
https://doi.org/10.1007/s10664-023-10393-w

Generating and detecting true ambiguity: a forgotten danger
in DNN supervision testing

Michael Weiss1 · André García Gómez1 · Paolo Tonella1

Accepted: 6 September 2023 /
© The Author(s) 2023

Abstract
Deep Neural Networks (DNNs) are becoming a crucial component of modern software
systems, but they are prone to fail under conditions that are different from the ones observed
during training (out-of-distribution inputs) or on inputs that are truly ambiguous, i.e., inputs
that admit multiple classes with nonzero probability in their labels. Recent work proposed
DNN supervisors to detect high-uncertainty inputs before their possible misclassification
leads to any harm. To test and compare the capabilities of DNN supervisors, researchers
proposed test generation techniques, to focus the testing effort on high-uncertainty inputs
that should be recognized as anomalous by supervisors. However, existing test generators
aim to produce out-of-distribution inputs. No existing model- and supervisor independent
technique targets the generation of truly ambiguous test inputs, i.e., inputs that admit multiple
classes according to expert human judgment. In this paper,we propose a novelway to generate
ambiguous inputs to test DNN supervisors and used it to empirically compare several existing
supervisor techniques. In particular, we proposeAmbiGuess to generate ambiguous samples
for image classification problems. AmbiGuess is based on gradient-guided sampling in the
latent space of a regularized adversarial autoencoder. Moreover, we conducted what is −
to the best of our knowledge − the most extensive comparative study of DNN supervisors,
considering their capabilities to detect 4 distinct types of high-uncertainty inputs, including
truly ambiguous ones. We find that the tested supervisors’ capabilities are complementary:
Those best suited to detect true ambiguity perform worse on invalid, out-of-distribution and
adversarial inputs and vice-versa.

Communicated by: Markus Borg

This work was partially supported by the H2020 project PRECRIME, funded under the ERC Advanced
Grant 2017 Program (ERC Grant Agreement n. 787703).

B Michael Weiss
michael.weiss@usi.ch

André García Gómez
andre.gg96@gmail.com

Paolo Tonella
paolo.tonella@usi.ch

1 Universitá della Svizzera Italiana, Lugano, Switzerland

0123456789().: V,-vol 123

Published online: 3 November 2023

Empirical Software Engineering (2023) 28:146

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10393-w&domain=pdf
http://orcid.org/0000-0002-8944-389X

Keywords Neural Networks · Image classification · Ambiguity · Aleatoric uncertainty ·
Data-centric machine learning

1 Introduction

Recently,more andmore software systems areDeep Learning based Software Systems (DLS),
i.e., they contain at least one Deep Neural Network (DNN), as a consequence of the impres-
sive performance that DNNs achieve in complex tasks, such as image, speech or natural
language processing, in addition to the availability of affordable, but highly performant
hardware (i.e., GPUs) where DNNs can be executed. DNN algorithms can identify, extract
and interpret relevant features in a training data set, learning to make predictions about an
unknown function of the inputs at system runtime. Given the complexity of the tasks for
which DNNs are used, predictions are typically made under uncertainty, where we distin-
guish between epistemic uncertainty, i.e., model uncertainty whichmay be removed by better
training of the model, possibly on better training data, and aleatoric uncertainty, which is
model-independent uncertainty, inherent in the prediction task (e.g., the prediction of a non-
deterministic event). The former uncertainty is due to out-of-distribution (OOD) inputs, i.e.,
inputs that are inadequately represented in the training set.

The latter may be due to ambiguity, i.e., an input for which multiple labels are all possibly
correct (which could be understood as identical inputs having different, but correct, labels or
− more generally − inputs having probabilistic labels).

This is a major issue often ignored during DNN testing, as recently recognized by Google
AI Scientists: “many evaluation datasets contain items that (...) miss the natural ambiguity
of real-world context” Aroyo and Paritoshs (2021).

The existence of uncertainty led to the development of DNN Supervisors (in short, super-
visors), which aim to recognize inputs forwhich theDL component is likely tomake incorrect
predictions, allowing the DLS to take appropriate countermeasures to prevent harmful sys-
temmisbehavior (Stocco et al. 2020; Henriksson et al. 2019, 2019a; Weiss and Tonella 2021,
2022; Catak et al. 2021; Hell et al.2021; Hussain et al. 2022). For instance, the supervisor
of a self-driving car might safely disengage the auto-pilot when detecting a high uncertainty
driving scene (Stocco et al. 2020; Wintersberger et al. 2021). Other examples of application
domainswhere supervision is crucial includemedical diagnosis (Davidson et al. 2021; Brown
and Leontidis 2021) and natural hazard risk assessment (Bjarnadottir et al. 2019).

While most recent literature on uncertainty driven DNN testing is focused on out of
distribution detection (Henriksson et al. 2019, Henriksson et al. 2019a; Berend et al. 2020;
Stocco et al. 2020; Zhang et al. 2018;Weiss and Tonella 2021, 2022; Kim et al. 2018; Kim and
Yoo 2021; Dola et al. 2021), studies considering true ambiguity are lacking, which poses a big
practical risk: We cannot expect that supervisors which perform well in detecting epistemic
uncertainty are guaranteed to performwell at detecting aleatoric uncertainty. Actually, recent
literature suggests the opposite (Mukhoti et al. 2021). The lack of studies considering true
ambiguity is related to − if not caused by − the unavailability of ambiguous test data for
common case studies: While to create ODD data, such as corrupted and adversarial inputs,
a variety of precompiled dataset and generation techniques are publicly available (Mu and
Gilmer 2019; Hendrycks and Dietterich 2018; Rauber et al. 2017), and invalid or mislabelled
data is trivial to create inmost cases,we are not aware of any approach targeting the generation
of true ambiguity in a way that is sufficient for reliable and fair supervisor assessment. In
this paper we aim to close this gap by making the following contributions:

123

146 Page 2 of 36 Empirical Software Engineering (2023) 28:146

Approach We proposeAmbiGuess, a novel approach to generate diverse, labelled, ambigu-
ous images for image classification tasks. Our approach is classifier independent, i.e., it aims
to create data which is ambiguous to a hypothetical, perfectly well trained oracle (e.g., a
human domain expert), and which does not just appear ambiguous to a specific, subopti-
mally trained DNN.

Datasets Using AmbiGuess, we generated and released two ready-to-use ambiguous
datasets for common benchmarks in deep learning testing: MNIST (LeCun et al. 1998),
a collection of grayscale handwritten digits, and Fashion-MNIST (Xiao et al. 2017), a more
challenging classification task, consisting of grayscale fashion images.

Supervisor Testing Equipped with our datasets, we measured the capability of 16 supervi-
sors at detecting different types of high-uncertainty inputs, including ambiguous ones. Our
results indicate that there is complementarity in the supervisors’ capability to detect either
ambiguity or corrupted inputs.

2 Background

Ambiguous Inputs In many real-world applications, the data observed at prediction time
might not be sufficient to make a certain prediction, even assuming a hypothetical optimal
oracle such as a domain expert with exhaustive knowledge: If some information required
to make a correct prediction is missing, such missing information can be seen as a random
influence, thus introducing aleatoric uncertainty in the prediction process.

Formally, in a given classification problem, i.e., a machine learning (ML) problem where
the output is the class c the input x is predicted to belong to, let P(c | x) denote the proba-
bilistic label, indicating the probability that x belongs to c in the ground truth’s underlying
distribution, where observation x ∈ O andO denotes the observable space, i.e., the set of all
possibly observable inputs. We define true ambiguity as follows:

Definition 1 (True Ambiguity in Classification) A data point x ∈ O is truly ambiguous if
and only if P(c | x)>0 for more than one class c.

Thus, inputs to a classification problem are considered truly ambiguous if and only if such
input is part of an overlap between two or more classes. We emphasize true ambiguity to
indicate ambiguity intrinsic to the data and independent from any model and its classification
confidence/accuracy. In this way we distinguish ours from other papers which also use the
term ambiguous with different meaning, such as low confidence inputs, mislabelled inputs,
where a label in the training/test set is clearly wrong, i.e, the corresponding probability in
P(c | x) is 0 (Seca 2021), or invalid inputs, where no true label exists for a given input.1 In
simple domains, where humansmay have no epistemic uncertainty (i.e., they know thematter
perfectly), true ambiguity is equivalent to human ambiguity. In the remainder of this paper
we focus only on true ambiguity and if not otherwise mentioned we use the term ambiguity
as a synonym for true ambiguity.

Out-of-Distribution (OOD) Inputs A prediction-time input is denoted OOD if it was insuf-
ficiently represented at training time, which caused the DNN not to generalize well on such

1 It can be noticed that the term invalidity is context dependent. Dola et al. (2021) consider an input invalid
if it is out-of-distribution w.r.t. the training data, while still being an input which clearly belongs to one class,
whereas other works consider as invalid input any relevant edge case (Mu and Gilmer 2019; Hendrycks and
Dietterich 2018).

123

Page 3 of 36 146Empirical Software Engineering (2023) 28:146

types of inputs. This is the primary cause of epistemic uncertainty. OOD test data is used
extensively to measure supervisor performance in academic studies, e.g. by modifying nom-
inal data in a model-independent, realistic and label-preserving way (corrupted data) (Zhang
et al. 2018; Mu and Gilmer 2019; Hendrycks and Dietterich 2018; Stocco et al. 2020) or by
minimally modifying nominal data to fool a specific, givenmodel (adversarial data). In prac-
tice, both OOD and true ambiguity are important problems when building DLS supervisors
(Humbatova et al. 2020).

Decision Frontier Much recent literature works on the characterization of the decision fron-
tier of a given model, i.e., its boundary of predictions between two classes in the input
space (Karimi et al. 2019; Kang et al. 2020; Byun and Rayadurgam 2020; Riccio and Tonella
2020). It is imporant to note that the decision frontier is not equivalent to the sets of ambiguous
inputs: The decision frontier is model specific, while ambiguity depends only on the prob-
lem definition and is thus independent of the model, i.e., the fact that an input is at a specific
model’s frontier, does not guarantee that it is indeed ambiguous (it may also be unambiguous,
i.e., belong to a specific class with probability 1, or invalid, i.e., have 0 probability to belong to
any class). The decision frontier may thus be considered the “model’s ambiguity”, while true
ambiguity implies that an input is perceived as ambiguous by a hypothetical, perfectly well
trained domain expert (hence matching “human ambiguity” in many classification tasks).

3 RelatedWork

The research works that are most related to our approach deal with automated test generation
for DNNs (Mu and Gilmer 2019; Hendrycks and Dietterich 2018; Tian et al. 2018; Zhang
et al. 2018; Stocco et al. 2020; Rauber et al. 2017). In these works, some reasons for uncer-
tainty, such as ambiguity, are not considered. Hence, automatically generated tests do not
allow meaningful evaluations under ambiguity of DNN supervisors, as well as of the DNN
behavior, in the absence of supervisors. We illustrate this in Fig. 1: Using an off-the-shelf
MNIST (LeCun et al. 1998) classifier, we calculated the predictive entropy to identify the
3% of samples (300 out of 10’000) with the presumably highest aleatoric uncertainty in the
MNIST test set. Predictive entropy (i.e., the entropy of the Softmax values interpreted as
probabilities) is a standard metric used in the related literature (Mukhoti et al. 2021) to detect
aleatoric uncertaintywhich is caused, amongst other reasons, by truly ambiguous images. Out
of these 300 images, we manually selected the ones we considered potentially ambiguous,
and show them in Fig. 1. Clearly, some of them are ambiguous, showing that ambiguity exists
and is present in the MNIST test set, but the scarcity of truly ambiguous inputs indicates that
supervisors cannot be confidently tested for their capability of handling ambiguity using this
test set. The manual selection of the 18 (subjectively) most ambiguous images was required
to exclude the 282 images that also had high entropy, but did not appear truly ambiguous: For
some of them, the high entropy was clearly caused by image invalidity. For others, the high
entropy was caused by the model’s inability to assign a high likelihood to a single class for
an unambiguous, nominal image. The latter serves as an example showing that using just the
Softmax value to detect ambiguity might not be ideal and highlights the need for an empirical
comparison of the different supervisors’ capability to detect ambiguity (see Section 7).

In the DNN test input generators (TIG) literature (Mu and Gilmer 2019; Hendrycks and
Dietterich 2018; Tian et al. 2018; Zhang et al. 2018; Stocco et al. 2020; Dunn et al. 2021),
with just one notable preprint as an exception (Mukhoti et al. 2021), we are not aware of any
paper aiming to generate true ambiguity directly, while most TIG aim for other objectives.

123

146 Page 4 of 36 Empirical Software Engineering (2023) 28:146

Fig. 1 The 18 most ambiguous images, manually selected from the 300 (3%) samples with the highest
predictive entropy in the MNIST test set (LeCun et al. 1998). Only a few of them are clearly ambiguous,
showing that ambiguous data are scarce in existing datasets. Underlined numbers show the actual label, non-
underlined numbers show classes we consider possibly having a non-zero probability as well (making the
image ambiguous)

Some works (Mu and Gilmer 2019; Hendrycks and Dietterich 2018; Weiss and Tonella
2022) propose to corrupt nominal input in predefined, natural and label-preserving ways to
generate OOD test data. DeepTest (Tian et al. 2018) applies corruptions to road images, e.g.,
by adding rain, while aiming to generate data that maximizes neuron coverage. Also targeting
road images, DeepRoad (Zhang et al. 2018) is a framework using Generative Adversarial
Networks (GAN) to change conditions (such as the presence of snow) on nominal images.
The Udacity Simulator, used by Stocco et al. (2020), allows to dynamically add corruptions,
such as rain or snow, when testing self-driving cars. Similar to DeepTest, TensorFuzz (Xie
et al. 2019) and DeepHunter (Odena et al. 2019) generate data with the objective to increase
test coverage. Again, aiming to generate diverse and unseen inputs, these approaches will
mostly generate OOD inputs and only occasionally − if at all − truly ambiguous data.

