9% (7910/201852) of the code element references detected are
currently outdated. We found that 19.2% (1880/9784) of the documents contain at least one
outdated reference to a code element, and 28.9% (265/918) of the projects contain at least
one outdated document. In the google dataset, 2.7% (1283/48078) code element references,
9.7% (287/2947) documents, and 5.4% (101/1879) projects are currently outdated (Fig. 9).
On average, the references are currently outdated for 4.7 years for projects in the top1000
dataset and 4.2 years for the google dataset (Fig. 10).

18 https://github.com/google/material-design-icons
19 https://github.com/google/swiftshader

123

5 Page 12 of 25 Empirical Software Engineering (2024) 29:5

https://github.com/google/material-design-icons
https://github.com/google/swiftshader

Fig. 8 Analysis status of top1000 and google projects, indicating whether a repository’s documentation is
currently out of date

RQ1 SummaryDocumentation of 28.9% top1000 projects and 5.4% google projects
were out of date at the time of analysis, with the references outdated for 4.7 and 4.2
years on average respectively.

5.2 RQ2:What was the State of Documentation During the Projects’History?

To study how documentation evolves, we analysed all commits made to the main branch as
well as merge commits on the main branch containing changes from feature branches for
800 projects from the top1000 dataset. 82.3% (658/800) of the projects, 40.7% (2878/7071)
of the documents, and 12.3% (23588/191849) of the code element references are found to
be outdated at some point in history. In addition, 1.3% (2431/191849) of the code element

Fig. 9 Percentage of references outdated at the time of analysis on code element, document and project levels

123

Page 13 of 25 5Empirical Software Engineering (2024) 29:5

Fig. 10 Distribution of duration that code element references have been outdated at the time of analysis in
top1000 and google projects

Fig. 11 Percentage of references outdated at least once at some point during its history on code element,
document and project levels

Fig. 12 Extended analysis status of top1000 and google projects, indicating whether a repository’s documen-
tation was outdated at some point during its history

123

5 Page 14 of 25 Empirical Software Engineering (2024) 29:5

Fig. 13 Probability of outdated references surviving in the documentation of top1000 and google projects
after the indicated duration (out of all references fixed by project maintainers at the time of analysis), e.g. after
one month, 45% (google) and 55% (top1000) of the references (that were eventually fixed) were still outdated

references were outdated once again at some point in time after they were fixed. In addition,
we analysed the full history of 1907 google projects. 29.7% (567/1907) projects, 30.6%
(925/3018) documents and7.1% (4176/58805) code elementswere outdated sometimeduring
the project’s history (Fig. 11). 0.4% (210/58805) code element referenceswere outdated again
at least once after they were fixed. Note that the number of analysed projects for the extended
analysis is different from the normal analysis as more projects exceeded the time limit when
analysing all commits in the main branch (Fig. 12).

In addition to calculating the percentage of outdated documentation across project, doc-
ument and code element levels, we calculated the duration of which outdated references
survive in the documentation before getting fixed by project maintainers. Figure 13 contains
only outdated code elements references that project maintainers have already fixed with a
timestamp difference greater than zero.20 The probability of surviving is calculated by the
percentage of outdated code element references that survived in the documentation after the
duration indicated by the x-axis has passed. For example, after one month, 45% (google) and
55% (top1000) of the references (that were eventually fixed) were still outdated.

RQ2 Summary Documentation of 82.3% top1000 projects and 29.7% google
projects were outdated at some point in history, with 1.3% and 0.4% references
outdated once again respectively after they were fixed.

20 The babel/babel project had 7 negative timestamp differences caused by reverting README.md to an
earlier version.

123

Page 15 of 25 5Empirical Software Engineering (2024) 29:5

Table 7 Types of documentation
fixes

Before After

Documentation delete 0 . (dot)

Documentation update 0 - (dash)

Source code change 0 N

5.3 RQ3: How is Outdated Documentation Resolved in Projects?

There are three ways in which an outdated document can be resolved:

1. Source code is changed to reintroduce code element instances,making the documentation
in sync again.

2. Documentation containing the outdated reference is updated to remove the outdated
reference.

3. Documentation containing the outdated reference is deleted, thereby removing the out-
dated reference.

The three cases can be represented using the symbolic representation introduced in
Section 3.4 as shown in Table 7.

