
https://doi.org/10.1007/s10664-023-10369-w

GITHUB ACTIONS: The Impact on the Pull Request Process

Mairieli Wessel1 · Joseph Vargovich2 ·Marco A. Gerosa2 · Christoph Treude3

Accepted: 13 July 2023 /
© The Author(s) 2023

Abstract
Software projects frequently use automation tools to perform repetitive activities in the dis-
tributed software development process. Recently, GitHub introduced GitHub Actions, a
feature providing automated workflows for software projects. Understanding and anticipat-
ing the effects of adopting such technology is important for planning and management. Our
research investigates how projects use GitHub Actions, what the developers discuss about
them, and how project activity indicators change after their adoption. Our results indicate
that 1,489 out of 5,000 most popular repositories (almost 30% of our sample) adopt GitHub
Actions and that developers frequently ask for help implementing them. Our findings also
suggest that the adoption of GitHub Actions leads to more rejections of pull requests
(PRs), more communication in accepted PRs and less communication in rejected PRs, fewer
commits in accepted PRs and more commits in rejected PRs, and more time to accept a PR.
We found similar results when segmenting our results by categories of GitHub Actions.
We suggest practitioners consider these effects when adopting GitHub Actions on their
projects.

Keywords GitHub actions · Bots · Automated workflow · Software repositories ·
Regression discontinuity design

Communicated by: Romain Robbes

B Mairieli Wessel
mairieli.wessel@ru.nl

Joseph Vargovich
jrv233@nau.edu

Marco A. Gerosa
Marco.Gerosa@nau.edu

Christoph Treude
christoph.treude@unimelb.edu.au

1 Radboud University, Nijmegen, The Netherlands

2 Northern Arizona University, Flagstaff, Arizona, USA

3 University of Melbourne, Melbourne, Australia

0123456789().: V,-vol 123

Published online: 26 September 2023

Empirical Software Engineering (2023) 28:131

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10369-w&domain=pdf
http://orcid.org/0000-0001-8619-726X
https://orcid.org/0000-0003-1399-7535
https://orcid.org/0000-0002-6919-2149

1 Introduction

Social coding platforms, such as GitHub, have changed the collaborative nature of open-
source software development by integrating mechanisms such as issue reporting and pull
requests into distributed version control tools (Dabbish et al. 2012; Gousios et al. 2014).
This pull-based development workflow offers new opportunities for community engagement
but increases the workload for repository maintainers, who need to communicate, review
code, deal with contributor license agreement issues, explain project guidelines, run tests,
and merge pull requests (Gousios et al. 2016).

To reduce this intensive workload, developers often rely on automation tools to perform
repetitive tasks, such as to check whether the code builds, the tests pass, and the contri-
bution conforms to a defined style guide (Kavaler et al. 2019). GitHub projects adopt, for
example, tools to support Continuous Integration and Continuous Delivery or Deployment
(CI/CD) (Zhao et al. 2017; Cassee et al. 2020) and for code review (Kavaler et al. 2019;
Wessel et al. 2020). In recent years, development bots have been widely adopted to auto-
mate predefined tasks around pull requests (Wessel et al. 2018). By automating part of the
workflow, developers expect to increase both productivity and quality (Vasilescu et al. 2015).

To further support automation, GitHub recently introduced GitHub Actions 1(the fea-
ture was made available to the public in November 2019). GitHub Actions allow the
automation of tasks based on various triggers (e.g., commits, pull requests, issues, comments,
etc.) and can be easily shared between repositories, automating aspects of how developers
build, test, and deploy software projects.

However, little is known about the impact on the project activities when adoptingGitHub
Actions and the challenges imposed on the project development process. In this paper,
we aim to understand how software developers use GitHub Actions to automate their
workflows and how the dynamics of pull requests of GitHub projects change following the
adoption of GitHub Actions.

To achieve our goal, we address the following research questions:

Research Question 1

How do open-source software projects use GitHub Actions?

We aim to understand how commonly repositories use GitHub Actions and for what
purposes. As a result of this analysis, we found a considerable number of active repositories
(1,489 out of 5,000 repositories) adopted GitHub Actions. This is a dramatic change when
compared to the early adoption of GitHub Actions (Kinsman et al. 2021) (only 0.7% of the
studies repositories adopted it). Actions are spread across 20 categories, including utilities,
continuous integration, code quality, and deployment.

