
https://doi.org/10.1007/s10664-023-10387-8

Energy efficiency of the Visitor Pattern: contrasting Java and
C++ implementations

Déaglán Connolly Bree1 ·Mel Ó Cinnéide1

Accepted: 24 August 2023 / P
© The Author(s) 2023

Abstract
Design patterns are applied frequently during software evolution in order to make the soft-
ware more flexible and amenable to extension. One little-studied aspect of design patterns
is their propensity to increase run-time energy consumption due to the indirection and addi-
tional structure they introduce. In this paper we study the impact of the Visitor pattern on
energy efficiency. The Visitor pattern separates an algorithm from the objects it acts upon
and improves maintainability by placing each algorithm within a single visitor class. This is
at the cost of increased indirection due to the double dispatch required when the algorithm
is invoked. We experimentally investigate the energy impact of varying the implementation
of this pattern, and of removing the pattern entirely from software written in Java and C++.
In our results we observe energy consumption reductions greater than 7% in a Java-based
textbook example when the pattern is implemented using reflective dispatch, and reductions
of over 10%when experimenting with an open source Java project, JavaParser. The complete
removal of the pattern yields more complex results, with little impact in the textbook exam-
ple but reductions of over 7% in the JavaParser study. To explore the generalisability of our
findings, we subsequently apply the same transformations to the C++ based CppParser. Total
pattern removal here sees energy consumption reductions of over 66% while the reflective
dispatch approach increases energy consumption by up to 2012%. Our results highlight the
energy savings that can be achieved when the Visitor pattern is removed both in Java and C++
implementations, and also show that some language specific features can allow for further
energy savings when the implementation of the pattern is varied.

Keywords Empirical · Design patterns · Visitor pattern · Green technology · Energy
efficiency · Refactoring · Software transformation · Software design · Object-Oriented
programming

Communicated by: Paris Avgeriou and Dave Binkley

This article belongs to the Topical Collection: Software Maintenance and Evolution (ICSME)

B Déaglán Connolly Bree
deaglan.connolly-bree@ucdconnect.ie

Mel Ó Cinnéide
mel.ocinneide@ucd.ie

1 School of Computer Science, University College Dublin, Dublin, Ireland

0123456789().: V,-vol 123

ublished online: 28 October 2023

Empirical Software Engineering (2023) 28:145

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10387-8&domain=pdf
http://orcid.org/0000-0001-9038-2134
https://orcid.org/0000-0002-3498-7056

1 Introduction

Software consumes energy when it executes. While this has received limited attention from
researchers in the past, the severity of the climate crisis and the consequent rise in energy
costs (Avgerinou et al. 2017; Flucker and Tozer 2013), coupled with the growth of mobile
technology and the burgeoning number of energy-hungry data centres, has led to a heightened
awareness of the energy performance of software (Pinto et al. 2015; Malmodin and Lunden
2018; Andrae and Edler 2015).

Source code refactoring is a common practice in software maintenance (Fowler et al.
1999). It is employed to improve software quality, and it is not uncommon that the goal of
refactoring encompasses the application of a design pattern (Kerievsky 2005).

Design patterns are solutions that are commonly used to solve recurring software problems
in a certain context. While the notion was originally developed by Christopher Alexander
(1977) in the context of the architecture of living spaces, design patterns subsequently gen-
erated an enormous impact on the software community. The seminal textbook in this area,
that of Gamma et al. (1995), describes design patterns in a software context and catalogues a
number of commonly used patterns. Although written in 1995, this book remains a bestseller
in the software field (Amazon 2022).

Design patterns are also prime examples of good object-oriented programming practice in
that they “identify, name, and abstract common themes in object-oriented design” (Gamma
et al. 1993). They provide modularity, extensibility, and encapsulation and inheritance are
frequent features of their designs. Design patterns are therefore of particular interest in
the exploration of the potential impact of object-oriented programming on energy efficiency.
While the encapsulation and indirection introduced by patterns may improve maintainability,
there may also be a subsequent energy cost at run-time.

The enduring popularity of design patterns in the software community indicates how
pervasive pattern thinking is. In spite of this popularity, the energy implication of design
patterns has not been heavily investigated. This providesmotivation to explore design patterns
and their impact on energy efficiency.

Additionally, while the context in which any design pattern is used can vary, the overall
structure of the solution tends to involve a core set of pattern features which may allow for
a systematic approach to their removal. This provides further motivation for our research —
if design patterns are indeed found to be energy sinks, the process of removing them should
be at least partially automatable.

In this paper we investigate the energy implications of one rich design pattern, namely
Visitor (Gamma et al. 1995). The Visitor pattern is a behavioural pattern that separates an
algorithm from the classes of the objects upon which it acts. This is useful in situations where
the algorithm acts upon objects in a data structure that are of differing concrete types.

Rather than the algorithm being spread amongst methods in those classes, it is centralised
in a single visitor class, an instance of which is passed to each object in the structure, and
each object subsequently invokes its relevant method in the visitor.

The Visitor pattern aims to improve software maintainability by facilitating the imple-
mentation of new algorithms, at the cost of increased indirection as double dispatch is one of
its prominent features. In most programming languages, including Java and C++ which are
used in this study, multiple dispatch is not natively supported, requiring emulation through
the use of multiple single dispatches. In the case of the Visitor pattern, each time a visitor
visits an element, twomethod invocations occur whichmay impact energy efficiency, making
the pattern a suitable candidate for further investigation.

123

145 Page 2 of 36 Empirical Software Engineering (2023) 28:145

This paper is an extended version of our work published in the 38th International Con-
ference on Software Maintenance and Evolution (Connolly Bree and Ó Cinnéide 2022).
The original study investigated the energy efficiency of two Java implementations of the
Visitor pattern, the first being a proof-of-concept experiment with a textbook example, the
second involving more complete experiments with a medium-sized open source application.
In extending this paper, we present an extensive experimental investigation of the energy effi-
ciency of a C++ implementation of the pattern, mirroring the case study performed in Java
with an equivalent open source application written in C++. With the resulting experimental
data we have expanded our discussion, alleviated some of the threats to the validity of our
findings, and provided further discussion and clarification of our conclusions. We have also
updated related work with additional studies published in this research area.

In our empirical investigations, we experiment with Java and C++. Both are high-level
languages that support object-oriented programming, but provide different deployment strate-
gies.

The remainder of this paper is as follows. In Section 2 we study the existing literature
in this area, and discuss the Visitor pattern in greater detail in Section 3. Our experimental
approach is described in Section 4 before examining the energy impact of the Visitor pattern
in a Java textbook example in Section 5. Subsequently, two open source examples in Java
and C++ respectively are analysed in Sections 6 and 7. We discuss our findings in Section 8
and highlight threats to validity in Section 9. Lastly, future work is discussed in Section 10
before we present our final conclusions in Section 11.

2 RelatedWork

While there has been a growing focus on the energy efficiency of software, the research
area remains small. Given the growth of mobile computing, many studies focus on less
generalisable, mobile oriented changes that can be made such as using dark UI colours or
avoiding binding resources too early (Couto et al. 2020; Rodriguez et al. 2012; Cruz and
Abreu 2019; Li and Halfond 2014; Ayala et al. 2019).

Pinto et al. (2015) investigated the state of the art in terms of refactoring for energy effi-
ciency and identified concurrent/parallel programming, approximate programming, dynamic
voltage and frequency scaling, in addition to mobile computing, as key areas of existing
research. Georgiou et al. (2019) has categorised some research in this area and provided a
high-level overview of the field in terms of software transformations that have been investi-
gated and the tools used to measure energy consumption. However, additional work focusing
on the impact of higher-level software changes, such as refactorings, code smells, and design
patterns, on energy efficiency has been published which we discuss below.

Sahin et al. (2012) studied the impact of 15 design patterns on energy consumption in
C++. They used short samples of code sourced online and found the implementation of the
Composite, Abstract Factory, Observer, and Decorator patterns increased energy consump-
tion by 5%, 21%, 62%, and 712%, respectively; they also found the implementation of the
Visitor, Mediator, Proxy, and Flyweight patterns resulted in a reduction in consumption by
7%, 9%, 36%, and 58% respectively.

Noureddine and Rajan (2015) studied 14 design pattern examples in C++ and 7 in Java
sourced online and found the Observer, Decorator, and Mediator patterns to increase the
energy consumption by 30.63%, 12.24%, and 26.61% respectively. They found conflicting
results to that of Sahin et al. (2012) in the case of the Composite pattern, where Sahin et al.

123

Page 3 of 36 145Empirical Software Engineering (2023) 28:145

found its implementation increased energy consumption, and in the cases of the Visitor and
Proxy patterns, Sahin et al. found their implementations to reduce energy consumption—the
opposite of the findings of Noureddine and Rajan.

Bunse and Stiemer (2013) measured the impact of six design patterns in simple Android
applications and found the Abstract Factory, Prototype, and Decorator patterns increased
energy consumption by 14%, 33%, and 133%, respectively.

Litke et al. (2005) studied three patterns in short C++ examples but only found a notable
difference in energy consumption in the case of the Observer pattern, an increase of 44%.

Feitosa et al. (2017) studied the effect of the Template Method and State/Strategy patterns
on two pieces of open source software and saw the removal of the patterns reducing energy
consumption of the applications by as much as 17% and 53% respectively.

Maleki et al. (2017) examined five design patterns in C++ code snippets and noted an
increase in energy consumption of over 495% when the Decorator pattern was implemented,
and a reduction in energy consumption of just over 4% and 49% when the Facade and
Flyweight patterns were implemented respectively.

Hurbungs et al. (2022) investigated the impact of the two styles of the Singleton pattern in
an IoT computing scenario and found power consumption reductions of approximately 1%
when the patterns were implemented.

In previous work we found the removal of the Decorator pattern from a large, open source
application reduced energy consumption by up to 5% (Connolly Bree and Ó Cinnéide 2022).

Atomic refactorings, code smells, and static metrics have also been investigated in order to
highlight their relation to energy performance. We previously examined Replace Delegation
with Inheritance in a preliminary study (Connolly Bree and Ó Cinnéide 2020) and noted sub-
stantial improvements in energy performance when inheritance structures are used instead of
delegation. Park et al. (2014), Sahin et al. (2014) and da Silva et al. (2010) investigated vari-
ous refactorings but saw mixed results. da Silva et al. (2010) highlighted the non-triviality of
this type of research as they iteratively inlined the most invoked methods in a program; while
they initially saw improvements in energy efficiency, they saw energy efficiency decrease
again as they continued inlining methods.

The potential for code smells to positively impact energy efficiency has also been sug-
gested. Verdecchia et al. (2018), Rodriguez et al. (2015), Pérez-Castillo and Piattini (2014),
and Vetro et al. (2013) saw some code smells reduced energy efficiency, such as Feature
Envy and Long Method, but also highlighted others that improved energy efficiency such as
God Class and No Data Encapsulation. A study conducted by Morales et al. (2018) found
the opposite in the case of God Class, potentially due to the method of smell removal, further
highlighting the need for more research in this field.

