
Empirical Software Engineering (2024) 29:15
https://doi.org/10.1007/s10664-023-10374-z

Assessing the utility of text-to-SQL approaches for satisfying
software developer information needs

Mihaela Tomova1 ·Martin Hofmann1 · Constantin Hütterer1 · Patrick Mäder1,2

© The Author(s) 2023

Abstract
Software analytics integrated with complex databases can deliver project intelligence into
the hands of software engineering (SE) experts for satisfying their information needs. A
new and promising machine learning technique known as text-to-SQL automatically extracts
information for users of complex databases without the need to fully understand the database
structure nor the accompanying query language. Users pose their request as so-called natural
language utterance, i.e., question. Our goal was evaluating the performance and applicability
of text-to-SQL approaches on data derived from tools typically used in the workflow of
software engineers for satisfying their information needs.We carefully selected and discussed
five seminal as well as state-of-the-art text-to-SQL approaches and conducted a comparative
assessment using the large-scale, cross-domain Spider dataset and the SE domain-specific
SEOSS-Queries dataset. Furthermore, we study via a survey howSE professionals perform in
satisfying their information needs and how they perceive text-to-SQLapproaches. For the best
performing approach, we observe a high accuracy of 94% in query prediction when training
specifically on SE data. This accuracy is almost independent of the query’s complexity. At
the same time, we observe that SE professionals have substantial deficits in satisfying their
information needs directly via SQL queries. Furthermore, SE professionals are open for
utilizing text-to-SQL approaches in their daily work, considering them less time-consuming
and helpful. We conclude that state-of-the-art text-to-SQL approaches are applicable in SE
practice for day-to-day information needs.

Keywords Software analytics · Database querying · Natural language processing ·
Text-to-SQL · Machine learning · Complex queries

Communicated by: Fabio Palomba

B Mihaela Tomova
mihaela-todorova.tomova@tu-ilmenau.de

1 Technische Universität Ilmenau, Ilmenau 98693, Germany

2 Faculty of Biological Sciences, Friedrich Schiller University, Jena 07745, Germany

0123456789().: V,-vol 123

Accepted: 25 July 2023 / Published online: 5 December 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10374-z&domain=pdf
http://orcid.org/0000-0003-1554-7239

Empirical Software Engineering (2024) 29:15

1 Introduction

In their daily work, software developers utilize various tools to support project management
processes, e.g., Assembla (2023); Maven (2023); Atlassian JIRA (2023), implementation
processes, e.g., IBM Rational DOORS (Requirements management products 2023; Github
2023; Selenium site 2023), and development support processes, e.g., Git (2023). These tools
are supposed to help them in regards to organization, management, and collaboration, even
more in cases where time and geographical distance are an issue. Furthermore, data from
such tools can help software developers to satisfy information needs they may have during
development and maintenance. Research shows that software developers have various infor-
mation needs, e.g., regarding code, importance of bug reports, reproducibility of failures, and
code changes awareness (Lohar et al. 2015; Ko et al. 2007; Rath et al. 2018; Janke andMäder
2022). Satisfying those needs can help them during decision-making, process improvement,
and a myriad of other stakeholder information needs and software engineering tasks. Given,
however, that the data is scattered across various tools, this may result in valuable time being
wasted, searching for and tracing back the information that is needed. As a result, due to
time constrains and limited knowledge critical development decisions are made based on gut
feelings (Godfrey et al. 2009). Thus, a faster and easier way for software developers to find
information they need is desired without the necessity for them to manually search for the
information. To this end, would it not be nice for software developers to simply formulate a
question and to get an answer? Given that most software tools, e.g., issue tracking systems
(ITS), version control systems (VCS), or requirements management tools, can be viewed as
ever growing knowledge bases that can be queried, makes developing approaches that help in
retrieving the desired information a valuable field of study. In fact, the idea of retrieving data
from a knowledge base by simply asking a question is not new and has been a research focus
for many years. Early examples of attempts to access data from databases by only using nat-
ural language (NL) utterance date back to the 1960s–1970s, with the introduction of systems
like BASEBALL (Green et al. 1961) and LUNAR (Woods 1977).While initially a rule-based
approach was taken (Woods 1977; Waltz 1978; Lee et al. 2021), more sophisticated methods
are available today. In recent years, machine learning has demonstrated impressive results
in natural language processing (NLP) for tasks, such as machine translation, chat bots, sen-
timent analysis, and text summarisation. In this manner, a task, known as text-to-SQL aims
to accelerate and simplify the process of querying data from databases. When applied in
the context of software engineering, developers may only need to formulate an utterance
in regard to the information need they have and then the text-to-SQL approach may auto-
matically generate the SQL for the given utterance, eliminating the need for developers to
formulate queries themselves. In this paper, we aim to examine how applicable and useful
text-to-SQL approaches are within this context. We thus formulate the following research
questions:

RQ1 How do generic state-of-the-art text-to-SQL approaches perform when satisfying
SE information needs? We answer this RQ by performing a quantitative evalua-
tion of text-to-SQL approaches. More specifically, we train our selected text-to-SQL
approaches only on data from a generic, cross-domain dataset and evaluate them on SE
data. We observe that training only on a generic, cross-domain dataset results in rather
low accuracy.

RQ2 Howmuch can the performance of text-to-SQL approaches be improved by train-
ing with SE-specific data, i.e., utterances and queries? We answer this RQ by
performing a quantitative evaluation of text-to-SQL approaches. More specifically,

123

15 Page 2 of 48

Empirical Software Engineering (2024) 29:15

we train our selected text-to-SQL approaches on data from a generic, cross-domain
dataset as well as on data from a SE dataset and evaluate them on SE data. We observe
that text-to-SQL models specifically trained on SE data yield a substantially higher
accuracy.

RQ3 How do SE professionals perform when satisfying their information needs via
utterances and structured queries? We answer this RQ by performing a survey on
the usefulness of text-to-SQL approaches in the SE domain. Our assessment suggests
that participants had substantial difficulties in developing queries and that latest text-
to-SQL approaches could be an actual benefit for SE professionals.

RQ4 How do SE professionals perceive text-to-SQL approaches for supporting their
daily work?We answer this RQ via the same survey performed for RQ3. We observe
that participants are open to the use of text-to-SQL approaches in the SE domain. Even
though there is still room for improvement, especially in creating more representative
training sets that allow for a better support of new and unseen queries.

In particular, our study makes the following contributions. (1) We are the first to examine
text-to-SQL approaches, as a mean to satisfy information needs of SE professionals. (2)
We carefully select and discuss five seminal and up-to-date text-to-SQL approaches for a
systematic evaluation with generic and SE-specific training and evaluation sets. (3) We study
the performance of approaches in relation to utterance specificity as well as the complexity of
predicted queries. (4) Via a user survey with SE professionals, we study how they satisfy their
daily information needs, howwell they can express them as utterance and as structured query,
and what their opinion on the utility of text-to-SQL approaches within software development
is.

Our paper is structured as follows. We discuss related work in Sect. 2. In Sect. 3 we
introduce the text-to-SQL task and discuss five text-to-SQL approaches to be analyzed across
our experiments. In Sect. 4 we introduce and discuss the datasets that we used to perform
our experiments. Section5 explains the experimental setup and the conducted user survey. In
Sect. 6 we report the results of all studies and discuss their implications. In Sect. 7 we discuss
threats to validity. Finally, in Sect. 8 we conclude our work.

2 RelatedWork

Several studies have been conducted to understand project stakeholders’ information needs
during the development and maintenance of a software system.

Ko et al. (2007) observed 17 developers while performing their daily work activities
and characterized the role these information needs play in developers’ decision making by
cataloging the source and outcome when each information type was sought. Begel and Zim-
mermann (2014) conducted two surveys to identify general questions that SE professionals
would like to have answered by data science (e.g., “Is it really twice as hard to debug as it
is to write the code in the first place?”). In result they retained 145 questions. These works
imply the necessity to develop a way to automate the acquisition of knowledge satisfying
developers’ information needs.

In their daily work, software developers utilize a variety of software tools with the aim to
organize and manage their work and to ease collaboration between team members. Portillo-
Rodríguez et al. (2010) performed a survey, in which a set of software tools used by SE
experts in global software development was presented. Each tool was classified according to
the ISO/IEC 12207 standard and matched to a process the respective tool supports, e.g., doc-

123

Page 3 of 48 15

Empirical Software Engineering (2024) 29:15

umentation management, construction, project management. Hassan (2006) focused on the
value of mining software repositories and using the mined historical data to assist managers
and developers during development, maintenance, and management activities.

Bertram et al. (2010) conducted a qualitative study on the use of issue tracking systems in
small, collocated software development teams and found that issue trackers other than track-
ing bugs, play an important role for communication and coordination between stakeholders.
Lin et al. (2017) argue that information about artifacts can be found in various other data
sources, such as the development environments Jazz or the Github-Jira bridge. Shang et al.
(2014) show that questions regarding log lines can be answered by development knowledge
present in development repositories such as ITSs. While the work of Portillo-Rodríguez et al.
(2010) shows that a variety of tools exist that can be used by SE experts, the works of Hassan
(2006); Bertram et al. (2010); Lin et al. (2017); Shang et al. (2014) imply how useful informa-
tion from such tools can be for developers while performing their work. Given, however, the
amount of data generated on daily basis, searching for the desired information can become
quite difficult. Thus, automated solutions are desired.

Lin et al. (2017) propose TiQi, a tool for querying software projects based on a transform
of utterances into executable SQL. The approach uses the Stanford parser, a tokenizer and
seven heuristic disambiguation rules for transforming supported unstructured into structured
queries intended to retrieve traceability information from a software development project.
Störrle (2011) proposed the Visual Model Query Language (VMQL), which allows to query
development models, e.g., UML, in a graphical way. The above mentioned works, however,
require an understanding about the structure of all the queried artifacts. Thus, a solution
is desired that can allow SE experts who do not know the structure of all queried artifacts
or who have minimal or no formal technical training in a specific query language to still
issue queries and get a desired answer. Abdellatif et al. (2020) propose to use a bot to
automate and ease the process of extracting useful information from software repositories.
They test the performance of their solution on a list of 15 questions covering developers’
typical information needs. The chatbot uses Google’s Dialogflow engine, which utilizes a
NLU (natural language understanding) model, that is first trained on examples containing
intents and entities manually created by the authors given a posed question. That is each type
of supported question needs to be tediously prepared in this solution.

Fritz and Murphy (2010) propose an information fragment model that automates the
composition of different kinds of information and provides developers with different options
how to display the composed information. Abdellatif et al. and Fritz and Murphy simplify
the way developers seek a desired information need, however, we argue that their proposed
solutions are constrained to a specific set of questions or a project.

3 Text-to-SQL Approaches

Constructing structured queries can be very complex and error-prone (Lu et al. 1993). Recent
research has made substantial contributions in developing semantic parsing solutions based
on neural networks that aim to map a natural language utterance to a SQL query. These
models, however, are not specifically trained to construct SQL queries for a specific field
such as SE. Instead, they provide a way to simplify how databases are queried.

The task of generating a SQL query given an utterance, often in the form of a question, via
a neural network is referred in the literature as text-to-SQL (Zhong et al. 2017). Researchers
aim to train a model predicting correct SQL queries while taking into consideration only

123

15 Page 4 of 48

Empirical Software Engineering (2024) 29:15

a given utterance and the database’s schema including table, column, attribute and relation
information (cp. Figure 1). Figure1 exemplary shows a user posing an utterance, in the form
of a question to satisfy an information need arising from her or his current development
task. Ideally, concepts named in the utterance can be mapped to tables and column headers
of a DB’s schema. A text-to-SQL approach, receiving this utterance and the respective DB
schema as input learns to link both information and generates a SQL query to retrieve the
desired answer for the user. Some approaches also consider the actual database content for
the prediction. However, this may pose scalability (depending on the size of the database) or
privacy (depending on the context and application) issues (Yu et al. 2018; Zhang et al. 2020).

We used the well-known Spider Leaderboard (2023) to select text-to-SQL approaches for
our research. First, we systematically screened the text-to-SQL approaches from the leader-
board and then further filtered them based on significant characteristics such as architecture,
available code, and popularity to restrict focus to the most prominent candidates from a line
of research and based on their applicability for our study. By examining the architecture, we
aimed to consider the different methodologies applied throughout the years for generating
SQL from a given NL utterance (cp. row key techniques in Table 2). Furthermore, we aimed
to examine whether the architecture played a role in the evaluation of benchmark datasets.
Given the amount of approaches in the Spider leaderboard, we further constrained the even-
tual set of text-to-SQL approaches based on the impact they had in addressing the text-to-SQL
task as well as their position in the leaderboard, i.e., approaches with higher accuracy were
preferred. Finally, we checked for additional software and hardware requirements to allow
for a comparative evaluation of the approach on SE-specific data. Large Language Models
(LLMs) do not meet those requirements and were therefore excluded from our compara-
tive study. However, we performed a preliminary evaluation of OpenAI ChatGPT (2023);
GitHub Copilot (2023) without fine-tuning on either Spider or the SEOSS-Queries datasets.
Eventually, we selected the following five approaches for comparative evaluation: SQLNet
(Xu et al. 2017), RatSQL (Wang et al. 2020), LGESQL (Cao et al. 2021), SmBoP+GraPPa
(Rubin and Berant 2021), and T5 + PICARD (Scholak et al. 2021).

Fig. 1 An example from the SEOSS-Queries dataset (Tomova et al. 2022) to illustrate the text-to-SQL task, in
which the inputs to a text-to-SQL model are a DB schema and an utterance and the output is supposed to be a
correctly predicted SQL query. To construct the SQL query, the model needs to identify possible tables, table
columns, and values in the utterance and based on these concepts, needs to join the columns “issue_changelog”
and “issue_fix_version” on the common column “issue_id”

123

Page 5 of 48 15

Empirical Software Engineering (2024) 29:15

3.1 Text-to-SQLMethod 1: SQLNet

SQLNet by Xu et al. (2017) is a seminal and frequently employed baseline method for text-
to-SQL approaches. The method employs a sketch, i.e., a template or skeleton of a query,
and considers the generation of the eventual SQL query as a slot-filling task. Therefore, it
is only necessary to predict the content used within a SQL sketch rather than predicting the
query’s grammar. Figure2 shows the sketch used in SQLNet, consisting of slots that can be
aggregation operators, columns, values, or one of the following operator symbols: >,<,=.