Using the reports generated, we can study how the documentation was typically fixed
throughout the project’s history. For the top1000projects,we found that 73.6%(17368/23588)
outdated references to code elements were resolved throughout the projects’ histories, with
47.6% (8271/17368) fixed by changing the source code, 39.1% (6783/17368) by updating
the documentation, and 13.3% (2314/17368) by deleting the documentation. For google
projects, 55.5% (2319/4176) code element references were fixed by project maintainers.
50.2% (1164/2319) were fixed by code changes, 43.3% (1004/2319) by updating the doc-
umentation, and 6.5% (151/2319) by deleting the documentation. Figure 14 shows the
distribution of the differences between the number of instances found between each commit
for top1000 and google projects, with 0.29% of top1000 and 0.51% of google commits
having a difference of more than 1000.

RQ3 Summary Project maintainers most commonly resolve outdated documenta-
tion by changing the source code, followed by updating and deleting the document
to remove the outdated reference.

5.4 RQ4: How do Open Source Projects Respond to Issues About Outdated
Documentation?

To examine the usefulness of our approach in real-world projects, we submitted GitHub
issues to projects containing outdated references detected by our approach. In contrast to
pull requests, creating an issue allows project maintainers to decide whether to delete the
outdated reference in the documentation or update the documentation to reflect the changes
made in the source code. Based on the manual annotation in Section 3.2, we filtered 35
projects from the google dataset with at least one true positive and further narrowed them
down to 15 actively maintained projects that have had new commits within the past year.

In the issues, we listed the outdated references with links to the documentation and an
instance of the code element found in the source code. At the time of writing, 4 projects have

123

5 Page 16 of 25 Empirical Software Engineering (2024) 29:5

Fig. 14 The differences between the number of instances found in consecutive commits for top1000 and
google projects. 0.29% of top1000 and 0.51% of google commits have a difference of more than 1000

responded positively, while the other 4 reported the issues as false positives. 7 projects have
not yet responded to our GitHub issues. Across the 15 projects, we reported 19 instances of
outdated documentation, 5 of which have been fixed by project maintainers. The following
subsections will discuss two true positives and two false positives.

True positivesThe cctz project was one of the projects that responded positively to ourGitHub
issue.21 In one of the commits, the code element instance int64_t was removed entirely
from the source code but the reference to the code element remained in the documenta-
tion. The project maintainer responded to our GitHub issue and updated the documentation
to reflect the changes in the source code (Fig. 15). In the hs-portray project, the function
prettyShow was renamed to showPortrayal in the source code, but the README file was
not updated (Fig. 16). We alerted the developers of this discrepancy, and the issue was fixed
subsequently.22

False positives In one of the projects (Fig. 17), a CMake flag was removed from the source
code but the reference was not updated in the documentation. The project maintainers
responded that the flag is no longer required in the source code but the documentation is
still relevant for users that have installed multiple Python versions to configure the installa-
tion directory correctly.23 A false positive was reported in another project (Fig. 18) where
the code element instance text_out was deleted from the source code. Although the code
element reference is not explicitly written in the source code, the functionality remains in
the program logic which results in the code element reference getting falsely flagged as
outdated.24

21 https://github.com/google/cctz/issues/210
22 https://github.com/google/hs-portray/issues/7
23 https://github.com/google/clif/issues/52
24 https://github.com/google/gnostic/issues/273

123

Page 17 of 25 5Empirical Software Engineering (2024) 29:5

https://github.com/google/cctz/issues/210
https://github.com/google/hs-portray/issues/7
https://github.com/google/clif/issues/52
https://github.com/google/gnostic/issues/273

Fig. 15 True positive: data type updated in the documentation

Fig. 16 True positive: function name updated in the documentation

Fig. 17 False positive: still relevant for users with multiple Python versions

123

5 Page 18 of 25 Empirical Software Engineering (2024) 29:5

Fig. 18 False positive: functionality remains in the program logic

RQ4 Summary Several project maintainers responded positively to our GitHub
issues and resolved the outdated references by updating or deleting the corresponding
documents.