A fundamentally different objective is taken in adversarial input generation (Goodfellow
et al. 2014), where nominal data is not changed in a natural, but in a malicious way. Based
on the tested model, nominal input data is slightly changed to cause misclassifications. Lit-
erature and open source tools provide access to a wide range of different specific adversarial
attacks (Rauber et al. 2017). While very popular, neither input corruptions nor adversar-
ial attacks generate intentionally ambiguous data from nominal, typically non-ambiguous
inputs. As they rely on the ground truth label of the modified input to remain unchanged,
they do not aim at creating true ambiguity, as affecting the ground truth label would imply
unsuccessful test data generation.

Another popular type of test data generators aims to create inputs along the decision
boundary: DeepJanus (Riccio and Tonella 2020) uses a model based approach, while SIN-
VAD (Kang et al. 2020) and MANIFOLD (Byun and Rayadurgam 2020) use the generative
power of variational autoencoders (VAE) (Kingma and Welling 2013). Note that we can-
not expect inputs along the decision boundary to be always truly ambiguous − they may
just as well be OOD, invalid or in rare cases even low-uncertainty inputs. In addition, these
approaches are by design model specific, making them unsuitable to generate a generally
applicable, model-independent, ambiguous dataset.

123

Page 5 of 36 146Empirical Software Engineering (2023) 28:146

Thus, out of all the approaches discussed above, none aims to generate a truly ambiguous
dataset. A notable exception is a recent, yet unpublished, preprint by Mukhoti et al. (2021).
In their work, to evaluate the uncertainty quantification approach they propose, they needed
an ambiguous MNIST dataset. To that extent, they used a VAE to generate a vast amount of
data (which also contains invalid, OOD and un-ambiguous data) which they then filter and
stratify based on twomis-classification prediction techniques, aiming to end upwith a dataset
consisting of ambiguous images. We argue that, while certainly valuable in the scope of their
paper, the so-created dataset is not sufficient as a standard benchmark for DNN supervisors,
as the approach itself relies on a supervision technique, hence being circular if used for DNN
supervisor assessment. In fact, the created ambiguity may be particularly hard (or easy) to be
detected by supervisors using different (resp. similar) MP techniques. We anyway compared
their approach to ours empirically and found that it is less successful in generating truly
ambiguous test data than ours.

4 Uses of Ambiguous Test Sets

In this paper we focus on the usage of ambiguous test data for the assessment of DNN
supervisors, but ambiguous data have also other uses, including the assessment of test input
prioritizers.

4.1 Assessment of DNN Supervisors

We cannot assume that results on DNN supervisors’ capabilities obtained on nominal and
OODdata generalize to ambiguous data. Recent studies (Zhang et al. 2020;Weiss and Tonella
2021, 2022) have shown that there is no clear performance dominance amongst uncertainty
quantifiers used asDNN supervisors, but such studies overlook the threats possibly associated
with the presence of ambiguity. Warnings on such threats in medical machine learning based
systems were raised already in 2000 (Trappenberg and Back 2000), with ambiguity in a
cancer detection dataset mentioned as a specific example. The authors proposed to equip
the system with an ambiguity-specific supervisor, to “detect and re-classify as ambiguous”
(Trappenberg and Back 2000) such threatening data. To test such supervisors, such as the one
proposed byMukhoti et al. (2021), model andMP independent and diverse ambiguous data is
needed.

4.2 Assessment of DNN Input Prioritizers

Test input prioritizers, possibly based on MP, aim to prioritize test cases (inputs) in order
to allow developers to detect mis-behaviours (e.g., mis-classifications) as early as possible.
Hence, they should be able to recognize ambiguous inputs. Correspondingly, test input pri-
oritizers should be assessed also on ambiguous inputs. On the contrary, when the goal is
active learning, an ambiguous input should be given the least priority or excluded at all, as
the aleatoric uncertainty causing its mis-classification cannot by definition be avoided using
more training data. Thus, recognition of ambiguous test data is clearly of high importance
when developing a test input prioritizer, be that to make sure that the ambiguous samples are
given a high priority (during testing) or a low priority (during active learning).

123

146 Page 6 of 36 Empirical Software Engineering (2023) 28:146

Fig. 2 Schematic segmentation of
a valid input space: If two classes
are separated by ambiguous
inputs, a decision boundary of
classifier C outside of these
ambiguous inputs implies
(unambiguous) misclassifications

4.3 Decision-Boundary Oracle

Much recent literature works on the characterization of the decision boundary of a given
model, i.e., its frontier of predictions between two classes in the input space (Karimi et al.
2019; Kang et al. 2020; Byun and Rayadurgam 2020; Riccio and Tonella 2020). Given that
for an ambiguous sample, two or more classes can be considered as true labels, we would
expect all ambiguous samples to lie close to the decision boundary of a well trained classifier.
Similarly, considering only the valid input space, i.e., the subset of the input space which
contains the valid inputs for the given classification problem, the presence of an ambiguous
space (AS), i.e., of truly ambiguous samples, implies that the decision boundary of said
classifier must go through the AS. This is illustrated in Fig. 2, which shows an ambiguous
space and the decision boundary of a suboptimally trained classifier C. The fact that the
decision boundary is not always within the AS implies that the inputs lying between the
decision boundary and the AS consist of unambiguous samples misclassified by C. Moreover
we know that adding data from these enclosed (clear misclassification) areas to the training
set will increase the performance of C, which is not necessarily true for samples within the
AS. Hence, knowledge about the ambiguity of data near the decision boundary is important
to assess the quality of a model and possibly to improve it, when unambiguous data is found
at the frontier.

It should be noticed that in this paper, we do not make any assumptions about the decision
boundary and its connection to truly ambiguous inputs and Fig. 2 serves only as illustration of
a situation that may occur in practice. Indeed, in Section 7, we compare supervisors directly
relying on the predicted probabilities and thus also on the decision boundary (such as Vanilla
Softmax) with some that do not (such as autoencoders (Stocco et al. 2020)). Indeed, the good
results of Vanilla Softmax and other techniques relying on the decision boundary do suggest
that ambiguous samples are very likely to lie close to such boundary.

4.4 Disentanglement and Reasoning

The identification of ambiguity can be seen as a special case of uncertainty disentanglement
and reasoning (Lines 2019; Clements et al. 2019), the former being the quantification of epis-
temic vs aleatoric uncertainty, and the latter being the separation of uncertainty into specific
root causes, such as data invalidity, OOD, or true ambiguity. Recent work has used uncer-
tainty disentanglement to guide training in reinforcement learning (Lines 2019; Clements
et al. 2019), building on the idea that only data leading to epistemic uncertainty is useful to
drive model performance improvement during continuous learning tasks. Let us consider the
following example:

123

Page 7 of 36 146Empirical Software Engineering (2023) 28:146

Example 1 (Use of Uncertainty Reasoning) A medical DLS determines if a patient has a
specific type of cancer, provided some ultrasonic images.

(1) Assume the ultrasonic image reveals an implant of the patient − something which is
underrepresented in the training set, making the input OOD and potentially leading the
DNN to mistake the implant as something relevant for cancer detection: Being able to
reliably detect that the input is OOD, the system could ask a (human) expert to label the
image. Said label would then be a more reliable prediction, as the human is not confused
by the implant. In addition, the now labelled OOD sample can be used in further training
loops of the DNN.

(2) Assume the input is in-distribution, but there’s not enough information on the image to
decide if the patient has cancer: The image is truly ambiguous. By recognizing this true
ambiguity, the DLS may make a reliable probabilistic prediction, which would allow
the patient to make an informed decision on whether to conduct further diagnosis or
treatment.

(3) Assume the DNN is given an image which is not an ultrasonic image. Detecting that this
input is invalid allows the system to refuse to make any (even probabilistic) prediction
and raise an alert.

Case (2) is a particularly realistic case: In AI-guided healthcare, decisions about future
treatment and diagnosis are typically made based on probabilistic predictions (de Hond et al.
2022), which can only be trusted if the input is in-distribution.

Another reason for fine-grained uncertainty reasoning is DLS debugging: Informing the
developers of a DLS about the root causes of uncertainties and mispredictions would greatly
facilitate further improvement of the DLS, especially because DNNs are known for their
low explainability (Samek et al. 2017), which makes debugging particularly challenging
when dealing with them. Clearly, to develop and test any technique working with uncertainty
disentanglement or uncertainty reasoning, the availability of ambiguous data in the test set is
a strict prerequisite, and the lack of such datasets is likely the main reason why such research
is so scarce.

5 Generating Ambiguous Test Data

We designed AmbiGuess, a TIG targeting ambiguous data for image classification, based
on the following design goals (DG):

DG1 (labelled ambiguity) The generated data should be truly ambiguous and have cor-
respondingly probabilistic labels, i.e., each generated data is associated with a probability
distribution over the set of labels. Probabilistic labels are the most expressive description of
true ambiguity and a single or multi-class label can be trivially derived from probabilistic
labels.

DG2 (model independence) To allow universal applicability of the generated dataset, our
TIG should not depend on any specific DNN under test.

DG3 (MP independence) The created dataset should allow fair comparison between dif-
ferent supervisors. Since supervisors are often based on MPs (e.g., uncertainty or confidence
quantifiers), our TIG should not use anyMPas part of the data generation process, to avoid cir-

123

146 Page 8 of 36 Empirical Software Engineering (2023) 28:146

Fig. 3 Autoencoder (blue) and its extension to a Regularized Adversarial Autoencoder (green)

cularity, which might give some supervisor an unfair advantage or disadvantage over another
one.

DG4 (diversity) The approach should be able to generate a high number of diverse images.

5.1 Interpolation in Autoencoders

Autoencoders (AEs) are a powerful tool, used in a range of TIG (Kang et al. 2020; Byun and
Rayadurgam 2020; Mukhoti et al. 2021; Dunn et al. 2021). AEs follow an encoder-decoder
architecture as shown in the blue part of Fig. 3: An encoder E compresses an input into a
smaller latent space (LS), and the decoder D then attempts to reconstruct x from the LS. The
reconstruction loss, i.e., the difference between input x and reconstruction x̂ is used as the
loss to be minimized during training of the AE.

On a trained AE, sampling arbitrary points in the latent space, and using the decoder
to construct a corresponding image, allows for cheap image generation. This is shown in
Fig. 4, where the shown images are not part of the training data, being reconstructions based
on randomly sampled points in the latent space. In the following section, we leverage the
generative capability of AEs, by proposing an architecture that can target ambiguous samples
specifically and can label the generated data probabilistically (DG1).

Fig. 4 Image Sampling in the
Latent Space

123

Page 9 of 36 146Empirical Software Engineering (2023) 28:146

Fig. 5 Interpolation between two classes in the latent space of a 2-class Regularized Adversarial Autoencoder

5.2 AMBIGUESS

Our TIG AmbiGuess consists of three components: (1) The Regularized LS Generation
component, which trains a specifically designedAE to have aLS that facilitates the generation
of truly ambiguous samples. (2) TheAutomatic Labelling component, which leverages theAE
architecture to support probabilistic labelling of any images produced by the AE’s decoder.
(3) The Heterogenous Sampling component, which chooses samples in the LS in a way that
leads to high diversity of the generated images.

An overview of AmbiGuess, which leverages these three components, is outlined in
Fig. 6.

5.2.1 Regularized Latent Space Generation

Interpolation from one class to another in the latent space, i.e., the gradual perturbation of
the reconstruction by moving from one cluster of latent space points to another one, may
produce ambiguous samples between those two classes (satisfying both DG2 and DG3). An
example of such an interpolation is shown in Fig. 5. Clearly, we want the two clusters to be far
from each other, providing a wide range for sampling in between them, and no other cluster
should be in proximity, as it would otherwise influence the interpolation. However, these two
conditions are usually not met by traditional autoencoders used in other TIG approaches. For
example, Fig. 4 shows the LS of a standard variational autoencoder (a popular architecture
in TIG). Here, interpolating between classes 0 and 7 would, amongst others, cross the cluster
representing class 4, and thus samples taken from the interpolation line would clearly not be
ambiguous between 0 and 7, but would be reconstructed as a 4 (or any of the other clusters
lying between them). We solve these requirements by using 2-class Regularized Adversarial
AEs:

2-class AE Instead of training one AE on all classes, we train multiple AEs, each one with the
training data of just two classes. This has a range of advantages: First and foremost, it prevents
interferences with third classes. Then, as the corresponding reduced (2-class) datasets have
naturally a lower variability (feature density), 2-class autoencoders are expected to require
fewer parameters and show faster convergence during training. Further, the fact that the
number of combinations of classes

(c
2

)
grows exponentially in the number of classes c is of

only limited practical relevance: In very large, real-world datasets, ambiguity is much more

123

146 Page 10 of 36 Empirical Software Engineering (2023) 28:146

prevalent between some combinations of classes than between others, so not all pairwise
combinations are equally interesting for the test generation task. For example, let us consider
a self driving car component which classifies vehicles on the road. While an image of a
vehicle where one cannot say for sure weather it is a pick-up or a SUV (hence having true
ambiguity) is clearly a realistic case, an image which is truly ambiguous between a SUV and
a bicycle is hard to imagine. This phenomenon is well known in the literature, as it leads
to heteroscedastic aleatoric uncertainty (Ayhan and Berens 2018), i.e., aleatoric uncertainty
which is more prevalent amongst some classes than amongst others. In such a case, using
AmbiGuess, one would only construct the 2-class AEs for selected combinations where
ambiguity is realistic.