Xu et al. proposed separate models for generating slot content within a SELECT clause
and slot content within a WHERE clause of a query, making use of two main techniques:
sequence-to-set and column attention. The sequence-to-set approach predicts which column
names appear in a subset of interest by computing probabilities given a column name and
an utterance. Column attention is utilized in order to predict a specific column based on
the embedding of an utterance. Before the prediction of the slot content, utterances and
column names are first represented as sequence of tokens. Each token is enumerated and then
encoded via a Glove (Pennington et al. 2014) word embedding. Glove is an unsupervised
learning algorithm that is used to obtain vector representations of words. Afterwards, using
the sequence-to-set technique the authors first predict a set of columns for the SELECT and
WHERE clause. A SELECT clause may consist of column names and aggregate operators,
while the WHERE clause may consist of a set of columns, operators, and values. After a
column is selected for the SELECT clause, a probability that this column is preceded by
an aggregate operator is computed. Based on the predicted columns in the WHERE clause,
predictions about the operator(s) and value(s) in it follow. Xu et al. consider the prediction
of the number of columns in the WHERE clause as a (N + 1)-way classification problem,
while the prediction of the OP slot is considered a 3-way classification since an operator
can be one of the following symbols: >,<,=. Furthermore, the authors provide a way to
derive possible cell values from an utterance by employing a sequence-to-sequence structure
consisting of a biLSTM (Schuster and Paliwal 1997) encoder and a pointer network (Vinyals
et al. 2015) decoder that uses a column attention mechanism. A biLSTM encoder contains
two LSTM neural networks, processing the input in opposite directions. Pointer networks
can compute the probability that a token from an input sequence, i.e., utterance, is part of the
output sequence, i.e., value in an SQL query. Initially, SQLNet was trained on the WikiSQL
dataset. For our evaluation, we used the adapted version (SQLNet, Spider version 2023) for
the Spider dataset and trained it on the Spider dataset (Yu et al. 2018).

3.2 Text-to-SQLMethod 2: RatSQL

RATSQL (Wang et al. 2020) proposed byWang et al. has been a top performing method for a
long time andhas inspired the architecture ofmanymore specific text-to-SQLmodels found in
the Spider leaderboard today. The approach represents the utterance and the database schema
in a joint question-contextualized schema graph. The initial representations of the column
and table nodes are derived via a pre-trained Glove word embedding. In case of multi-word
labels, the embeddings of the words are further processed via a biLSTM recurrent neural

Fig. 2 SQLNet sketch query
syntax adapted from Xu et al.
(2017)

123

15 Page 6 of 48

Empirical Software Engineering (2024) 29:15

network (Hochreiter and Schmidhuber 1997). Also the initial representations of the words
in the utterance are processed by a separate biLSTM. Alternatively, RATSQL uses the last
hidden states of the prominent BERT model rather than Glove to obtain the initial represen-
tations. The independent initial representations are represented as a set and inputted into an
encoder-decoder framework. In the encoder, relation-aware self-attention is then used to pro-
duce the joint representation of columns, tables, and question of the question-contextualized
schema graph. Relation-awareness is realized by a set of self-attention layers, called RAT
layers between all elements of the input as well as relation embeddings between question and
schema (Shaw et al. 2018). Relations between question and schema constitute edges in the
question-contextualized schema graph and are derived via schema linking. Wang et al. con-
sider two types of schema linking: named-based and value-based linking. They consider four
relation types for name-based linking: QUESTION-COLUMN-M, QUESTION-TABLE-M,
COLUMN-QUESTION-M, and TABLE-QUESTION-M. Thereby, M specifies whether there
is an exact match, partial match or no match relation between n-grams of the utterance and
names of columns or tables in the database schema. The output of the encoder is a joint
representation of the column, table, and question. Value matching can be challenging as it
requires access to the database content to correctly link values from an utterance to a column
of the database schema not mentioned in the utterance. The authors propose value-based link-
ing without exposing the model to the whole data of a database by adding a Column-Value
relation between any word and column name if the question word occurs as a value (exact or
partial) of a column. The RAT-SQL decoder generates the SQL program as an abstract syntax
tree (Yin and Neubig 2017) and then an LSTM outputs one of the following decoder actions:
ApplyRule (expands the last generated node into a grammar rule), SelectColumn (selects a
column from the DB schema) or SelectTable (selects a table from the DB schema). Following
the original publication, we evaluate RatSQL with a pre-trained Glove embedding.

3.3 Text-to-SQLMethod 3: LGESQL

LGESQL (Cao et al. 2021) proposed by Cao et al. considers the topological structure of
edges in a graph and employs a line graph to attend to its nodes. The authors first construct an
edge-centric graph (line graph) from a node-centric graph. With the help of these two graphs,
a structural query topology consisting of nodes, representing questions, tables and columns,
and edges, representing the structure of a query, is captured by gathering information in the
neighborhood of the nodes. LGESQL employs an encoder-decoder (Sutskever et al. 2014;
Bahdanau et al. 2015) framework and an architecture that consists of three components:
graph input module, line graph enhanced hidden module, and graph output module. The
graph input module computes the initial embedding for nodes and edges. Two alternatives
are proposed for obtaining node representations: (1) using Glove embeddings (Pennington
et al. 2014) and (2) via a pre-trained languagemodel, e.g., BERT (Devlin 2019) or ELECTRA
(Clark et al. 2020). When using Glove, each word in the utterance or schema item (table or
column) is first embedded via Glove. Then, these embedding vectors become input to a type-
aware biLSTM to attain contextual information. The forward and backward hidden states of
the biLSTM for each word in the utterance are concatenated and are then used to construct
the input graph. For each table and column, the last forward and backward hidden state of
the biLSTM are concatenated and also used as graph input. All node representations are
eventually stacked together to create a node embedding matrix. When using a pre-trained
language model rather than Glove, question words and schema items are represented as a
sequence following the pattern: [CLS]q1q2...q|Q|[SE P]ti0t1ct1j0ct11 ...[SE P]. Where ti0 and

123

Page 7 of 48 15

Empirical Software Engineering (2024) 29:15

c j0 represent type information of a table or a column respectively that are placed before each
schema item. This sequence becomes input to the pre-trained language model. Following the
pre-trained language model, a sub-word attentive pooling layer is appended to obtain word-
level representations. Each word vector per utterance and the schema item are then fed into
a biLSTM to predict graph inputs for all nodes. The Line Graph enhanced hidden module
component consists of L dual relational graph attention network layers. The aim of this
component is to capture the structure of the original node-centric graph and the line graph.
Similarly to RATSQL, self-attention is used and represented by computing the attention
weights via a multi-head scaled dot-product. In the edge-centric graph, the relation graph
attention network layers consider only local (1-hop) relations based on which the updated
node representation is computed. The graph output module component performs two tasks:
text-to-SQL and graph pruning. For the text-to-SQL task, the authors generate an abstract
syntax tree of the target query via a depth-first-search. Then, one of the following decoder
actions depending on the item is performed: ApplyRule, SelectColumn, or SelectTable. The
idea of graph pruning is that by identifying the intent and a constraint form of an utterance it is
possible to extract irrelevant content from the target query. For our experiments, we decided
to evaluate LGESQLwithGloveword embeddings since the previous approaches also rely on
this embedding allowing for a more objective comparison of the actual text-to-SQL models.

3.4 Text-to-SQLMethod 4: SmBop+GraPPa

SmBoP+GraPPabyRubin andBerant (2021) proposes, in contrast to the above described text-
to-SQL approaches, a novel decoding method. The approach reuses the encoder proposed
by Wang et al. (2020) (RatSQL) to encode utterances and schema information. The only
difference being that the authors exchange the pre-trained language model BERT with the
pre-trained encoder GraPPa (Yu et al. 2021). GraPPa is based on RoBERTa (Liu et al. 2019)
and is further fine-tuned on synthetically generated utterance-query pairs by the authors. In
contrast to RATSQL and LGESQL, in SmBoP no abstract syntax tree of the target query is
generated but rather a semi-autoregressive bottom-up parser.

After the encoding of the utterance and schema, the authors initialize the beam with the
K highest scoring trees of height 0. Each tree can include either schema constants, e.g., a
table or a column name, or database values, e.g., values of a column. K is computed by
scoring the schema constants and database values and then choosing the top half of each.
After the initialization of the beam, the algorithm proceeds to score trees on the frontier.
A beam is defined by a symbolic representation of the query tree and its corresponding
vector representation. Iterative at each decoding step, attention (Vaswani et al. 2017) is used
to contextualize the tree representations with information from the question representation.
The question representation is used in the tree scoring-frontier allowing to construct sub-trees
from beams of previous depth. Trees can be generated by applying either an unary operation,
e.g., distinct, or binary operation, e.g., selection, on beam trees. For each operation, a scoring
function is defined. At the end of each iteration, the top-K trees are chosen and a new tree
representation is computed. For the tree representation, Rubin and Berant follow the same
intuition as Guo et al. (2019) and propose relational algebra (Codd 1970) augmented with
SQL operators as a formal query language to address the mismatch between utterance and
SQL. To make sure that constructed trees are balanced, i.e., height of trees corresponds to the
current iteration step, the authors introduce an unaryKEEP operation. By doing so, the formal
query will not be modified. Eventually, the authors use beam search to find the top-scoring
tree that is going to be used for the final decoding.

123

15 Page 8 of 48

Empirical Software Engineering (2024) 29:15

3.5 Text-to-SQLMethod 5: T5 + PICARD

Scholak et al. (2021) propose PICARD, a method for constraining auto-regressive decoders
of language models through incremental parsing. At each generation step, PICARD predicts
top-k highest probability tokens and excludes tokens that failed PICARD’s checks. Four
different checks are proposed: off (no checking), lexing, parsing without guards, and parsing
with guards. In the lexing mode, partial, detokenized model output is converted to a white-
space delimiter sequence of individual SQL keywords, and identifiers like aliases, tables,
and columns. In this mode, PICARD is able to detect spelling errors in keywords or reject
table and column names that are invalid for the given SQL schema. In the parsing without
guards, the detokenized model output is parsed to a data structure that represents an abstract
syntax tree. In this mode, PICARD can reject invalid query structures and detect issues with
compositions of SQL expressions. Furthermore, PICARD prohibits duplicate binding of a
table alias in the same select scope but permits shadowing of aliases defined in a surrounding
scope. In the parsing with guards mode, PICARD performs additional checks and guards,
when assembling the SQL abstract syntax tree to leave out invalid hypotheses from the beam
as early as possible. Guards canmatch a table name usedwhen referring to column names and
bring it into a scope by adding it to the FROM clause. T5 (Text-to-Text Transfer Transformer)
(Raffel et al. 2020) by Raffel et al. is used as a baseine model, in combination with PICARD.
The T5 framework is based on a Transformer architecture proposed in Vaswani et al. (2017)
by Vaswani et al. and is trained on the publicly available web archive Colossal Clean Crawled
Corpus (C4) dataset. In general, the T5 framework follows the implementation described in
Vaswani et al. (2017) with small changes such as removing the Layer Norm bias, placing the
layer normalization outside the residual path, as well as implementing a relative positional
embeddings (Shaw et al. 2021) instead of learned positional embeddings. Furthermore, for
the text encoding SentencePiece (Kudo and Richardson 2018) is used. The main innovation
of T5 is the training task. The T5 training procedure is text-to-text where all inputs and
outputs are texts. In addition to the text-to-SQL task, the T5 model is successfully employed
in the following downstream tasks: machine translation, question answering, abstractive
summarization, and text classification (Raffel et al. 2020). Known usages of the T5 model in
the sofware engineering domain are: code completion (Ciniselli et al. 2022), log statement
generation (Mastropaolo et al. 2022), code generation, code summarisation, code repair, error
diagnosis (Kajiura et al. 2022).

3.6 Comparison of the Text-to-SQL Approaches

Table 1 compares the chosen quantitatively in terms of exact match accuracy, a common
metric to compare text-to-SQL approaches (cp. Subsection 5.1 "Quantitative Evaluation of
Text-to-SQLApproaches"), of all five chosenmethods as reported by the Spider leaderboard.
The Spider leaderboard provides this accuracymetric for a dev set (aka evaluation set), which
is known to the researchers when developing their methods, and a test set, which remains
hidden to all contributors of the leaderboard and aims to ensure a fair and unbiased comparison
of methods. Higher exact match accuracy shows a better performing approach. From top to
bottom we observe an increasing accuracy across the chosen approaches.

In Table 2 we compare the chosen approaches more qualitatively based on four charac-
teristics that we consider important and discriminating: representation of DB schema and
utterance, input encoding, SQL generation strategy, and overall architecture. The first two
characteristics are important to understand how NL is represented in a form that can be

123

Page 9 of 48 15

Empirical Software Engineering (2024) 29:15

Table 1 Evaluated text-to-SQL
models and their general
performance in terms of exact
match (EM) accuracy as reported
by the Spider leaderboard

Model submitted to EM acc. [%]
Spider leaderboard (dev) (test)

SQLNet Sep, 2018 10.9 12.4

RatSQL (Glove) Dec, 2019 62.7 57.2

LGESQL (Glove) Feb, 2021 67.6 62.8

SmBoP+GraPPa Mar, 2021 74.7 69.5

T5 + PICARD May, 2022 77.2 72.4

interpreted by the neural network model. The third characteristic describes how SQL queries
are generated. Eventually, the fourth characteristic gives an overview of important technical
characteristics of the given approach. We observe that even tough the utterance as well as
the DB schema become an input to the network in all approaches, the way in which they
are represented is different. For example, SQLNet and T5 + PICARD prepare them as a
sequence of tokens, while the other three approaches represent them as question-schema
graph. The way in which the input is then encoded has also been shown as very relevant

Table 2 Methodological comparison of evaluated text-to-SQL approaches

Criterion SQLNet RatSQL LGESQL SmBoP + GraPPa T5 + PICARD

Utterance as sequence as question- as question- as question- as sequence of

and schema of tokens contextualized schema graph contextualized tokens

representation schema graph schema graph (sentence-piece

tokenization)

Input Glove Glove, BERT Glove, BERT, GraPPa token IDs;

encoding ELECTRA relative

positional

encoding

SQL sketch aligning SQL as AST + SQL as AST + based on semi- autoregressive

generation to SQL context-free graph pruning autoregressive decoder with

strategy grammar grammar bottom-up multi-head

parser attention and

constrained

output during

beam search

Key slot prediction, encoder- encoder- RatSQL + self-attention,

techniques sequence-to-set decoder, decoder, L GraPPa transfer

prediction, relational- dual relational encoder, semi- learning,

column attention aware graph autoregressive constrained

self-attention attention decoder, cell decoder, cell

network layers values via values similar

prob. to bridging

computation Nan et al. (2022)

123

15 Page 10 of 48

Empirical Software Engineering (2024) 29:15

and we observe a varying encoding of textual inputs into vector form. The approaches either
rely on word embeddings, e.g., Glove, or pre-trained language models, e.g., BERT, ELEC-
TRA.Word embeddings and pre-trained languagemodels can provide additional information
which is supposed to support the linking of concepts between the utterance and the respective
DB schema. Furthermore, we observe that all approaches but SQLNet propose an encoder-
decoder framework. Since SQLNet describes a sketch-based approach, it generates the SQL
query by predicting slots. RatSQLandLGESQLgenerate an abstract syntax tree (AST),while
SmBoP and T5 + PICARD propose a semi-autoregressive bottom-up parser and autoregres-
sive decoder with multi-head attention respectively. These characteristics are expected to
have an influence on the performance of the discussed text-to-SQL approaches also when
applied to SE tasks.