Research Question 2

How is the use of GitHub Actions discussed by developers?

To gain insight into how developers perceive GitHub Actions, we manually analyzed
a set of discussion threads and developer conversations on Discord that mention GitHub
Actions. We found distinct categories of discussions related to Actions, including help
requests, the potential of using them, issues reproducing output with Actions, and plans to
use GitHub Actions.

1 https://github.com/features/actions

123

131 Page 2 of 35 Empirical Software Engineering (2023) 28:131

https://github.com/features/actions

Research Question 3

What is the impact of GitHub Actions on the dynamics of pull requests?

In this research question, we investigate whether project activity indicators, such as the
number of pull requests, comments, commits, and time to close pull requests change after
GitHub Actions adoption. We used a Regression Discontinuity Design (RDD) (Thistleth-
waite and Campbell 1960) to model the effect of Action adoption across 662 projects that had
adopted GitHub Actions for at least 12 months. Our findings also suggest that the activity
indicators change in opposite directions for accepted and rejected pull requests (PRs). Fewer
pull requests are being accepted after adopting GitHub Actions, and these pull requests
usually have more comments and fewer commits. In contrast, there are more rejected pull
requests, with fewer comments and more commits.

Research Question 4

How does the impact of GitHub Actions differ across categories?

As Actions are diverse and might perform a diverse range of tasks on GitHub repositories,
we also investigated whether the impact of GitHub Actions differs across Action cate-
gories. The literature recommends employing a segmented analysis to further explain the
general findings from statistical models (Wessel et al. 2022). In this research question, as in
RQ3, we used a Regression Discontinuity Design model to measure the impact of adoption
in project indicators across the four most popular Action categories: Utilities, Continuous
Integration, Code Quality, and Deployment. Results obtained in the segmented analysis were
similar to the overall results (from RQ3), except for code quality Actions, which led to fewer
rejected pull requests.

The main contributions of this paper are:

1. Characterization of the usage of GitHub Actions.
2. An understanding of how developers discuss GitHub Actions.
3. An understanding of how GitHub Actions’ adoption impacts project activities.

This paper extends our prior work (Kinsman et al. 2021), published at MSR 2021 (The
Mining Software Repositories Conference), along two major dimensions: the data used and
the analyses performed. The data used in this paper broadens our previouswork in threemajor
dimensions: time (24 vs. 12 months after GitHub Actionswere introduced), the number of
unique Actions (973 vs. 708), and the dataset of projects used (5,000 most popular GitHub
projects vs. RepoReapers dataset). In this extension, we also added RQ4 and included new
regression discontinuity design analyses split by Action categories.

2 Workflow Automation withGITHUB ACTIONS

GitHub Actions is an event-driven API the GitHub platform provides to automate devel-
opment workflows. GitHub Actions can run a series of commands after a specified event
has occurred. An event is a specific activity that triggers a workflow run, as shown in Fig. 1

(see the icon). For example, a workflow is triggered when a pull request is created for a
repository or when a pull request is merged into the main branch. Workflows are defined in
the .github/workflows/ directory and use YAML syntax, having either a .yml or .yaml file
extension.

123

Page 3 of 35 131Empirical Software Engineering (2023) 28:131

Main branch

Submitting a
Pull Request

Creating a
branch

Discussions, reviews,
and improvements

Merging a Pull
Request

Commiting new
contribution Deploying

Fig. 1 GitHub workflow automation with GitHub Actions (adapted from GitHub)

A workflow can contain one or more Actions. GitHub allows developers to build reusable
components, called Actions. Developers create Docker and JavaScript Actions, and both
require a metadata file to define the Action’s inputs, outputs, and entry point.

After the successful execution of a workflow, the outputs can be displayed in different
ways, such as through a GitHub Action bot. Like many other bots on GitHub, this bot is
implemented as aGitHub user that can submit code contributions, interact through comments,
and merge or close pull requests (Wessel and Steinmacher 2020).