Regularized Adversarial AE (rAAE) To guide the training process towards creating two dis-
joint clusters representing the two classes, with an adequate amount of space between them,
we use a Regularized Adversarial Autoencoder (rAAE) (Makhzani et al. 2015). The archi-
tecture of an rAAE is shown in Fig. 3: Encoder E , Decoder D and the LS are those of a
standard AE. In addition, similar to other adversarial models (Goodfellow et al. 2014), a
discriminator Disc is trained to distinguish labelled, encoded images z from samples drawn
from a predefined distribution p(z|y). Specifically, we define p(z|y) as a multi-modal (2
classes) multi-variate (number of dimensions in latent space) gaussian distribution, consist-
ing of p(z|c1) and p(z|c2) for classes c1 and c2, respectively. Then, training a rAAE consists
of three training steps, which are executed on every training epoch: First, similar to a plain
AE, E and D are trained to reduce the reconstruction loss. Second, Disc is trained to dis-
criminate encoded images from samples drawn from p(z|y), and third, E is trained to fool
Disc, i.e., E is trained with the objective that the training set projected onto the latent space
matches the distribution p(z|y). This last property can be leveraged for ambiguous test gen-
eration: Given two classes c1 and c2, to clear up space between them in the latent space we
can choose a p(z|y) such that p(z|c1)>ε on LS points disjoint from the LS points where
p(z|c2)>ε, for some small ε. For example, assume a two-dimensional latent space: Choosing
p(z|c1) = N ([−3, 0], [1, 1]) and p(z|c2) = N ([3, 0], [1, 1]) will, after successful training,
lead to a latent space where points representing c1 are clustered around (−3, 0) and points
representing c2 around (3, 0), with few if any points between them, i.e., around (0, 0). This
makes reconstructions around (0, 0) potentially highly ambiguous.

5.2.2 Probabilistic Labelling of Images

The Disc of a 2-class rAAE can be used to automatically label the images generated by its
decoder: Given a latent space sample z∗ on a 2-class rAAE for classes c1 and c2, Disc(z∗, c1)
approximates p(z∗|c1). Assuming p(c1) = p(c2) = 0.5, we have p(z∗|c1) = p(c1|z∗).
Hence, Disc(z∗, c1) approximates the likelihood that z∗ belongs to class c1. The same holds
for Disc(z∗, c2). Normalizing these two values s.t. they add up to 1 thus provides a probability
distribution over the classes (thus realizing DG1). This is used in Steps 4 and 7 of Fig. 6.

Clearly, this probabilistic labelling depends on the discriminator being well trained, i.e.,
its ability to discriminate between images of classes c1 and c2. Thus, we propose to assess
the discriminator’s training success by measuring its accuracy at classifying nominal (non-
ambigous) inputs as one of the two classes. Then, rAAEs for which the discriminators
accuracy does not meet a (tunable) threshold can be discarded (Steps 3 and 4 in Fig. 6).

123

Page 11 of 36 146Empirical Software Engineering (2023) 28:146

Fig. 6 High-Level Illustration of AmbiGuess

5.2.3 Selecting Diverse Samples in the LS

Diversity in a generated dataset (see DG4) is in general hard to achieve when generating a
dataset by sampling the LS, as the distance between two points in the LS does not directly
translate to a corresponding difference between the generated images. While in some parts

123

146 Page 12 of 36 Empirical Software Engineering (2023) 28:146

Fig. 7 Illustration of the Weights-Calculation in the Latent Space

of the LS, which we denote as high density parts, moving a point slightly in the LS space
can lead to clearly visible changes in the decoder’s output, in low density parts, large junks
of the LS lead to very similar reconstructed images.

123

Page 13 of 36 146Empirical Software Engineering (2023) 28:146

To that extent, we do not sample in the latent space uniformly, but in a weighted way
aiming to select diverse images (Step 4 in Fig. 6). Specifically, we set up the sampling of
points in the latent space in four steps as outlined below, also illustrated in Fig. 7:

A. Confined Latent Space The size of latent space is practically infinite, being bound only
by its numerical representation. However, we are only interested in a small part of this
latent space, namely the area in between the two ’nominal’ clusters in our 2-class rAAE.
This is represented in Step A of Fig. 7. This area, which we denote as confined latent
space (CLS), can be defined analytically from the distributions imposed on the 2-class
rAAE during training.2 In the subsequent steps, we consider only the CLS.

B. Grid Cells and AnchorsWe divide the (rectangular) CLS into a grid of rectangular grid
cells, where the number of grid cells is a tunable hyperparameter. Then, for every grid
cell we identify the point in the center. In the next two steps, we will use this anchor point
as a representative of the grid cell when estimating the density in the grid cell, as well
as the ambiguity in the images reconstructed from points within the grid cell. With this,
we will build a weight for each cell, based on which cells are selected during sampling.
Within a grid cell, the actually drawn point will then be chosen uniformly at random.

C. Anchor AmbiguityWe calculate the probabilistic label for each anchor, as explained in
Section 5.2.2. For labels which are not sufficiently ambiguous, i.e., where the difference
between the two class probabilities is higher than some threshold δmax , the corresponding
grid cells are ignored (their samplingweight is set to zero). Thus, δmax is a hyperparameter
allowing us to steer the minimum level of ambiguity in the anchors of the cells used
for sampling. Note that, as points in the grid cells exhibit lower ambiguity than the
corresponding anchor, δmax does not aim to ensure this level of ambiguity in the resulting
test set; this is ensuredwith a final filtering (Steps 7 and 8 inFig. 6).However, δmax enables
the sampling algorithm to consider only regions (i.e., grid cells) of the CLS with a high
likelihood to generate ambiguous images, making it overall much more efficient.

D. Anchor Gradient We want to focus our sampling on high density regions of the latent
spacewhere small changes in the latent space representation lead tomore notable changes
in the reconstructed images than in low density regions. We thus estimate the density of
each none-ignored grid cell by calculating the norm of the decoders gradient at the cor-
responding anchor point. We use the euclidean distance to measure differences between
decoder outputs (i.e., images), which is required to calculate the gradient. We then use
these density estimates (i.e., these norms) as weights when choosing grid cells during
sampling.

5.3 Pre-Generated Ambiguous Datasets

We built and released two ready-to-use ambiguous datasets for MNIST (LeCun et al. 1998),
themost common dataset used in software testing literature (Riccio et al. 2020), where images
of handwritten numbers between 0 and 9 are to be classified, and its more challenging drop-
in replacement Fashion MNIST (FMNIST) (Xiao et al. 2017), consisting of images of 10
different types of fashion items.

2 Specifically, in the datasets generated in this paper, we use two-dimensional latent spaces. The distributions
are defined similar to the illustrations in Fig. 7 as two multivariate normal distributions next to each other. On
the first (horizontal) axis, the CLS is thus constrained by the means of the distributions on this axis. On the
second (vertical) axis, both clusters have the same mean and we use +- 5 standard deviations from that mean
as bounds of the CLS.

123

146 Page 14 of 36 Empirical Software Engineering (2023) 28:146

AMBIGUESS configuration For each pair of classes, we trained 20 rAAEs to exploit the
non-determinism of the training process to generate even more diversified outputs. To make
sure we only use rAAEs where the distribution in the LS is as expected, we check if the
discriminator cannot distinguish LS samples obtained from input images w.r.t. LS samples
drawn from p(z|y): the accuracy on this task should be between 0.4 and 0.6. At the same time,
we check if the discriminator’s accuracy in assigning a higher probability to the correct label
of nominal samples is above 0.9. Otherwise it is discarded. Combined, we used the resulting
rAAEs to draw 20,000 training and 10,000 test samples for both MNIST and FMNIST,
using δmax = .25 for test data and δmax = 0.4 for training data. We ignored generated
samples where the difference between the two label’s probabilities was above δmax . We
chose different δmax , (the loose upper threshold of difference in the two class probabilities)
for train and test set as our test set should be clearly and highly ambiguous, e.g. to allow
studies that specifically target ambiguity (hence a low δmax). In turn, the training set should
more continuously integrate with the nominal data, hence we also allow for less ambiguous
data compared to our ambiguous test set.

6 Evaluation of Generated Data

The goal of this experimental evaluation is to assess both quantitatively and qualitatively
whether AmbiGuess can indeed generate truly ambiguous data. We evaluate the ambiguity
in our generated datasets first using a quantitative analysis where we analyze the outputs of
a standard, well-trained classifier and second by visually inspecting and critically discussing
samples created using AmbiGuess. Our evaluation is limited to simple grayscale image
classification datasets, where the rAAEs are easily trained. See Section 8 for a detailed
discussion of the applicability of AmbiGuess.

6.1 Quantitative Evaluation ofAMBIGUESS

We performed our experiments using four different DNN architectures as supervised models:
A simple convolutional DNN (Chollet 2020), a similar but fully connected DNN, a model
consisting of Resnet-50 (He et al. 2016) feature extraction and three fully connected layers
for classification and lastly a Densenet-architecture (Huang et al. 2017). Results are averaged
over the four architectures, individual results are reported in the reproduction package.

We compare the predictions made for our ambiguous dataset to the predictions made on
nominal, non-ambiguous data, using the following metrics:

Top-1 / Regular Accuracy Percentage of correctly classified inputs. We expect this to be
considerably lower for ambiguous than for nominal samples, as choosing the correct (i.e.,
higher probability) class, even using an optimal model, is affected by chance.

Top-2 Accuracy Percentage of inputs for which the true label is among the two classes
with the highest predicted probability. For samples which are truly ambiguous between two
classes, we expect a well-trained model to achieve much better performance than on Top-1
accuracy (ideally, 100%).

Top-Pair Accuracy Novel metric for data known to be ambiguous between two classes,
measured as the percentage of inputs for which the two most likely predicted classes equal
the two true classes between which the input is ambiguous. By definition Top-Pair accuracy
is lower than or equal to Top-2 accuracy. It is an even stronger measure to show that the model

123

Page 15 of 36 146Empirical Software Engineering (2023) 28:146

is uncertain between exactly the two classes for which the true probabilistic label of the input
shows nonzero probability. A specific example on how Top-Pair Accuracy is computed is
provided in Appendix A.

Entropy Average entropy in the Softmax prediction arrays. Used as a metric to measure
aleatoric uncertainty (and thus ambiguity) in related work (Mukhoti et al. 2021).

In line with related literature (Mukhoti et al. 2021), we focus our evaluations on models
trained using a mixed-ambiguous dataset consisting of both nominal and ambiguous data.
This aims to make sure our ambiguous test sets are not OOD, and that thus the observed
uncertainty primarily comes from the ambiguity in the data: By adding a lot of data similar to
the (ambiguous) test set to the training set, the vast majority of our ambiguous inputs is thus
expected to be in-distribution, eradicating most of the epistemic uncertainty. The aleatoric
uncertainty caused by the ambiguity of the data is however still there. For completeness,
we also run the evaluation on a model trained using only nominal data. With this model
we expect even lower values of regular (top-1) accuracy on ambiguous data, as these are
out-of-distribution, not just ambiguous.

6.2 Quantitative Results

The results of our experiments, averaged over all tested model architectures, are shown
in Table 1. Results individually reported for each architecture are shown in Appendix B.
We noticed that the use of the mixed-ambiguous training sets reduces the model accuracy
on nominal data only by a negligible amount: On MNIST, the corresponding accuracy is
96.98% (97.42% using a clean training set) and 88.43% on FMNIST (88.37% using a clean
training set). Thus, our ambiguous training datasets can be added to the nominal ones without
hesitation.

Table 1 Evaluation of Ambiguity

Training Set Test Set Top-1 Acc Top-2 Acc Top-Pair Acc Entropy

Our dataset for Fashion MNIST

mixed-ambiguous ambiguous 0.51 0.94 0.87 1.33

nominal 0.88 0.96 n.a. 0.35

clean ambiguous 0.32 0.49 0.14 1.05

nominal 0.88 0.97 n.a. 0.33

Our dataset for MNIST

mixed-ambiguous ambiguous 0.53 0.98 0.95 1.22

nominal 0.97 0.99 n.a. 0.15

clean ambiguous 0.42 0.64 0.32 0.73

nominal 0.97 0.99 n.a. 0.10

Baseline for mnist: AmbiguousMNIST by Mukhoti et al. (2021)

mixed-ambiguous ambiguous 0.72 0.91 not calculable 0.88

nominal 0.97 0.99 n.a. 0.12

clean ambiguous 0.65 0.85 not calculable 0.68

nominal 0.97 0.99 n.a. 0.11

123

146 Page 16 of 36 Empirical Software Engineering (2023) 28:146

Fig. 8 Selected good and bad outputs of AmbiGuess, chosen to demonstrate strengths and weaknesses

Results indicate that our datasets are indeed suitable to induce ambiguity into the prediction
process, as the generated data is perceived as ambiguous by the DNN: Top-1 accuracies for
both case studies is around 50%, but they increase almost to the levels of the nominal test
set when considering Top-2 accuracies. Even Top-Pair accuracy, with values of 95.37% and
86.71% (on MNIST and FMNIST, respectively) are very high, showing that for the vast
majority of test inputs, the two classes considered most likely by the well-trained DNN are
exactly the classes between which we aimed to create ambiguity. Consistently, entropy is
substantially higher for ambiguous data than for nominal data.