6 Implementation

The implementation of our approach called DOCER (Detecting Outdated Code Element
References) is available in our online appendix.25 To get started, specify the project name in
the new_projects.txt file and run clone_projects.sh to clone the required project files. Running
the normal_analysis.sh or extended_analysis.sh file extracts code element references from
the documentation and reports the number of code element instances found in the source
code. Additionally, a report can be generated in the format of Table 8 using normal_report.py
or extended_report.py depending on the type of analysis. The generated report includes
additional information such as URLs to the source code, commit timestamps and SHAs to
help developers investigate why a reference was flagged as outdated.

7 Discussion

In this section, we will discuss our findings and the interesting differences between the two
datasets used in this work. We investigated the current state of documentation in open-source
software repositories and found that, on average, the top1000 projects contain more outdated
references than google projects at the time of analysis. The references have also been outdated
longer in the top1000 projects (4.7 years) compared to google projects (4.2 years). In the
top1000 dataset, 28.9% of the projects were found to contain at least one outdated code
element reference in contrast to 5.4% of the google projects. We posit that this is because
google projects are generally smaller in size (median of 31.7 MiB for top1000 projects
and 1.47 MiB for google projects), and hence easier for project maintainers to keep their
documentation up-to-date.

25 https://zenodo.org/record/7384588

123

Page 19 of 25 5Empirical Software Engineering (2024) 29:5

https://zenodo.org/record/7384588

Table 8 Format of the report generated by the implementation

Column name Description

code_element the code element captured by the regular expression

page_type type of the documentation page (repo or wiki)

page_name file name of the documentation page

rev_N number of code element instances in revision N

rev_SHA_N SHA of revision N

rev_timestamp_N commit timestamp of revision N

doc_SHA SHA of the documentation

doc_timestamp commit timestamp of the documentation

doc_link link to the documentation

source_link link to the first source code instance

In RQ2, we reviewed the full history of 800 top1000 projects and 1907 google projects.
We found that 12.3% and 7.1% of the references to code elements detected respectively
were outdated at some point in history, with the proportion higher on document and project
levels. We investigated the sudden drops in survival probability for google projects (Fig. 13)
and discovered that the biggest drop around the one month mark was caused by project
maintainers deleting26 and restoring27 large amounts of source code files.

Next in RQ3, we looked into how open-source project maintainers usually resolve their
outdated documentation. In our findings, approximately half of the fixes were attributed to
source code changes. This is because the action of mass deleting and restoring source code
files was interpreted as a fix caused by source code changes. We can also observe in various
reports that the number of code element instances found in the source code suddenly drops
to 0 and back to the original count.

Finally in RQ4, we examined the usefulness of our approach in real-world projects by
alerting developers from 15 different Google projects of potential outdated references in their
documentation where several project maintainers have responded positively to our GitHub
issues. By using the implementation available in our online appendix, developers can scan for
code element references that are potentially outdated in theirGitHub project’s documentation.

Although the content of this paper is centred around detecting outdated code element
references in documentation hosted on GitHub projects, our approach can be generalised
to other version control platforms. The next section of the paper will discuss the potential
threats to validity of our approach.

8 Threats to Validity

8.1 Construct Validity

In thiswork, our approach has identifiedmany documents that are potentially outdated in soft-
ware repositories but it does not detect all kinds of outdated documentation. As our approach
relies on regular expressions for text extraction and matching, other forms of documentation

26 https://github.com/google/j2objc/commit/f9ff221f9eb8aacaecf057e3e9a1ca7c4e8a5beb
27 https://github.com/google/j2objc/commit/592382e0bf314134fac9bfee862dacca50fccdb1

123

5 Page 20 of 25 Empirical Software Engineering (2024) 29:5

https://github.com/google/j2objc/commit/f9ff221f9eb8aacaecf057e3e9a1ca7c4e8a5beb
https://github.com/google/j2objc/commit/592382e0bf314134fac9bfee862dacca50fccdb1

containing outdated information such as images or videos cannot be detected. Even though
regular expressions allow us to easily extract code element references, they may sometimes
lead to references being falsely categorised as outdated, e.g. deleting the final instance of a
code element that is part of a source code comment.