Figure 3 depicts for the given utterance: "Return the issue ids of issues of type Bug",
how each approach handles cell value predictions during the SQL query generation. As we
can see, SQLNet, RatSQL, and LGESQL do not integrate cell value prediction during the
SQL generation process, while SmBoP + GraPPa and T5 + PICARD do. This difference
is essential when executing a predicted query since for approaches that do not predict cell
values, a way to replace cell value placeholders needs to be developed and applied. For the
evaluation of the five approach, the exact match is computed without considering cell values.

4 Datasets

In this section, we briefly discuss the two datasets that we used to perform our experiments.
Table 3 gives an overview of their extend in terms of utterances, queries, databases and

Fig. 3 Example showing how the five evaluated text-to-SQL approaches handle cell value prediction given an
utterance. Text marked in orange indicates tokens considered when computing the exact match accuracy

123

Page 11 of 48 15

Empirical Software Engineering (2024) 29:15

Ta
bl
e
3

O
ve
rv
ie
w
of

th
e
Sp

id
er

an
d
ou
r
pr
op
os
ed

SE
O
SS

-Q
ue
ri
es

te
xt
-t
o-
SQ

L
da
ta
se
ts

D
at
as
et

#
ut
te
ra
nc
es

#
qu
er
ie
s

#
D
B
s

#
do
m
ai
ns

#
ta
bl
es

pe
r
D
B

#
O
R
D
E
R

B
Y

#
G
R
O
U
P

B
Y

#
ne
st
ed

qu
er
ie
s

#
H
A
V
I
N
G

Sp
id
er

(Y
u
et
al
.2

01
8)

–
al
ls
ub

se
ts

10
,1
81

5,
69

3
20

0
13

8
5.
1

1,
33

5
1,
49

1
84

4
38

8

–
so
ft
w
ar
e
en
gi
ne
er
in
g
su
bs
et

49
24

1
1

6
12

8
12

0

SE
O
SS

-Q
ue
ri
es

1,
16

2
16

6
1

1
13

16
49

15
8

123

15 Page 12 of 48

Empirical Software Engineering (2024) 29:15

covered topic domains, while an in-depth discussion below will refer to their complexity
shown in the remaining part of the table.

4.1 The Spider Dataset

The Spider dataset is proposed by Yu et al. (2018) and is a large-scale, cross-domain dataset
that containing 10,181 utterances and 5,693 unique SQL queries. The dataset is split into a
train set and a dev set. Additionally, a non-publicly available test set exists. The SQL queries
are split into four hardness levels, i.e., easy, medium, hard, and extra hard, referring to 138
different domains separated into 200 databases. The hardness level is determined based on the
number of SQL components, selections, and conditions found in the queries. For example,
SQL queries that contain nested sub-queries’ concepts, such as GROUP BY, JOIN, LIMIT,
and ORDER BY, are considered harder to predict (Yu et al. 2018). By splitting the SQL
queries into different hardness levels, Yu et al. provide a way to better understand a model’s
performance regarding queries’ complexity. In comparison to another large and popular text-
to-SQL dataset, WikiSQL (Zhong et al. 2017), Spider contains more complex SQL queries
covering SQL operators such as JOIN and GROUP BY (Yu et al. 2018). For this reasons,
we chose Spider as training set in transfer learning experiments. We also chose Spider, since
WikiSQL restricts query generation to solely one table. This means that predicted queries
merely consist of the SELECT and the WHERE clause. In the text-to-SQL task we envision
and study within the SE domain, solely querying one table when gathering and relating data
from different software tools is unrealistic.

4.2 The SEOSS-Queries Dataset

In a preliminary study, we found that SE data are almost not present in the cross-domain
Spider dataset (Yu et al. 2018). The small SE subset of Spider merely consists of artificially
generated data reflecting software defect tracking information (cp. Table 3). Furthermore,
the accompanying queries are few and not derived from actual project stakeholder needs.
Therefore, we previously proposed the dedicated SEOSS-Queries dataset (Tomova et al.
2022). In a nutshall, to create the SEOSS-Queries dataset, we reviewed works summarizing
information needs of software engineers (Ko et al. 2007; Fritz and Murphy 2010; Abdellatif
et al. 2020; Begel and Zimmermann 2014), derived through interviews and by studying
software developers’ day-to-day information needs, as well as by examining typical data
queried in software tools such as ITSs. Our literature review gave us a general overview
of the different information needs software engineers have. As next, we further filtered our
findings by asking the question whether a given information need can be satisfied with
data gathered from a software tool. This was necessary since some information needs, e.g.,
"Is it really twice as hard to debug as it is to write the code in the first place?" Begel
and Zimmermann (2014), "Which coding guidelines/patterns have the most effect on code
quality (e.g. small functions, lower complexity metrics, removal of duplicate code)?" Begel
and Zimmermann (2014), "Did Imake anymistakes inmy new code?"Ko et al. (2007), "Is the
problem worth fixing?" Ko et al. (2007), cannot be easily answered and the answer may vary
depending on different factors and situations. Furthermore, to create the SEOSS-Queries
dataset, we referred to real-world, open-source project data, reflecting actual information
needs of software developers, collected from the ITS, i.e. JIRA, and VCS, i.e. GIT, of the
Apache PIG project (Apache Pig project 2023), and persisted into a SQLite database by Rath
and Mäder (2019).

123

Page 13 of 48 15

Empirical Software Engineering (2024) 29:15

SEOSS-Queries is publicly available under the following link (SEOSS-QueriesRepository
2023). In total, the dataset consists of 1,162 utterances translating into 166 queries. Thereby,
each query relates to four precise utterances, referred to as specific, and three more general
ones, referred to as non-specific. The four specific ones include relevant column and table
names appearing in the corresponding SQL query while the non-specific ones are formulated
less precisely. To define non-specificity in terms of our concrete case we first agreed upon
the following rules: the utterance must exclude columns’ and tables’ names; column names,
table names, DB values need to be expressed by using synonyms (e.g., "When was issue X
resolved?" = "Whenwas issueX solved?"; "Who is assigned to issue..." = "Who is responsible
for issue...") or by paraphrasing them (e.g., ”between 2014-10-01 and 2014-10-31” = ”in the
month of October”); the utterance must not be syntactically correct, i.e., utterances without
a verb (e.g., "Any bugs?"). Non-specific utterances were generated with respect of the above
rules,making sure that at least one rulewas employed. Each author acted as an evaluator to the
utterances generated by the other authors. Examples of specific and non-specifc utterances
are shown in Fig. 4. By manually creating multiple specific and non-specific utterances

Fig. 4 Examples from the SEOSS-Queries dataset showing specific and non-specific utterances and their
corresponding SQL query for each of the four differentiated SQL query hardness levels. With the same color
we highlighted in the utterances and SQL queries words that express the same content, with a green border
we highlight exact match to a column or a table from the SQL query, with a red border we highlight words
that do not exactly match a column or a table from the SQL query

123

15 Page 14 of 48

Empirical Software Engineering (2024) 29:15

per SQL query instead of machine-generating ones, we aimed for a more realistic scenario
representing the diversity of NL and were interested in how the models handle utterances,
expressing the same intent written with different wording. The non-specific utterances can be
used as a way to measure how well a model can interpret the utterances. Furthermore, given
that some information in the utterances is missing, they can be used to evaluate whether a
model can correctly deduce the missing information.

We usedYu et al. (2018) evaluation script to categorize each SQLquery according Spider’s
four hardness levels (easy, medium, hard, and extra hard). During the categorizationwe found
that 33 utterances-queries pairs of the SEOSS-Queries dataset could not be processed and
categorized due to SQL syntax constructs not supported by Yu et al.’s script. For example,
SQL containing functions such as strtime or specific SQL keywords such as NOT, CASE
could not be processed, returning an exception. Further examples of incompatible queries are
shown in Table 4. Aiming for comparability to Spider’s assessment, we decided not to adapt
the evaluation script, but to remove incompatible queries, resulting in 931 utterances and 133
SQL queries for performing our experiments. These 133 queries are distributed across the
four complexity levels as follows: 56 easy, 54 medium, 11 hard, and 12 extra hard. Figure4
shows per hardness level an example of an utterance and its corresponding SQL query.

To examine the generalization capabilities of the evaluated approaches, it is common
practice to split the data into training splits (‘train’) and kept-away evaluation splits (‘dev’).
SEOSS-Queries provides different splits for evaluation. The utterance-based split selects
three specific and three non-specific utterances from each SQL query with four of those
being selected for training and two for evaluation. This split aims to shed light on how well
approaches can predict under optimal conditions where they have been exposed to all queries
during training and are only exposed to unknown utterances relating to these queries during
evaluation. In contrast, the query-based split selects an SQL query with all its utterances
belonging to either the training, 80% of all queries, or the test set, remaining 20% of the
queries.

5 Evaluation of Text-to-SQL Approaches for SE Tasks

Below, we evaluate text-to-SQL approaches regarding their applicability and utility in satis-
fying SE information needs. Therefore, we perform quantitative experiments using the five
methods introduced before and qualitative assessment via a survey with software engineers.

5.1 Quantitative Evaluation of Text-to-SQL Approaches

We conducted three experiments to evaluate the five selected text-to-SQL approaches regard-
ing their utility for satisfying SE information needs (cp. Sec. 3). A reproduction package
detailing how we trained models in these experiments and allowing for follow-up experi-
ments is available here SEOSS-Queries Repository (2023). Experiment 1 aimed to evaluate
how well the standard large-scale cross-domain Spider dataset is suited to train the exam-
ined text-to-SQL approaches when satisfying SE information needs, i.e., we used Spider for
training and SEOSS-Queries’ utterance-based split for evaluation. Experiment 2 and 3 aimed
to evaluate how the examined text-to-SQL approaches perform when trained and tested on
software engineering data, i.e., using the SEOSS-Queries dataset for training and evaluation.
In Experiment 2, we used the utterance-based split that had all queries already in the training
and tested novel utterances for them, while in Experiment 3 by using the query-based split

123

Page 15 of 48 15

Empirical Software Engineering (2024) 29:15

Ta
bl
e
4

E
xa
m
pl
es

of
ut
te
ra
nc
es

an
d
SQ

L
qu
er
ie
s
th
at
ar
e
in
co
m
pa
tib

le
to

th
e
Sp

id
er

gr
am

m
ar

Pr
ob
le
m
at
ic
SQ

L
qu
er
y

In
co
m
pa
tib

ili
ty

SE
L
E
C
T
C
A
SE

W
H
E
N
E
X
IS
T
S
(S
E
L
E
C
T
*
FR

O
M

ch
an
ge
_s
et
_l
in
k
W
H
E
R
E
is
su
e_
id

=
’P
IG

-4
09
2’

A
N
D
co
m
m
it_

ha
sh

=
’[
…
]’
)

C
A
SE

st
at
em

en
t

T
H
E
N
’T
ru
e’

E
L
SE

’F
al
se
’
E
N
D

SE
L
E
C
T
is
su
e_
id

FR
O
M

is
su
e
W
H
E
R
E
st
rf
tim

e(
’%

Y
-%

m
-%

d’
,c
re
at
ed
_d

at
e)

=
D
A
T
E
(’
no
w
’,’
-1

da
y’
)

sr
ft
im

e(
)
fu
nc
tio

n

SE
L
E
C
T
*
FR

O
M

is
su
e
A
S
T
1
W
H
E
R
E
T
1.
is
su
e_
id

N
O
T
IN

(S
E
L
E
C
T
T
2.
is
su
e_
id

FR
O
M

is
su
e_
at
ta
ch
m
en
tA

S
T
2)

N
O
T
in

W
H
E
R
E
cl
au
se

SE
L
E
C
T
*
FR

O
M

is
su
e
W
H
E
R
E
ty
pe

=
’B
ug
’
an
d
(s
ta
tu
s
=
’R
es
ol
ve
d’

O
R
st
at
us

=
’C
lo
se
d’
)
A
N
D
(r
es
ol
ut
io
n=

’F
ix
ed
’
or

re
so
lu
tio

n
br
ac
ke
ts
in

W
H
E
R
E
cl
au
se
s

=
’D

on
e’
)

SE
L
E
C
T
T
1.
*
FR

O
M

is
su
e
A
S
T
1
JO

IN
is
su
e_
fix

_v
er
si
on

A
S
T
2
O
N
T
1.
is
su
e_
id

=
T
2.
is
su
e_
id

W
H
E
R
E
T
2.
fix

_v
er
si
on

=
’0
.1
2.
1’

T
1.
*
in

SE
L
E
C
T

SE
L
E
C
T
A
V
G
(c
ou
nt
_p
er
_i
ss
ue
)
FR

O
M

(S
E
L
E
C
T
C
ou
nt
(D

IS
T
IN

C
T
us
er
na
m
e)

A
S
co
un
t_
pe
r_
is
su
e
FR

O
M

is
su
e_
co
m
m
en
tG

R
O
U
P

ke
yw

or
d
A
S
in

SE
L
E
C
T

B
Y
is
su
e_
id
)

SE
L
E
C
T
C
ou
nt
(*
)
FR

O
M

is
su
e
W
H
E
R
E
de
sc
ri
pt
io
n
IS

N
U
L
L

N
U
L
L
in

W
H
E
R
E
cl
au
se

123

15 Page 16 of 48

Empirical Software Engineering (2024) 29:15

Table 5 Training and evaluation instances per experiment

Experiment 1 Experiment 2 Experiment 3
utterances Train Test Train Test Train Test