Finally, we compared our ambiguous MNIST dataset against AmbiguousMNIST by
Mukhoti et al. (2021), the only publicly available dataset aiming to provide ambiguous data.
Results are clearly in favour of our dataset. Considering the models with mixed-ambiguous
training sets,3,4 our test dataset has a lower Top-1 accuracy (53.31% vs. 72.50%), indicating
that our dataset is harder (more ambiguous) and has a higher Top-2 accuracy (97.99% vs.
90.93%) showing that our dataset containsmore sampleswhose predicted class is amongst the
2 most likely labels. Top-Pair accuracy cannot be computed for AmbiguousMNIST, as 37%
of its claimed “ambiguous” inputs have non-ambiguous labels. Most strikingly, the average
softmax entropy for AmbiguousMNIST is 0.88 (ours: 1.22), even though AmbiguousMNIST
is created by actively selecting inputs with a high softmax entropy.

6.3 Qualitative Discussion ofAMBIGUESS

Some test samples generated usingAmbiGuess, for bothMNIST and FMNIST, are shown in
Fig. 8. They have been chosen to highlight different strengths and weaknesses that emerged

3 When comparing against the baseline, we use the ambiguous training sets consistently with the test sets,
i.e., the mixed-ambigous models used to assess our test sets also relied on our ambiguous training set, while
the model used to assess the test set my Mukhoti et al. also was trained using their ambiguous training set.
4 The clean-nominal case does not rely on, or test, any ambigous data. The values, which are reported for
completeness, are thus expected to be identical for “our MNIST” and the baseline, with minimal differences
being caused by randomness during training.

123

Page 17 of 36 146Empirical Software Engineering (2023) 28:146

during our qualitative manual review of 300 randomly selected images in our generated test
sets per case study.

MNIST AmbiGuess (see Fig. 8a-e) is in general capable of combining features of different
classes, where possible: Fig. 8a and c can both be seen as an 8, but the 8-shape was combined
with a 3-shape or 2-shape, respectively. For the combination between 0 and 7, shown in
Fig. 8b, only the upper (horizontal) part of the 7 was combined with the 0-shape, such that
both a 7 and a 0 are clearly visible, making the class of the image ambiguous. Figure 8d
shows an edge case of an almost invalid image: Knowing that the image is supposed to be
ambiguous between 1 and 4, one can identify both numbers. However, neither of them is
clearly visible and the image may appear invalid to some humans. Overall, we considered
only few samples generated by AmbiGuess for MNIST as bad, i.e., as clearly unambiguous
or invalid. An example of them is shown in Fig. 8e. By most humans, this image would
be recognized as an unambiguous 0. In fact, there’s a barely visible, tilted line within the 0
which apparently was sufficient to trick the rAAEs discriminator into also assigning a high
probability to digit 1.

FMNIST Realistic true ambiguity is not possible between most classes of FMNIST. Hence,
we assessed howwellAmbiGuess performs at creating data that would trigger an ambiguous
classification by humans, even though such data might be impossible to experience in the
real world. Examples are given in Fig. 8f-j. In most cases (e.g. Fig. 8f-h), the interpolations
created by AmbiGuess show an overlay of two items of the two considered classes, with
features combined only where possible.We can also observe that some non-common features
are removed, giving more weight to common features. For instance, in Fig. 8i, the tip of the
shoe, and the lower angles of the bag are barely noticeable, such that the image has indeed
high similarity with both shoes and bags. As a negative example we observe that, in some
cases, it appears that the overlay between the two considered classes is dominated by one
one of them (such as Fig. 8j, which would be seen as non-ambiguous ankle boot by most
humans).

Summary (Evaluation of AmbiGuess-datasets)

AmbiGuess successfully generated highly ambiguous data sets, with high prediction
entropy, top-1 accuracy close to 50% and top-2 accuracy close to 100%, outperform-
ing the ambiguous dataset previously produced by Mukhoti et al. (2021).

7 Testing of Supervisors

We assess the capability of 16 supervisors5 to discriminate nominal from high-uncertainty
inputs for MNIST and FMNIST, each on 4 distinct test sets representing different root causes
of mis-classifications, among which our ambiguous test set.

5 We are inclusive in our notion of supervisor: we consider also prioritization techniques that recognize
unexpected inputs, as it is straightforward to adopt them to supervise a model.

123

146 Page 18 of 36 Empirical Software Engineering (2023) 28:146

7.1 Experimental Setup

We performed our experiments using four different DNN architectures (explained in
Section 6.1) as supervised models. Our training sets consist of both nominal and ambigu-
ous data, to ensure that the ambiguous test data used later for testing is in-distribution.
We then measure the capability of different supervisors to discriminate different types of
high-uncertainty inputs from nominal data.Wemeasure this using the area under the receiver
operating characteristic curve (AUC-ROC), a standard, threshold-independent metric.

We assess the supervisors using the following test sets: Invalid test sets, where we use
MNIST images as inputs to models trained for FMNIST and vice-versa, corrupted test sets
available from related work (MNIST-C (Mu and Gilmer 2019) and FMNIST-c (Weiss and
Tonella 2022)), adversarial data, created using 4 different attacks (Madry et al. 2017;Kurakin
et al. 2018; Moosavi-Dezfooli et al. 2016; Goodfellow et al. 2014) and lastly the ambiguous
test sets generated by AmbiGuess. Adversarial test sets were not used with ensembles, as
an ensemble does not rely on the (single) model targeted by the considered adversarial test
generation techniques.

To account for random influences during training, such as initial model weights, we ran
the experiments for each DNN architecture 5 times. Results reported are the means of the
observed results.

7.2 Tested Supervisors

To avoid unnecessary redundancy, our description of the tested supervisors is brief and
we refer to the corresponding papers for a detailed presentation. Our terminology, imple-
mentation and configuration of the first three supervisors described below, i.e., Softmax,
MC-Dropout and Ensembles, are based on the material released in our recent empirical
studies (Weiss and Tonella 2021, 2022).

Plain Softmax Based solely on the softmax output array of a DNN prediction, these
approaches provide very fast and easy to compute supervision: Max. Softmax, highest soft-
max value as confidence (Hendrycks and Gimpel 2016), Prediction-Confidence Score (PCS),
the difference between the two highest softmax values (Zhang et al. 2020), DeepGini, the
complement of the softmax vector squared norm (Feng et al. 2020), and finally the entropy
of the values in the predicted softmax probabilities (Weiss and Tonella 2021).

Monte-CarloDropout (MC-Dropout) Gal andGhahramani (2016);Gal (2016a)Enabling the
randomness of dropout layers at prediction time, and sampling multiple randomized samples
allows the inference of an output distribution, hence of an uncertainty quantification. We use
the quantifiers Variation Ratio (VR), Mutual Information (MI), Predictive Entropy (PI), or
simply the highest value of the mean of the predicted softmax likelihoods (Mean-Softmax,
MS).

Ensembles Lakshminarayanan et al. (2017) Similar to MC-Dropout, uncertainty is inferred
from samples, but randomness is induced by training multiple models (under random influ-
ences such as initial weights) and collecting predictions from all of them. Here, we use the
quantifiers MI, PI and MS, on an Ensemble consisting of 20 models.

Dissector Wang et al. (2020) On a trained model, for each layer, a submodel (more specifi-
cally, a perceptron) is trained, predicting the label directly from the activations of the given
layer. From these outputs, the support value for each of the submodels for the prediction

123

Page 19 of 36 146Empirical Software Engineering (2023) 28:146

made by the final layer is calculated, and the overall prediction validity value is calculated
as a weighted average of the per-layer support values.

Autoencoders AEs can be used as OOD detectors: If the reconstruction error of a well-
trained AE for a given input is high, it is likely not to be sufficiently represented in the
training data. Stocco et al. (2020) proposed to use such OOD detection technique as DNN
supervisor. Based on their findings, we use a variational autoencoder (Kingma and Welling
2013).

Surprise Adequacy This approach detects inputs that are surprising, i.e., for which the
observed DNN activation pattern is OOD w.r.t. the ones observed on the training data.

We consider three techniques to quantify surprise adequacy: LSA Kim et al. (2018), where
surprise is calculated based on a kernel-density estimator fitted on the training activations
of the predicted class, MDSA (Kim et al. 2020), where surprise is calculated based on the
Mahalanobis distance between the tested input’s activations and the training activations of
the predicted class, and DSA (Kim et al. 2018) which is calculated as the ratio between
two Euclidean distances: the distance between the tested input and the closest training set
activation in the predicted class, and the distance between the latter activation and the closest
training set activation from another class. As DSA is computationally intensive, growing
linearly in the number of training samples, we follow a recent proposal to consider only 30%
of the training data (Weiss et al. 2021).

Our comparison includes most of the popular supervisors used in recent software engi-
neering literature. Some of the excluded techniques do not provide a single, continuous
uncertainty score and no AUC-ROC can thus be calculated for them (Catak et al. 2021;
Mukhoti et al. 2021; Postels et al. 2020), or they are not applicable to the image classifica-
tion domain (Hussain et al. 2022). With its 16 tested supervisors, two case studies and four
different data-centric root causes of DNN faults, our study is − to the best of our knowledge
− by far the most extensive of its kind.

Table 2 Supervisors performance at discriminating nominal from high-uncertainty inputs (AUC-ROC), aver-
aged over all architectures

mnist fmnist
amb. adv. corr. inv. amb. adv. corr. inv.

Plain Softmax Supervisors

Max. Softmax 0.96 0.79 0.78 0.79 0.91 0.61 0.71 0.73

PCS 0.96 0.79 0.78 0.79 0.91 0.61 0.70 0.72

Softmax Entropy 0.97 0.79 0.78 0.79 0.92 0.61 0.72 0.74

DeepGini 0.96 0.79 0.78 0.79 0.92 0.61 0.71 0.73

Monte-Carlo Dropout Supervisors (Softmax-based, except for VR)

MC-Dropout (VR) 0.79 0.69 0.65 0.72 0.76 0.62 0.66 0.72

MC-Dropout (MS) 0.96 0.79 0.80 0.80 0.91 0.61 0.73 0.77

MC-Dropout (MI) 0.87 0.78 0.81 0.83 0.73 0.61 0.78 0.86

MC-Dropout (PE) 0.96 0.79 0.80 0.80 0.91 0.61 0.74 0.79

Deep Ensemble Supervisors (Softmax-based)

Deep Ensemble (MS) 0.97 n.a. 0.84 0.85 0.90 n.a. 0.75 0.64

123

146 Page 20 of 36 Empirical Software Engineering (2023) 28:146

Table 2 continued

mnist fmnist
amb. adv. corr. inv. amb. adv. corr. inv.

Deep Ensemble (MI) 0.84 n.a. 0.84 0.88 0.57 n.a. 0.76 0.70

Deep Ensemble (PE) 0.97 n.a. 0.83 0.84 0.89 n.a. 0.77 0.66

Other Supervisors

Dissector 0.95 0.79 0.76 0.79 0.88 0.68 0.72 0.75

DSA 0.48 0.93 0.87 0.98 0.31 0.85 0.85 0.90

LSA 0.17 0.78 0.73 0.77 0.16 0.75 0.74 0.86

MDSA 0.31 0.94 0.87 0.98 0.32 0.86 0.83 0.95

Autoencoder 0.62 0.95 0.84 1.00 0.53 0.80 0.77 0.49

7.3 Results

Overall observed results (averaged over all models) are are presented in Table 2. Per-
Architecture results with the corresponding standard deviations are shown in Appendix C.
Ambiguous Data We can observe that the predicted softmax likelihoods capture aleatoric
uncertainty pretty well. Thus, not only do Max. Softmax, DeepGini, PCS, Softmax Entropy
perform well at discriminating ambiguous from nominal data, but also supervisors that rely
on the softmax predictions indirectly, such as Dissector, or the MS, MI and PE quantifiers on
samples collected using MC-Dropout or DeepEnsembles. DSA, LSA, MDSA and Autoen-
coders are not capable of detecting ambiguity, and barely any of their AUC-ROCs exceeds
the 0.5 value expected from a random classifier on a balanced dataset. MDSA, LSA and DSA
show particularly low values, which confirms that they do only one job − detecting OOD,
not ambiguous data − but they do it well (in our experimental design, ambiguous data is
in-distribution by construction, while adversarial, corrupted and invalid data is OOD).

Adversarial Data The surprise adequacy based supervisors and the autoencoder reliably
detected the unknown patterns in the input, discriminating adversarial from nominal data.
Softmax-based supervisors showed good results on MNIST, but less so on FMNIST. Cleary,
the adversarial sample detection capabilities of Softmax-based supervisors depend critically
on the choice of adversarial data: With minimal perturbations, just strong enough to trigger
a misclassification, softmax-based metrics can easily detect them, as the maximum of the
predicted softmax likelihood is artificially reduced by the adversarial technique being used.
However, one could apply stronger attacks, increasing the predicted likelihood of the wrong
class close to 100%, which would make Softmax-based supervisors ineffective. Specific
attacks against the other supervisors, i.e., the OOD detection based approaches (surprise
adequacies and autoencoders) and Dissector, might also be possible in theory, but they are
clearly much harder.

Corrupted Data Most approaches perform comparably well, with the exception of DSA on
FMNIST, which shows superior performance, with an average AUC-ROC value more than
.1 higher than most other supervisors. DNNs are known to sometimes map OOD data points
close to feature representations of in-distribution points (known as feature collapse) (van
Amersfoort et al. 2021), thus leading to softmax output distributions similar to the ones of

123

Page 21 of 36 146Empirical Software Engineering (2023) 28:146

in-distribution images. This impacts negatively the OOD detection capability of Softmax-
based supervisors (such as Max. Softmax, MC-Dropout, Ensembles or Dissector), especially
in cases with a feature-rich training set, such as FMNIST.