While static metrics have been examined (Mancebo et al. 2021; Verdecchia et al. 2018),
none have been strong indicators of energy efficiency.

There are several other avenues of research also being examined such as the energy cost
of particular collection libraries (Hasan et al. 2016; Pereira et al. 2016), frameworks which
assist developers improve energy efficiency (Manotas et al. 2014; Hindle 2015; Palomba et al.
2017), and the impact language selection may have on a project’s energy efficiency (Pereira
et al. 2021).

With the popularity of mobile computing, catalogues of android oriented smells have also
been investigated from an energy consumption perspective (Tonini et al. 2013; Gottschalk
et al. 2014; Hecht et al. 2016; Palomba et al. 2019; Cruz and Abreu 2017). The extent to
which Java based android smells are generalisable, with respect to other languages used for
mobile development such as Swift or Kotlin, or in broader contexts remains unclear.

123

145 Page 4 of 36 Empirical Software Engineering (2023) 28:145

Design patterns in other contexts have also been examined such as cloud specific patterns
(Abtahizadeh et al. 2015), UI patterns (Nayak and Chandwadkar 2021), and patterns focusing
on embedded systems (Menghin et al. 2015; Schaarschmidt et al. 2020) and the IoT (Crestani
et al. 2021).

As aforementioned, the Visitor pattern has been studied by Sahin et al. (2012) andNoured-
dine andRajan (2015).Both of these studies undertook only preliminary examinations, testing
with short examples of the Visitor pattern in C++ and found contradicting evidence regarding
its energy impact.

In this paper, in linewith our research plans (Connolly Bree andÓCinnéide 2021), we also
undertake an exploratory study on a short, textbook code example to clarify existing results.
We subsequently expand the scope of existing research by experimentally investigating the
impact of the pattern with two open source software applications, one in Java (JavaParser)
and another C++ (CppParser). To our knowledge, this paper represents the first study of the
energy consumption of the Visitor pattern in the context of large open source applications.

3 The Visitor Pattern

A visitor essentially encapsulates an algorithm that interacts with objects in a structure that
are of different types. It contains a method for each concrete type of object it interacts with.
Thus the pattern separates the algorithm from the classes it acts upon, making it easier to
understand and facilitating the addition of new algorithms.

The non-pattern design approach is to spread the algorithm logic among each of the
relevant concrete classes, but this leads to “algorithm sprawl” where the methods comprising
the algorithm are spread across the classes of the object structure. If changes are made to the
algorithm, it will be necessary to edit every class to make the appropriate alterations.

3.1 Implementation of the Visitor Pattern

The typical implementation of the Visitor pattern is described in Fig. 1. Every class to be
visited (ElementA, ElementB) implements an interface1 (Element) that includes the
method accept, which takes a visitor as an argument.

Each visitor (Visitor1,Visitor2) implements an interface (Visitor) that includes
a visit method for every concrete element that can be visited (e.g. visitElementA,
etc.) that takes an instance of that element type as an argument.

The typical sequence when an element is visited is described in Fig. 2. The accept
method is invoked on the element and the visitor is passed as an argument; the element
subsequently invokes the appropriate visit method in the visitor, and passes itself as an
argument. The visitor executes its logic which often includes accessing data through accessor
methods (i.e. getData) in the element, and returns.

For brevity, wewill usually omit the arguments of visitor-relatedmethods in the remainder
of this paper.

1 It is not essential that the Element classes share a common superclass or interface—they only need to
have an implementation of the accept method.

123

Page 5 of 36 145Empirical Software Engineering (2023) 28:145

<<interface>>
Visitor

+visitElementA(ElementA)

+visitElementB(ElementC)

Visitor1

+visitElementA(ElementA)

+visitElementB(ElementB)

Visitor2

+visitElementA(ElementA)

+visitElementB(ElementB)

<<interface>>
Element

+accept(Visitor)

ElementB

+accept(Visitor)

ElementA

+accept(Visitor)

ObjectStructure<Element>

Client

v.visitElementB(this)v.visitElementA(this)

<<interface>>
Visitor

+visitElementA(ElementA)

+visitElementB(ElementC)

Visitor1

+visitElementA(ElementA)

+visitElementB(ElementB)

Visitor2

+visitElementA(ElementA)

+visitElementB(ElementB)

<<interface>>
Element

+accept(Visitor)

ElementB

+accept(Visitor)

ElementA

+accept(Visitor)

ObjectStructure<Element>

Client

v.visitElementB(this)v.visitElementA(this)

Fig. 1 UML diagram of Visitor pattern. Amended version from Gamma et al. (1995)

3.2 Features of the Visitor Pattern

The operation of the Visitor pattern relies on double dispatch, which means the selection of
the method to invoke is based on the run-time types of two objects, the so-called receiving
object, and an argument. Java only supports single dispatch, i.e. the decision of whichmethod
to invoke is based on the type of the receiving object only. For example, consider a class
Dog containing methods barkAt(Cat) and barkAt(Sheep), and assume that Cat
and Sheep both implement the interface Animal. A method invocation in the form of

:ElementA

return

Client

accept(visitor1)

:Visitor1

return

visitor
logic

visitElementA(this)
getData()

return

Fig. 2 Sequence diagram of a typical visitor interaction

123

145 Page 6 of 36 Empirical Software Engineering (2023) 28:145

dog.barkAt(animal)will not be able to select the appropriatebarkAt implementation
to execute because the animal argument is not used in a single-dispatch scenario.

In the case of theVisitor pattern, themethod to be executed depends on the concrete type of
the visitor and the concrete type of the element being visited, thus requiring double dispatch.
In Java this is achieved through the use of two single dispatches: one method call of accept
and another of visit. The double dispatch the Visitor requires may cause additional energy
consumption due to the extra method invocations required at run-time.

The management of state is another aspect of the Visitor. The partial results computed by
the visit methods must be aggregated in some way. One approach is to maintain explicit
state in the visitor that can be accessed by the visit methods. Alternatively, a stateless
solution is achievable by passing additional arguments through the accept and visit
methods.

Lastly, the traversal of the structure being visited must be considered. The traversal can be
handled in three main ways: (i) by the visitor itself, i.e. after visiting an element it computes
the next element to visit; (ii) by the object structure, which would require the visitor to be
passed to the structure initially; or (iii) by using a separate iterator object, which could either
be an internal or an external iterator.

4 Experimental Design

The goal of this study is to examine the impact on energy efficiency of transforming the
typical implementation of the Visitor pattern. We consider three treatments: the patterned
application, the unpatterned application, and an alternately patterned application. Our study
includes three subjects: a textbook style application developed in Java, and two open source
applications: JavaParser and CppParser, written in Java and C++ respectively. The dependent
variables are run time and power consumption which are used to compute overall energy
consumption.

Our study addresses the following research questions:

– RQ1 In the textbook example, which implementation (unpatterned, patterned, alternately
patterned) is most energy efficient?

– RQ2 In JavaParser, which implementation (unpatterned, patterned, alternately patterned)
is most energy efficient?

– RQ3 In CppParser, which implementation (unpatterned, patterned, alternately patterned)
is most energy efficient?

– RQ4Are the findings of the case studies examining JavaParser and CppParser consistent?

Studying two open source applications, one written in Java and one written in C++,
assists in exploring the generality of our findings. Java is compiled into an intermediate
language, bytecode, which is interpreted and executed by the Java Virtual Machine (JVM) on
a given platform. Described as “write-once-run-everywhere” (Javasoft 1996), Java provides
flexibility as a program can be compiled once, and subsequently be executed on any machine
upon which a JVM is installed. This flexibility comes with a performance cost due to the
need to interpret bytecode at run-time; however, modern JVMs usually include a Just-in-
Time compiler which can optimise frequently executed parts of the software, or compile
parts directly to machine code at run-time. On the other hand, C++ is a platform-dependent,
compiled languagewhich is compiled directly to nativemachine code. This adds complication

123

Page 7 of 36 145Empirical Software Engineering (2023) 28:145

in requiring recompilation to execute the software on different platforms, but it is precisely the
direct compilation to native machine code that enables the generation of a highly performant
and energy efficient executable.

4.1 Software Versions

To address the research questions outlined above, we develop three versions of each appli-
cation: (i) one with the Visitor pattern implemented as per the description of Gamma et al.
(1995) (patterned), (ii) one without the pattern (unpatterned), and (iii) one with an alternate
implementation (alternately patterned) which we describe further below. High level UML
diagrams for every version of each application are provided in the appendices.

4.1.1 Patterned Version

The patterned version of the software is implemented to have a design similar to that of
Fig. 1, reflecting the original Gamma et al. (1995) implementation of the pattern. A visitor
class contains the methods relating to the elements. The client invokes accept on each
element and passes the visitor to it, and the element subsequently invokes the appropriate
visit method in the visitor.

4.1.2 Unpatterned Version

The unpatterned version of the software sees the visitor being entirely removed. Eachmethod
in the visitor is renamed (all to the same name), the arguments of those methods are removed,
references to the argument are updated to reference this, and each method is moved to its
appropriate element class. Amethodwith the same signature is added to the interface/abstract
class that the elements implement/extend, and the code in the client is then updated to invoke
that method rather than the accept method.

4.1.3 Alternate Patterned Version

The alternate patterned version of the software employs a different implementation of the
Visitor pattern.While double dispatch is usually executed through a doublemethod invocation
(accept and visit), the alternate implementation excludes the invocation of the accept
method. Instead, in an approach inspired by that of Büttner et al. (2004), as the client iterates
through the elements, the element type is checked and passed to the appropriate visit
method in the visitor. In Java, the instanceof operator is used to type check; in C++, a
dynamic_cast is employed and the resultingpointer is checked for nullability.Wedescribe
this as reflective dispatch. The method to be invoked depends on the type of the visitor object
(determined by dynamic binding), and the type of the node being visited (determined using
instanceof or dynamic_cast).

4.2 Experimental Method

Each application is executed, and its run time (Seconds, s) and power consumption (Watts,
W) are recorded. Each application is executed many times in a single experiment to extend

123

145 Page 8 of 36 Empirical Software Engineering (2023) 28:145

run time in order to accurately measure power consumption, and each experiment is executed
200 times to reduce the effects of random noise.

Run time is multiplied by the mean power consumption to calculate energy consump-
tion (EnergyJ = PowerW × T imes). The percentage change in energy consumption was
calculated as such: V 2−V 1

V 1 × 100, where V 1 is the mean energy consumption before the
transformation, and V 2 is the mean energy consumption after transformation. Statistical sig-
nificance testing is calculated using Wilcoxon rank-sum tests with a Bonferroni adjusted α

where appropriate. Vargha and Delaney’s Â12 statistics are employed in both case studies to
highlight effect size.