(Sp. + SQ.) (SQ.) (Sp. + SQ.) (SQ.) (Sp. + SQ.) (SQ.)

specific 8659 + 0 133 8659 + 532 133 8659 + 742 108

non-specific 8659 + 0 133 8659 + 532 133 8659 + 742 81

all 8659 + 0 266 8659 + 532 266 8659 + 742 189

Sp. = Spider, SQ = SEOSS-Queries

exposed the model at evaluation to queries not seen in the training (cp. Sec. 4.2). All three
experiments were evaluated for all utterances, specific and non-specific, together as well as
for specific and non-specific utterances separately.
Experimental Setup In general, we followed the training and evaluation setup, i.e., epochs,
hyperparameter, proposed by the original models, intending to mimic the results from the
Spider leaderboard and to ensure that we performed the training correctly. In all of the five
approaches, we adjusted the training, dev, and evaluation dataset files, i.e., for Experiment
2 and 3, as well as the table.json file to include data from the SEOSS-Queries dataset and
DB schema. Furthermore, we extended the Spider databases with the Apache Pig database
coming from the SEOSS-Queries dataset. The five text-to-SQL approaches were trained on
machines with the following specifications: 2 TB RAM, 8 x NVIDIA A100, 2 x AMDEPYC
7742 64-core processor. During the training early stopping was used as a convergance stop
criteria. Table 5 presents the number of training and evaluation instances per experiment.1

Evaluation Metrics Traditionally, the accuracy of predicted SQL queries is evaluated via
their returned result (execution accuracy) or comparing the queriesword byword (exactmatch
accuracy). However, considering cases in which the retrieved value may result in queries that
return a correct result, i.e., zero or empty value, but with a SQL query describing different
intent, lead to exactmatch accuracy becoming the standard performancemeasure. Comparing
the gold (ground truth) and the predicted queries seems intuitive and easy to execute.However,
creating theWHERE clause becomes vague because a sequence of Boolean expressions is not
necessarily unique. The literature refers to this ambiguity as an "ordering issue". Comparing
sub-components of SQL queries’ WHERE-expressions solve this problem by matching sub-
expressions first, comparing them in a second step. Zhong et al. published an example of the
exact match accuracy calculation procedure (Evaluation script spider 2023).

Comparing the results of the queries in terms of exact match is a precise and informative
measure, and therefore the evaluation of large text-to-SQL datasets is performed that way.
Another reason is that not all text-to-SQL approaches generate executable SQL queries,
which would be the precondition for a result-based evaluation. However, datasets consist of
samples that are hard to recognize because small questions can lead to complicated queries
with several nested queries and specific values to be found in the question and put in the
right place for the query. The solution to this problem is to rank the difficulty into difficulty
levels based on the type and number of SQL concepts with different levels: easy, medium,
hard, and extra-hard (Yu et al. 2018). We, therefore, calculated one exact match accuracy
for each difficulty level separately to better understand the performance of the text-to-SQL
approaches studied.

1 In Experiment 2 the training set consists of 532 examples since we excluded one specific utterance to balance
out the number of specif and non-specific utterances during training.

123

Page 17 of 48 15

Empirical Software Engineering (2024) 29:15

5.2 Survey on Usefulness of Text-to-SQL Approaches in the SE Domain

Furthermore, we performed an extensive user survey evaluating how text-to-SQL approaches
and their results are perceived in the SE domain and by what kind of SE experts text-to-SQL
approaches may be used.

Before conducting this survey, we asked a colleague to act as a pilot and to perform the
survey in an initial form. After completion, we asked him to assess the interpretability of
the descriptions and the complexity of the tasks in it, under consideration of the time we
planned giving our participants. Taking into account the insights from the pilot, we refined
descriptions and reduced the questions for the final survey.

Next, we reached out to people known to the authors via email and social media. These
potential participants were individuals working in the software engineering domain, encom-
passing both academia and industry. In the email, we provided a generic link to the online
survey for their convenience and ease of access. Since our models were trained on data pri-
marily dealing with the solution of programming issues, we explicitly stated in the emails
that the participants need to have some programming experience and be familiar with issue
tracking systems and\or version control systems. Furthermore, we asked these contacts to
forward the email to other possible participants, resulting in a snowball effect across a larger
population of potential participants.

The estimated time for taking the survey was not more than 60min and the survey was
accessible for a time period of three weeks. Our survey consisting of 20 questions split into
five sections. Four of these questions (Q13, Q15, Q16, Q17) consisted of tasks for which we
had formed two groups. Thereby, roughly half of the participants received the first treatment
while the other received the second treatment of tasks.

Section 1, comprising eight questions, inquired about general, mostly demographic, infor-
mation of the participant like age and experience with respect to the focus of the study.

Section 2 aimed to uncover how a participant satisfied her or his development information
needs, specifically focusedon ITS information.Additionally,we randomly chose per hardness
level two SQL queries (eight in total) from the SEOSS-Queries dataset as well as one specific
and one non-specific utterance accompanying those. Participants were asked to rate the
understandability of the presented utterances, construction complexity of presented queries,
and had to match utterances to respective queries. Within this section, we aimed to assess
how representative SEOSS-Queries utterances were and what skills in terms of satisfying
their information needs participants had.

In Sect. 3, each participant received two verbally described scenarios, e.g., “The data
analyst Eve would like to find the version of a given software project in which the highest
number of issues were fixed.”, and was asked to formulate an utterance and to construct the
respective SQL query. These scenarios were derived from SEOSS-Queries’ evaluation sets
and were supposed to describe different complexity levels of SQL queries. Thereby, half of
the participants received scenarios supposed to yield a query of hardness level medium and
one of hardness level hard, while the other half received a scenario supposed to yield one
easy and one extra hard query. Furthermore, the scenarios described utterances for which our
highest performingmodel correctly generated queries. Similar to the text-to-SQLapproaches,
participants were provided the database schema of the underlying Apache Pig project data.
Eventually, the aim of this task was a comparison between text-to-SQL approaches and
human developers in generating SQL queries regarding information needs.

In Sect. 4, we provided participants four utterance-SQL query pairs that were not suc-
cessfully generated by some of the best performing text-to-SQL approaches in our study,

123

15 Page 18 of 48

Empirical Software Engineering (2024) 29:15

aiming to introduce participants with some of the limitations of the trained models, letting
them decide whether the wrongly generated queries can be useful or not to them. We asked
participants to identify problems in the given queries and to judge how difficult it would be
for them to correct the query.

In the last Section, we aimed to gather participants’ general perception on text-to-SQL
approaches and their applicability to the SE domain in their current state. A list of all asked
questions as well as snapshots of their representation during the survey is provided in the
Appendix.

To summarize, Sect. 1 of our survey provides us with demographic information about
our participants, Sect. 2 gives us overview of the participant’s experience in satisfying their
information needs.With Sect. 3 we tend to assess the query creation capabilities of our partic-
ipants, aiming to see whether they can create SQL queries as well as the highest performing
text-to-SQL approach in our study. Section4 presents to our participants limitations of text-
to-SQL models in the form of incorrectly constructed queries generated by some of the best
performing models in our study. Section5 concludes our survey and provides us with infor-
mation about the position of our participants regarding the use of text-to-SQL approaches
for SE tasks.

6 Evaluation Results and Discussion

Fig. 5 provides a schema of the research strategy we applied in our work, as well as an
overview of which steps in our schema are linked to which RQs.

Fig. 5 Overview of the research strategy used in the form of three-step schema. Horizontally, we show the
order in which each step was applied, as well as, depicted above arrows, significant results from the steps.
Vertically, we present additional information about each of the three steps, linking RQs to specific points in
the step

123

Page 19 of 48 15

Empirical Software Engineering (2024) 29:15

Table 6 reports the results of our experiments with the five previously introduced
approaches and the two datasets. Thereby, the first column refers to the respective approach
and the following three groups of five columns refer to the three different trainings with these
approaches, the first on the cross-domain Spider dataset, the second on the utterance-based
split of SEOSS-Queries, and the third on the query-based split of SEOSS-Queries. Thereby,
the five columns report exact match accuracy on the respective test set separated into the
previously discussed query complexity levels easy to extra hard (Xhard) and additionally
across all test samples. Furthermore, the table reports results across three row groups from
top to bottom that refer to just the specific utterances in the test set (top row group), just
the non-specific utterances (middle row group), and all tested utterances together (lower row
group).

6.1 Utilizing Text-to-SQL Out of the Box for SE Tasks (Experiment 1)

The best performing model in the first experiment is the one trained with T5 + PICARD,
which was at the time of conducting our study also the top performing text-to-SQL approach
with available code on the Spider leaderboard. SQLNet is the worst performing text-to-
SQL approach. That is not surprising since the approach was initially designed for the less
complex WikiSQL dataset and we had selected SQLNet mostly as a baseline. Comparing
the performance of the worst and best performing text-to-SQL approaches, we observe an
improvement of 44% exact match accuracy between the seminal SQLNet and the currently
best performing T5 + PICARD. This approach predicts 61% of the easy queries correctly.
However, this performance degrades to merely 9% correctly predicted extra hard queries.
This growing share of unsuccessfully predicted queries suggests that there are utterance-
query pairs in the SEOSS-Queries test set that are uncommon for the model trained on
Spider. We observed that this happens due to specific vocabulary and concepts used in SE
data, e.g., bug, improvement, feature, commit, change set, hash, or due to SQL concepts that
are less present in Spider and therefore not properly trained, such as, nested queries, queries
containing a HAVING clause. SQL queries marked as extra hard were the hardest to predict
and only a very small share of them were correctly predicted by LGESQL, SmBoP+GraPPa,
and T5 + PICARD (cp. Table 6 specific utterances). Non-specific utterances of hardness level
extra hard (Xhard) could not be predicted by any approach suggesting that due to missing
information like column and table names and due to performing the training without the
SEOSS-Queries DB schema, it is much more difficult for the text-to-SQL approaches to link
DB values to the corresponding table and columns.

Answer to RQ1 RQ1 aimed to answer how well generic state-of-the-art text-to-SQL
approaches handle NL utterances from the SE domain. In general, we observe that models
trained on a generic, cross-domain dataset such as Spider can handle SE domain-specific
utterances and queries that are somewhat similar to other domains but fail to handle additional
information specific to the SE domain and can therefore only correctly predict 46% of the
tested utterance-query pairs (RQ1). We consider this rate too low for an actual integration of
text-to-SQL approaches into a productive environment.

6.2 Text-to-SQL Specifically Trained for SE Needs (Experiment 2)

T5 + PICARD remains the top performing and SQLNet the worst performing text-to-SQL
approach when training on the SE-domain-specific SEOSS-Queries dataset. We observe sub-
stantial improvements between 20% and 61% for the different approaches and specifically