A project’s change log may occasionally be incorrectly flagged as outdated as it may
contain references to code elements that are no longer in the source code. However, these
references should not be considered outdated as they only serve as a notice for users that
the referenced class or function has been deprecated. In addition, our approach also cannot
detect outdated relationships between the repository and documentation if the code elements
are still present in the source code, i.e. documentation could be considered outdated even if
all code element references are matched. These false positives are difficult to eliminate and
require project maintainers to verify individually.

Our approach focuses on the main branch, not analysing outdated code element refer-
ences across parallel or feature branches. The rationale for this design choice is GitHub’s
default behaviour, which displays only the README file from the main branch. Moreover,
in branches with interleaved commits, code elements exclusive to a particular branch can
appear and disappear intermittently, causing our method to mistakenly identify them as out-
dated.While adapting our approach to encompass all branches, yielding a comprehensive list
of outdated elements for each, would be straightforward, a significant challenge would be
the design of a user interface which effectively communicates this information in scenarios
with many parallel branches. This is especially important for situations where developers are
willing to accept temporary outdatedness during ongoing modifications.

8.2 Internal Validity

The manual annotation conducted in Section 3.2 to assess the quality of the code element
references extracted by regular expressions may introduce bias. To minimise bias when
determining if a reference was outdated, the annotation process was done separately by three
annotators. We also ensured that our inter-rater agreement was high so that the annotations
were reliable. Usingmore than 50 randomly selected code elements for themanual annotation
process might have resulted in different modifications to the regular expression list and the
number of repositories that fit the criteria for RQ4.

8.3 External Validity

While the findings are based on the analysis of over 3,000 projects, we cannot claim that the
findings can be generalised to otherGitHub repositories that are not in the datasets considered,
i.e. the top 1,000 most popular GitHub repositories and those owned by Google. We also
cannot make claims of the generalisability of our findings for projects hosted on other version
control platforms.

9 RelatedWork

In this section, we review relatedwork on the impact of outdated documentation, efforts in the
area of code element resolution, and work on detecting and/or fixing inconsistencies between
source code and documentation. Our work is the first to detect outdated documentation based
on references to code elements that are no longer in sync.

123

Page 21 of 25 5Empirical Software Engineering (2024) 29:5

9.1 Impact of Outdated Documentation

According to the Open Source Survey (Zlotnick 2017), “incomplete or outdated documen-
tation is a pervasive problem, observed by 93% of respondents, yet 60% of contributors say
they rarely or never contribute to the documentation.” In Sholler et al.’s ‘Ten simple rules for
helping newcomers become contributors to open projects’ (Sholler et al. 2019), the authors
include “Keep knowledge up-to-date and findable” as one of their rules, arguing that “out-
dated documentation may lead newcomers to a wrong understanding of the project, which is
also demotivating. While it may be hard to keep material up-to-date, community members
should at least remove or clearly mark outdated information. Signalling the absence or stal-
eness of material can save newcomers time and also suggest opportunities for them to make
contributions that they themselves would find useful.”

Outdated software documentation is a form of technical debt (Kruchten et al. 2012) often
referred to as documentation debt (Aldaeej 2021). Rios et al. (2020) list a number of effects of
documentation debt, including low maintainability, delivery delay, rework, and low external
quality, concluding that documentation debt affects several software development areas but
especially requirements. With a similar focus on requirements, Mendes et al. (2016) report
an extra maintenance effort caused by documentation debt of about 47% of the total effort
estimated for developing a project and an extra cost of about 48% of the initial cost of the
development phase. Compared to other types of technical debt, Liu et al. (2021) found that
documentation debt is less commonly and more slowly removed.