Our experimental study comprises three parts: (i) we examine a textbook example of the
pattern in Java, creating three software implementations all exhibiting the same behaviour,
(ii) we explore the pattern further in Java using an open source software application, Java-
Parser,2 and (iii) we explore the impact of the pattern in another open source C++ application,
CppParser.3

4.3 Experimental Setup

The software was executed on a device with an Intel Xeon E-2224G CPU at 3.5GHz and
8 GB of DDR4 2666MT/s RAM, running a fresh, minimal installation of Ubuntu 20.04.2
LTS. The Java based software was compiled and executed with OpenJDK Java 11.0.14. The
C++ applications were written in C++17 and compiled with g++ 9.4.0. AWattsup Pro Power
Meter4 was used to record power consumption. The device executing the software under test
was plugged into the Wattsup Pro Power Meter, and a secondary device connected to the
power meter logged the power consumption every second.

4.4 Testing Scenarios

A textbook-style example of the Visitor pattern provides the basis for a proof-of-concept
experiment. To assist in clarifying the pattern’s impact on energy consumption, we use a
variety of configurations of the Just-In-Time (JIT) compiler.

We subsequently examine the pattern in the context of two larger open source applica-
tions. Bespoke testing scenarios are employed to test the applications and are detailed in each
case study section. The testing scenario for the applications mirror each other to the greatest
extent possible in terms of the ratio of elements visited and the way in which the elements
are handled. While the use of included unit tests was considered, test cases do not neces-
sarily execute code paths typically executed during normal software execution, nor do they
necessarily exercise the parts of the application that include the transformed design pattern.
The use of unit tests could also further reduce the parity of the testing scenarios of the two
case studies. The implications of these testing scenarios are discussed further in Section 9.

2 javaparser.org
3 github.com/satya-das/cppparser
4 powermeterstore.com/p1206/watts_up_pro.php

123

Page 9 of 36 145Empirical Software Engineering (2023) 28:145

5 RQ1: Textbook Example

As a preliminary study, we first examine the impact of the Visitor pattern in a short, textbook-
style application derived from an online source written in Java (Visitor in Java 2022). The
versions under test range from 176 to 202 source lines of code located in seven Java files.
We experiment with three different versions of the same application: (i) patterned, (ii) unpat-
terned, and (iii) alternate patterned, and subsequently compare energy consumption across
a range of Java Virtual Machine set-ups. Lastly, we investigate the impact of stateless vs.
stateful visitors on energy consumption. UML diagrams of each version of the textbook
application are located in Appendix A.

5.1 Textbook Implementations

5.1.1 Patterned Version

The textbook example used in this set of experiments consists of three classes that implement
the interfaceShape:Circle,Dot, andRectangle. Each class stores x and y coordinates,
and either radius or width and height values. The visitor XMLExportVisitor contains an
export method, which iterates through the list of shapes, invoking accept and passing
itself as an argument. Each XMLExportVisitor visit method takes relevant data from
each shape and formats it into XML string which is then returned and ultimately appended
to a string in the export method of the XMLExportVisitor.

In this example, the visitor is stateless as it has no instance variables. In addition, to avoid
complications regarding the method of traversal, the shapes are simply passed to the visitor
as a list, which then invokes accept on each shape.

5.1.2 Unpatterned Version

In removing this pattern, every visit method in XMLExportVisitor is renamed
exportXML, before subsequently being moved to its appropriate class. The Visitor
argument is removed, and references to it are updated to reference this. The accept invo-
cation in the export method is then updated to invoke shape.exportXML(). Lastly,
the exportXML method signature is added to the Shape interface.

This set of refactorings leaves behaviour unchanged, and the traversal of the shapes
unchanged. However the visitor is removed and the double dispatch has been eliminated.

5.1.3 Alternate Patterned Version

In this version, the only change that is made is the logic handling the shapes during traversal.
In implementing reflective dispatch, rather than invoking accept on each shape, there is a
block of type checks. When the instance of a given shape is found, it is cast and passed as an
argument to the appropriate visit method in the visitor.

With this alteration, the behaviour remains the same, the traversal of the shapes remains the
same, and while the double dispatch effectively remains, the way in which it is implemented
is significantly altered; instead of two methods being invoked, a single method is invoked
following an if statement and instanceof operation.

123

145 Page 10 of 36 Empirical Software Engineering (2023) 28:145

5.1.4 State vs Stateless

An important implementation detail of the Visitor pattern is whether or not the visitor holds
explicit state. In order to investigate the impact of state, two additional versions of the pat-
terned experiment were conducted: one with an instance variable in the visitor holding a list
of strings to which each formatted XML string for each shape is added, and another version
in which the list is passed as an additional argument through each accept and visit
method.

5.2 Textbook Experiments

In a single set of experiments, three different shapes are instantiated and the exportmethod
is invoked with the three shapes as arguments 1 × 109 times when the JVM is operating
normally and inlining is disabled, and 1× 107 times when the JIT compiler is disabled.

The time before and after the loop is recorded providing overall run time, and power
consumption is recorded throughout.

Additionally, the first three versions, patterned, unpatterned, and alternate patterned, are
executed with three different Java Virtual Machine (JVM) set-ups: (i) a normal JVM with no
custom parameters; (ii) a JVM with the Just-in-Time (JIT) compiler disabled; and (iii) with
the maximummethod inline size set to 1 (-XX:MaxInlineSize=1) effectively disabling
method inlining as an optimisation technique. The experiments involving state are executed
twice: (i) with a normal JVM, and (ii) with the JIT compiler disabled.

Table 1 Mean run time (s), power consumption (W), and energy consumption (J) for the patterned (double
dispatch), unpatterned (single dispatch), and alternate patterned (reflective dispatch) versions of the textbook
example across differing settings of the JVM. Reduction in energy consumed is statistically significant in cases
marked with * having conducted a Wilcoxon rank-sum test with a Bonferroni adjusted α = 0.025 (0.05/2))

Version Run Time (s) Power Cons. (W) Energy Cons. (J) Change (%) P-value

Normal JVM

Patterned 211.71 55.51 11751.4

Unpatterned 210.79 55.69 11739.09 -0.1 0.44

Patterned 211.71 55.51 11751.4

Alternately Patterned 195.73 55.37 10838.54 -7.77* 2.43× 10−67

No JIT JVM

Patterned 244.14 43.32 10576.76

Unpatterned 242.37 43.24 10480.65 -0.91* 6.25× 10−6

Patterned 244.14 43.32 10576.76

Alternately Patterned 228.51 43.03 9832.2 -7.04* 2.25× 10−34

No Inlining JVM

Patterned 215.91 51.76 11175.02

Unpatterned 211.67 51.86 10976.59 -1.78* 9.49× 10−18

Patterned 215.91 51.76 11175.02

Alternately Patterned 198.5 51.38 10199.21 -8.73* 1.21× 10−49

123

Page 11 of 36 145Empirical Software Engineering (2023) 28:145

Table 2 Mean run time (s), power consumption (W), and energy consumption (J) for the stateful and stateless
versions of the textbook example when the JVM operates normally, and when JIT is disabled. Reduction in
energy consumed is statistically significant in cases marked with * having conducted a Wilcoxon rank-sum
test (α = 0.05)

Version Run Time (s) Power Cons. (W) Energy Cons. (J) Change (%) P-value

Normal JVM

Stateful 137.18 54.11 7422.28

Stateless 137.15 53.84 7384.56 -0.51* 1.66× 10−4

No Normal JVM

Stateful 205.51 42.31 8695.34

Stateless 207.01 42.59 8815.97 1.37* 7.69× 10−4

5.3 Textbook Results

The mean run times, power consumption, and overall energy consumption of each set of
experiments are listed in Tables 1 and 2. Power consumption remained constant throughout
each of the first three sets of experiments, however a notable reduction in power consumption
can be seenwhen the JIT compiler is disabled.Given the otherwise stable power consumption,
the major factor influencing energy consumption is run time.

6 RQ2: Case Study I— JavaParser

Subsequent to our examination of a textbook example of the Visitor pattern, we consider
a larger, open source example. A common use of the Visitor pattern is in the traversal of
tree-like structures, and it is often employed in code analysis tools when handling abstract
syntax trees (ASTs).

JavaParser is an open source library that employs ASTs to enable the analysis, transfor-
mation, and generation of Java source code. Our experiments were conducted with release
3.23.0,5 consisting of 87,671 source lines of code (SLOC) across 717 files. The application
that is parsed is JHotDraw V7.0.6.6 JavaParser’s parsing of JHotDraw, a project consisting of
309 Java files containing 32,122 SLOC, yields 187,288 AST nodes. This provides a realistic
use case of the Visitor pattern.

In this section we use the JavaParser term Node for the objects being visited, rather than
the generic term Element.

6.1 JavaParser Implementations

High level UML diagrams describing transformed parts of each version of JavaParser are
located in Appendix B.

5 github.com/javaparser/javaparser/releases/tag/javaparser-parent-3.23.0
6 sourceforge.net/projects/jhotdraw

123

145 Page 12 of 36 Empirical Software Engineering (2023) 28:145

6.1.1 Patterned Version

The patterned visitor experimented with is called CustomVisitor, and implements
JavaParser’s VoidVisitor interface. Each visit method is included in this class, the
implementation of which varies depending on the set of experiments being conducted, as
described below. Once JHotDraw is parsed, a BreadthFirstIterator (an iterator
implemented in JavaParser) is used to traverse the AST; this avoids confounding variables
regarding traversal across implementations.

6.1.2 Unpatterned Version

To remove the Visitor pattern, a new method called addToList is added to the Node
class, which each concrete node extends. Where necessary, this method is also overridden in
relevant nodes’ concrete classes. Where the accept method was invoked in the patterned
version, the addToList method is now invoked instead, thus removing the need for the
CustomVisitor class and the double dispatch, eliminating the pattern itself.

6.1.3 Alternate Patterned Version

The alternate implementation of this pattern leaves the CustomVisitor as is. However,
with reflective dispatch, as the AST is traversed the type of each node is checked with
instanceof, and if it is of the type the visitor is seeking, it is cast and passed as an
argument to the appropriate visit method in the CustomVisitor class.

6.2 JavaParser Experiments

In exploring the application of the Visitor pattern further, we consider three usage scenarios:
(i) the visitor not interacting with any nodes, (ii) the visitor interacting with some nodes, and
(iii) the visitor interacting with every node in the AST. While the visitor de facto interacts
with every node given it visits each one, we use the term “interact” to reference further logic
in the visitor that processes the node.

6.2.1 Never Interacts

In the first scenario, while the visitor visits every node in the AST, the node type it wants to
handle (WildCardType) is never found (i.e. there are no nodes of type WildCardType
in JHotDraw), thus it does not interact with any. We describe this as “never interacting,” as
the visitor never finds a node it has visit logic implemented for. The tree is traversed by
the visitor 10,000 times in each experiment.