123

15 Page 20 of 48

Empirical Software Engineering (2024) 29:15
Ta
bl
e
6

Pe
rf
or
m
an
ce

of
th
e
fiv

e
se
le
ct
ed

te
xt
-t
o-
SQ

L
ap
pr
oa
ch
es

m
ea
su
re
d
as

ex
ac
t
m
at
ch

ac
cu
ra
cy

(e
m

ac
cu
ra
cy
)
of

th
e
pr
ed
ic
te
d
qu
er
ie
s
fo
r
ev
al
ua
tio

n
ut
te
ra
nc
es

of
th
e

SE
O
SS

-Q
ue
ri
es

da
ta
se
tr
ep
or
te
d
in

to
ta
l(
al
l)
an
d
pe
r
co
m
pl
ex
ity

le
ve
lo

f
th
e
re
su
lti
ng

qu
er
y,
i.e
.,
ea
sy

to
ex
tr
a
ha
rd

(X
ha
rd
).
T
he
re
by

th
e
m
od
el
s
in

E
xp

er
im

en
t1

w
er
e
tr
ai
ne
d

on
th
e
cr
os
s-
do
m
ai
n
Sp

id
er

da
ta
se
t,
th
e
m
od
el
s
in

E
xp
er
im

en
t2

w
er
e
tr
ai
ne
d
on

th
e
ut
te
ra
nc
e-
ba
se
d
sp
lit

of
SE

O
SS

-Q
ue
ri
es
,a
nd

th
e
m
od
el
s
in

E
xp
er
im

en
t3

w
er
e
tr
ai
ne
d
on

th
e

qu
er
y-
ba
se
d
sp
lit

of
SE

O
SS

-Q
ue
ri
es
.B

ol
d
va
lu
es

de
pi
ct
th
e
m
od
el
s
w
ith

hi
gh
es
ta
cc
ur
ac
y
pe
r
ex
pe
ri
m
en
t

E
xp

er
im

en
t1

E
xp

er
im

en
t2

E
xp

er
im

en
t3

Sp
id
er

T
ra
in
in
g

SE
O
SS

-Q
ue
ri
es

T
ra
in
in
g

em
ac
cu
ra
cy

%
↑

em
ac
cu
ra
cy

[%
]↑

em
ac
cu
ra
cy

[%
]↑

M
od
el

ea
sy

m
ed

ha
rd

X
ha
rd

al
l

ea
sy

m
ed

ha
rd

X
ha
rd

al
l

ea
sy

m
ed

ha
rd

X
ha
rd

al
l

sp
ec
ifi
c
ut
te
ra
nc
es

co
un

t
56

54
11

12
13

3
56

54
11

12
13

3
20

56
12

20
10

8

SQ
L
N
et

0.
07

1
0.
00

0
0.
00

0
0.
00

0
0.
03

0
0.
46

4
0.
09

3
0.
18

2
0.
00

0
0.
24

8
0.
00

0
0.
01

8
0.
08

3
0.
00

0
0.
01

9

R
at
SQ

L
0.
37

5
0.
16

7
0.
00

0
0.
00

0
0.
22

6
0.
89

3
0.
90

7
0.
54

5
0.
41

7
0.
82

7
0.
90

0
0.
48

2
0.
58

3
0.
20

0
0.
51

9

L
G
E
SQ

L
0.
55

4
0.
35

2
0.
18

2
0.
08

3
0.
39

8
0.
92

9
1.
00

0
0.
81

8
1.
00

0
0.
95

5
0.
95

0
0.
55

4
0.
83

3
0.
20

0
0.
59

3

Sm
B
oP

+
G
ra
PP

a
0.
53

6
0.
48

1
0.
18

2
0.
08

3
0.
44

4
0.
82

1
0.
85

2
0.
63

6
0.
33

3
0.
77

4
1.
00

0
0.
51

8
0.
66

7
0.
20

0
0.
56

5

T
5
+
PI
C
A
R
D

0.
69

6
0.
55

6
0.
27

3
0.
18

2
0.
56

1
0.
96

4
0.
98

1
0.
90

9
1.
00

0
0.
97

0
0.
95

0
0.
66

1
0.
66

7
0.
25

0
0.
63

9

no
n-
sp
ec
ifi
c
ut
te
ra
nc
es

co
un

t
56

54
11

12
13

3
56

54
11

12
13

3
15

42
9

15
81

SQ
L
N
et

0.
01

8
0.
00

0
0.
00

0
0.
00

0
0.
00

8
0.
26

8
0.
14

8
0.
18

2
0.
00

0
0.
18

8
0.
06

7
0.
00

0
0.
22

2
0.
00

0
0.
03

7

R
at
SQ

L
0.
14

3
0.
16

7
0.
09

1
0.
00

0
0.
13

5
0.
83

9
0.
70

4
0.
63

6
0.
25

0
0.
71

4
0.
53

3
0.
19

0
0.
66

7
0.
06

7
0.
28

4

L
G
E
SQ

L
0.
28

6
0.
20

4
0.
18

2
0.
00

0
0.
21

8
0.
87

5
0.
85

2
1.
00

0
0.
83

3
0.
87

2
1.
00

0
0.
40

5
0.
55

6
0.
00

0
0.
45

7

Sm
B
oP

+
G
ra
PP

a
0.
37

5
0.
22

2
0.
09

1
0.
00

0
0.
25

6
0.
75

0
0.
61

1
0.
45

5
0.
00

0
0.
60

2
0.
66

7
0.
19

0
0.
55

6
0.
00

0
0.
28

4

T
5
+
PI
C
A
R
D

0.
51

8
0.
31

5
0.
18

2
0.
00

0
0.
36

4
0.
89

3
0.
92

6
1.
00

0
0.
91

7
0.
91

7
0.
66

7
0.
38

1
0.
66

7
0.
20

0
0.
43

2

123

Page 21 of 48 15

Empirical Software Engineering (2024) 29:15
Ta
bl
e
6

co
nt
in
ue
d

E
xp

er
im

en
t1

E
xp

er
im

en
t2

E
xp

er
im

en
t3

Sp
id
er

T
ra
in
in
g

SE
O
SS

-Q
ue
ri
es

T
ra
in
in
g

em
ac
cu
ra
cy

%
↑

em
ac
cu
ra
cy

[%
]↑

em
ac
cu
ra
cy

[%
]↑

M
od
el

ea
sy

m
ed

ha
rd

X
ha
rd

al
l

ea
sy

m
ed

ha
rd

X
ha
rd

al
l

ea
sy

m
ed

ha
rd

X
ha
rd

al
l

al
lu

tt
er
an
ce
s

co
un

t
11

2
10

8
22

24
26

6
11

2
10

8
22

24
26

6
35

98
21

35
18

9

SQ
L
N
et

0.
04

5
0.
00

0
0.
00

0
0.
00

0
0.
01

9
0.
36

6
0.
12

0
0.
18

2
0.
00

0
0.
21

8
0.
02

9
0.
01

0
0.
14

3
0.
00

0
0.
02

6

R
at
SQ

L
0.
25

9
0.
16

7
0.
04

5
0.
00

0
0.
18

0
0.
86

6
0.
80

6
0.
59

1
0.
33

3
0.
77

1
0.
74

3
0.
35

7
0.
61

9
0.
14

3
0.
41

8

L
G
E
SQ

L
0.
42

0
0.
27

8
0.
18

2
0.
04

2
0.
30

8
0.
90

2
0.
92

6
0.
90

9
0.
91

7
0.
91

4
0.
97

1
0.
49

0
0.
71

4
0.
11

4
0.
53

4

Sm
B
oP

+
G
ra
PP

a
0.
45

5
0.
35

2
0.
13

6
0.
04

2
0.
35

0
0.
78

6
0.
73

1
0.
54

5
0.
16

7
0.
68

8
0.
85

7
0.
37

8
0.
61

9
0.
11

4
0.
44

4

T
5
+
PI
C
A
R
D

0.
60

7
0.
42

6
0.
22

7
0.
08

7
0.
45

7
0.
92

9
0.
95

4
0.
95

5
0.
95

8
0.
94

4
0.
82

9
0.
54

1
0.
66

7
0.
22

9
0.
55

0

123

15 Page 22 of 48

Empirical Software Engineering (2024) 29:15

for T5 + PICARD an improvement of nearly 50% over the model trained on Spider (Exper-
iment 1). Figure6 exemplary visualizes what this improvement means by contrasting five
utterances for which the T5 + PICARD model trained on Spider (Experiment 1) predicted
the wrong query, while the T5 + PICARD model trained on SEOSS-Queries (Experiment
2) predicted correctly. The reason potentially being that partially missing or abstract infor-
mation in non-specific utterances has a significant effect when linking utterance concepts to
DB schema concepts during prediction. For example, a user may search for issues of priority
’Blocker’ or ’Critical’ via the non-specific utterance “Return issues that are either blocking or
critical”, which may not be expressive enough since the concept “blocking” or “critical” does
not exist in the DB’s schema. The SEOSS-Queries dataset contains two kinds of utterances:
specific and non-specific (cp. Sec. 4.2) enabling us to examine the influence of an utterance’s
specificity on the accuracy of the predicted query. We observe that specific utterances allow
for a 5% to 17% more accurate query prediction than non-specific utterances (cp. Table 6,
specific vs. non-specific utterances across all experiments). Taking a closer look at results
split across the different query complexity levels to be predicted, easy to extra hard (Xhard),
we observe that all approach but SQLNet are at least able to predict some queries per com-
plexity level. Thereby, the share of successfully predicted queries grows with the maturity of
the approach and the best performance in each level yields T5 + PICARD while LGESQL
performs just slightly worse.

Fig. 6 Five examples of utterances that resulted in not correctly predicted queries when trained on the generic
Spider dataset (Experiment 1) but were correctly predicted by the model trained on the SEOSS-Queries dataset
(Experiment 2). The queries were predicted by the approach performing best in both experiments, i.e., T5 +
PICARD

123

Page 23 of 48 15

Empirical Software Engineering (2024) 29:15

Answer to RQ2 RQ2 aimed at evaluating performance differences when training our
models with and without SE-specific data. We conclude that text-to-SQLmodels specifically
trained for the SE domain yield a substantially higher accuracy than models trained on
generic datasets (RQ2). Across all test utterances, T5 + PICARD and LGESQL achieve the
highest accuracy with 94% and 91% respectively. They demonstrate this accuracy almost
independently of a queries’ complexity levels making them ready for an integration into the
daily work of SE experts.

6.3 Predicting Non-Trained SE Utterance-Query Pairs (Experiment 3)

In a third experiment, we trained SEOSS-Query’s query-based split, i.e., we kept entire
queries with all their respective utterances out of training and solely tested them. This has
some similarity to the first experiment in which we trained with the cross-domain Spider
dataset but tested on SEOSS-Queries. However, now a model was trained with SE-domain
queries. Again, T5 + PICARD performs best across all test utterances yielding a 9% higher
accuracy compared to Experiment 1 but a 40% decreased accuracy compared to Experiment
2. That is the domain-specific training allows the model to better generalize to new an
unseen queries from the same domain, while still roughly every second query is not correctly
predicted. Especially queries of complexity extra hard (Xhard) suffer from a tremendous
accuracy reduction over the utterance-based split (96% vs. 23%).

Experiment 2 vs. Experiment 3 Overall, the difference in performance between Experi-
ment 2 and 3 suggests thatmodels’ generalization capabilitywould benefit frommore training
data. Additionally, we performedMcNemar’s test that showed no statistically significant dif-
ference in the disagreements between the top two highest performing models, i.e., LGESQL
and T5 + PICARD. The contingency tables for both experiments are depicted in Table 7.
The computed odds ratios for Experiments 2 and 3 were 5.54 and 10.2. In both cases, the
odds ratio was greater than one, suggesting a positive association or dependency between the
models. The alpha-values of 0.38 and 0.77 for Experiment 2 and Experiment 3, respectively,
indicate no significant superiority of any models at a significance level of 0.05. Together with
the odds ratio greater than one, we conclude that both methods are performing equally well
with a high probability of coming to the same results.

6.4 Large-Language-Models as Alternative to Text-to-SQLModels.

Large language models (LLM) became very popular in assisting day-to-day business tasks
frompreparing emails to drafting text documents and have also been trained on a considerable
corpus source code. OpenAI as one of the leaders in this field does not only offer its general

Table 7 The table shows the
contingency tables of the top two
highest performing approaches in
Experiment 2 and 3 (LGESQL,
depicted vertically, and T5 +
PICARD, depicted horizontally),
upon which a McNemar’s test is
performed. The entries ’True’
indicate correct queries, while
’False’ represents incorrect
queries

Experiment 2 Experiment 3
(p-value: 0.377) (p-value: 0.766)

LGESQL/T5+PICARD True False True False

True 228 13 80 21

False 19 6 24 64

123

15 Page 24 of 48

Empirical Software Engineering (2024) 29:15

purpose GPT models, e.g., for interactive use in the ChatGPT (OpenAI ChatGPT 2023)
form, but also models like Codex specifically aimed at generating source code, e.g., available
as GitHub Copilot (2023). We did not consider such models as first class citizens in our
study, primarily to ensure consistency in the analysis by comparing similar approaches.
Furthermore, we objected on these LLMs in an industrial environment. More specifically,
privacy may be an issue, since query and database information would be shared with the
provider of the services. We argue as well that the text-to-SQL approaches from our analysis
provide a more cost-efficient solution. At the time of writing this manuscript, Copilot as well
as ChatGPT require paid subscriptions for continued use.

Recognizing, however, the impact of LLMs, we decided to still evaluate ChatGPT and
GitHub Copilot on the utterance-based and query-based test splits of the SEOSS-Queries
dataset (cp. Table 8). We are not allowed to fine-tune LLMs such as ChatGPT and Github
Copilot on our own machines and therefore excluded them from the comparative evaluation;
however, we performed a zero-shot evaluation since thosemodels are designed for a zero-shot
setting (Kojima et al. 2022). Zero-shot means that the model was not trained for the task it is
meant to solve; however, we found that ChatGPT is capable of reproducing samples from the
Spider dataset if asked (cp. prompt, Appendix, Sect. 1) In comparison to our Experiments 2
and 3, we evaluated ChatGPT and Github Copilot on the utterance-based split and the query-
based split and compared the results with T5-PICARD fine-tuned. In general, the findings
demonstrate that without any training their results are useable to some extend; however,
their performance is not on par with the purposely trained T5+PICARD model discussed
before. Looking at the generated SQL queries, we observe that both ChatGPT and Copilot
did notmanage to fully follow our prompt guidelines (cp.Appendix, Sect. 1), e.g., when asked
to reference joined tables via specifically named aliases. We also observed that especially
Copilot added additional columns and tables, not present in the DB schema.

6.5 Understanding SE users information needs and text-to-SQL utility (Survey)

Participants’ demographics In total, 26 participants completed our survey. One participant
acted as a pilot andwas therefore omitted from the evaluation.Wehad20%female participants
and the average participant was 31 years old. The majority of our participants rated their SQL
experience as basic (40%) or good (36%) and reported a programming experience between
5 and 10 years. Less represented were participants that rated their SQL experience as middle
(16%) or very good (8%) and reported a programming experience of more than 10 years.
A majority of 56% participants reported responsibility for multiple roles in SE, while 44%
are either solely developers, researchers, or managers. We also asked participants to rate
how often they solve tasks by themselves and how often they ask a colleague for help, both
on a Likert scale from 1 (seldom) to 5 (often). On average, participants solve their tasks
themselves (4.64) and roughly half of the time they ask colleagues for help (2.44).

Participants’ experience in satisfying their information needs A majority of 76%
participants had experience with ITS such as either JIRA, GitLab or both. Additionally,
12% were experienced in other ITSs, such as YouTrack and Bugzilla. Merely 12% did not
have any experience in using an ITS and we decided to exclude them from further analysis.
72.2% of the participants gained initial experience in ITSs through research projects, 36.3%
through student projects, 36.3% through company projects and 22.7% through open source
projects. A majority of 68% participants satisfies their information needs in ITSs via a search
bar that provides filtering options, 5% of the participants prefers a search solely via query,
e.g., Atlassian’s Jira Query language (JQL) or GitLab’s Elasticsearch syntax, and 23% of the

123

Page 25 of 48 15

Empirical Software Engineering (2024) 29:15

Ta
bl
e
8

Pe
rf
or
m
an
ce

of
th
e
C
ha
tG

PT
(v
3.
5)

an
d
G
itH

ub
C
op

ilo
t(
v1

.9
6.
26

3)
m
ea
su
re
d
as

ex
ac
tm

at
ch

ac
cu
ra
cy

(e
m

ac
cu
ra
cy
)
of

th
e
pr
ed
ic
te
d
qu

er
ie
s
fo
r
ev
al
ua
tio

n
ut
te
ra
nc
es

of
th
e
SE

O
SS

-Q
ue
ri
es

da
ta
se
t
re
po
rt
ed

in
to
ta
l
(a
ll)

an
d
pe
r
co
m
pl
ex
ity

le
ve
l
of

th
e
re
su
lti
ng

qu
er
y,
i.e
.,
ea
sy

to
ex
tr
a
ha
rd

(X
ha
rd
).
R
es
ul
ts
ar
e
ba
se
d
on

th
e
ev
al
ua
tio

n
of

th
e

m
od
el
s
on

th
e
ut
te
ra
nc
e-
ba
se
d
an
d
on

th
e
qu
er
y-
ba
se
d
sp
lit
s
fr
om

th
e
SE

O
SS

-Q
ue
ri
es

da
ta
se
t.
In

th
e
ca
se

of
T
5+

PI
C
A
R
D
,t
he

re
su
lts

w
er
e
ta
ke
n
fr
om

E
xp
er
im

en
t2

pr
ov
id
ed

in
Ta
b.
6

SO
E
SS

Q
ue
ri
es

U
tte
ra
nc
e-
B
as
ed

Sp
lit

SE
O
SS

Q
ue
ri
es

Q
ue
ry
-B
as
ed

Sp
lit

em
ac
cu
ra
cy

[%
]↑

em
ac
cu
ra
cy

[%
]↑

M
od
el

ea
sy

m
ed
.