Motivated by these findings, the goal of our work is the automated detection of outdated
documentation, based on the intuition that documents can be considered outdated if they
contain references to code elements that used to be part of a project but are no longer contained
in a repository.

9.2 Code Element Resolution

Code element resolution refers to techniques that resolve a general (typically ambiguous)
mention of a potential code element (e.g., a class or a method) to its definition (Robillard
et al. 2017). Code element resolution has been employed in the context of emails (Bacchelli
et al. 2010), tutorials (Dagenais and Robillard 2012), or Stack Overflow (Rigby and Robillard
2013), to name a few examples, often with the goal of linking relevant learning resources to
code elements. Related work has also focused on automatically determining the importance
of a code element mentioned in its context (e.g., in tutorial pages (Petrosyan et al. 2015)) or
on detecting errors in API documentation (Zhong and Su 2013).

Supervised machine learning approaches are often used for code element resolution, usu-
ally aiming at a balance of precision and recall. In this work, we rely on an improved version
of the regular expressions used for code element detection by Treude et al. (2014) and then
use a very strict filter (exact match) to find instances of the mentioned code element in the
source code. While this may underestimate the number of actually outdated code element
references, we err on the side of caution to not establish traceability links that we are not
confident about.

9.3 Code-Documentation Inconsistencies

Inconsistencies between source code and its documentation have been the target of vari-
ous research efforts over the past years, with a particular focus on source code comments.

123

5 Page 22 of 25 Empirical Software Engineering (2024) 29:5

Wen et al. (2019) presented a large-scale empirical study of code-comment inconsistencies,
revealing causes such as deprecation and refactoring. In one of the first attempts to detect
and fix such inconsistencies, Tan et al. (2012) presented@tcomment for determining the cor-
rectness of Javadoc comments related to null values and exceptions. DocRef by Zhong and
Su (2013) was designed to detect inconsistencies between source code and API documenta-
tion, based on the use of island parsing to extract code elements and reporting mismatched
code elements as errors. AdDoc by Dagenais and Robillard (2014) is a technique to identify
code patterns in documentation using traceability links that can report new changes that do
not conform to the code patterns of existing documentation. Also aimed at inconsistencies
between source code and documentation, Ratol and Robillard (2017) presented Fraco, a tool
to detect source code comments that are fragile with respect to identifier renaming.

Zhou et al. (2020) presented DRONE, a framework that can automatically detect defects
in Java API documentation and generate meaningful natural language recommendations.
This is achieved through a combination of static program analysis, part-of-speech tagging,
and constraint solving. Another related work is FreshDoc, which is an approach proposed
by Lee et al. (2019) to automatically update class, method, and field names in the API
documentation. This is done by extracting code elementswith a grammar parser and analysing
different versions of the source code. More recently, Panthaplackel et al. (2020) proposed
an approach to automatically update existing comments when the source code is modified.
This is accomplished by tokenising the comments and source code, and then modifying the
comment tokens associated with the changes in source code.

In contrast to these related work, our approach detects outdated references to code ele-
ments in the documentation. To the best of our knowledge, there are currently no similar
contributions for automatically detecting outdated documentation in software repositories
when source code and documentation go out of sync.

10 Conclusion/FutureWork

In this paper, we proposed an approach that can automatically detect outdated references to
code elements caused by removing all source code instances. We investigated the current
state of documentation in software repositories, extended the approach to analyse the state
of documentation throughout projects’ history, explored how outdated documentation is
resolved in open source projects, and with the results, we alerted Google developers of
potentially outdated code element references in their projects.

In detail, we found that the majority of the most popular projects on GitHub contained at
least one outdated reference to a code element at some point during their history and these
outdated references usually survived in the documentation for years before they were fixed.
By analysing the full history of projects, we discovered that outdated references are more
likely fixed by updating the source code or document than deleting the entire document.
Moreover, our GitHub issues have led to instances of outdated documentation getting fixed
in real-world projects.