Invalid Data The best result in invalidity detection was achieved using the autoencoder’s
reconstruction error, which identified FMNIST inputs given to an MNIST classifier with an
AUC-ROC of≈ 1.00 (thus with almost perfect accuracy). Clearly, reconstructions of images
with higher feature complexity than the ones represented in the training set consistently lead to
high reconstruction errors and thus provided a very reliable outlier detection. The autoencoder
was however incapable of detecting MNIST images given to an FMNIST classifier (AUC-
ROC of≈ 0.49, similar to a random classifier). Here, it seems that an autoencoder trained on
a high feature-complexity training set would also learn to reconstruct low feature-complexity
inputs accurately. DSA and MDSA, showed a similar effect, also providing clearly inferior
results in the FMNIST case study compared toMNIST, although here the drop in performance
was less dramatic. Also, similar to corrupted data, most likely due to feature collapse, the
performance of supervisors relying on softmax likelihoods suffers dramatically.

Discussion Related literature suggests that no single supervisor performs well under all
conditions (Zhang et al. 2018; Weiss and Tonella 2021, 2022; Catak et al. 2021), and some
works even suggest that certain supervisors are not capable to detect anything but aleatoric
uncertainty (e.g. Softmax Entropy (Mukhoti et al. 2021) or MC-Dropout (Osband 2016)).
Our evaluation, to the best of our knowledge, is the first one which compares supervisors
on four different uncertainty-inducing test sets. We found that softmax-based approaches
(including MC-Dropout, Ensembles and Dissector) are effective on all four types of test sets,
i.e., their detection capabilities reliably exceed the performance expected from a random
classifier. They do have their primary strength in the detection of ambiguous data, where
the other, OOD focused techniques are naturally ineffective, but they are actually an inferior
choice when targeting epistemic uncertainty. To detect corrupted inputs, DSA exhibited the
best performance, but due to its high computational complexity it may not be suitable to all
domains. The much faster MDSA may offer a good trade-off between detection capability
and runtime complexity. Regarding invalid inputs, on low-feature problems, where invalid
samples are expected to be more complex than nominal inputs, AEs provide a fast approach
with the additional advantage that it does not rely on the supervisedmodel directly, but only on
its training set, which may facilitate maintenance and continuous development. For problems
where the nominal inputs are rich of diverse features, an AE is not a valid option. However,
our results again suggestMDSA as a reliable and fast alternative supervisor. For what regards
inputs created by adversarial attacks, softmax-based approaches are easily deceived, being
hence of limited practical utility. On the other hand,OODdetectors, such as surprise adequacy
metrics and AEs, or Dissector can provide a more reliable detection performance against
standard adversarial attacks. Of course, these supervisors are not immune from particularly
malicious attackers that target them specifically. Here, the reader can refer to the wide range
of research discussing defenses against adversarial attacks (survey provided by Akhtar et al.
(2021)).

Stability of results We found that our results are barely sensitive to random influences due to
training: Out of 488 reportedmeanAUC-ROCs (4 architectures, 8 test sets, 16MPs, averaged
over 5 runs6) most of them showed a negligible standard deviation: The average observed
standard deviation was 0.015, the highest one was 0.124, only 114 were larger than 0.02,

6 Results reported in the Appendix (Tables 8, 9, 10 and 11)

123

146 Page 22 of 36 Empirical Software Engineering (2023) 28:146

only 29 were larger than 0.05, all of which correspond to results with low mean AUC-ROC
(< 0.9). The latter differences do not influence the overall observed tendencies.

Summary (Comparison of Misclassification Detectors)

We assessed 16 supervisors on their capability to discriminate between nominal
inputs and inputs which are ambiguous, adversarial, corrupted or invalid. For every
category, we identified supervisors which perform particularly well, but we also
found that to target all types of high-uncertainty inputs developers of DLS will have
to rely on multiple, diverse supervisors.

8 Threats to Validity

External validity We conducted our study on misclassification predition considering two
standard case studies, MNIST and Fashion-MNIST. While our observations may not gener-
alize to more challenging, high uncertainty datasets, the choice of two simple datasets with
easily understandable features, allowed us to achieve a clear and sharp separation of the rea-
sons for failures, whichmay not be the case when dealingwithmore complex datasets. On the
other hand, we recognize the importance of replicating and extending this study considering
additional datasets. To support such replications we provide all our experimental material as
open source/data.

Internal validity The supervisors being compared include hyper-parameters that require
some tuning. Whenever possible, we reused the original values and followed the guidelines
proposed by the authors of the considered approaches. We also conducted a few preliminary
experiments to validate and fine tune such hyper-parameters. However, the configurations
used in our experiment could be suboptimal for some supervisor.

Conclusion validity We repeated our experiments 5 times to mitigate the non determinism
associated with the DNN training process. While this might look like a low number of
repetitions, we checked the standard deviation across such repetitions and found that it was
negligible or small in all cases. To amount for the influence of the DNN architecture, we
performed our experiments on 4 completely different DNN architectures, obtaining overall
consistent findings.

9 Conclusion

This paper brings two major advances to the field of DNN supervision testing: First, we
proposed AmbiGuess, a novel technique to create labeled ambiguous images in a way that
is independent of the tested model and of its supervisor, and we generated pre-compiled
ambiguous datasets for two of themost popular case studies in DNN testing research,MNIST
and Fashion-MNIST.

Using four different metrics, we were able to verify the validity and ambiguity of
our datasets, and we further investigated how AmbiGuess achieves ambiguity based on
a qualitative analysis. On the four considered quantitative indicators, AmbiGuess clearly
outperformed AmbiguousMNIST, the only similar-purposed dataset in the literature.

We assessed the capabilities of 16 DNN supervisors at discriminating nominal from
ambiguous, adversarial, corrupted and invalid inputs. To the best of our knowledge, this

123

Page 23 of 36 146Empirical Software Engineering (2023) 28:146

is not only the largest empirical case study comparing DNN supervisors in the literature,
it is also the first one to do so by specifically targeting four distinct and clearly separable
data-centric root causes of DNN faults. Our results show that softmax-based approaches
(including MC-Dropout and Ensembles) work very well at detecting ambiguity, but have
clear disadvantages when it comes to adversarial, corrupted, and invalid inputs. OOD detec-
tion techniques, such as surprise adequacy or autoencoder-based supervisors, often provide
a better detection performance with the targeted types of high-uncertainty inputs. However,
these approaches are incapable of detecting in-distribution ambiguous inputs.

DNN developers can use the ambiguous datasets created by AmbiGuess to assess novel
DNN supervisors on their capability to detect aleatoric uncertainty. They can also use our
tool to evaluate test prioritization approaches on their capability to prioritize ambiguous
inputs (depending on the developers’ objectives, high priority is desired to identify inputs
that are likely to be misclassified during testing; low priority is desired to exclude inputs with
probabilistic labels from the training set).

As future work, we plan to investigate the concept of true ambiguity for regression prob-
lems. This is relevant in domains, such as self-driving cars and robotics, where the DNN
output is a continuous signal for an actuator. This problem is particularly appealing as all the
approaches in our study that worked well at detecting ambiguity are based on softmax and
thus are not applicable to regression problems.

Additionally, a comprehensive human experiment evaluating and comparing the ambiguity
of data in nominal datasets, data created using AmbiGuess, and data generated by other
approaches would help to better understand the nature of these datasets.

Appendix A: Top-Pair Accuracy

Above, we defined Top-Pair Accuracy as "the percentage of inputs for which the two most
likely predicted classes equal the two true classes between which the input is ambiguous".
As such, top-pair accuracy can only be computed on a dataset of truly ambiguous samples,
where for every sample two classes have strictly higher likelihood in the probabilistic label
than all other classes. In our ambiguous datasets, where for every sample exactly two classes
have nonzero probability, this is naturally given.

Example In the following, we provide a specific example showing how Top-Pair Accuracy
is calculated. Consider Table 3, which shows probabilistic labels and softmax predictions for
a dataset with 5 classes and 7 samples. Here, we extract the label top-pair, i.e., the unordered
pair consisting of the two classes with the highest probability labels (in our dataset, these are
just the classes with nonzero probability). Then, we do the same with the model predictions,
where the predicted top-pair consists of the two classes with the highest predicted likelihood.
A sample is considered matching if and only if the label top-pair equals the predicted top-
pair. The top-pair accuracy is then computed as the share of matching samples, which, in
our example is 5

7 = 0.714.

123

146 Page 24 of 36 Empirical Software Engineering (2023) 28:146

Table 3 Example for Top-Pair Accuracy Calculation

Probabilistic Label Label Softmax Predictions Pred. Match
Top-Pair Top-Pair

p(0) p(1) p(2) p(3) p(4) p(0) p(1) p(2) p(3) p(4)

0 0 .4 0 .6 0 {1,3} .1 .45 .05 .25 .15 {1,3} �
1 .45 0 .55 0 0 {0,2} .4 .45 .1 .02 .03 {0,1} x

2 0 .3 0 .7 0 {1,3} .03 .6 .2 .1 .07 {1,2} x

3 .35 0 0 .65 0 {0,3} .45 .05 .1 .35 .05 {0,3} �
4 0 0 .5 0 .5 {2,4} .06 .07 .3 .2 .37 {2,4} �
5 .2 0 0 .8 0 {0,3} .3 .03 .02 .6 .05 {0,3} �
6 0 .4 0 0 .6 {1,4} .1 .35 .06 .04 .45 {1,4} �

Appendix B: DNN-Architecture Specific Results of the Ambiguity Evalu-
ation

This section provides the results which are presented in Table 1 in an aggregated form for
all four used DNN architectures individually. Specifically, Table 4 shows the results of the
simple convolutional DNN, Table 5 shows the results of a fully connected DNN, Table 6
shows the results with the Densenet architecture (Huang et al. 2017), and Table 7 shows
the results with the Resnet50 architecture (He et al. 2016). Overall, the results between the
four architectures are comparably similar, except for the fully connected DNN which is
generally the weakest architecture and thus achieves lower accuracies (but still shows the
overall tendencies discussed in Section 6.1when assessing the quality of our ambiguous data).

Table 4 Evaluation of Ambiguity (Conv. NN)

Training Set Test Set Top-1 Acc Top-2 Acc Top-Pair Acc Entropy

Our dataset for Fashion MNIST

mixed-ambiguous ambiguous 0.52 0.95 0.89 1.56

nominal 0.90 0.97 n.a. 0.38

clean ambiguous 0.32 0.51 0.17 1.51

nominal 0.90 0.98 n.a. 0.39

Our dataset for MNIST

mixed-ambiguous ambiguous 0.54 0.99 0.98 1.48

nominal 0.99 1.00 n.a. 0.06

clean ambiguous 0.47 0.73 0.46 1.07

nominal 0.99 1.00 n.a. 0.04

Baseline for mnist: AmbiguousMNIST by Mukhoti et al. (2021)

mixed-ambiguous ambiguous 0.77 0.93 not calculable 0.87

nominal 0.99 1.00 n.a. 0.04

clean ambiguous 0.77 0.93 not calculable 0.81

nominal 0.99 1.00 n.a. 0.03

123

Page 25 of 36 146Empirical Software Engineering (2023) 28:146

Table 5 Evaluation of Ambiguity (Fully Connected NN)

Training Set Test Set Top-1 Acc Top-2 Acc Top-Pair Acc Entropy

Our dataset for Fashion MNIST

mixed-ambiguous ambiguous 0.49 0.82 0.63 1.78

nominal 0.82 0.93 n.a. 0.69

clean ambiguous 0.32 0.50 0.13 1.23

nominal 0.83 0.94 n.a. 0.57

Our dataset for MNIST

mixed-ambiguous ambiguous 0.53 0.94 0.86 1.45

nominal 0.91 0.96 n.a. 0.49

clean ambiguous 0.45 0.70 0.43 1.10

nominal 0.92 0.97 n.a. 0.34

Baseline for mnist: AmbiguousMNIST by Mukhoti et al. (2021)

mixed-ambiguous ambiguous 0.63 0.86 not calculable 1.31

nominal 0.92 0.97 n.a. 0.37

clean ambiguous 0.56 0.80 not calculable 1.16

nominal 0.92 0.97 n.a. 0.36

Table 6 Evaluation of Ambiguity (Densenet)

Training Set Test Set Top-1 Acc Top-2 Acc Top-Pair Acc Entropy

Our dataset for Fashion MNIST

mixed-ambiguous ambiguous 0.52 0.99 0.98 0.98

nominal 0.90 0.98 n.a. 0.22

clean ambiguous 0.28 0.44 0.12 0.71

nominal 0.89 0.97 n.a. 0.23

Our dataset for MNIST

mixed-ambiguous ambiguous 0.53 1.00 1.00 0.96

nominal 0.99 1.00 n.a. 0.02

clean ambiguous 0.35 0.53 0.20 0.31

nominal 0.99 1.00 n.a. 0.03

Baseline for mnist: AmbiguousMNIST by Mukhoti et al. (2021)

mixed-ambiguous ambiguous 0.75 0.93 not calculable 0.67

nominal 0.99 1.00 n.a. 0.03

clean ambiguous 0.58 0.83 not calculable 0.34

nominal 0.98 1.00 n.a. 0.04

123

146 Page 26 of 36 Empirical Software Engineering (2023) 28:146

Table 7 Evaluation of Ambiguity (Resnet50)

Training Set Test Set Top-1 Acc Top-2 Acc Top-Pair Acc Entropy

Our dataset for Fashion MNIST

mixed-ambiguous ambiguous 0.51 0.99 0.97 1.01

nominal 0.92 0.98 n.a. 0.12

clean ambiguous 0.36 0.50 0.12 0.76

nominal 0.92 0.98 n.a. 0.15

Our dataset for MNIST

mixed-ambiguous ambiguous 0.53 0.99 0.99 0.99

nominal 0.99 1.00 n.a. 0.02

clean ambiguous 0.42 0.59 0.21 0.43

nominal 0.99 1.00 n.a. 0.02

Baseline for mnist: AmbiguousMNIST by Mukhoti et al. (2021)

mixed-ambiguous ambiguous 0.76 0.92 not calculable 0.67

nominal 0.99 1.00 n.a. 0.03

clean ambiguous 0.67 0.83 not calculable 0.41

nominal 0.99 1.00 n.a. 0.02

Appendix C: DNN-Architecture Specific Comparison of Supervisors

This section provides information of the performance of the different supervisors for each of
the four supervised architectures (Tables 8, 9, 10 and 11). For each of these architectures, five
models were trained to account for the randomness faced during training. The corresponding
standard deviations are also reported in the tables.