ha
rd

X
ha
rd

al
l

ea
sy

m
ed
.

ha
rd

X
ha
rd

al
l

sp
ec
ifi
c
ut
te
ra
nc
es

co
un

t
56

54
11

12
13

3
20

56
12

20
10

8

C
ha
tG

PT
0.
64

3
0.
50

0
0.
00

0
0.
08

3
0.
48

1
0.
75

0
0.
07

1
0.
00

0
0.
20

0
0.
21

3

G
itH

ub
C
op

ilo
t

0.
41

1
0.
24

1
0.
00

0
0.
16

7
0.
28

6
0.
95

0
0.
14

3
0.
00

0
0.
00

0
0.
25

0

T
5
+
PI
C
A
R
D

0.
96

4
0.
98

1
0.
90

9
1.
00

0
0.
97

0
0.
95

0
0.
66

1
0.
66

7
0.
25

0
0.
63

9

no
n-
sp
ec
ifi
c
ut
te
ra
nc
es

co
un

t
54

11
12

13
3

15
42

9
15

81

C
ha
tG

PT
0.
55

4
0.
20

4
0.
00

0
0.
16

7
0.
33

1
0.
26

7
0.
07

1
0.
00

0
0.
00

0
0.
08

6

G
itH

ub
C
op

ilo
t

0.
42

9
0.
27

8
0.
00

0
0.
00

0
0.
29

3
0.
40

0
0.
16

7
0.
00

0
0.
00

0
0.
16

0

T
5
+
PI
C
A
R
D

0.
89

3
0.
92

6
1.
00

0
0.
91

7
0.
91

7
0.
66

7
0.
38

1
0.
66

7
0.
20

0
0.
43

2

al
lu

tt
er
an
ce
s

co
un

t
11

2
10

8
22

24
26

6
35

98
21

35
18

9

C
ha
tG

PT
0.
59

8
0.
35

2
0.
00

0
0.
12

5
0.
40

6
0.
54

3
0.
07

1
0.
00

0
0.
11

4
0.
15

9

G
itH

ub
C
op

ilo
t

0.
42

0
0.
25

9
0.
00

0
0.
08

3
0.
28

9
0.
71

4
0.
15

3
0.
00

0
0.
00

0
0.
21

2

T
5
+
PI
C
A
R
D

0.
92

9
0.
95

4
0.
95

5
0.
95

8
0.
94

4
0.
82

9
0.
54

1
0.
66

7
0.
22

9
0.
55

0

123

15 Page 26 of 48

Empirical Software Engineering (2024) 29:15

participants use both options. Among the participants, 90% use an ITS to inquire information
about their daily tasks, e.g., issues assigned to them, 59% inquire information about issues
assigned to others, 18% search for contact information, and 9% gather information about the
progress of a project, e.g., definition of done for feature requests or team velocity.

Assessing SEOSS-Queries’ content When training text-to-SQL models it is necessary
to consider the quality of the data used for training. Hence, we assessed whether utterances
of the SEOSS-Queries dataset are understandable and representative, i.e., describe a rele-
vant information need of the participant. We asked each participant to rate eight utterances
on a five level Likert scale ranging from 1 = not understandable or not representative to
5 = understandable or representative respectively. We observe an average representative-
ness rating of 3.81 and an average understandability rating of 4.32. Thereby, participants
with less than ten years of experience (68%) considered the given utterances less relevant
(3.63), while more experienced ones consider them more relevant (4.2). In contrast, the
understandability rating was almost independent of a participant’s programming experi-
ence. We also asked each participants to rate eight SQL queries, two per complexity level
easy to extra hard, in order to assess the validity of the query complexity concept used
when analyzing the results of text-to-SQL approaches. They rated the queries of the dif-
ferent complexities as follows: easy (84% easy, 16% medium), medium (76% easy, 22%
medium, 2% hard), hard (6% easy, 42% medium, 32% hard, 20% extra hard), and extra
hard (8% easy, 40% medium, 22% hard, 30% extra hard). We observe that participants tend
to rate the complexity of queries automatically assessed as medium to extra hard roughly
one level easier than Yu et al.’s evaluation script (cp. Sec. 4.2). For example, the hard-
ness level of the SQLquerySELECT * FROM issue AS T1 WHERE T1.issue_id
IN (SELECT T2.issue_id FROM issue_attachment AS T2) was automati-
cally assessed as hard, while a majority of participants rated it as medium. This tendency
towards less complex judgements is interesting since we also assessed participant’s capabil-
ities in creating queries below and will report about substantial deficiencies. We argue that
query understanding differs from query creation in complexity, potentially explaining this
divergence. Overall, even if rated somewhat easier participant’s mostly identified the same
relative complexity rating of queries giving the measure credibility.

Assessing participants querying capabilities We asked each participant to satisfy two
information needs verbally described as scenarios by developing an utterance and a respective
query (cp. Sec. 5.2). In total, the set consisted of four scenarios thatwere expected to result in a
query of complexity easy to extra hard respectively.We randomly assigned either the easy and
the extra hard scenario or the medium and the hard scenario to a participant. When evaluating
participants’ utterances and queries, we considered for an utterance whether it correctly
described the given scenario and for a query whether it correctly reflected the given scenario
and whether it was executable. Participants had mostly no problem in expressing utterances
for the easy and medium scenarios with 92% of them matching the given scenario. The
remaining 8% utterances either did not correctly mention the concept they were interested in
or did notmatch the intent of the scenario, e.g., rather than retrieving the column ’fix_version’
from the table ’issue_fix_version’, they retrieved the column ’component’ from the table
’issue_component’. For the hard and extra hard scenarios we evaluated 72% of the developed
utterances as exactly matching the given scenario, while the remaining ones did not perfectly
match the intent of the information need, e.g., participants asked for the names of developers
and the count of issues while they were supposed to retrieve the name of the most productive
developer. Looking at the formulated participants’ utterances we speculate that in some cases
participants failed to formulate an utterance with the expected intent because they were not
familiar enough with the DB schema in our usecase or did not pay enough attention in the

123

Page 27 of 48 15

Empirical Software Engineering (2024) 29:15

wording of the given scenario. To this end, we acknowledge that inmost cases, the formulated
utterances, while not exactlymatching the entire intent of the given scenario, are still partially
correct. For example, in the case where the most productive developer needs to be retrieved,
the expected utterance aims to output the name of a single developer while the formulated
utterances aim to retrieve a list with each developer’s name and the issue she or he is assigned
to. Participants can then find the name of the intended developer by viewing the results from
the executed query. Alternatively, they can refine their utterance in cases in which they are
not satisfied by the result. A conversational aspect can help in cases in which the user needs
to be informed that she or he is searching for a table or column that does not exist (caused
for example from a spelling mistake) or in cases where a column, table or value partially
matches one or more cases in a DB. However, such aspect will require the utterances used
for training to be reformulated into conversational form.

Regarding queries, we found that 56% of the developed queries for the scenarios of com-
plexity level easy or medium were matching the intent and were executable. Main mistakes
were missing quotes (24%), spelling mistakes in table and column names (16%), missing
operators in the WHERE clause (4%). Eventually, only a minor group of 28% of the partici-
pants correctly constructed executable queries for the scenarios of complexity hard and extra
hard. Queries were incomplete (32%), contained syntax errors (28%), or did not correctly
reference the required database concepts (12%) (cp. Fig. 7). This success rate is dependent
on participants’ experience with 54% of the experienced ones, i.e., SQL experience level
good and very good, and merely 7% of the less experienced ones, i.e., SQL experience level
basic and middle, writing a correct query. When asked for which form of retrieval was more
difficult to create for the easy and medium scenarios, participants responded: query (56%),
utterance (3%), and both equally (36%). For the hard and extra hard scenarios, a majority
(76%) considers query creation more difficult, while 4% consider the utterance more difficult
to create and the remaining ones are indifferent. Based on the results of Experiment 2 (cp.
Table 6), we selected the best performing text-to-SQL approach, T5 + Picard, to validate
utterances that we would have developed for the given scenario and used them to predict
queries. We assessed all predicted queries to be correct.

Answer to RQ3 RQ3 aims to examine how well SE professionals can construct NL utter-
ances and SQL queries. In conclusion, our findings suggest that participants had substantial
difficulties in developing queries and that latest text-to-SQL approach could be an actual ben-
efit for SE professionals. On the other hand, we observe that developed utterances, though
of higher quality, are also not always correct potentially suggesting that professionals would
need some form of and time to get acquainted with such an approach or that they had trouble
in understanding the expressed scenario in the survey.

Is imperfectly generated SQL query still useful? We aimed to understand, to what
extent participants can assess imperfectly generated SQL queries in terms of three potential
problems: syntactically incorrect queries, incomplete queries in terms of SQL concepts, and
incomplete queries in terms of database concepts, i.e., tables and columns. First, we asked
participants to assess four presented queries, split into clauses such as SELECT and WHERE,
whether it was syntactically correct and found that none of them did correctly differentiate
all correct and incorrect clauses in the queries. Separated into two clusters, we found that
84% of the participants identified at least 60% of the incorrect clauses in queries, while the
remaining 16% identified less than 30% of the mistaken SQL clauses. Second, we asked
participants to decide per presented query whether it was complete and found that 12% of
them correctly answered this question for all four queries, while 36% did not assess a single
one correctly. Finally, we asked participants to decide per presented query whether it referred
to all necessary column and table names. We found that 40% of the participants correctly

123

15 Page 28 of 48

Empirical Software Engineering (2024) 29:15

Fig. 7 Five examples of mistaken queries developed by survey participants in order to satisfy an information
need expressed as scenario in the survey

solved this task for all four provided queries, while 12% did not correctly decide for a single
one. These results suggest, that in cases, where column or table names are incorrect, users
can still use the wrongly generated SQL queries. However, this is not the case when the
SQL query is incomplete, e.g., has missing SQL clauses. In such cases users are expected to
need more time to complete the SQL. Here, we argue, that it may take SE experts less time,
however, in comparison to writing the SQL from scratch, since the result from text-to-SQL
already focuses on important tables and columns from the DB schema and partially generates
a SQL.

Usefulness of text-to-SQL approaches for SE tasksAmajority of 52% participants vote
for using a combination of text-to-SQL approaches while still being able to manually write
queries to satisfy their information needs, 32% would solely use text-to-SQL models rather
than writing queries themselves and 16% prefer to write SQL themselves. A vast majority of
92% participants answered that they needed multiple tries to construct a desired and correct
query, which suggests that they lose precious development time when constructing queries
manually. Furthermore, we observe that utterances are easier to construct for the participants,

123

Page 29 of 48 15

Empirical Software Engineering (2024) 29:15

especially in cases where the resulting query is of complexity hard or extra hard. Based on
the very good performance observed in Experiment 2 (cp. Table 6) and considering the
challenges that participants face in constructing queries themselves, we argue that text-to-
SQL approaches are ready to help SE experts in satisfying their daily information needs
and thereby improving their development projects. Asked, whether they find text-to-SQL
approaches useful and why, nineteen participants (76%) answered that they find text-to-SQL
approaches helpful for people with basic or no knowledge in SQL, seventeen (68%) consider
the usage of text-to-SQL when constructing SQL queries less time-consuming and three
(12%) see the usage as a good starting point when writing SQL even beyond the application
in a question answering scenario. Four participants (16%) find text-to-SQL error-prone, one
(4%) participant time-consuming, and one (4%) participant expresses concern that wrongly
generated SQL can lead to overestimation and misinterpretation in cases when the user is not
knowledgeable in SQL.

Answer to RQ4 RQ4 aims to examine how open SE professionals are, after knowing
the capabilities of text-to-SQL models, in using such approaches. In general, participants
are open to the use of text-to-SQL approaches in the SE domain. Even though there is still
room for improvement, especially in creating more representative training sets that allow for
a better support of new and unseen queries.

7 Threats to Validity

There are several potential threats to the validity in our study in regard to the performed
experiments and the performed survey.

Construct validity deals with the evaluation ofmeasurements that are used to evaluate the
validity of an investigatedmethod. SQL queries in the SEOSS-Queries dataset weremanually
created by the authors of the paper. In cases, in which alternative SQL queries would have
lead to identical results and satisfied the given utterance, only one query was chosen and
included in the dataset. Exact match accuracy was used to evaluate generated SQL queries
by models. This type of accuracy metric implies that deviations in the SQL keywords used in
the gold and predicted SQL queries would lead to lower accuracy, even in cases in which the
outputted result matches the one in the gold evaluation set. A further threat to consider is the
SQL grammar that is accepted by text-to-SQL approaches. Not all SQL queries, e.g., SQL
containing functions such as strtime or specific SQL keywords such as NOT, CASE, from
the SEOSS-Queries dataset could be processed, meaning that we could not use the entire
SEOSS-Queries dataset for model evaluation. Nevertheless, without the incompatible SQL
queries, we still had a substantial amount of data upon which to base our experiments. A
concern may be expressed regarding the expressiveness of the SE dataset used in our study,
considering that not all SQL grammar can be handled by text-to-SQL approaches from our
study. Since our main goal is to assess whether text-to-SQL approaches can be considered
applicable and useful in the SE domain, we decided not to extend the currently accepted
SQL grammar, as to give a more realistic representation of the current capabilities of such
approaches.

Internal validity represents the confidence with which a cause-and-effect relationship
from a study cannot be explained by other factors. The way data for training and evaluation
was chosenmay have affected our findings.We performed three experiments aiming to inves-
tigate on one hand the importance of what data is used for training and on the other hand
the performance of text-to-SQL approaches on different evaluation sets. We had a rather
small number of 25 participants in our survey potentially not being sufficiently represen-

123

15 Page 30 of 48

Empirical Software Engineering (2024) 29:15

tative. We argue however, that though the sample could clearly be larger, we had a large
and representative variety of participants and observed fairly consistent result allowing us
to draw conclusions on the benefit of text-to-SQL approaches for the SE domain. Three of
the authors evaluated the user survey results. Cases, in which the evaluation of the results
differed between the authors, were discussed and agreed upon.