The patterned version in this experiment invokes accept on each node while passing
the visitor to it. Only the visit method for WildCardType is implemented, adding its
toString return value to a list in the visitor.

In the unpatterned version of this experiment, the method addToList is added to the
Node class. In this scenario, only the class WildCardType overrides the method, adding
its toString return value to a list provided as an argument.

123

Page 13 of 36 145Empirical Software Engineering (2023) 28:145

In the alternate patterned version, the AST is iterated through and if the instance of a given
node is of type WildCardType, the node is cast appropriately and passed as an argument
to the appropriate visit method in the visitor.

6.2.2 Sometimes Interacts

In thesecondscenario, thevisitorcollects thenameofeveryClassOrInterfaceDeclaration
node. There are 323 of these nodes making up less than 1% of the total number of nodes in
the AST, providing another use case of a visitor. We describe this scenario as “sometimes
interacting.” The tree is traversed by the visitor 10,000 times in each experiment.

In the patternedversion of this experiment, thevisitmethod for ClassOrInterface
Declaration in CustomVisitor adds the declaration’s name to a list.

In the unpatterned version of this experiment, the method addToList is added to the
Node class, and amethod of the same name is overridden in the classClassOrInterface
Declaration, which adds the declaration’s name to a list passed as an argument.

In the alternate patterned version of this experiment, a single instanceof operation
checks for the typeClassOrInterfaceDeclaration as the nodes are iterated through.
If found, the node is cast appropriately and passed as an argument to the appropriate visit
method in the visitor.

6.2.3 Always Interacts

In thefinal scenario, the visitor interactswith every node of theAST, storing the string returned
by the nodes’ toString method. This scenario is described as “always interacting,” and
can provide insights into the overhead introduced when every node is handled by the visitor
logic. The tree is traversed by the visitor 300 times in each experiment.

In the patterned version of this experiment, every visit method is implemented in the
CustomVisitor class. Each method adds the return value of that node’s toString
method to a list in the visitor.

In theunpatternedversionof this experiment, everyvisitmethod in theCustomVisitor
is renamed to addToList. The arguments referencing each concrete type of Node is
replaced with an argument of type List<String>, to which the returned value from
toString is added. These methods are subsequently moved to every concrete class extend-
ing Node.

In the alternate patterned version of this experiment, the instanceof operator is used
to type check every node. When a node of the desired type is reached, it is cast and passed
as an argument to the appropriate visit method in the visitor.

6.3 JavaParser Results

The mean run times, power consumption, and overall energy consumption of this set of
experiments are listed in Table 3. The mean power consumption remains stable throughout
each set of experiments, though there is a notable increase in the case where the visitor
interacts with every node, and a very slight increase in power consumption is also seen when
some nodes are interacted with when compared to no nodes being interacted with. The energy
consumption of each version of the program, relative to the patterned version is presented in
Fig. 3.

123

145 Page 14 of 36 Empirical Software Engineering (2023) 28:145

Table 3 Mean run time (s), power consumption (W), and energy consumption (J) for the patterned (double
dispatch), unpatterned (single dispatch), and alternate patterned (reflective dispatch) versions of the open
source JavaParser example in cases where the visitor interacts with no nodes, interacts with some nodes,
and interacts with all nodes. Reduction in energy consumed is statistically significant in cases marked with
* having conducted a Wilcoxon rank-sum test and a Bonferroni adjusted α = 0.025 (0.05/2)). Vargha and
Delaney’s Â12 statistic was computed comparing the original, patterned version to each transformed version
of the application

Version Run Time (s) Power
Cons. (W)

Energy
Cons. (J)

Change (%) P-value Â12

Never Interacts

Patterned 114.81 43.15 4954.13

Unpatterned 105.54 42.69 4506.05 -9.04* 3.13× 10−36 0.862

Patterned 114.81 43.15 4954.13

Alternately Patterned 102.86 42.28 4349.00 -12.21* 1.75× 10−36 0.863

Sometimes Interacts

Patterned 117.26 44.17 5179.18

Unpatterned 107.61 43.88 4722.32 -8.82* 5.11× 10−38 0.871

Patterned 117.26 44.17 5179.18

Alternately Patterned 106.54 43.37 4620.69 -10.78* 1.07× 10−38 0.875

Always Interacts

Patterned 232.99 55.47 12923.48

Unpatterned 232.14 55.31 12839.92 -0.65* 3.68× 10−5 0.615

Patterned 232.99 55.47 12923.48

Alternately Patterned 232.40 55.38 12870.20 -0.41* 0.003 0.580

7 RQ3: Case Study II— CppParser

Given the impact of the pattern in JavaParser, we expand the scope of this study to include
investigation into the pattern with an additional programming language. As described in
Section 4, C++ is a popular language that enables object-oriented development but compiles
to machine code rather than using an interpreter like Java. If the theory regarding the impact
of design patterns on energy consumption is correct, given the indirection and additional
structures they introduce, we expect to see results in line with those found in Section 6
regardless of an application’s implementation language. Thus, C++ provides an excellent
language to experiment with given its contrasts when compared to Java. CppParser is an
open source library that creates ASTs while parsing code written in C++. Our experiments
were conducted with the version committed on October 3 2022,7 consisting of over 4907
source lines of code (SLOC) across 32 source files. The contents of Constants.cpp, a part of
the source code for LLVM, is parsed which contains 2648 SLOC yielding 1326 elements.
Similarly to JavaParser, CppParser provides a realistic use case of the Visitor pattern in
practice. While CppParser does not natively include an instance of the Visitor pattern, its
use of an AST provides an excellent use-case, so the pattern was introduced in line with

7 github.com/satya-das/cppparser/commit/f9a4cfac1a3af7286332056d7c661d86b6c35eb3

123

Page 15 of 36 145Empirical Software Engineering (2023) 28:145

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Never Interacts Some�mes Interacts Always Interacts

noitp
musnoc ygrene evitaleR

Frequency of visitor finding preferred node

Pa�erned Unpa�erned Alternately Pa�erned

Fig. 3 Energy consumption of each version of JavaParser as a proportion of that set’s patterned version in
JavaParser

the pattern implementation described by Gamma et al. (1995). Every version of CppParser
created for these experiments mirror the experiments conducted with JavaParser in terms of
pattern implementation, or lack thereof, and in terms of the specific experiment scenarios
described in Section 7.2.

7.1 CppParser Implementations

High-level UML diagrams of the transformed parts of each version of CppParser are located
in Appendix C.

7.1.1 Patterned Version

In order to implement the pattern, an abstract classVisitablewas included in cppast.h
that contains an accept method. CppObj, which is the commonly used base class for all
AST elements, extendsVisitable and anacceptmethod is added to every concreteAST
element that invokes their respective visit methods in Visitor. An additional abstract
class Visitor is implemented containing pure virtual visit functions for each AST type,
and a CustomVisitor class is includedwhich implements each of those abstract methods;
CustomVisitor is not required for a simple implementation of the pattern, but provides
utility in being a base from which future visitors can be easily extended, overriding only
the visit methods relevant to that visitor. This reflects the approach to the Visitor pattern
that is implemented in JavaParser. Once the code is parsed, the AST is flattened, providing
a vector of elements which is iterated through, and accept is invoked on each element.

123

145 Page 16 of 36 Empirical Software Engineering (2023) 28:145

7.1.2 Unpatterned Version

In removing the pattern, a new method addToList is added to CppObj. Where required,
this method is overridden in the relevant element’s concrete class. While accept was
invoked in the patterned version as the elements are iterated through, addToList is now
invoked instead, resulting in an unused visitor, no double dispatch, and an effective removal
of the pattern.

7.1.3 Alternate Patterned Version

The alternate implementation of the pattern leaves the visitor as is, however instead of
invoking accept, we type check for relevant element types. This is completed using
dynamic_cast; if the returned pointer is not null, i.e. the element is of a type we are
interested in visiting, that element’s visit method in the visitor is invoked, and the cast
pointer is passed as an argument.

7.2 CppParser Experiments

Reflecting our previous experiments with JavaParser, we investigate the same three usage
scenarios: (i) the visitor not interacting with any elements, (ii) the visitor interacting with
some elements, and (iii) the visitor interacting with every element in the AST. To reiterate,
while the visitor de facto visits every element, we use the term “interact” to reference the
execution of further logic in the visitor processing the element.

7.2.1 Never Interacts

In this scenario, the element type the visitor is interested in is CppPragma, of which there
are none in the AST. While every element is visited, none are interacted with further by the
visitor. The tree is traversed 3× 106 times in each experiment.

The patterned version in this experiment sees the visitor implementing a visit method only
for CppPragma; if a CppPragma is found, it is added to a vector.

The unpatterned solution invokes addToList on every element passing a pointer to a
vector as an argument. addToList is only implemented in CppObj (an empty method)
and also in CppPragma, in which this is added to the vector.

The alternate patterned version invokes dynamic_cast on every element, casting
to CppPragma, and if the resulting pointer is not null, passes it as an argument to
visitCppPragma in the visitor where it is added to a vector.

7.2.2 Sometimes Interacts

In the second scenario, the visitor collects every CppForBlock element. There are 15
elements of this type making up just over 1% of total number of elements in the AST,
mirroring the 1% of nodes interacted with in the JavaParser case study. The AST is traversed
by the visitor 3× 106 times in each experiment.

In the patterned version of this experiment, only visitCppForBlock is implemented,
adding the CppForBlock to a vector when found.

123

Page 17 of 36 145Empirical Software Engineering (2023) 28:145

The unpatterned version invokes addToList on every element, passing a pointer to a
vector as an argument; however, it is only implemented in CppObj and in CppForBlock,
in which this is added to the vector.

The alternate patterned version invokes dynamic_cast on every element, casting to
a CppForBlock, and if the resulting pointer is not null, it is passed as an argument to
visitCppForBlock in the visitor where it is added to a vector.

7.2.3 Always Interacts

In the final scenario, the visitor collects every element of the AST in a vector. The AST is tra-
versed by the visitor 5×106 times in the patterned and unpatterned versions, and 5×105 times
in the alternate patterned version. Following early exploration of the alternate implementa-
tion of the pattern in CppParser, substantially longer run times were noted when compared
to other versions, thus the number of times the always interacting, alternate patterned set
of experiments was executed was reduced by a factor of 10 to reduce unnecessary energy
usage.We clarify this further in Section 7.3. In the patterned version of this experiment, every
visit method is implemented, adding every element to a vector.

In the unpatterned version, addToList is implemented in every concrete AST type, in
every case adding this to a vector passed as an argument.

Lastly, in the alternate patterned version, every element is cast to every concrete AST type
with dynamic_cast, and when resulting pointer is not null, its relevant visitmethod
in the visitor is invoked, passing the pointer as an argument where it is added to a vector.