As an example of GitHub Actions adoption, consider the case of the projectGammapy2,
an open-source Python package for gamma-ray astronomy. As of the 13th of November
2019, the Gammapy community adopted a GitHub Action called First Interaction3, which
is responsible for identifying and welcoming newcomers when they create their first issue or
open their first pull request on a project. As shown in Fig. 2a, Gammapy created a workflow
called Greeting that both new pull requests and issues might trigger, as defined by the on
keyword. The output of theFirst InteractionAction is displayed through an issue/pull request
comment posted by GitHub Action Bot when a new contributor authors a new pull request
or issue. An example of this Action interaction on a GitHub issue is shown in Fig. 2b.

Development bots and workflows that rely on GitHub Actions are already used in
hundreds of thousands of repositories, justifying the need for further studies on these automa-
tion mechanisms’ evolution and impact on collaborative software development practices.
Recently, developers published GitHub Actions variants for many well-known bots (e.g.,
Coveralls, Codecov, Snyk), and these Actions are rapidly increasing in popularity (Golzadeh
et al. 2020).

3 RelatedWork

Previous work has investigated a variety of automation tools, including development bots,
continuous integration/delivery, and GitHub Actions.

3.1 Development Bots

Development bots have been proposed to automate technical and social aspects of software
development activities (Lin et al. 2016), such as communication and decision-making (Storey
and Zagalsky 2016). For example, on GitHub, bots are often integrated into the pull request
workflow (Erlenhov et al. 2019) to perform a variety of tasks, including repairing bugs

2 https://github.com/gammapy/gammapy
3 https://github.com/marketplace/actions/first-interaction

123

131 Page 4 of 35 Empirical Software Engineering (2023) 28:131

https://github.com/gammapy/gammapy
https://github.com/marketplace/actions/first-interaction

Fig. 2 Example of First Interaction Action on Gammapy project

(Monperrus 2019), refactoring source code (Wyrich and Bogner 2019), recommending tools
to help developers (Brown and Parnin 2019), and updating outdated dependencies (Mirhos-
seini and Parnin 2017). Wessel et al. (2018) identified 13 categories of development bots. van
Tonder and Le Goues (2019) believe development bots are a promising addition to a devel-
oper’s toolkit as they bridge the gap between human software development and automated
processes.

However, understanding the impact of development bots on human developers’ interac-
tions is amajor challenge. Storey andZagalsky (2016) highlight that theway that development
bots interact on pull requests can be disruptive and perceived as unwelcoming. Wessel et al.
(2021) identified several challenges caused by bots in pull requests and theorized how human
developers perceive annoying bot behaviors as noise on social coding platforms.Wessel et al.
(2020, 2022) also found that adopting code review bots changes team dynamics, for example,
by increasing the number of monthly merged pull requests and decreasing communication
among developers.

3.2 Continuous Integration and Continuous Delivery

Continuous Integration and Continuous Delivery (CI/CD) tools aim to bridge development
and operation activities by automating the building, testing, and deployment of appli-
cations (Duvall et al. 2007). These tools constantly compile incremental code changes

123

Page 5 of 35 131Empirical Software Engineering (2023) 28:131

made by developers, build software deliverables, run automated tests and verifications, and
deploy applications to servers, improving software quality and productivity (Duvall et al.
2007). Vasilescu et al. (2015) show that using CI leads to more pull requests being processed,
and thus more pull requests being accepted or rejected. In the context of Computer Science
education, Hu and Gehringer (2019) set up a continuous integration service on GitHub to
provide feedback to students about code style and functionality. Prior work has also investi-
gated the impact of CI and code review tools on GitHub projects (Zhao et al. 2017; Kavaler
et al. 2019; Cassee et al. 2020) across time. While Zhao et al. (2017) and Cassee et al. (2020)
focused on the impact of the Travis CI tool’s introduction in development practices, Kavaler
et al. (2019) examined the impact of linters, dependency managers, and coverage reporter
tools. A survey by Chen et al. (2001) reports that of the hundreds of billions of dollars
spent on developer wages, up to 25% accounts for fixing bugs. Continuous integration and
other automation tools thus hold huge potential to further reduce human effort and costs by
automatically fixing bugs.