Although documentation gets outdated without warnings, developers can take steps to
keep their documentation up-to-date by checking if the documentation needs to be updated
whenever changes aremade to the source code. Using our current implementation, developers
have to manually scan their repository with each commit which may be repetitive and time
consuming. A possible direction for future work is to create a workflow that automatically
clones the repository, runs the analysis, and outputs the potentially outdated references. Using

123

Page 23 of 25 5Empirical Software Engineering (2024) 29:5

a tool such as GitHub Action28 to automate the workflow simplifies the process consider-
ably as it allows developers to configure their repository to automatically scan for outdated
references whenever there is a new commit or pull request.

Another potential direction for future work is expanding our approach to other forms of
documentation, such as images. We imagine that texts in images are more likely to be out-
dated as they generally require more effort to update. These texts may be extracted using
methods such as Optical Character Recognition, allowing us to detect more potentially out-
dated references. Additionally, the approach can be extended to other documentation files
other than README.md files and wiki pages. Future work could also build on the current
approach to handle multiple parallel branches simultaneously. This will allow project main-
tainers to quickly scan for outdated documentation without running the analysis separately
on the branches. Applying customised sets of regular expressions for files written in different
programming languages may also be another direction to help with more accurate matches
in the source code, e.g. avoiding matching source code comments. We hope that this research
will be a step toward keeping documentation in software repositories up-to-date.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data availibility statement The datasets generated during and/or analysed during the current study are avail-
able in the Zenodo repository, https://zenodo.org/record/7384588.

Declarations

Conflicts of interest Christoph Treude is a member of the Empirical Software Engineering Editorial Board.
The authors have no other conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aghajani E, Nagy C, Vega-Márquez OL, Linares-Vásquez M, Moreno L, Bavota G, Lanza M (2019) Software
documentation issues unveiled. In: Proceedings of the International Conference on Software Engineering,
pp 1199–1210

Aldaeej A (2021) Towards effective technical debt decision making in software startups: A multiple case study
of web and mobile app startups. PhD thesis, University of Maryland, Baltimore County

Bacchelli A, Lanza M, Robbes R (2010) Linking e-mails and source code artifacts. In: Proceedings of the
32nd ACM/IEEE International conference on software engineering vol 1, pp 375–384

Dagenais B, Robillard MP (2012) Recovering traceability links between an api and its learning resources. In:
2012 34th international conference on software engineering (icse), IEEE, pp 47–57

Dagenais B, Robillard MP (2014) Using traceability links to recommend adaptive changes for documentation
evolution. IEEE Trans Software Eng 40(11):1126–1146

Forward A, Lethbridge TC (2002) The relevance of software documentation, tools and technologies: a survey.
In: Proceedings of the symposium on document engineering, pp 26–33

28 https://github.com/features/actions

123

5 Page 24 of 25 Empirical Software Engineering (2024) 29:5

https://zenodo.org/record/7384588
http://creativecommons.org/licenses/by/4.0/
https://github.com/features/actions

Kajko-Mattsson M (2005) A survey of documentation practice within corrective maintenance. Empir Softw
Eng 10(1):31–55

Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: From metaphor to theory and practice. IEEE Softw
29(6):18–21

Lee S, Wu R, Cheung SC, Kang S (2019) Automatic detection and update suggestion for outdated API names
in documentation. IEEE Transactions on Software Engineering

Lethbridge TC, Singer J, Forward A (2003) How software engineers use documentation: The state of the
practice. IEEE Softw 20(6):35–39

Liu J, Huang Q, Xia X, Shihab E, Lo D, Li S (2021) An exploratory study on the introduction and removal of
different types of technical debt in deep learning frameworks. Empir Softw Eng 26(2):1–36

McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22(3):276–282
Mendes TS, de F Farias MA, Mendonça M, Soares HF, Kalinowski M, Spínola RO (2016) Impacts of agile

requirements documentation debt on software projects: a retrospective study. In: Proceedings of the 31st
annual ACM symposium on applied computing, pp 1290–1295

Panthaplackel S, Nie P, Gligoric M, Li JJ, Mooney RJ (2020) Learning to update natural language comments
based on code changes. arXiv preprint arXiv:2004.12169

Parnas DL (1994) Software aging. In: Proceedings of international conference on software engineering, pp
279–287