7.3 CppParser Results

The mean run times, power consumption, and overall energy consumption of this set of
experiments are listed in Table 4. The mean wattage remains stable throughout experiments
except for the alternate patterned solution which sees an approximate five Watt increase
in power consumption in all scenarios. The energy consumption of each version of the
program, relative to the alternate patterned version, is presented in Fig. 4. In executing the
alternate implementation, the number of loops executed was reduced by a factor of 10 to
eliminate energy usage as preliminary executions highlighted substantially greater run times
when compared to the other versions. Multiplying the resulting energy consumption data
by 10 to reach an approximation of real energy consumption, we see an increase in energy
consumption of 2012.64%.

8 Discussion

The data described in Sections 5.3, 6.3, and 7.3 highlight a negative relationship between
the typical implementation of the visitor pattern and energy efficiency. However, they also
emphasise the consideration that must be paid to how we design software, and also the
potential for short, textbook style software examples to lack adequate context to provide
relevant results in this style of empirical experimentation. We explore this further in the
remainder of this section.

123

145 Page 18 of 36 Empirical Software Engineering (2023) 28:145

Table 4 Mean run time (s), power consumption (W), and energy consumption (J) for the patterned (double
dispatch), unpatterned (single dispatch), and alternate patterned (reflective dispatch) versions of open source
CppParser example in cases where the visitor interacts with no elements, interacts with some elements, and
interacts with all elements. Reduction in energy consumed is statistically significant in cases marked with
* having conducted a Wilcoxon rank-sum test with a Bonferroni adjusted α = 0.025(0.05/2). Vargha and
Delaney’s Â12 statistic was computed comparing the original, patterned version to each transformed version
of the application. † Number of loops executed in the always interacting alternate patterned scenario is reduced
by a factor of 10 to reduce unnecessary energy consumption (described further in Section 7.3). Run time and
energy consumption for this scenario is multiplied by 10 to provide an estimate in overall energy consumption
against which we do not perform statistical analysis

Version Run Time (s) Power
Cons. (W)

Energy
Cons. (J)

Change (%) P-value Â12

Never Interacts

Patterned 86.26 44.71 3856.74

Unpatterned 28.84 44.05 1270.58 -67.06* 2.4× 10−67 1.000

Patterned 86.26 44.71 3856.74

Alternately Patterned 179.81 50.01 8992.73 +133.17 1 0.000

Sometimes Interacts

Patterned 87.30 44.64 3896.93

Unpatterned 28.78 43.98 1265.80 -67.52* 2.4× 10−67 1.000

Patterned 87.30 44.64 3896.93

Alternately Patterned 181.12 49.95 9046.30 +132.14 1 0.000

Always Interacts

Patterned 307.58 44.83 13788.65

Unpatterned 221.94 45.05 9999.57 -27.48* 2.4× 10−67 1.000

Patterned 307.58 44.83 13788.65

Alternately Patterned 5683.00 51.26 291304.58 +2012.64 n/a† 0.000

8.1 RQ1: Textbook Example Discussion

The data from the experiments involving the textbook example suggests that little can be
gained from the removal of the Visitor pattern from software through traditional means, i.e.
moving relevant logic from the visitor to the appropriate visitable class, and eliminating the
double dispatch. This is not unexpected behaviour given the optimisation the JIT compiler
can provide (Paleczny et al. 2001). Method inlining is one aspect of code optimisation used
and given double dispatch requires twomethod invocations, the JIT compiler can be expected
to heavily optimise the visitor pattern implementation in a trivial piece of software such as the
textbook example. While disabling the JIT compiler presents a less realistic usage scenario,
it can provide some insight into the potential impact of transforming software design. It can
provide a best-case scenario in an environment where JIT optimisations are impossible e.g.
due to long methods or methods not reaching the threshold to be considered “hot,” etc. In this
case we see a reduction in energy consumption when the pattern is removed of almost 1%.
To explore this further, we disable inlining by setting the maximummethod inline size to one

123

Page 19 of 36 145Empirical Software Engineering (2023) 28:145

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Never Interacts Some�mes Interacts Always Interacts

noitp
musnoc ygrene evitaleR

Frequency of visitor finding preferred element

Pa�erned Unpa�erned Alternately Pa�erned

Fig. 4 Energy consumption of each version of the CppParser as a proportion of that set’s alternate patterned,
reflective dispatch version, in JavaParser

byte. In this scenario, we see a reduction in energy consumption of almost 2%, suggesting
that method inlining is a key optimisation technique when the Visitor is operating in a normal
JVM.

The results when comparing the traditional pattern implementation to the one using reflec-
tive dispatch provides an interesting and unexpected result. Counterintuitively, checking the
type of an object and passing a cast version of it to a visitor is more energy efficient than sim-
ply invoking a dynamically-bound method on that object. It may be the case that invoking the
instanceof operator is a more efficient JVM operation, or that the JIT compiler is more
effective in optimising the type check and casting code. A difference in energy consumption
when comparing the patterned vs unpatterned, and patterned vs alternate patterned version
of approximately 6% remains even when the JIT compiler is disabled, providing further evi-
dence that explicitly type checking, casting an object, and invoking a method within the same
object, has a distinctly lesser energy cost than what we may intuitively believe is cheaper:
invoking one dynamically-bound method on another object. There may also be costs due to
polymorphism being employed—the method in the single dispatch version is invoked on an
object of type Shape, rather than a concrete type which may introduce additional overhead.

The 0.51% difference between a stateful and stateless visitor, while a small change, is
statistically significant and could have an impact in situations where the application is con-
stantly running andmakes heavy use of an instance of the pattern. The change here is largely a
difference in power consumption and suggests certain internal JVM operations may be more
costly than others. The shift in result when the JIT compiler is disabled presents more com-

123

145 Page 20 of 36 Empirical Software Engineering (2023) 28:145

plex results. The difference is largely seen in the run times, suggesting the stateless version
can be better optimised at run-time by the JIT compiler, when it is operating as normal.

8.2 RQ2: JavaParser Discussion

The experiments with JavaParser (see Table 3) present improved savings over those found
with the textbook example, even when the JIT compiler is disabled in those experiments, with
percentage reductions in energy consumption of approximately 7%and 10%when comparing
the patterned version to the unpatterned, and alternate patterned version respectively. It is
noteworthy (and heartening for this research) that the real-world example yielded more
promising results than the textbook example.

In exploring the pattern in the case study we opted not to experiment with different JVM
settings. However, to further examine the counterintuitive results regarding the alternate
patterned version we examined it in three scenarios covering interaction with no nodes,
interactions with some nodes, and interaction with all nodes. We undertake this effort to
potentially highlight the impact of the two differing code paths: (i) the path taken when the
visitor visits a node it does not need to interact with, and (ii) the path taken when the visitor
does interact with a given node.

When there are no interactions, the data again suggests that the alternate pattern imple-
mentation shows a better improvement in energy consumption than the unpatterned solution.
When a node is visited in the patterned version, but is not interactedwith further, there are two
method invocations involved (accept and visit), both methods being invoked on another
object. In the case of the unpatterned version, a single method is invoked (addToList), and
is invoked on another object. In the alternate patterned case, a single if statement and an
instanceof operator are executed. The results seen here present an expected reduction in
energy consumption between the patterned and unpatterned versions of the application, but
also provides an interesting insight into the efficiency of a binary operator given the impact
on energy efficiency of the alternate patterned implementation.

While we still see significant reductions in energy consumption when the visitor
interacts with every node, these reductions are substantially less than in other experi-
ments. In the patterned version, every visit to a node involves four method invocations
(accept, visit, values.add(n.toString)), all of which are invoked on other
objects. In the unpatterned version there are three method invocations (addToList,
values.add(this.toString)), two of which are invoked on other objects. In the
alternatepatternedversionthreemethodinvocations(visit,values.add(n.toString))
are involved, all of which are invoked on other objects, one if statement, one instanceof
operator, and one cast. There is one fewer method invocation in the unpatterned and alternate
patterned versions when compared to the patterned version, however, the alternate patterned
version also includes an additional if statement, an instanceof operator, and a cast pre-
senting a logical explanation of the shift in results with the unpatterned version now yielding
greatest efficiency.

The “sometimes interacts” case yields results in line with the above explanation: the per-
formance gap between the single dispatch and alternate patterned solution decreases slightly
which is as expected given a non-zero number of interactions; while the change in percentage
difference is very small, it is to be expected as the number of interactions is small (fewer than
1% of nodes were interacted with).

To summarise these results, while the alternate pattern sees substantial improvements in
terms of energy consumption in most cases, we note that the optimal solution in scenarios

123

Page 21 of 36 145Empirical Software Engineering (2023) 28:145

where every element in the tree is interacted with is complete pattern removal. This finding
highlights the importance of context (in this case the nature of the tree being processed) in
optimising the energy efficiency of software.

8.3 Comparing Textbook and JavaParser Results

While caution must be taken when experimenting with textbook examples as done in
Section 5, the results gathered in experiments with the more realistic open source exam-
ple demonstrate the very notable impact the Visitor pattern can have on energy consumption,
with some unexpected results.

Thefindingswhen comparing the patterned and alternate patternedversions of the textbook
example are congruent with those of the larger case study; however, the reduction in energy
consumption when JavaParser was transformed was greater than the reduction seen in the
textbook example.

Additionally, no significant change in energy consumption is seen when comparing the
patterned and unpatterned versions of the textbook example in the normal JVM scenario,
but we see a reduction in energy consumption of over 8% in the JavaParser case study. This
substantial difference in energy reduction was noted even when we consider a “best-case
scenario” of the textbook example, in which the JIT compiler is disabled, with a reduction
of less than 1%. We can suggest two possible reasons for the differences observed: (i) the
textbook code example is small in size and less complex than the open source example
allowing for greater JIT optimisations; (ii) the code used for the textbook examplemay simply
include toomuch overhead in terms of string concatenation and formatting (given the example
is intended to be an XML style exporter), potentially limiting the impact of the design change
following the removal of the pattern. Given the pronounced energy performance differences
observed between the case study examining JavaParser and the simpler textbook example,
the importance of exploring larger, more realistic examples of pattern instances in future
work, as we have done with our case study, is clear.

8.4 RQ3: CppParser Discussion

Tomirror the approach taken in examining the impact of the Visitor pattern in JavaParser, the
same three scenarios were tested with CppParser: one in which no elements are interacted
with, one in which some elements are interacted with, and one where the visitor interacts
with every node in the AST. Overall, the resulting data highlights substantial energy savings
when the pattern is completely removed from CppParser (see Table 4).

In the first two scenarios, complete removal of the pattern saw energy consumption reduce
by a significant 66%. There was a smaller, but still notable, energy consumption reduction of
just over 28% in the scenario in which the visitor interacts with every element. The numbers
of method invocations involved here mirror those of the JavaParser experiment, an accept
(->), visit (->), and push_back (.) invocation in every patterned version compared
to the addToList (->) and push_back (->) invocations of the unpatterned solution.
Further detailed exploration of the C++ implementation may highlight more acute causes
of energy consumption shifts such as the energy cost of dereferencing with class member
access operators (i.e. ->), however that lies beyond the scope of this higher level study. The
patterned implementation here sees two methods invoked that dereference pointers, one that
does not, while the unpatterned solution has two method invocations dereferencing pointers.