123

Page 27 of 36 146Empirical Software Engineering (2023) 28:146

Ta
bl
e
8

Su
pe
rv
is
or
’s
pe
rf
or
m
an
ce

at
di
sc
ri
m
in
at
in
g
no

m
in
al
fr
om

hi
gh

-u
nc
er
ta
in
ty

in
pu

ts
(A
U
C
-R
O
C
),
fo
r
th
e
Si
m
pl
eC

nn
ar
ch
ite

ct
ur
e

m
ni
st

fm
ni
st

am
b.

ad
v.

co
rr
.

in
v.

am
b.

ad
v.

co
rr
.

in
v.

P
la

in
So

ft
m

ax
Su

pe
rv

is
or

s

M
ax
.S

M
.

.9
6
+
-

.0
0

.7
9
+
-

.0
1

.7
8
+
-

.0
0

.7
9
+
-

.0
0

.9
1
+
-

.0
1

.6
1
+
-

.0
2

.7
1
+
-

.0
1

.7
3
+
-

.0
2

PC
S

.9
6
+
-

.0
0

.7
9
+
-

.0
1

.7
8
+
-

.0
0

.7
9
+
-

.0
0

.9
1
+
-

.0
1

.6
1
+
-

.0
2

.7
0
+
-

.0
1

.7
2
+
-

.0
2

SM
.E

nt
.

.9
7
+
-

.0
0

.7
9
+
-

.0
1

.7
8
+
-

.0
0

.7
9
+
-

.0
0

.9
2
+
-

.0
0

.6
1
+
-

.0
2

.7
2
+
-

.0
1

.7
4
+
-

.0
2

D
ee
pG

in
i

.9
6
+
-

.0
0

.7
9
+
-

.0
1

.7
8
+
-

.0
0

.7
9
+
-

.0
0

.9
2
+
-

.0
0

.6
1
+
-

.0
2

.7
1
+
-

.0
1

.7
3
+
-

.0
2

M
on

te
-C

ar
lo

D
ro

po
ut

Su
pe

rv
is

or
s

(S
of

tm
ax

-b
as

ed
,e

xc
ep

tf
or

V
R

)

V
R

.7
9
+
-

.0
0

.6
9
+
-

.0
1

.6
5
+
-

.0
1

.7
2
+
-

.0
2

.7
6
+
-

.0
1

.6
2
+
-

.0
1

.6
6
+
-

.0
1

.7
2
+
-

.0
1

M
S

.9
6
+
-

.0
0

.7
9
+
-

.0
1

.8
0
+
-

.0
0

.8
0
+
-

.0
1

.9
1
+
-

.0
1

.6
1
+
-

.0
2

.7
3
+
-

.0
1

.7
7
+
-

.0
2

M
I

.8
7
+
-

.0
0

.7
8
+
-

.0
1

.8
1
+
-

.0
0

.8
3
+
-

.0
1

.7
3
+
-

.0
1

.6
1
+
-

.0
2

.7
8
+
-

.0
1

.8
6
+
-

.0
2

PE
.9
6
+
-

.0
0

.7
9
+
-

.0
1

.8
0
+
-

.0
0

.8
0
+
-

.0
0

.9
1
+
-

.0
0

.6
1
+
-

.0
2

.7
4
+
-

.0
1

.7
9
+
-

.0
2

D
ee

p
E

ns
em

bl
e

Su
pe

rv
is

or
s

(S
of

tm
ax

-b
as

ed
)

M
S

.9
7
+
-

.0
0

n.
a.

.8
4
+
-

.0
0

.8
5
+
-

.0
0

.9
0
+
-

.0
0

n.
a.

.7
5
+
-

.0
0

.6
4
+
-

.0
1

M
I

.8
4
+
-

.0
0

n.
a.

.8
4
+
-

.0
0

.8
8
+
-

.0
0

.5
7
+
-

.0
1

n.
a.

.7
6
+
-

.0
1

.7
0
+
-

.0
1

PE
.9
7
+
-

.0
0

n.
a.

.8
3
+
-

.0
0

.8
4
+
-

.0
0

.8
9
+
-

.0
0

n.
a.

.7
7
+
-

.0
0

.6
6
+
-

.0
1

O
th

er
Su

pe
rv

is
or

s

D
is
se
ct
or

.9
5
+
-

.0
0

.7
9
+
-

.0
1

.7
6
+
-

.0
0

.7
9
+
-

.0
1

.8
8
+
-

.0
0

.6
8
+
-

.0
1

.7
2
+
-

.0
0

.7
5
+
-

.0
1

D
SA

.4
8
+
-

.0
1

.9
3
+
-

.0
0

.8
7
+
-

.0
0

.9
8
+
-

.0
0

.3
1
+
-

.0
1

.8
5
+
-

.0
1

.8
5
+
-

.0
0

.9
0
+
-

.0
0

L
SA

.1
7
+
-

.0
1

.7
8
+
-

.0
2

.7
3
+
-

.0
1

.7
7
+
-

.0
3

.1
6
+
-

.0
0

.7
5
+
-

.0
1

.7
4
+
-

.0
1

.8
6
+
-

.0
0

M
D
SA

.3
1
+
-

.0
1

.9
4
+
-

.0
1

.8
7
+
-

.0
0

.9
8
+
-

.0
0

.3
2
+
-

.0
1

.8
6
+
-

.0
1

.8
3
+
-

.0
1

.9
5
+
-

.0
0

A
ut
oe
nc
.

.6
2
+
-

.0
0

.9
5
+
-

.0
0

.8
4
+
-

.0
0

1.
00

+
-

.0
0

.5
3
+
-

.0
0

.8
0
+
-

.0
1

.7
7
+
-

.0
0

.4
9
+
-

.0
1

123

146 Page 28 of 36 Empirical Software Engineering (2023) 28:146

Ta
bl
e
9

Su
pe
rv
is
or
’s
pe
rf
or
m
an
ce

at
di
sc
ri
m
in
at
in
g
no

m
in
al
fr
om

hi
gh

-u
nc
er
ta
in
ty

in
pu

ts
(A
U
C
-R
O
C
),
fo
r
th
e
Fu

lly
C
on

ne
ct
ed
N
et
ar
ch
ite

ct
ur
e

m
ni
st

fm
ni
st

am
b.

ad
v.

co
rr
.

in
v.

am
b.

ad
v.

co
rr
.

in
v.

P
la

in
So

ft
m

ax
Su

pe
rv

is
or

s

M
ax
.S

M
.

.9
6
+
-

.0
1

.7
9
+
-

.0
1

.7
8
+
-

.0
4

.7
9
+
-

.0
4

.9
1
+
-

.0
3

.6
1
+
-

.0
1

.7
1
+
-

.0
2

.7
3
+
-

.0
2

PC
S

.9
6
+
-

.0
1

.7
9
+
-

.0
1

.7
8
+
-

.0
4

.7
9
+
-

.0
4

.9
1
+
-

.0
2

.6
1
+
-

.0
1

.7
0
+
-

.0
2

.7
2
+
-

.0
2

SM
.E

nt
.

.9
7
+
-

.0
1

.7
9
+
-

.0
1

.7
8
+
-

.0
3

.7
9
+
-

.0
4

.9
2
+
-

.0
3

.6
1
+
-

.0
1

.7
2
+
-

.0
2

.7
4
+
-

.0
2

D
ee
pG

in
i

.9
6
+
-

.0
1

.7
9
+
-

.0
1

.7
8
+
-

.0
4

.7
9
+
-

.0
4

.9
2
+
-

.0
3

.6
1
+
-

.0
1

.7
1
+
-

.0
2

.7
3
+
-

.0
2

M
on

te
-C

ar
lo

D
ro

po
ut

Su
pe

rv
is

or
s

(S
of

tm
ax

-b
as

ed
,e

xc
ep

tf
or

V
R

)

V
R

.7
9
+
-

.0
1

.6
9
+
-.

00
.6
5
+
-

.0
2

.7
2
+
-

.0
4

.7
6
+
-

.0
2

.6
2
+
-

.0
1

.6
6
+
-

.0
2

.7
2
+
-

.0
1

M
S

.9
6
+
-

.0
1

.7
9
+
-

.0
1

.8
0
+
-

.0
4

.8
0
+
-

.0
6

.9
1
+
-

.0
3

.6
1
+
-

.0
1

.7
3
+
-

.0
2

.7
7
+
-

.0
2

M
I

.8
7
+
-

.0
1

.7
8
+
-

.0
1

.8
1
+
-

.0
2

.8
3
+
-

.1
0

.7
3
+
-

.0
2

.6
1
+
-

.0
1

.7
8
+
-

.0
2

.8
6
+
-

.0
2

PE
.9
6
+
-

.0
1

.7
9
+
-

.0
1

.8
0
+
-

.0
3

.8
0
+
-

.0
6

.9
1
+
-

.0
3

.6
1
+
-

.0
1

.7
4
+
-

.0
2

.7
9
+
-

.0
2

D
ee

p
E

ns
em

bl
e

Su
pe

rv
is

or
s

(S
of

tm
ax

-b
as

ed
)

M
S

.9
7
+
-

.0
0

n.
a.

.8
4
+
-

.0
0

.8
5
+
-

.0
3

.9
0
+
-

.0
0

n.
a.

.7
5
+
-

.0
0

.6
4
+
-

.0
0

M
I

.8
4
+
-

.0
1

n.
a.

.8
4
+
-

.0
0

.8
8
+
-

.0
5

.5
7
+
-

.0
3

n.
a.

.7
6
+
-

.0
1

.7
0
+
-

.0
0

PE
.9
7
+
-

.0
0

n.
a.

.8
3
+
-

.0
0

.8
4
+
-

.0
3

.8
9
+
-

.0
0

n.
a.

.7
7
+
-

.0
0

.6
6
+
-

.0
0

O
th

er
Su

pe
rv

is
or

s

D
is
se
ct
or

.9
5
+
-

.0
1

.7
9
+
-

.0
0

.7
6
+
-

.0
5

.7
9
+
-

.1
2

.8
8
+
-

.0
1

.6
8
+
-

.0
1

.7
2
+
-

.0
4

.7
5
+
-

.0
2

D
SA

.4
8
+
-

.0
1

.9
3
+
-

.0
1

.8
7
+
-

.0
0

.9
8
+
-

.0
0

.3
1
+
-

.0
2

.8
5
+
-

.0
2

.8
5
+
-

.0
0

.9
0
+
-

.0
1

L
SA

.1
7
+
-

.0
0

.7
8
+
-

.0
1

.7
3
+
-

.0
0

.7
7
+
-

.0
0

.1
6
+
-

.0
1

.7
5
+
-

.0
1

.7
4
+
-

.0
0

.8
6
+
-

.0
0

M
D
SA

.3
1
+
-

.0
0

.9
4
+
-

.0
1

.8
7
+
-

.0
0

.9
8
+
-

.0
0

.3
2
+
-

.0
0

.8
6
+
-

.0
1

.8
3
+
-

.0
0

.9
5
+
-

.0
0

A
ut
oe
nc
.

.6
2
+
-

.0
1

.9
5
+
-

.0
1

.8
4
+
-

.0
0

1.
00

+
-

.0
0

.5
3
+
-

.0
1

.8
0
+
-

.0
4

.7
7
+
-

.0
1

.4
9
+
-

.0
8

123

Page 29 of 36 146Empirical Software Engineering (2023) 28:146

Ta
bl
e
10

Su
pe
rv
is
or
’s
pe
rf
or
m
an
ce

at
di
sc
ri
m
in
at
in
g
no

m
in
al
fr
om

hi
gh

-u
nc
er
ta
in
ty

in
pu

ts
(A
U
C
-R
O
C
),
fo
r
th
e
D
en
se
ne
ta
rc
hi
te
ct
ur
e

m
ni
st

fm
ni
st

am
b.

ad
v.

co
rr
.

in
v.

am
b.

ad
v.

co
rr
.

in
v.

P
la

in
So

ft
m

ax
Su

pe
rv

is
or

s

M
ax
.S

M
.

.9
6
+
-

.0
0

.7
9
+
-

.0
2

.7
8
+
-

.0
2

.7
9
+
-

.0
1

.9
1
+
-

.0
0

.6
1
+
-

.0
2

.7
1
+
-

.0
2

.7
3
+
-

.0
8

PC
S

.9
6
+
-

.0
0

.7
9
+
-

.0
2

.7
8
+
-

.0
2

.7
9
+
-

.0
1

.9
1
+
-

.0
1

.6
1
+
-

.0
2

.7
0
+
-

.0
2

.7
2
+
-

.0
8

SM
.E

nt
.