Petrosyan G, Robillard MP, De Mori R (2015) Discovering information explaining api types using text classi-
fication. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, IEEE, vol 1,
pp 869–879

Prana GAA, Treude C, Thung F, Atapattu T, Lo D (2019) Categorizing the content of github readme files.
Empir Softw Eng 24(3):1296–1327

Ratol IK, Robillard MP (2017) Detecting fragile comments. In: Proceedings of the international conference
on automated software engineering, pp 112–122

Rigby PC, Robillard MP (2013) Discovering essential code elements in informal documentation. In: 2013
35th international conference on software engineering (ICSE), IEEE, pp 832–841

Rios N,Mendes L, Cerdeiral C,Magalhães APF, Perez B, Correal D, Astudillo H, SeamanC, Izurieta C, Santos
G, et al. (2020) Hearing the voice of software practitioners on causes, effects, and practices to deal with
documentation debt. In: International working conference on requirements engineering: foundation for
software quality, Springer, pp 55–70

Robillard MP, Marcus A, Treude C, Bavota G, Chaparro O, Ernst N, Gerosa MA, Godfrey M, Lanza M,
Linares-Vásquez M, et al. (2017) On-demand developer documentation. In: 2017 IEEE International
conference on software maintenance and evolution (ICSME), IEEE, pp 479–483

ShollerD, Steinmacher I, FordD,AverickM,HoyeM,WilsonG (2019)Ten simple rules for helping newcomers
become contributors to open projects. PLoS Comput Biol 15(9):e1007296

de Souza SCB, Anquetil N, de Oliveira KM (2005) A study of the documentation essential to software
maintenance. In: Proceedings of the international conference on design of communication: documenting
& designing for pervasive information, pp 68–75

Steinmacher I, Treude C,GerosaMA (2018) Letme in: Guidelines for the successful onboarding of newcomers
to open source projects. IEEE Software 36(4):41–49

Tan SH, Marinov D, Tan L, Leavens GT (2012) @tcomment: Testing Javadoc comments to detect comment-
code inconsistencies. In: Proceedings of the international conference on software testing, verification and
validation, pp 260–269

Treude C, RobillardMP, Dagenais B (2014) Extracting development tasks to navigate software documentation.
IEEE Trans Software Eng 41(6):565–581

Uddin G, Robillard MP (2015) How API documentation fails. IEEE Software 32(4):68–75
Wen F, Nagy C, Bavota G, Lanza M (2019) A large-scale empirical study on code-comment inconsistencies.

In: Proceedings of the international conference on program comprehension, pp 53–64
Zhong H, Su Z (2013) Detecting API documentation errors. In: Proceedings of the international conference

on object oriented programming systems languages & applications, pp 803–816
ZhouY,WangC,YanX,ChenT, Panichella S,Gall HC (2020)Automatic detection and repair recommendation

of directive defects in Java API documentation. IEEE Trans Software Eng 46(9):1004–1023
Zlotnick F (2017) Github open source survey 2017. https://doi.org/10.5281/zenodo.806811

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Page 25 of 25 5Empirical Software Engineering (2024) 29:5

http://arxiv.org/abs/2004.12169
https://doi.org/10.5281/zenodo.806811

	Detecting outdated code element references in software repository documentation
	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Identifying Documentation
	3.2 Extracting Code Elements
	3.3 Matching Code Elements
	3.4 Extending the Analysis

	4 Research Questions
	5 Results
	5.1 RQ1: What is the Current State of Documentation?
	5.2 RQ2: What was the State of Documentation During the Projects' History?
	5.3 RQ3: How is Outdated Documentation Resolved in Projects?
	5.4 RQ4: How do Open Source Projects Respond to Issues About Outdated Documentation?

	6 Implementation
	7 Discussion
	8 Threats to Validity
	8.1 Construct Validity
	8.2 Internal Validity
	8.3 External Validity

	9 Related Work
	9.1 Impact of Outdated Documentation
	9.2 Code Element Resolution
	9.3 Code-Documentation Inconsistencies

	10 Conclusion/Future Work
	References