123

145 Page 22 of 36 Empirical Software Engineering (2023) 28:145

The alternate pattern’s implementation in C++ presents substantial increases in energy
consumption in all cases, however it is most notable in the scenario where every element is
interacted with. Type checking in C++ requires an initial cast and subsequent pointer check
which greatly hampers energy performance. For each element type the visitor is interested in
visiting, the alternate implementation sees a dynamic_cast, the result being assigned to a
variable, and a subsequent if statement that checks if it is null before invoking the relevant
visit method in the visitor. In the never interacting and sometimes interacting scenarios,
this cast and pointer check is only executed once per element (in the search for CppPragma
and CppForBlock elements respectively). In the scenariowhere every element is interacted
with, the cast and pointer check is executed 37 times for each element (there are 37 concrete
AST types in CppParser). The impact here could be reduced with nested if statements,
however the solution employed in our experiments provides a “worst-case scenario” (in a
situation where the elements being visited are handled in the innermost if statement) and
is implemented with the same approach taken in the JavaParser experiments.

The mean power consumption of the patterned and unpatterned solutions remain similar
throughout experiments with CppParser, however, the alternate implementations see a five
Watt increase (approximately 11%) in all scenarios. This is likely due in part to a greater
number of operations being executed; with the greater number of operations, and many of
thembeing located around if/else statements, the greater power drawmay suggest that pipeline
optimisations and branch predictions are maximising CPU usage. This should improve run
time (and intuitively as a side-effect, energy consumption) from a performance perspective,
however, it results in this slight increase in power consumption throughout run-time.

8.5 RQ4: Comparing JavaParser and CppParser Results

The experiments investigating the Visitor pattern’s impact in JavaParser provided interesting
results, not only highlighting the importance of open source testing, but also highlighting the
pattern’s significant energy consumption. While JavaParser provides a good example of the
pattern in use, testing only one application in a single language raises a threat to the validity
of our findings (discussed further in Section 9). As discussed above, CppParser provides a
similar application of the pattern in a different language which can provide insight into the
generalisability of the JavaParser findings.

In terms of complete removal of the pattern, the results from CppParser are even more
promising than those of JavaParser. The pattern appears to have a greater impact on energy
performance in C++ than in Java with energy consumption reductions in CppParser of 28%
to 66% compared to JavaParser’s 0.65% to 9%. This can be explained in part by Java’s inter-
preted nature; the JIT compiler optimising frequently executed code can provide substantial
performance gains while applications written in C++, once compiled, are not optimised fur-
ther at run-time. With this consideration, research in this area, which remains in its infancy,
may be better applied to non-interpreted languages given the problems that can arise attempt-
ing to benchmark software that is being optimised during run-time.

The impact of the alternate implementation of the pattern in C++ contrasts greatly with
that of Java, with CppParser’s energy consumption increasing by 132% to 2012% com-
pared to a reduction in energy consumption of between 0.41% and 12% when applied to
JavaParser. The aforementioned implementation of reflective dispatch in C++ introducing
a substantial amount of overhead provides a clear explanation for the large increases in
energy consumption. The contrasting results however, highlight the importance of consid-

123

Page 23 of 36 145Empirical Software Engineering (2023) 28:145

ering language-centric feature implementations and their quirks, such as how to type check
in a given language. While Java’s instanceof is similar to Ruby’s is_a?, Python’s
isInstance, and C#’s is, it varies greatly from how a developer can type check in C++,
and in any case, the implementation of the type checking system in any language, or even
different implementations of the same language standard could vary. While worthy of inves-
tigation from the perspective of highlighting language specific energy saving approaches, the
alternate pattern arguably strays from the underlying thesis regarding the impact of object-
oriented programming on energy consumption. However, continuing with an object-oriented
perspective on software design, the type checking employed in reflective dispatch can be
considered a code smell, a hint that there is something wrong with the design of software.
In this case, we have highlighted that type checking, as a code smell, is unlikely to have
generalisable impacts on energy consumption when all languages are considered given it
improves energy performance in Java, but hampers it in C++.

In comparing the impact on energy consumption of these transformations in applications
written in Java and C++, we note that the results differ greatly when using the alternate
implementation of the pattern. This difference in results suggests that findings for applications
written in one language cannot be assumed to generalise across other languages.

8.6 Comparison to PreviousWork

Only two previous studies have examined the Visitor pattern and its relation to energy per-
formance. Sahin et al. (2012) and Noureddine and Rajan (2015) studied the pattern in C++
and found its implementation reduced energy consumption by almost 8% and increased
consumption by approximately 3 to 4% respectively.

While our findings are congruent with those of Noureddine and Rajan, they are contrary
to the findings of Sahin et al. The reason for the difference between our findings and those of
Sahin et al. is difficult to pinpoint as it is not clear from their work what example they used in
their Visitor pattern experiments. Nevertheless, several possible reasons can be put forward.
It may simply be the case that textbook code examples do not provide a complete insight
in what we might assume is a best-case scenario, or may be due to some other confounding
effect. An example of a potential confounding effect is the method of traversal employed;
while we maintained simple lists of elements which are iterated through in experiments, it is
possible their example used a more common approach in which the tree structure handles the
visitor’s traversal. This would change when the pattern is removed which is likely to have an
impact on the results. The method of traversal employed in the Visitor falls into the ambit of
the Iterator pattern which is out of the scope of this study and will therefore be considered
in future work.

8.7 Implications

For a developer looking to improve the energy efficiency of their applications, we have high-
lighted considerations thatmust be taken into accountwhen handling theVisitor pattern. Total
pattern removal consistently improves energy efficiency, however the size of the improve-
ment depends on how frequently the visitor interacts with the elements of the structure being
visited. This consideration is even more important if developing in Java, where the alternate
pattern sees greater energy consumption reductions when elements are interacted with less

123

145 Page 24 of 36 Empirical Software Engineering (2023) 28:145

frequently. For researchers, we have further highlighted the impact of the Visitor pattern on
energy efficiency, and worked towards clarifying the aforementioned contradictory findings
of existing literature. These findings can guide future research towards automated approaches
to removing the design pattern to reduce energy consumption. The proof-of-concept exper-
iment using a textbook style application also highlights the difficulties in trying to draw
definite conclusions from small experiments, and indicates that future research should focus
on experimentation with larger applications.

9 Threats to Validity

In this section we present potential threats to the validity of the experiments conducted. In
line with Wohlin et al. (2012), we consider Internal Validity, Construct Validity, External
Validity, and Conclusion Validity.

Internal Validity refers to the extent to which we can present a cause-and-effect relation-
ship between our treatments and observed effects. In our experiments we apply a series of
refactorings to software and subsequently record the application’s run time and power con-
sumption. A Watts Up Pro power meter is used to record the power consumption of the
device executing the application under test, which has a reported accuracy of ±1.5%. This
solution may record the energy consumed by background processes or third-party programs.
To reduce this threat, a minimal installation of the operating system was used.

Construct Validity is concerned with the relationship between theory and observation, both
in the treatment and the outcome. In the case of our experiments, we have two treatments:
(i) the complete removal of the Visitor pattern, (ii) the transformation of the pattern to an
alternate implementation based on reflective dispatch. There are no exact guidelines regarding
the removal of the Visitor pattern from software and other researchers may have taken a
different approach. Our approach involves removing the visitor classes entirely and removing
the double dispatch which is certainly one possible interpretation of removing the Visitor
pattern. There are likely other alternate implementations of theVisitor patternwith potentially
different energy profiles. The implementation we investigated, taking a similar approach to
that of Büttner et al. (2004), was the only alternative approach we encountered in the existing
literature. In the case study examining CppParser, we implemented the alternate pattern using
the robust and idiomaticdynamic_cast operator. There are other approaches that could be
taken, such as with the typeid operator. However, typeid provides a less general solution
as it would not work in the common situation where the type of some of the elements in the
structure being visited is a shared superclass of the elements.

External Validity concerns the generalisability of our results. We first study a simple text-
book example to show that our approach has merit. We then apply it to a more realistic
example, JavaParser, a large, open source application written in Java. While this is a realistic
example, general claims cannot be made from a single sample. To improve the external valid-
ity further, we apply a similar approach to an open source application written in C++. This
provides an additional example of the pattern’s impact in software, and provides the bonus
of testing the approach in a different language. Applying our approach to a large number of
applications in many programming languages would be ideal to mitigate this threat, but this
is unrealistic as finding a variety of examples of Visitor in open source is not easy, and each
example found requires significant manual processing and the creation of a suitable test load.

123

Page 25 of 36 145Empirical Software Engineering (2023) 28:145

The execution scenario employed in testing introduces another threat to the generalisability
of results as it targets the parts of the software reliant on the pattern instance. An alternative
approach is the use of the provided test suite, however, a threat to validity would remain as it
is possible certain parts of the application are heavily tested though rarely used in practice.
The realistic testing of software is a complex issue; in practice we would anticipate profiling
software in deployment to target transformations on frequently used paths.

Nonetheless, JavaParser and CppParser include a typical use case of the Visitor pattern,
and our results highlight the impact its removal can have on energy efficiency if the pattern
is a core part of the application being used at run-time.

ConclusionValidity is concernedwith our ability to draw a correct conclusion about the rela-
tion between our treatments and the data recorded during an experiment. For our experiments,
we use the Wilcoxon rank-sum test to calculate statistical significance in energy consump-
tion before and after the application is transformed. This test does not assume normality in
the distribution of values, and the results of our experiments are ordinal and independent
enabling our use of this test.

In sets of experiments where multiple comparisons are made, we use a Bonferroni correc-
tion to adjust our alpha levels appropriately to reduce the likelihood of Type I errors. Each
set of experiments is executed 200 times to reduce the impact of potential noise or outliers
in recorded data.

10 FutureWork

There are several unexplored avenues of research in this field that are worthy of further
work. Firstly, additional studies of open source examples of the Visitor pattern would further
test our conclusions and would improve the generalisability of research results in this area.
Specifically on the language front, our experiments were performed using Java and C++.
Further explorations with software applications written in other languages would test the
validity of the underlying theory that design patterns and object-oriented design in general
may negatively impact energy efficiency. Our results indicate that the Visitor design pattern
may cause excessive energy consumption if used on an execution path that is frequently
traversed at run-time. We have not looked further at how automated support could help in
the removal of the Visitor pattern. Research in the design patterns space has focused on the
identification and application of design patterns, but it is clear that design pattern removal is
an area that is also worthy of study.

Lastly, Gamma et al. (1995) described 23 design patterns in their original work, few of
which have been explored in detail from an energy consumption perspective. There are also
many other design patterns that are yet to be explored, even in a preliminary fashion. This
presents a substantial amount of work to be done in the exploration of these patterns: theoret-
ical considerations of their energy performance, exploratory studies, and finally, examination
of the patterns in real-world software applications.