.9
7
+
-

.0
1

.7
9
+
-

.0
2

.7
8
+
-

.0
2

.7
9
+
-

.0
1

.9
2
+
-

.0
0

.6
1
+
-

.0
2

.7
2
+
-

.0
2

.7
4
+
-

.0
8

D
ee
pG

in
i

.9
6
+
-

.0
0

.7
9
+
-

.0
2

.7
8
+
-

.0
2

.7
9
+
-

.0
1

.9
2
+
-

.0
0

.6
1
+
-

.0
2

.7
1
+
-.

02
.7
3
+
-

.0
8

M
on

te
-C

ar
lo

D
ro

po
ut

Su
pe

rv
is

or
s

(S
of

tm
ax

-b
as

ed
,e

xc
ep

tf
or

V
R

)

V
R

.7
9
+
-

.0
2

.6
9
+
-

.0
1

.6
5
+
-

.0
2

.7
2
+
-

.0
3

.7
6
+
-

.0
2

.6
2
+
-

.0
2

.6
6
+
-

.0
1

.7
2
+
-

.0
7

M
S

.9
6
+
-

.0
0

.7
9
+
-

.0
2

.8
0
+
-

.0
2

.8
0
+
-

.0
1

.9
1
+
-

.0
1

.6
1
+
-

.0
2

.7
3
+
-

.0
2

.7
7
+
-

.0
8

M
I

.8
7
+
-

.0
5

.7
8
+
-

.0
3

.8
1
+
-

.0
2

.8
3
+
-

.0
1

.7
3
+
-

.0
2

.6
1
+
-

.0
2

.7
8
+
-

.0
2

.8
6
+
-

.0
7

PE
.9
6
+
-

.0
1

.7
9
+
-

.0
2

.8
0
+
-

.0
2

.8
0
+
-

.0
1

.9
1
+
-

.0
0

.6
1
+
-

.0
2

.7
4
+
-

.0
2

.7
9
+
-

.0
9

D
ee

p
E

ns
em

bl
e

Su
pe

rv
is

or
s

(S
of

tm
ax

-b
as

ed
)

M
S

.9
7
+
-

.0
0

n.
a.

.8
4
+
-

.0
0

.8
5
+
-

.0
0

.9
0
+
-

.0
0

n.
a.

.7
5
+
-

.0
0

.6
4
+
-

.0
2

M
I

.8
4
+
-

.0
1

n.
a.

.8
4
+
-

.0
0

.8
8
+
-

.0
0

.5
7
+
-

.0
1

n.
a.

.7
6
+
-

.0
1

.7
0
+
-

.0
2

PE
.9
7
+
-

.0
0

n.
a.

.8
3
+
-

.0
0

.8
4
+
-

.0
0

.8
9
+
-

.0
0

n.
a.

.7
7
+
-

.0
1

.6
6
+
-

.0
2

O
th

er
Su

pe
rv

is
or

s

D
is
se
ct
or

.9
5
+
-

.0
1

.7
9
+
-

.0
4

.7
6
+
-

.0
2

.7
9
+
-

.0
4

.8
8
+
-

.0
1

.6
8
+
-

.0
1

.7
2
+
-

.0
1

.7
5
+
-

.0
8

D
SA

.4
8
+
-

.0
7

.9
3
+
-

.0
1

.8
7
+
-

.0
1

.9
8
+
-

.0
0

.3
1
+
-

.0
1

.8
5
+
-

.0
2

.8
5
+
-

.0
1

.9
0
+
-

.0
3

L
SA

.1
7
+
-

.0
2

.7
8
+
-

.0
0

.7
3
+
-

.0
0

.7
7
+
-

.0
0

.1
6
+
-

.0
1

.7
5
+
-

.0
1

.7
4
+
-

.0
0

.8
6
+
-

.0
0

M
D
SA

.3
1
+
-

.0
4

.9
4
+
-

.0
0

.8
7
+
-

.0
0

.9
8
+
-

.0
1

.3
2
+
-

.0
4

.8
6
+
-

.0
1

.8
3
+
-

.0
0

.9
5
+
-

.0
0

A
ut
oe
nc
.

.6
2
+
-

.0
3

.9
5
+
-

.0
1

.8
4
+
-

.0
5

1.
00

+
-

.0
1

.5
3
+
-

.0
1

.8
0
+
-

.0
3

.7
7
+
-

.0
1

.4
9
+
-

.0
7

123

146 Page 30 of 36 Empirical Software Engineering (2023) 28:146

Ta
bl
e
11

Su
pe
rv
is
or
’s
pe
rf
or
m
an
ce

at
di
sc
ri
m
in
at
in
g
no

m
in
al
fr
om

hi
gh

-u
nc
er
ta
in
ty

in
pu

ts
(A
U
C
-R
O
C
),
fo
r
th
e
R
es
ne
ta
rc
hi
te
ct
ur
e

m
ni
st

fm
ni
st

am
b.

ad
v.

co
rr
.

in
v.

am
b.

ad
v.

co
rr
.

in
v.

P
la

in
So

ft
m

ax
Su

pe
rv

is
or

s

M
ax
.S

M
.

.9
6
+
-

.0
0

.7
9
+
-

.0
4

.7
8
+
-

.0
1

.7
9
+
-

.0
3

.9
1
+
-

.0
0

.6
1
+
-

.0
1

.7
1
+
-

.0
2

.7
3
+
-

.0
6

PC
S

.9
6
+
-

.0
0

.7
9
+
-

.0
4

.7
8
+
-

.0
1

.7
9
+
-

.0
3

.9
1
+
-

.0
0

.6
1
+
-

.0
1

.7
0
+
-

.0
2

.7
2
+
-

.0
6

SM
.E

nt
.

.9
7
+
-

.0
0

.7
9
+
-

.0
4

.7
8
+
-

.0
1

.7
9
+
-

.0
3

.9
2
+
-

.0
1

.6
1
+
-

.0
1

.7
2
+
-

.0
2

.7
4
+
-

.0
7

D
ee
pG

in
i

.9
6
+
-

.0
0

.7
9
+
-

.0
4

.7
8
+
-

.0
1

.7
9
+
-

.0
3

.9
2
+
-

.0
1

.6
1
+
-

.0
1

.7
1
+
-

.0
2

.7
3
+
-

.0
6

M
on

te
-C

ar
lo

D
ro

po
ut

Su
pe

rv
is

or
s

(S
of

tm
ax

-b
as

ed
,e

xc
ep

tf
or

V
R

)

V
R

.7
9
+
-

.0
1

.6
9
+
-

.0
3

.6
5
+
-

.0
1

.7
2
+
-

.0
3

.7
6
+
-

.0
3

.6
2
+
-

.0
1

.6
6
+
-

.0
1

.7
2
+
-

.0
3

M
S

.9
6
+
-

.0
0

.7
9
+
-

.0
3

.8
0
+
-

.0
1

.8
0
+
-

.0
3

.9
1
+
-

.0
0

.6
1
+
-

.0
1

.7
3
+
-

.0
2

.7
7
+
-

.0
6

M
I

.8
7
+
-

.0
1

.7
8
+
-

.0
3

.8
1
+
-

.0
1

.8
3
+
-

.0
3

.7
3
+
-

.0
2

.6
1
+
-

.0
1

.7
8
+
-

.0
1

.8
6
+
-

.0
6

PE
.9
6
+
-

.0
0

.7
9
+
-

.0
3

.8
0
+
-

.0
1

.8
0
+
-

.0
3

.9
1
+
-

.0
1

.6
1
+
-

.0
1

.7
4
+
-

.0
2

.7
9
+
-

.0
6

D
ee

p
E

ns
em

bl
e

Su
pe

rv
is

or
s

(S
of

tm
ax

-b
as

ed
)

M
S

.9
7
+
-

.0
0

n.
a.

.8
4
+
-

.0
2

.8
5
+
-

.0
0

.9
0
+
-

.0
0

n.
a.

.7
5
+
-

.0
0

.6
4
+
-

.0
1

M
I

.8
4
+
-

.1
2

n.
a.

.8
4
+
-

.0
3

.8
8
+
-

.0
1

.5
7
+
-

.0
2

n.
a.

.7
6
+
-

.0
1

.7
0
+
-

.0
1

PE
.9
7
+
-

.0
0

n.
a.

.8
3
+
-

.0
2

.8
4
+
-

.0
0

.8
9
+
-

.0
0

n.
a.

.7
7
+
-

.0
0

.6
6
+
-

.0
1

O
th

er
Su

pe
rv

is
or

s

D
is
se
ct
or

.9
5
+
-

.0
0

.7
9
+
-

.0
2

.7
6
+
-

.0
1

.7
9
+
-

.0
1

.8
8
+
-

.0
1

.6
8
+
-

.0
2

.7
2
+
-

.0
2

.7
5
+
-

.0
5

D
SA

.4
8
+
-

.0
3

.9
3
+
-

.0
1

.8
7
+
-

.0
1

.9
8
+
-

.0
1

.3
1
+
-

.0
6

.8
5
+
-

.0
1

.8
5
+
-

.0
1

.9
0
+
-

.0
3

L
SA

.1
7
+
-

.0
0

.7
8
+
-

.0
0

.7
3
+
-

.0
0

.7
7
+
-

.0
0

.1
6
+
-

.0
0

.7
5
+
-

.0
0

.7
4
+
-

.0
0

.8
6
+
-

.0
0

M
D
SA

.3
1
+
-

.0
5

.9
4
+
-

.0
2

.8
7
+
-

.0
0

.9
8
+
-

.0
1

.3
2
+
-

.0
5

.8
6
+
-

.0
1

.8
3
+
-

.0
2

.9
5
+
-

.0
1

A
ut
oe
nc
.

.6
2
+
-

.0
0

.9
5
+
-

.0
0

.8
4
+
-

.0
0

1.
00

+
-

.0
0

.5
3
+
-

.0
0

.8
0
+
-

.0
1

.7
7
+
-

.0
0

.4
9
+
-

.0
1

123

Page 31 of 36 146Empirical Software Engineering (2023) 28:146

Funding Open access funding provided by Università della Svizzera italiana.

Data Availability The artifacts for this paper are available on Zenodo (https://doi.org/10.5281/zenodo.
8373081) and Github (https://github.com/testingautomated-usi/ambguess-src). The datasets are further-
more made available on huggingface-datasets (https://huggingface.co/datasets/mweiss/mnist_ambiguous and
https://huggingface.co/datasets/mweiss/fashion_mnist_ambiguous).

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akhtar N,Mian A, Kardan N, ShahM (2021) Advances in adversarial attacks and defenses in computer vision:
A survey 9:155161–155196. IEEE Access

van Amersfoort J, Smith L, Jesson A, Key O, Gal Y (2021) On feature collapse and deep kernel learning for
single forward pass uncertainty. arXiv:2102.11409

Aroyo L, Paritoshs P (2021) Uncovering unknown unknowns in machine learning https://ai.googleblog.com/
2021/02/uncovering-unknown-unknowns-in-machine.html

Ayhan MS, Berens P (2018) Test-time data augmentation for estimation of heteroscedastic aleatoric uncer-
tainty in deep neural networks. Presented at “Medical Imaging with Deep Learning 2018", Amsterdam.
Available on OpenReview

Berend D, Xie X, Ma L, Zhou L, Liu Y, Xu C, Zhao J (2020) Cats are not fish: Deep learning testing calls for
out-of-distribution awareness. In: The 35th IEEE/ACM International Conference onAutomated Software
Engineering. Association for Computing Machinery, New York, NY, USA

Bjarnadottir S, Li Y, Stewart MG (2019) Climate adaptation for housing in hurricane regions. In: Climate
Adaptation Engineering, pp 271–299. Elsevier

Brown JM, Leontidis G (2021) Deep learning for computer-aided diagnosis in ophthalmology: a review. State
of the Art in Neural Networks and their Applications, pp 219–237

Byun T, Rayadurgam S (2020) Manifold for machine learning assurance. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas and Emerging Results, pp 97–100

Catak FO, Yue T, Ali S (2021) Prediction surface uncertainty quantification in object detection models for
autonomous driving

Catak FO, Yue T, Ali S (2021) Uncertainty-aware prediction validator in deep learning models for cyber-
physical system data. ACM Transactions on Software Engineering and Methodology

Chollet F (2020)Keras documentation: Simplemnist convnet https://keras.io/examples/vision/mnist_convnet/
Clements WR, Delft BV, Robaglia BM, Slaoui RB, Toth S (2019)Estimating risk and uncertainty in deep

reinforcement learning
Davidson MS, Andradi-Brown C, Yahiya S, Chmielewski J, O’Donnell AJ, Gurung P, Jeninga MD, Prom-

mana P, Andrew DW, Petter M et al (2021) Automated detection and staging of malaria parasites from
cytological smears using convolutional neural networks. Biological imaging 1

Dola S, Dwyer MB, Soffa ML (2021) Distribution-aware testing of neural networks using generative models,
pp 226–237

Dunn I, Pouget H, Kroening D, Melham T (2021) Exposing previously undetectable faults in deep neural
networks. In: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp 56–66

123

146 Page 32 of 36 Empirical Software Engineering (2023) 28:146

https://doi.org/10.5281/zenodo.8373081
https://doi.org/10.5281/zenodo.8373081
https://github.com/testingautomated-usi/ambguess-src
https://huggingface.co/datasets/mweiss/mnist_ambiguous
https://huggingface.co/datasets/mweiss/fashion_mnist_ambiguous
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2102.11409
https://ai.googleblog.com/2021/02/uncovering-unknown-unknowns-in-machine.html
https://ai.googleblog.com/2021/02/uncovering-unknown-unknowns-in-machine.html
https://keras.io/examples/vision/mnist_convnet/