External validity concerns with the ability to generalize the results beyond the studied
context. The experiments we performed were based on open-source data only. One can argue
that these data not entirely represent data found in commercial projects and can be considered
a potential threat to validity. Given, however, that it is gathered from software tools used by
SE professionals on a daily manner, we argue that it reflects daily information needs of SE
professionals and provides a much more realistic scenario than data generated by solely
artificial means. The work assumes that a database exists in which data from various tools
are stored, without going into further details how such database can be created. Integrating
data from different sources is a challenging task, acknowledged for decades. However, this is
not the main focus of our work and we refer to the following relevant works, e.g., Mäder and
Cleland-Huang (2013); Hassan (2008); Rath et al. (2017); Keivanloo et al. (2012); Kolovos
et al. (2019) and existing tool integration solutions like Apache Builder,2 dealing with this
challenging task.

8 Conclusions

During software development, SE experts can use information stored in development tools’
repositories as a source for satisfying their information needs. Recent advances in machine
learning for NLP lead to a variety of text-to-SQL approaches that can be utilized for satisfying
these information needs based on simply posing a NL question (aka utterance). Our extensive
experiments show impressive results when training latest approaches on SE-specific train-
ing data. In an accompanying user survey, we found that SE professionals have substantial
deficits in satisfying their information needs via SQL queries, but perform much better when
expressing them as utterance demonstrating the benefit that these approaches can offer in
the SE domain. Apart from methodological advancements, a key enabler are representative
training sets. Given the variety of language that can be used when formulating an utterance,
e.g., synonyms, there is clearly a need for further research and the orchestration of richer
datasets. Our survey shows that SE professionals are open to be supported by text-to-SQL
approaches. They find them less time-consuming and expert-level professionals consider
them a good starting point when creating their own SQL queries. We conclude that text-to-
SQL approaches have a place in the SE domain and are ready to be provided to practitioners.

There are several key areas, however, that could contribute to the further improvement and
adoption of text-to-SQLmodels in the SEdomain. It is crucial to have rich and diverse datasets
that encompass a wide range of NL expressions and SQL syntax. With the abundance of SE
tools available today, it seems possible to create datasets that cover manifold information
needs and deliver the required large quantities of training data. The development of text-
to-SQL models would also benefit from established guidelines assisting in the construction
of comprehensive training and test sets, and in selecting appropriate evaluation criteria.
Finally, the effective integration of text-to-SQLmodels into the dailywork of SEprofessionals
needs to be further studied. This involves careful consideration of how these models can be
seamlessly integrated into existing workflows, how to assess the correctness of provided
results and how to deliver results in the most useful form for the developer.

2 provides a way to download artifacts from remote repositories into a local repository.

123

Page 31 of 48 15

Empirical Software Engineering (2024) 29:15

Appendix

Evaluation on Large LanguageModels

Familiarity of ChatGPT with the spider dataset.
When asked about what is the spider dataset, ChatGPT gave the following response:

– “As ofmy last update in September 2021, there is nowidely knownor standardized "spider
dataset." However, it’s possible that new datasets have been created or popularized after
my last update.
Up until that point, one notable dataset related to spiders is the "Spider" dataset, which is
used for the evaluation of natural language interfaces to databases (NLIDBs). The Spider
dataset was introduced by researchers from Stanford University and contains complex
SQL queries paired with corresponding natural language questions. It was designed to
test and benchmark the performance of various natural language understanding and
SQL generation models on the task of converting natural language questions into SQL
queries for relational databases.
If there are any newer datasets or specific contexts you are referring to beyond my last
update, I won’t have information on them. I recommend checking recent research papers,
academic databases, or data repository websites for the latest datasets related to spiders
or any other topics of interest.”

Further inquiry about whether ChatGPT can provide examples of complex SQL queries
inside the Stanford dataset, we received the following response:

• “As an AI language model, I don’t have direct access to specific datasets, including the
Stanford "Spider" dataset, or its contents. However, I can provide you with an example
of a complex SQL query that could be present in such a dataset based on the general
understanding of the type of queries typically found in NLIDB evaluation datasets.
Suppose we have a database schema with two tables: "Employees" and "Departments."
The "Employees" table contains information about employees, such as their ID, name,
department ID, and salary. The "Departments" table contains department information,
including the department ID and the department name.
A complex SQL query in this context might be something like:

Natural Language Question:
List the department names and the average salary of all
departments

with more than 100 employees.

SQL Query:
SELECT d.department_name, AVG(e.salary) AS average_salary
FROM Departments d
JOIN Employees e ON d.department_id = e.department_id
GROUP BY d.department_name
HAVING COUNT(e.employee_id) > 100;

In this example, the SQL query retrieves the department names and the average salary
of departments that have more than 100 employees. It involves a join operation between
the "Departments" and "Employees" tables and uses aggregation functions (AVG) along

123

15 Page 32 of 48

Empirical Software Engineering (2024) 29:15

with the GROUP BY and HAVING clauses to filter the results based on the number of
employees in each department.
Keep in mind that the actual queries in the Stanford "Spider" dataset could be more
complex and diverse, covering a wide range of SQL functionalities and challenging
natural language expressions. To get access to the actual dataset, you should refer to the
official sources provided by Stanford or the research papers related to the dataset.”

Prompting ChatGPT and GitHub Copilot
Both ChatGPT and GitHub Copilot can be employed for the text-to-SQL task. In both

cases a prompt describing the DB schema needs to be first included before querying NL
utterances. Additional information such as what SQL syntax to use and how to display the
generated SQL queries was included in the prompt. For the experiments we used ChatGPT
3.5 and GitHub Copilot v1.96.263

– Prompt:

You are a helpful assistant for generating

syntactically correct read-only SQL to answer a given

NL utterance.

Database: apache-pig

The following is the schema of the tables you can

query:

$ db-schema

If it is necessary to use AS then use it like T1 T2

..., but if the alias name is not going to be used in

the query again, then do not use.

If in using COUNT(*) and COUNT(COLUMN) there is no

difference then use COUNT(*).

Generate SQL with SQLite syntax.

– DB schema

PRAGMA foreign_keys = ON;
CREATE TABLE IF NOT EXISTS "issue_fix_version" (
"issue_id" text NOT NULL,
"fix_version" text NOT NULL,
FOREIGN KEY("issue_id") REFERENCES "issue"("issue_id")

);

123

Page 33 of 48 15

Empirical Software Engineering (2024) 29:15

CREATE TABLE IF NOT EXISTS "issue_component" (
"issue_id" text NOT NULL,
"component" text NOT NULL,
FOREIGN KEY("issue_id") REFERENCES "issue"("issue_id")

);
CREATE TABLE IF NOT EXISTS "issue_comment" (
"issue_id" text NOT NULL,
"username" text,
"display_name" text,
"created_date" text,
"created_date_zoned" text,
"message" text,
FOREIGN KEY("issue_id") REFERENCES "issue"("issue_id")

);
CREATE TABLE IF NOT EXISTS "issue_changelog" (
"issue_id" text NOT NULL,
"username" text,
"display_name" text,
"created_date" text,
"created_date_zoned" text,
"group_id" integer,
"field_type" text,
"field" text,
"from_value" text,
"from_string" text,
"to_value" text,
"to_string" text,
FOREIGN KEY("issue_id") REFERENCES "issue"("issue_id")

);
CREATE TABLE IF NOT EXISTS "issue_attachment" (
"issue_id" text NOT NULL,
"username" text,
"display_name" text,
"created_date" text,
"created_date_zoned" text,
"mime_type" text,
"content" text,
"filename" text,
"size_bytes" integer,
FOREIGN KEY("issue_id") REFERENCES "issue"("issue_id")

);
CREATE TABLE IF NOT EXISTS "issue" (
"issue_id" text NOT NULL UNIQUE,
"type" text,
"created_date" text,
"created_date_zoned" text,
"updated_date" text,
"updated_date_zoned" text,
"resolved_date" text,

123

15 Page 34 of 48

Empirical Software Engineering (2024) 29:15

"resolved_date_zoned" text,
"summary" text,
"description" text,
"priority" text,
"status" text,
"resolution" text,
"assignee" text,
"assignee_username" text,
"reporter" text,
"reporter_username" text,
PRIMARY KEY("issue_id")

);
CREATE TABLE IF NOT EXISTS "code_change" (
"commit_hash" text NOT NULL,
"file_path" text,
"old_file_path" text,
"change_type" text,
"patch_type" text,
"is_deleted" integer,
"sum_added_lines" integer,
"sum_removed_lines" integer,
FOREIGN KEY("commit_hash") REFERENCES "change_set"

("commit_hash")
);
CREATE TABLE IF NOT EXISTS "change_set_link" (
"commit_hash" text NOT NULL,
"issue_id" text NOT NULL,
FOREIGN KEY("commit_hash") REFERENCES "change_set"

("commit_hash"),
FOREIGN KEY("issue_id") REFERENCES "issue"("issue_id")

);
CREATE TABLE IF NOT EXISTS "change_set" (
"commit_hash" text NOT NULL UNIQUE,
"git_repository_id" integer,
"committed_date" text,
"committed_date_zoned" text,
"message" text,
"author" text,
"author_email" text,
"is_merge" integer,
PRIMARY KEY("commit_hash")

);
CREATE TABLE IF NOT EXISTS "meta" (
"key" text NOT NULL UNIQUE,
"value" text NOT NULL

);
CREATE TABLE IF NOT EXISTS "git_repository" (
"git_repository_id" integer NOT NULL UNIQUE,
"name" text NOT NULL,

123

Page 35 of 48 15

Empirical Software Engineering (2024) 29:15

"url" text NOT NULL,
"checkout_hash" text NOT NULL

);
CREATE TABLE "issue_link" (
"source_issue_id" text NOT NULL,
"target_issue_id" text NOT NULL,
"name" text,
"outward_label" text,
"is_containment" integer,
FOREIGN KEY("source_issue_id") REFERENCES "issue"

("issue_id"),
FOREIGN KEY("target_issue_id") REFERENCES "issue"

("issue_id"));
CREATE TABLE IF NOT EXISTS "jira_repository" (
"key" text NOT NULL UNIQUE,
"base_url" text NOT NULL

);
COMMIT;

Overview of questions asked for the user survey

Section 1: Participants’ demographics.

– Q 1: How old are you? (cp. Fig8)
– Q 2: What is your gender? (cp. Fig8)
– Q 3: Are you in a noisy environment? (cp. Fig8)
– Q 4: What is your highest level of education? (cp. Fig8)
– Q 5: How many years of programming experience do you have? (cp. Fig8)
– Q 6: How experienced are you in writing SQL queries? (cp. Fig8)
– Q 7: What is/are your role(s) in software projects? (cp. Fig9)
– Q 8: How often do you resolve work problems/tasks by yourself and how often by asking
and discussing with a colleague? (cp. Fig9)

Section 2: Participants’ experience in satisfying their information needs.

– Q 9: What Issue Tracking Systems are you familiar with? (cp. Fig9)
– Q 10: In what kind of projects did you use Issue Tracking Systems? (cp. Fig10)
– Q 11: How do you extract information from Issue Tracking Systems? (cp. Fig10)
– Q 12: What information do you typically retrieve from an Issue Tracking System? (cp.
Fig10)

– Q 13: How understandable, i.e., is the intent clear, and relevant for SE professionals are
the following NL utterances? (cp. Fig11)

– Q 14: How hard are the following SQL queries to construct? (cp. Fig12)
– Q 15:Match the following natural language utterances to their corresponding SQL query.
(cp. Fig13)

Section 3: Assessing participants querying capabilities

– Q 16: Given a DB schema write the natural language (NL) and SQL based on the given
scenario and rate which (SQL, NL) was harder to construct. (cp. Fig14)

Section 4: Is an imperfectly generated SQL query still useful?

123

15 Page 36 of 48

Empirical Software Engineering (2024) 29:15

– Q 17: Given the given natural language (NL) utterance and the given wrongly generated
SQL queries, can you identify where the mistakes are and rate how difficult it would be
to correct the query? (cp. Figure15)

Section 5: Usefulness of text-to-SQL approaches for SE tasks

– Q 18: Would you prefer to use a text-to-SQL approach rather than writing SQL queries
yourself for satisfying your SE information needs? (cp. Fig16)

– Q 19: When writing SQL do you need multiple tries to get a desired result? (cp. Fig16)
– Q 20: Do you find text-to-SQL models useful? (cp. Fig16)

Detailed Survey Questions

Fig. 8 Survey questions 1 to 6

123

Page 37 of 48 15

Empirical Software Engineering (2024) 29:15

Fig. 9 Survey questions 7 to 9

123

15 Page 38 of 48

Empirical Software Engineering (2024) 29:15

Fig. 10 Survey questions 10 to 12

123

Page 39 of 48 15

Empirical Software Engineering (2024) 29:15

Fig. 11 Excerpt of survey question 13

123

15 Page 40 of 48

Empirical Software Engineering (2024) 29:15

Fig. 12 Excerpt of Survey question 14

123

Page 41 of 48 15

Empirical Software Engineering (2024) 29:15

Fig. 13 Excerpt of survey question 15

123

15 Page 42 of 48

Empirical Software Engineering (2024) 29:15

Fig. 14 Excerpt of survey question 16

123

Page 43 of 48 15

Empirical Software Engineering (2024) 29:15

Fig. 15 Excerpt of survey question 17

123

15 Page 44 of 48

Empirical Software Engineering (2024) 29:15

Fig. 16 Survey questions 18 to 20

Acknowledgements Our work is funded by DFG grant: MA 5030/3-1 and BMBF grant: 16DHB4009.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability The datasets analysed during the current study are available in a Github repository (Spider
Leaderboard 2023) (Spider) and a Figshare repository (SEOSS-Queries Repository 2023) (SEOSS-Queries).

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

123

Page 45 of 48 15

Empirical Software Engineering (2024) 29:15

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdellatif A, Badran K, Shihab E (2020) Msrbot: Using bots to answer questions from software repositories.
Empir Softw Eng 25(3):1834–1863

Apache Pig project. https://pig.apache.org/. Accessed 12 January 2023
Evaluation script spider (2023) https://github.com/taoyds/spider. Accessed 12 January 2023
Assembla (2023) https://get.assembla.com/. Accessed 12 January 2023
Atlassian JIRA (2023) https://www.atlassian.com/de/software/jira. Accessed 12 January 2023
Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate.