11 Conclusions

In this paper we have presented a detailed study of the energy performance of the Visitor
design pattern. We initially used a small textbook-style example to explore the energy impact
of the Visitor pattern. Three cases were considered: (1) the full pattern is applied, (2) the pat-

123

145 Page 26 of 36 Empirical Software Engineering (2023) 28:145

tern is removed entirely, and (3) an alternative pattern implementation is employed involving
a type check and cast, which we termed reflective dispatch. Results when the JVM is oper-
ating normally revealed no difference between the patterned and the unpatterned versions of
the software, but saw energy consumption reduce by over 7% when the reflective dispatch
implementation was used.

We subsequently examined the impact of the Visitor pattern on the open source software
library JavaParser, the first experiment looking at Visitor with a large open source project to
our knowledge. These experiments yielded greater reductions in energy consumption than
were seen in the textbook example, with reductions in energy consumption in most cases
of almost 8% when the pattern is removed completely, and over 10% when the alternative,
reflective dispatch, solution is employed.

To explore the pattern further,we examined its impact in the open source libraryCppParser.
These experiments yielded even greater reductions in energy consumptionwhen the pattern is
removed, ranging from 28% to 66% depending onwhether the visitor is interacting with all or
few elements respectively. Notably, the alternate, reflective dispatch style of visitor drastically
increases energy consumption when applied in C++, with energy increases ranging between
132% and 2012%.

We draw a number of conclusions from our results:

(1) More pronounced energy improvements were achieved in our real-world studies than
in the textbook example in Java, suggesting that studies of real-world applications are
essential, rather than relying only on small textbook examples as existing studies have
done.

(2) In Java, greater reductions in energy consumption are typically achieved when the less
common, reflective dispatch, approach is applied to the software. In C++ however,
a reflective dispatch approach actually worsens energy performance. These divergent
results indicate that in seeking energy-optimal solutions, wemust be mindful that remov-
ing the pattern entirely may not be the best approach, and that the generalisability of
findings across languages and applications must always be considered.

(3) In Java, in the scenario where the visitor interacts with every element in the tree, it
transpires to be better to remove the pattern entirely rather than to employ reflective
dispatch (the optimal approach in all other cases considered). This indicates that in
optimising software for energy consumption, the best solution to choosemay also depend
on the nature of the load being processed.

(4) By way of summary conclusion, we observe that complete removal of the Visitor pat-
tern improves the energy performance of software written in both Java and C++ in all
scenarios. This supports the fundamental thesis that the indirection that is characteristic
of object-oriented design in general, and design patterns in particular, contributes to an
increase in energy consumption at run-time.

123

Page 27 of 36 145Empirical Software Engineering (2023) 28:145

Appendix A: Textbook Example

<<interface>>
Shape

accept(Visitor)

draw()

move(int, int)

Dot

accept(Visitor)

draw()

move(int, int)

Rectangle

accept(Visitor)

draw()

move(int, int)

Circle

accept(Visitor)

<<interface>>
Visitor

visitCircle(Circle)

visitDot(Dot)

visitRectangle(Rectangle)

Visitor

export(ListOfShapes)

visitCircle(Circle)

visitDot(Dot)

visitRectangle(Rectangle)

 visitor.visitCircle(this)2

 for each Shape shape:
shape.accept(this)

1

Fig. 5 Patterned textbook example

123

145 Page 28 of 36 Empirical Software Engineering (2023) 28:145

<<interface>>
Shape

exportXML()

draw()

move(int, int)

Dot

exportXML()

draw()

move(int, int)

Rectangle

exportXML()

draw()

move(int, int)

Circle

exportXML()

<<interface>>
Visitor

Visitor

export(ListOfShapes)

 for each Shape shape:
 exportXML()

1

Fig. 6 Unpatterned textbook example

123

Page 29 of 36 145Empirical Software Engineering (2023) 28:145

<<interface>>
Shape

accept(Visitor)

draw()

move(int, int)

Dot

accept(Visitor)

draw()

move(int, int)

Rectangle

accept(Visitor)

draw()

move(int, int)

Circle

accept(Visitor)

<<interface>>
Visitor

visitCircle(Circle)

visitDot(Dot)

visitRectangle(Rectangle)

Visitor

export(ListOfShapes)

visitCircle(Circle)

visitDot(Dot)

visitRectangle(Rectangle)

 for each Shape shape:
 if shape instanceof Dot:

visitDot((Dot)shape)
else if shape instanceof Circle:

visitCircle((Circle)shape)
else if shape instanceof Rectangle:

visitRectangle((Rectangle)shape)

1

Fig. 7 Alternately patterned textbook example

123

145 Page 30 of 36 Empirical Software Engineering (2023) 28:145

Appendix B: JavaParser

NodeList

accept(VoidVisitor)

...

Node

...

CustomVisitorTester

CustomVisitorTester()

<<interface>>
VoidVIsitor

...

CustomVisitor

visit(NodeList)

visit(AnnotationDeclaration)
...

 for each Node node:
 node.accept(visitor)

1

 visitor.visitNodeList(this)2

Fig. 8 Patterned JavaParser

NodeList

addToList(List)

...

Node

addToList(List)

...

 list.add(this.getNameAsString()
2CustomVisitorTester

CustomVisitorTester()

 for each Node node:
 node.addToList(visitor)

1

Fig. 9 Unpatterned JavaParser

123

Page 31 of 36 145Empirical Software Engineering (2023) 28:145

NodeList

...

Node

...

CustomVisitorTester

CustomVisitorTester()

 if node instanceof ClassOrInterfaceDeclaration:
visitor.visit((ClassOrInterfaceDeclaration)node)

1

<<interface>>
VoidVIsitor

...

CustomVisitor

visit(NodeList)

visit(AnnotationDeclaration)

...

Fig. 10 Alternately patterned JavaParser

Appendix C: CppParser

CustomVisitor

...

<<interface>>
Visitor

...

VisitorTest

CustomVisitorTester()

CppObj

...

Visitable

accept(Visitor)

...

VisitSomeVisitor

visitCppForBlock(CppForBlock)

...

CppForBlock

accept(Visitor)

...

 for each CppObj cppObj:
 cppObj->accept(visitor)

1

 list.push_back(cppForBlock)
3

 visitor->visitCppForBlock(this)
2

Fig. 11 Patterned CppParser

123

145 Page 32 of 36 Empirical Software Engineering (2023) 28:145

VisitorTest

CustomVisitorTester()

 for each CppObj cppObj:
 cppObj->addToList(&list)

1

CppObj

addToList(vector<CppForBlock>)

...
 list.push_back(this)

2

CppForBlock

addToList(vector<CppForBlock>)

...

 return

Fig. 12 Unpatterned CppParser

CustomVisitor

...

<<interface>>
Visitor

...

VisitorTest

CustomVisitorTester()

 for each CppObj cppObj:
 CppForBlock* temp = dynamic_cast<CppForBlock*>(cppObj)
 if (temp != nullptr):

 visitor.visitCppForBlock(temp)

1

CppObj
...

VisitSomeVisitor

visitCppForBlock(CppForBlock)

...

 list.push_back(cppForBlock)
2

CppForBlock

...

Fig. 13 Alternately patterned CppParser

123

Page 33 of 36 145Empirical Software Engineering (2023) 28:145

Acknowledgements The authors gratefully acknowledge the support of the Irish Research Council through
a Government of Ireland Postgraduate Scholarship GOIPG/2019/3779, and the support of Lero - the Science
Foundation Ireland Research Centre for Software.

Funding Open Access funding provided by the IReL Consortium

Data Availibility The software and resulting data generated in the development and execution of the applica-
tions are available in a public replication repository (Generated data sets/replication package 2023).

Declarations

Conflict of Interests The authors have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

“Amazon best sellers: Best software reuse.” [Online]. Available: https://www.amazon.com/Best-Sellers-
Books-Software-Reuse/zgbs/books/4018

Abtahizadeh SA, Khomh F, Guéhéneuc Y-G (2015) “How green are cloud patterns?” in 2015 IEEE 34th
International Performance Computing and Communications Conference (IPCCC). IEEE pp. 1–8

Alexander C (1977) A pattern language: towns, buildings, construction. Oxford University Press
Andrae AS, Edler T (2015) On global electricity usage of communication technology: trends to 2030. Chal-

lenges 6(1):117–157
Avgerinou M, Bertoldi P, Castellazzi L (2017) Trends in data centre energy consumption under the european

code of conduct for data centre energy efficiency. Energies 10(10):1470
Ayala I, Amor M, Fuentes L (2019) “An energy efficiency study of web-based communication in android

phones.” Sci Program 2019
Bunse C, Stiemer S (2013) “On the energy consumption of design patterns,” Softwaretechnik-Trends: 33(2)
Büttner F, Radfelder O, Lindow A, Gogolla M (2004) “Digging into the visitor pattern,” in Proceedings of the

Sixteenth International Conference on Software Engineering & Knowledge Engineering (SEKE’2004),
Banff, Alberta, Canada, June 20-24, 2004, F. Maurer and G. Ruhe, Eds. pp. 135–141

Connolly Bree D, Ó Cinnéide M (2022) “The energy cost of the visitor pattern,” in 2022 IEEE International
Conference on Software Maintenance and Evolution (ICSME) pp. 317–328

Connolly Bree D, Ó Cinnéide M (2021) “Automated refactoring for energy-aware software,” in 2021 IEEE
International Conference on Software Maintenance and Evolution (ICSME) pp. 689–694

Connolly Bree D, Ó Cinnéide M (2020) “Inheritance versus delegation: which is more energy efficient?” in
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops pp.
323–329

Connolly Bree D, Ó Cinnéide M (2022) “Removing decorator to improve energy efficiency,” in 2022 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE

CoutoM, Saraiva J, Fernandes JP (2020) “Energy refactorings for android in the large and in the wild,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER) pp.
217–228

CrestaniA,TetuR,Douin J-M,Paradinas P (2021) “Energy cost of iot design patterns,” in 20218th International
Conference on Future Internet of Things and Cloud (FiCloud). IEEE pp. 383–387

Cruz L, Abreu R (2019) Catalog of energy patterns for mobile applications. Empirical Softw Eng 24(4):2209–
2235

123

145 Page 34 of 36 Empirical Software Engineering (2023) 28:145

http://creativecommons.org/licenses/by/4.0/
https://www.amazon.com/Best-Sellers-Books-Software-Reuse/zgbs/books/4018
https://www.amazon.com/Best-Sellers-Books-Software-Reuse/zgbs/books/4018

Cruz L, and Abreu R (2017) “Performance-based guidelines for energy efficient mobile applications,” in 2017
IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE pp. 46–57

da Silva WG, Brisolara L, Corrêa UB, Carro L (2010) “Evaluation of the impact of code refactoring on
embedded software efficiency,” in Proceedings of the 1st Workshop de Sistemas Embarcados pp. 145–
150