Feng Y, Shi Q, Gao X, Wan J, Fang C, Chen Z (2020) Deepgini: prioritizing massive tests to enhance the
robustness of deep neural networks. In: Proceedings of the 29thACMSIGSOFT International Symposium
on Software Testing and Analysis, pp 177–188

Gal Y (2016) Uncertainty in deep learning. Ph.D. thesis, University of Cambridge
Gal Y, Ghahramani Z (2016) Dropout as a bayesian approximation: Representing model uncertainty in deep

learning. In: Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pp 1050–1059. JMLR.org. http://dl.acm.org/citation.cfm?id=3045390.
3045502

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014)
Generative adversarial nets. Advances in neural information processing systems 27

Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples. arXiv:1412.6572
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the

IEEE conference on computer vision and pattern recognition, pp 770–778
Hell F, Hinz G, Liu F, Goyal S, Pei K, Lytvynenko T, Knoll A, Yiqiang C (2021) Monitoring perception

reliability in autonomous driving: Distributional shift detection for estimating the impact of input data
on prediction accuracy. In: Computer Science in Cars Symposium, pp 1–9

Hendrycks D, Dietterich T (2018) Benchmarking neural network robustness to common corruptions and
perturbations. International Conference on Learning Representations (2018)

Hendrycks D, Gimpel K (2016) A baseline for detecting misclassified and out-of-distribution examples in
neural networks

Henriksson J, Berger C, Borg M, Tornberg L, Englund C, Sathyamoorthy SR, Ursing S (2019) Towards
structured evaluation of deep neural network supervisors. In: 2019 IEEE International Conference On
Artificial Intelligence Testing (AITest). https://doi.org/10.1109/aitest.2019.00-12. IEEE

Henriksson J, Berger C, Borg M, Tornberg L, Sathyamoorthy SR, Englund C (2019) Performance analysis of
out-of-distribution detection on various trained neural networks. In: 2019 45th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp 113–120. IEEE

de Hond AA, Leeuwenberg AM, Hooft L, Kant IM, Nijman SW, van Os HJ, Aardoom JJ, Debray T, Schuit
E, van Smeden M et al (2022) Guidelines and quality criteria for artificial intelligence-based prediction
models in healthcare: a scoping review. npj Digital Medicine 5(1):1–13

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in
deep learning systems. In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pp 1110–1121

Hussain M, Ali N, Hong JE (2022) Deepguard: a framework for safeguarding autonomous driving systems
from inconsistent behaviour. Automated Software Engineering 29(1):1–32

Kang S, Feldt R, Yoo S (2020) Sinvad: Search-based image space navigation for dnn image classifier test input
generation. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, pp 521–528

Karimi H, Derr T, Tang J (2019) Characterizing the decision boundary of deep neural networks
Kim J, Feldt R, Yoo S (2018) Guiding deep learning system testing using surprise adequacy
Kim J, Ju J, Feldt R, Yoo S (2020) Reducing dnn labelling cost using surprise adequacy: An industrial case

study for autonomous driving. In: Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp 1466–1476

Kim S, Yoo S (2021) Multimodal surprise adequacy analysis of inputs for natural language processing dnn
models. In: 2021 2021 IEEE/ACM International Conference on Automation of Software Test (AST)
(AST), pp 80–89. IEEE Computer Society, Los Alamitos, CA, USA.https://doi.org/10.1109/AST52587.
2021.00017, https://doi.ieeecomputersociety.org/10.1109/AST52587.2021.00017

Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv:1312.6114
Kurakin A, Goodfellow IJ, Bengio S (2018) Adversarial examples in the physical world. In: Artificial intelli-

gence safety and security, pp. 99–112. Chapman and Hall/CRC
Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using

deep ensembles. In: Advances in neural information processing systems, pp 6402–6413
LeCun Y, Bottou L, Bengio Y (1998) Haffner P (1998) Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE 86(11):2278–2324
Lhoest Q, Villanova del Moral A, Jernite Y, Thakur A, von Platen P, Patil S, Chaumond J, Drame M, Plu J,

Tunstall L, Davison J, Šaško M, Chhablani G, Malik B, Brandeis S, Le Scao T, Sanh V, Xu C, Patry
N, McMillan-Major A, Schmid P, Gugger S, Delangue C, Matussière T, Debut L, Bekman S, Cistac P,
Goehringer T, Mustar V, Lagunas F, Rush A, Wolf T (2021) Datasets: A community library for natural
language processing. In: Proceedings of the 2021 Conference on EmpiricalMethods in Natural Language

123

Page 33 of 36 146Empirical Software Engineering (2023) 28:146

http://dl.acm.org/citation.cfm?id=3045390.3045502
http://dl.acm.org/citation.cfm?id=3045390.3045502
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/aitest.2019.00-12
https://doi.org/10.1109/AST52587.2021.00017
https://doi.org/10.1109/AST52587.2021.00017
https://doi.ieeecomputersociety.org/10.1109/AST52587.2021.00017
http://arxiv.org/abs/1312.6114

Processing: SystemDemonstrations, pp 175–184. Association for Computational Linguistics, Online and
Punta Cana, Dominican Republic. https://aclanthology.org/2021.emnlp-demo.21

Lines D (2019) Disentangling sources of uncertainty for active exploration. Master’s thesis, Department of
Engineering, University of Cambridge (2019)

Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2017) Towards deep learning models resistant to
adversarial attacks. arXiv:1706.06083

Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2015) Adversarial autoencoders. arXiv:1511.05644
Moosavi-Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep

neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
2574–2582

Mu N, Gilmer J (2019) Mnist-c: A robustness benchmark for computer vision. CoRR
Mukhoti J, KirschA, vanAmersfoort J, Torr PHS,GalY (2021)Deterministic neural networkswith appropriate

inductive biases capture epistemic and aleatoric uncertainty. Presented at the ICMLUDL 2021Workshop
(non-archival)

OdenaA, Olsson C, AndersenD, Goodfellow I (2019) TensorFuzz: Debugging neural networks with coverage-
guided fuzzing. In:ChaudhuriK, SalakhutdinovR (eds.) Proceedings of the 36th InternationalConference
onMachine Learning,Proceedings of Machine Learning Research, vol. 97, pp. 4901–4911. PMLR, Long
Beach, California, USA. http://proceedings.mlr.press/v97/odena19a.html

Osband I (2016) Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of dropout. In:
NIPS workshop on bayesian deep learning, vol. 192

Postels J, Blum H, Cadena C, Siegwart R, Van Gool L, Tombari F (2020) Quantifying aleatoric and epistemic
uncertainty using density estimation in latent space. arXiv:2012.03082

Rauber J, Brendel W, Bethge M (2017) Foolbox: A python toolbox to benchmark the robustness of machine
learning models. In: Reliable Machine Learning in the Wild Workshop, 34th International Conference
on Machine Learning. arXiv:1707.04131

Riccio V, Jahangirova G, Stocco A, Humbatova N, Weiss M, Tonella P (2020) Testing machine learning based
systems: a systematic mapping. Empirical Software Engineering

Riccio V, Tonella P (2020) Model-based exploration of the frontier of behaviours for deep learning system
testing. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp 876–888

Samek W, Wiegand T, Müller KR (2017) Explainable artificial intelligence: Understanding, visualizing and
interpreting deep learning models. arXiv:1708.08296

Seca D (2021) A review on oracle issues in machine learning. arXiv:2105.01407
Stocco A, Weiss M, Calzana M, Tonella P (2020) Misbehaviour prediction for autonomous driving systems.

In: Proceedings of 42nd International Conference on Software Engineering, p. 12 pages. ACM
Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: Automated testing of deep-neural-network-driven autonomous

cars. In: Proceedings of the 40th international conference on software engineering, pp 303–314
Trappenberg TP, Back AD (2000) A classification scheme for applications with ambiguous data. In: Proceed-

ings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural
Computing: New Challenges and Perspectives for the New Millennium, vol. 6, pp. 296–301. IEEE

Wang H, Xu J, Xu C, Ma X, Lu J (2020) Dissector: Input validation for deep learning applications by crossing-
layer dissection. In: Proceedings of 42nd International Conference on Software Engineering. ACM

WeissM, Chakraborty R, Tonella P (2021) A review and refinement of surprise adequacy. In: 2021 IEEE/ACM
Third International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest),
pp. 17–24. IEEE

WeissM, Tonella P (2021) Fail-safe execution of deep learning based systems through uncertainty monitoring.
In: 2021 IEEE 14th International Conference on Software Testing, Validation and Verification (ICST).
IEEE

Weiss M, Tonella P (2021) Uncertainty-wizard: Fast and user-friendly neural network uncertainty quantifi-
cation. In: 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST), pp.
436–441. https://doi.org/10.1109/ICST49551.2021.00056

Weiss M, Tonella P (2022) Simple techniques work surprisingly well for neural network test prioritization and
active learning (replicability study). In: Proceedings of the 31stACMSIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2022, p 139–150. Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/3533767.3534375, arXiv:2205.00664

Weiss M, Tonella P (2022) Uncertainty quantification for deep neural networks: An empirical comparison and
usage guidelines. Software Testing, Verification and Reliability (Forthcoming)

Wintersberger P, Janotta F, Peintner J, Löcken A, Riener A (2021) Evaluating feedback requirements for trust
calibration in automated vehicles. it-Information Technology 63(2):111–122

123

146 Page 34 of 36 Empirical Software Engineering (2023) 28:146

https://aclanthology.org/2021.emnlp-demo.21
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1511.05644
http://proceedings.mlr.press/v97/odena19a.html
http://arxiv.org/abs/2012.03082
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1708.08296
http://arxiv.org/abs/2105.01407
https://doi.org/10.1109/ICST49551.2021.00056
https://doi.org/10.1145/3533767.3534375
http://arxiv.org/abs/2205.00664

Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms

Xie X, Ma L, Juefei-Xu F, Xue M, Chen H, Liu Y, Zhao J, Li B, Yin J, See S (2019) Deephunter: a coverage-
guided fuzz testing framework for deep neural networks. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp 146–157

Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018) Deeproad: Gan-based metamorphic testing and
input validation framework for autonomous driving systems. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, pp 132–142. ACM, New
York, NY, USA. https://doi.org/10.1145/3238147.3238187

Zhang X, Xie X, Ma L, Du X, Hu Q, Liu Y, Zhao J, Sun M (2020) Towards characterizing adversarial defects
of deep learning software from the lens of uncertainty. In: Proceedings of 42nd International Conference
on Software Engineering. ACM

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Michael Weiss is a Postdoctoral Researcher at the Software Institute,
Università della Svizzera italiana (USI). He co-authored more than ten
papers in the intersection of artificial intelligence and software engi-
neering. The majority of his research focuses around making deep-
learning based software systems reliable and robust through tech-
niques like uncertainty quantification and out-of-distribution detec-
tion.

André García Gómez worked on the publication during his time as a
master’s student at the Università della Svizzera italiana (USI). His
research interests focus on applying Artificial Intelligence to devel-
oping microwave-based systems for diagnostics in medicine. He is
currently a software engineer in Goteborg, Sweden, working for Med-
field Diagnostics AB.

123

Page 35 of 36 146Empirical Software Engineering (2023) 28:146

https://doi.org/10.1145/3238147.3238187

Paolo Tonella is Full Professor at the Faculty of Informatics and at
the Software Institute of Università della Svizzera italiana (USI) in
Lugano, Switzerland. He is Honorary Professor at University Col-
lege London, UK. Paolo Tonella holds an ERC Advanced grant as
Principal Investigator of the project PRECRIME. He has written over
150 peer reviewed conference papers and over 50 journal papers. In
2011 he was awarded the ICSE 2001 MIP (Most Influential Paper)
award, for his paper: "Analysis and Testing of Web Applications". His
H-index (according to Google scholar) is 65. He is/was in the edito-
rial board of TOSEM, TSE and EMSE. He is Program Co-Chair of
ESEC/FSE 2023. His current research interests are in software test-
ing, in particular approaches to ensure the dependability of machine
learning based systems, automated testing of cyber physical systems,
and test oracle inference and improvement.

123

146 Page 36 of 36 Empirical Software Engineering (2023) 28:146

	Generating and detecting true ambiguity: a forgotten danger in DNN supervision testing
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Uses of Ambiguous Test Sets
	4.1 Assessment of DNN Supervisors
	4.2 Assessment of DNN Input Prioritizers
	4.3 Decision-Boundary Oracle
	4.4 Disentanglement and Reasoning

	5 Generating Ambiguous Test Data
	5.1 Interpolation in Autoencoders
	5.2 AmbiGuess
	5.2.1 Regularized Latent Space Generation
	5.2.2 Probabilistic Labelling of Images
	5.2.3 Selecting Diverse Samples in the LS

	5.3 Pre-Generated Ambiguous Datasets

	6 Evaluation of Generated Data
	6.1 Quantitative Evaluation of AmbiGuess
	6.2 Quantitative Results
	6.3 Qualitative Discussion of AmbiGuess

	7 Testing of Supervisors
	7.1 Experimental Setup
	7.2 Tested Supervisors
	7.3 Results

	8 Threats to Validity
	9 Conclusion
	Appendix A: Top-Pair Accuracy
	Appendix B: DNN-Architecture Specific Results of the Ambiguity Evaluation
	Appendix C: DNN-Architecture Specific Comparison of Supervisors
	References