In: ICLR
Begel A, Zimmermann T (2014) Analyze this! 145 questions for data scientists in software engineering. In:

ICSE, pp. 12–23. ACM
Bertram D, Voida A, Greenberg S, Walker RJ (2010) Communication, collaboration, and bugs: the social

nature of issue tracking in small, collocated teams. In: CSCW, pp. 291–300. ACM
Cao R, Chen L, Chen Z, Zhao Y, Zhu S, Yu K (2021) LGESQL: Line graph enhanced textto- SQL model with

mixed local and non-local relations. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 2541–2555. Association for Computational Linguistics, Online. https://
doi.org/10.18653/v1/2021.acllong.198. https://aclanthology.org/2021.acl-long.198

Ciniselli M, Cooper N, Pascarella L, Mastropaolo A, Aghajani E, Poshyvanyk D, Penta MD, Bavota G (2022)
An empirical study on the usage of transformer models for code completion. IEEE Trans Software Eng
48(12):4818–4837

Clark K, LuongM, Le QV,Manning CD (2020) ELECTRA: pre-training text encoders as discriminators rather
than generators. In: ICLR OpenReview net

Codd EF (1970) A relational model of data for large shared data banks. Commun. ACM 13(6):377–387
Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for

language understanding. In: NAACL-HLT (1):4171–4186. Association for Computational Linguistics
Fritz T, Murphy GC (2010) Using information fragments to answer the questions developers ask. In: ICSE

(1):175–184. ACM
Git (2023) https://git-scm.com/. Accessed 12 January 2023
Github (2023) https://github.com/. Accessed 12 January 2023
GitHub Copilot (2023) https://github.com/features/copilot. Accessed 18 Juli 2023
GodfreyMW,Hassan AE, Herbsleb JD,MurphyGC, RobillardMP, Devanbu PT,Mockus A, Perry DE, Notkin

D (2009) Future of mining software archives: A roundtable. IEEE Softw 26(1):67–70. https://doi.org/
10.1109/MS.2009.10

Green BF, Wolf AK, Chomsky C, Laughery K (1961) Baseball: An automatic question answerer. In: Papers
Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-
ACM’61 (Western), vol. 19, pp. 219-224. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/1460690.1460714

Guo J, Zhan Z, Gao Y, Xiao Y, Lou J, Liu T, Zhang D (2019) Towards complex text-tosql in cross-domain
database with intermediate representation. In: ACL (1):4524–4535. Association for Computational Lin-
guistics

Hassan AE (2006) Mining software repositories to assist developers and support managers. In: ICSM, pp.
339-342. IEEE Computer Society

Hassan AE (2008) The road ahead for mining software repositories. In: 2008 IEEE International Conference
on Software Maintenance 48–57. https://doi.org/10.1109/FOSM.2008.4659248

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
Janke M, Mäder P (2022) Graph based mining of code change patterns from version control commits. IEEE

Trans Software Eng 48(3):848–863

123

15 Page 46 of 48

http://creativecommons.org/licenses/by/4.0/
https://pig.apache.org/
https://github.com/taoyds/spider
https://get.assembla.com/
https://www.atlassian.com/de/software/jira
https://doi.org/10.18653/v1/2021.acllong.198
https://doi.org/10.18653/v1/2021.acllong.198
https://aclanthology.org/2021.acl-long.198
https://git-scm.com/
https://github.com/
https://github.com/features/copilot
https://doi.org/10.1109/MS.2009.10
https://doi.org/10.1109/MS.2009.10
https://doi.org/10.1145/1460690.1460714
https://doi.org/10.1109/FOSM.2008.4659248

Empirical Software Engineering (2024) 29:15

Kajiura T, Souma N, Sato M, Takahashi M, Kuramitsu K (2022) An additional approach to pre-trained code
model with multilingual natural languages. In: APSEC 580–581. IEEE

Keivanloo I, Forbes C, Hmood A, Erfani M, Neal C, Peristerakis G, Rilling J (2012) A linked data platform for
mining software repositories. In: 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR) 32–35. https://doi.org/10.1109/MSR.2012.6224296

Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In: ICSE
344–353. IEEE Computer Society

Kojima T, Gu SS, Reid M, Matsuo Y, Iwasawa Y (2022) Large language models are zero-shot reasoners.
In: NeurIPS. http://papers.nips.cc/paperfiles/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-
Abstract-Conference.html

Kolovos D, Neubauer P, Barmpis K, Matragkas N, Paige R (2019) Crossflow: A framework for distributed
mining of software repositories. In: 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR) 155–159. https://doi.org/10.1109/MSR.2019.00032

Kudo T, Richardson J (2018) Sentencepiece: A simple and language independent subword tokenizer and deto-
kenizer for neural text processing. In: EMNLP (Demonstration) 66–71. Association for Computational
Linguistics

Lee C, Gottschlich J, Roth D (2021) Toward code generation: A survey and lessons from semantic parsing.
CoRR arXiv:2105.03317

Lin J, Liu Y, Guo J, Cleland-Huang J, Goss W, Liu W, Lohar S, Monaikul N, Rasin A (2017) Tiqi: a natural
language interface for querying software project data. In: ASE 973–977. IEEE Computer Society

Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta:
A robustly optimized BERT pretraining approach. CoRR arXiv:1907.11692

Lohar S, Cleland-Huang J, Rasin A, Mäder P (2015) Live study proposal: Collecting natural language trace
queries. In: R. Matulevicius, T. Weyer, P. Forbrig, A. Herrmann, M. Daneva, J. DÖrr, A. Hoffmann,
A. Kalenborn, M. Trapp, G. Herzwurm, W. Pietsch, A. Lenz, S. Schockert, M. Daun, C. Palomares, I.
Morales-Ramirez, B. Tenbergen, B. Paech, R.J. Wieringa, E. Knauss, A. Perini (eds.) Joint Proceedings
of REFSQ-2015 Workshops, Research Method Track, and Poster Track co-located with the 21st Inter-
national Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2015),
Essen, Germany, March 23, 2015, CEURWorkshop Proceedings 1342:207– 210. CEUR-WS.org. http://
ceur-ws.org/Vol-1342/preface-RMT.pdf

Lu H, Chan HC, Wei KK (1993) A survey on usage of SQL. SIGMOD Rec 22(4):60–65
Mäder P, Cleland-Huang J (2013) A visual language for modeling and executing traceability queries. Softw.

Syst. Model. 12(3):537–553. https://doi.org/10.1007/s10270-012-0237-0
Mastropaolo A, Pascarella L, Bavota G (2022) Using deep learning to generate complete log statements. In:

ICSE 2279–2290. ACM
Maven (2023) https://maven.apache.org/. Accessed 12 January 2023
Nan L, Hsieh C, Mao Z, Lin XV, Verma N, Zhang R, Kryscinski W, Schoelkopf H, Kong R, Tang X, Mutuma

M, Rosand B, Trindade I, Bandaru R, Cunningham J, Xiong C, Radev DR (2022) Fetaqa: Free-form table
question answering. Trans Assoc Comput Linguistics 10:35–49

OpenAI ChatGPT (2023) https://openai.com/blog/chatgpt. Accessed 18 Juli 2023
Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: EMNLP

1532–1543. ACL
Portillo-Rodríguez J, Vizcaíno A, Ebert C, Piattini M (2010) Tools to support global software development

processes: A survey. In: ICGSE 13–22. IEEE Computer Society
Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2020) Exploring the

limits of transfer learning with a unified text-totext transformer. Journal of Machine Learning Research
21(140):1–67. http://jmlr.org/papers/v21/20-074.html

Rath M, Mäder P (2019) The seoss 33 dataset - requirements, bug reports, code history, and trace links for
entire projects. Data in Brief 25:104005. https://doi.org/10.1016/j.dib.2019.104005

Rath M, Rempel P, Mäder, P (2017) The ilmseven dataset. In: 2017 IEEE 25th International Requirements
Engineering Conference (RE) 516–519. https://doi.org/10.1109/RE.2017.18

Rath M, Rendall J, Guo JLC, Cleland-Huang J, Mäder P (2018) Traceability in the wild: automatically aug-
menting incomplete trace links. In: ICSE 834–845. ACM

Requirements management products (2023) https://www.ibm.com/dede/products/requirements-management.
Online; accessed 12 January 2023

RubinO,Berant J (2021) Smbop: Semi-autoregressive bottom-up semantic parsing. In:NAACL-HLT311–324.
Association for Computational Linguistics

Scholak T, Schucher N, Bahdanau D (2021) PICARD: Parsing incrementally for constrained auto-regressive
decoding from languagemodels. In: Proceedings of the 2021Conference onEmpiricalMethods inNatural

123

Page 47 of 48 15

https://doi.org/10.1109/MSR.2012.6224296
http://papers.nips.cc/paper files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.1109/MSR.2019.00032
http://arxiv.org/abs/2105.03317
http://arxiv.org/abs/1907.11692
http://ceur-ws.org/Vol-1342/preface-RMT.pdf
http://ceur-ws.org/Vol-1342/preface-RMT.pdf
https://doi.org/10.1007/s10270-012-0237-0
https://maven.apache.org/
https://openai.com/blog/chatgpt
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1016/j.dib.2019.104005
https://doi.org/10.1109/RE.2017.18
https://www.ibm.com/dede/products/requirements-management

Empirical Software Engineering (2024) 29:15

Language Processing, pp. 9895–9901. Association for Computational Linguistics. https://aclanthology.
org/2021.emnlp-main.779

Scholak T, Schucher N, Bahdanau D (2021) PICARD: parsing incrementally for constrained auto-regressive
decoding from language models. In: EMNLP (1):9895–9901. Association for Computational Linguistics

Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process
45(11):2673–2681

Selenium site (2023) https://www.selenium.dev/. Accessed 12 January 2023
SEOSS-Queries Repository (2023) https://figshare.com/s/e2190f2d32798ce1d0fd. Accessed 12 January 2023
ShangW, Nagappan M, Hassan AE, Jiang ZM (2014) Understanding log lines using development knowledge.

In: ICSME 21–30. IEEE Computer Society
Shaw P, Chang MW, Pasupat P, Toutanova K (2021) Compositional generalization and natural language

variation: Can a semantic parsing approach handle both? In: Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 922-938. Association for Computational Linguistics,
Online. https://doi.org/10.18653/v1/2021.acl-long.75

Shaw P, Uszkoreit J, Vaswani A (2018) Self-attention with relative position representations. In: NAACL-HLT
(2):464–468. Association for Computational Linguistics

Spider Leaderboard (2023) https://yale-lily.github.io/spider. Accessed 12 January 2023
SQLNetSpider version (2023) https://github.com/taoyds/spider/tree/master/baselines/sqlnet. Accessed 12

January 2023
Störrle H (2011) VMQL: A visual language for ad-hoc model querying. J Vis Lang Comput 22(1):3–29
Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: NIPS 3104–

3112
Tomova M, Hofmann M, Mäder P (2022) Seoss-queries - a software engineering dataset for text-to-sql and

question answering tasks. Data in Brief 42:108211. https://doi.org/10.1016/j.dib.2022.108211
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention

is all you need. In: NIPS 5998–6008
Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. In: NIPS 2692–2700
Waltz DL (1978) An english language question answering system for a large relational database. Commun.

ACM 21(7):526–539. https://doi.org/10.1145/359545.359550
Wang B, Shin R, Liu X, Polozov O, Richardson M (2020) RAT-SQL: relation-aware schema encoding and

linking for text-to-sql parsers. In: ACL, pp. 7567–7578. Association for Computational Linguistics
Woods W (1977) Lunar Rocks in Natural English: Explorations in Natural Language Question Answering

5:521–569. North-Holland
XuX,LiuC, SongD (2017) Sqlnet: Generating structured queries fromnatural languagewithout reinforcement

learning. CoRR arXiv:1711.04436
Yin P, Neubig G (2017) A syntactic neural model for general-purpose code generation. In: ACL (1):440–450.

Association for Computational Linguistics
Yu T, Li Z, Zhang Z, Zhang R, Radev DR (2018) Typesql: Knowledge-based type-aware neural text-to-sql

generation. In: NAACL-HLT (2):588–594. Association for Computational Linguistics
Yu T, Wu C, Lin XV, Wang B, Tan YC, Yang X, Radev DR, Socher R, Xiong C (2021) Grappa: Grammar-

augmented pre-training for table semantic parsing. In: ICLR. Open- Review net
Yu T, Zhang R, Yang K, Yasunaga M, Wang D, Li Z, Ma J, Li I, Yao Q, Roman S, Zhang Z, Radev DR

(2018) Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and
text-to-sql task. In: EMNLP 3911–3921. Association for Computational Linguistics

Zhang X, Yin F, Ma G, Ge B, Xiao W (2020) F-SQL: fuse table schema and table content for single-table
text2sql generation. IEEE Access 8:136409–136420

Zhong V, Xiong C, Socher R (2017) Seq2sql: Generating structured queries from natural language using
reinforcement learning. CoRR arXiv:1709.00103

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

15 Page 48 of 48

https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://www.selenium.dev/
https://figshare.com/s/e2190f2d32798ce1d0fd
https://doi.org/10.18653/v1/2021.acl-long.75
https://yale-lily.github.io/spider
https://github.com/taoyds/spider/tree/master/baselines/sqlnet
https://doi.org/10.1016/j.dib.2022.108211
https://doi.org/10.1145/359545.359550
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1709.00103

	Assessing the utility of text-to-SQL approaches for satisfying software developer information needs
	Abstract
	1 Introduction
	2 Related Work
	3 Text-to-SQL Approaches
	3.1 Text-to-SQL Method 1: SQLNet
	3.2 Text-to-SQL Method 2: RatSQL
	3.3 Text-to-SQL Method 3: LGESQL
	3.4 Text-to-SQL Method 4: SmBop+GraPPa
	3.5 Text-to-SQL Method 5: T5 + PICARD
	3.6 Comparison of the Text-to-SQL Approaches

	4 Datasets
	4.1 The Spider Dataset
	4.2 The SEOSS-Queries Dataset

	5 Evaluation of Text-to-SQL Approaches for SE Tasks
	5.1 Quantitative Evaluation of Text-to-SQL Approaches
	5.2 Survey on Usefulness of Text-to-SQL Approaches in the SE Domain

	6 Evaluation Results and Discussion
	6.1 Utilizing Text-to-SQL Out of the Box for SE Tasks (Experiment 1)
	6.2 Text-to-SQL Specifically Trained for SE Needs (Experiment 2)
	6.3 Predicting Non-Trained SE Utterance-Query Pairs (Experiment 3)
	6.4 Large-Language-Models as Alternative to Text-to-SQL Models.
	6.5 Understanding SE users information needs and text-to-SQL utility (Survey)

	7 Threats to Validity
	8 Conclusions
	Appendix
	Evaluation on Large Language Models
	Overview of questions asked for the user survey
	Detailed Survey Questions

	Acknowledgements
	References