Feitosa D, Alders R, Ampatzoglou A, Avgeriou P, Nakagawa EY (2017) Investigating the effect of design
patterns on energy consumption. J Softw: Evolution Process 29(2):e1851

Flucker S, Tozer R (2013) Data centre energy efficiency analysis to minimize total cost of ownership. Build
Serv Eng Res Technol 34(1):103–117

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: Improving the Design of Existing
Code. Addison-Wesley

Gamma E, Helm R, Johnson R, Vlissides J (1993) “Design patterns: Abstraction and reuse of object-oriented
design,” in European Conference on Object-Oriented Programming. Springer pp. 406–431

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented
software. Pearson Education

Generated data sets/replication package (2023). [Online]. Available: https://doi.org/10.6084/m9.figshare.
22191283.v1

Georgiou S, Rizou S, Spinellis D (2019) Software development lifecycle for energy efficiency: techniques and
tools. ACM Comput Surv (CSUR) 52(4):1–33

Gottschalk M, Jelschen J, Winter A (2014) “Saving energy on mobile devices by refactoring.” in EnviroInfo
pp. 437–444

Hasan S, King Z, HafizM, SayaghM, Adams B, Hindle A (2016) “Energy profiles of java collections classes,”
in Proceedings of the 38th International Conference on Software Engineering - ICSE ’16. ACM Press
pp. 225–236

HechtG,MohaN,RouvoyR (2016) “An empirical study of the performance impacts of android code smells,” in
Proceedings of the InternationalWorkshop onMobile Software Engineering and Systems -MOBILESoft
’16. ACM Press pp. 59–69. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2897073.2897100

Hindle A (2015) Green mining: a methodology of relating software change and configuration to power con-
sumption. Empirical Softw Eng 20(2):374–409

Hurbungs V, Bassoo V, Fowdur T (2022) Software design pattern on the edge. 2022 International Conference
on Electrical. Computer, Communications and Mechatronics Engineering (ICECCME), pp 1–6

“Javasoft ships java 1.0,” (1996) http://web.archive.org/web/20070310235103/http://www.sun.com/smi/
Press/sunflash/1996-01/sunflash.960123.10561.xml, accessed: 2023-02-05

Kerievsky J (2005) Refactoring to patterns. Pearson Deutschland GmbH
LiD,HalfondWGJ (2014) “An investigation into energy-savingprogrammingpractices for android smartphone

app development,” in Proceedings of the 3rd International Workshop on Green and Sustainable Software
- GREENS 2014. Press pp. 46–53. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2593743.
2593750

Litke A, Zotos K, Chatzigeorgiou A, Stephanides G (2005) “Energy consumption analysis of design patterns,”
in Proceedings of the International Conference onMachine Learning and Software Engineering pp. 86–90

Maleki S, Fu C, Banotra A, Zong Z (2017) “Understanding the impact of object oriented programming and
design patterns on energy efficiency,” in 2017 Eighth International Green and Sustainable Computing
Conference (IGSC). IEEE pp. 1–6

Malmodin J, Lundén D (2018) The energy and carbon footprint of the global ict and e&m sectors 2010–2015.
Sustainability 10(9):3027

Mancebo J, Calero C, García F (2021) Does maintainability relate to the energy consumption of software? a
case study. Softw Q J 29(1):101–127

Manotas I, Pollock L, Clause J (2014) “Seeds: A software engineer’s energy-optimization decision support
framework,” in Proceedings of the 36th International Conference on Software Engineering pp. 503–514

Menghin M, Druml N, Preschern C, Steger C, Weiß R, Bock H, Haid J (2015) “Introduction of design pattern
(s) for power-management in embedded systems,” in Proceedings of the 18th European Conference on
Pattern Languages of Program pp. 1–12

Morales R, SaboridoR,KhomhF,Chicano F,AntoniolG (2018) Earmo:An energy-aware refactoring approach
for mobile apps. IEEE Trans Softw Eng 44(12):1176–1206

Nayak J, Chandwadkar A (2021) “Green patterns of user interface design: A guideline for sustainable design
practices,” in International Conference on Human-Computer Interaction. Springer pp. 51–57

Noureddine A, Rajan A (2015) “Optimising energy consumption of design patterns,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering 2:623–626 ISSN: 1558-1225

123

Page 35 of 36 145Empirical Software Engineering (2023) 28:145

https://doi.org/10.6084/m9.figshare.22191283.v1
https://doi.org/10.6084/m9.figshare.22191283.v1
http://dl.acm.org/citation.cfm?doid=2897073.2897100
http://web.archive.org/web/20070310235103/
http://www.sun.com/smi/Press/sunflash/1996-01/sunflash.960123.10561.xml
http://www.sun.com/smi/Press/sunflash/1996-01/sunflash.960123.10561.xml
http://dl.acm.org/citation.cfm?doid=2593743.2593750
http://dl.acm.org/citation.cfm?doid=2593743.2593750

Paleczny M, Vick C, Click C (2001) The java hotspottm server compiler. Proceedings of the Java Virtual
Machine Research and Technology Symposium 1:1–12

Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2019) On the impact of code smells on the
energy consumption of mobile applications. Inf Softw Technol 105:43–55

Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2017) “Lightweight detection of android-
specific code smells: The adoctor project,” in 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER). IEEE pp. 487–491

Park JJ, Hong J-E, Lee S-H (2014) “Investigation for software power consumption of code refactoring tech-
niques.” in SEKE pp. 717–722

PereiraR,CoutoM,Ribeiro F,RuaR,Cunha J, Fernandes JP, Saraiva J (2021)Ranking programming languages
by energy efficiency. Sci Comput Program 205:102609

Pereira R, CoutoM, Cunha J, Fernandes JP, Saraiva J (2016) “The influence of the java collection framework on
overall energy consumption,” in 2016 IEEE/ACM 5th International Workshop on Green and Sustainable
Software (GREENS). IEEE pp. 15–21

Pérez-CastilloR,PiattiniM(2014)Analyzing theharmful effect of god class refactoringonpower consumption.
IEEE Softw 31(3):48–54

Pinto G, Soares-Neto F, Castor F (2015) “Refactoring for energy efficiency: A reflection on the state of the
art.” in 2015 IEEE/ACM 4th International Workshop on Green and Sustainable Software pp. 29–35

Rodriguez A, Longo M, Zunino A (2015) “Using bad smell-driven code refactorings in mobile applications to
reduce battery usage,” in Simposio Argentino de Ingeniería de Software (ASSE 2015)-JAIIO 44 (Rosario,
2015)

Rodriguez A, Mateos C, Zunino A (2012) “Mobile devices-aware refactorings for scientific computational
kernels,” in 13Th Argentine Symposium on Technology, AST

Sahin C, Cayci F, Clause J, Kiamilev F, Pollock L, Winbladh K (2012) “Towards power reduction through
improved software design,” in 2012 IEEE Energytech pp. 1–6

Sahin C, Cayci F, Gutiérrez ILM, Clause J, Kiamilev F, Pollock L, Winbladh K (2012) “Initial explorations on
design pattern energy usage,” in 2012 First International Workshop on Green and Sustainable Software
(GREENS). IEEE pp. 55–61

Sahin C, Pollock L, Clause J (2014) “How do code refactorings affect energy usage?” in Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engineering andMeasurement - ESEM
’14. ACM Press pp. 1–10. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2652524.2652538

SchaarschmidtM, UelschenM, Pulvermüller E,Westerkamp C (2020) “Energy-aware pattern framework: The
energy-efficiency challenge for embedded systems from a software design perspective,” in International
Conference on Evaluation of Novel Approaches to Software Engineering. Springer pp. 182–207

Tonini AR, Fischer LM, Mattos JCBd, Brisolara LBd (2013) “Analysis and evaluation of the android best
practices impact on the efficiency ofmobile applications,” in 2013 III Brazilian SymposiumonComputing
Systems Engineering pp. 157–158

Verdecchia R, Saez RA, Procaccianti G, Lago P (2018) “Empirical evaluation of the energy impact of refac-
toring code smells.” in ICT4S pp. 365–383

Vetro A, Ardito L, Morisio M (2013) “Definition, implementation and validation of energy code smells: an
exploratory study on an embedded system,” in ENERGY 2013: The Third International Conference on
Smart Grids, Green Communications and IT Energy-aware Technologies pp. 34–39

“Visitor in Java,” refactoring.guru, accessedMay 22 2023. [Online]. Available: https://refactoring.guru/design-
patterns/visitor/java/example

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

145 Page 36 of 36 Empirical Software Engineering (2023) 28:145

http://dl.acm.org/citation.cfm?doid=2652524.2652538
https://refactoring.guru/design-patterns/visitor/java/example
https://refactoring.guru/design-patterns/visitor/java/example

	Energy efficiency of the Visitor Pattern: contrasting Java and C++ implementations
	Abstract
	1 Introduction
	2 Related Work
	3 The Visitor Pattern
	3.1 Implementation of the Visitor Pattern
	3.2 Features of the Visitor Pattern

	4 Experimental Design
	4.1 Software Versions
	4.1.1 Patterned Version
	4.1.2 Unpatterned Version
	4.1.3 Alternate Patterned Version

	4.2 Experimental Method
	4.3 Experimental Setup
	4.4 Testing Scenarios

	5 RQ1: Textbook Example
	5.1 Textbook Implementations
	5.1.1 Patterned Version
	5.1.2 Unpatterned Version
	5.1.3 Alternate Patterned Version
	5.1.4 State vs Stateless

	5.2 Textbook Experiments
	5.3 Textbook Results

	6 RQ2: Case Study I— JavaParser
	6.1 JavaParser Implementations
	6.1.1 Patterned Version
	6.1.2 Unpatterned Version
	6.1.3 Alternate Patterned Version

	6.2 JavaParser Experiments
	6.2.1 Never Interacts
	6.2.2 Sometimes Interacts
	6.2.3 Always Interacts

	6.3 JavaParser Results

	7 RQ3: Case Study II — CppParser
	7.1 CppParser Implementations
	7.1.1 Patterned Version
	7.1.2 Unpatterned Version
	7.1.3 Alternate Patterned Version

	7.2 CppParser Experiments
	7.2.1 Never Interacts
	7.2.2 Sometimes Interacts
	7.2.3 Always Interacts

	7.3 CppParser Results

	8 Discussion
	8.1 RQ1: Textbook Example Discussion
	8.2 RQ2: JavaParser Discussion
	8.3 Comparing Textbook and JavaParser Results
	8.4 RQ3: CppParser Discussion
	8.5 RQ4: Comparing JavaParser and CppParser Results
	8.6 Comparison to Previous Work
	8.7 Implications

	9 Threats to Validity
	10 Future Work
	11 Conclusions
	Appendix A: Textbook Example
	Appendix B: JavaParser
	Appendix C: CppParser
	Acknowledgements
	References