3.3 GITHUB ACTIONS

GitHub Actions offer built-in support to automate parts of the software development
workflows that exceed what CI/CD tools can achieve. Golzadeh et al. (2022) showed that, in
18 months of existence, GitHub Actions had become the dominant CI service, covering
more than half of all repositories with a CI. Software projects are still adjusting GitHub
Actions to their dynamics. Valenzuela-Toledo and Bergel (2022) found 11 reasons for
changing the GitHub Actions’ workflow. Saroar and Nayebi (2023) conducted a survey to
understand the motivations and best practices in using, developing, and debugging GitHub
Actions. Calefato et al. (2022) identified a set of practices for using GitHub Actions
in projects related to machine learning-enabled systems. In a broader view, Decan et al.
(2022) found that the reuse of actions is a common practice. Researchers are also start-
ing to provide academic tools via GitHub Actions to facilitate the integration with real
projects. For example, Cordeiro et al. (2021) offer a GitHub Action for detecting flakiness
in time-constrained tests. Finally, in a prior work Kinsman et al. (2021), we investigate how
developers useGitHub Actions and how several activity indicators change after their adop-
tion. We explain how this paper extends our prior work in Section 1. Chen et al. (2021) also
extended our prior work, finding that 22% of popular projects adopt GitHub Actions and
that adoption correlates with project popularity and number of contributors and varies per
programming language. They also found that after adopting GitHub Actions, the number
of commits, number of pull requests, issue latency, and pull request latency tend to decrease,
while the number of issues closed tends to increase.

4 Research Design

This study aims to understandGitHub Actions usage and the effects onGitHub projects. To
achieve our goal, we employed a mixed-methods approach combining a time series analysis
on a sample of open-source repositories and qualitative analysis of developers impressions
about GitHub Actions. We present our study design, data collection, and analysis proce-
dures in the following.

123

131 Page 6 of 35 Empirical Software Engineering (2023) 28:131

4.1 Selecting Projects

We assembled a dataset of GitHub open-source projects that adopted GitHub Actions at
somepoint in their history.We started by selecting the 5,000most-starredGitHub repositories.
We used stars as a proxy for popularity. We then filtered this dataset to keep open-source
software projects that had adopted at least one Action during their lifetime. To identify these
projects, we retrieved data from the GitHub API using a Ruby toolkit called Octokit.rb.4 To
determine if the project used any Actions, we verified whether the repositories contained
files in yaml format in the ./github/workflows directory. This filtered dataset comprised 1,489
projects.

4.2 Analyzing the Use ofGITHUB ACTIONS

First, we collected and quantitatively analyzed the number of projects using GitHub
Actions and the number of GitHub Actions per project (RQ1). We also automatically
analyzed the workflow files of the studied projects, searching for the category, descrip-
tion, and whether GitHub verified the Action. We determined the Actions used within a
workflowby extracting the ‘uses:ACTION@VERSION.’ For example, in ‘uses: actions/first-
interaction@v1’ the First interaction5 was identified and extracted. In the case of multiple
Actions in a single workflow, all of them were identified.

4.3 CategorizingGITHUB ACTIONS Discussions

To answerRQ2, wemanually investigated howGitHub Actionswere discussed in project-
specific channels, includingGitHubDiscussions (Hata et al. 2022) andDiscord chats (Subash
et al. 2022).

FilteringGitHubDiscussions andDiscord chats.We started by investigating theGitHub
Discussions on our selected projects. Out of the 5,000 repositories in our dataset, 897 (18%)
had the Discussions feature enabled at the time of data collection, and 830 (17%) contained
at least one Discussion thread. These 830 repositories account for 88,443 Discussion threads
(minimum: 1, median: 22, maximum: 10,129), containing 326,033 posts. To complement
our analysis, we have also considered developers’ conversations on Discord, as they may use
other communication channels to discuss GitHub Actions. For this analysis, we used the
DISCO dataset (Subash et al. 2022). This dataset consists of one-year public conversations
on Discord of five software development communities (Python, Go, Clojure, and Racket).

Aiming for high precision rather than recall, we applied a strict filter to these GitHub Dis-
cussion posts and chat excerpts and selected only those with the exact string “GitHubAction”
(case insensitive). We avoided searching for strings like “.github/workflows/” and “work-
flow”, which tend to generate many false positives. An exploratory analysis of the DISCO
dataset showed that strings like “.github/workflows/” are rarely mentioned, and “workflow”
mostly appears in unrelated contexts.

This filtering step resulted in (i) 573 posts originating from 458 threads in 148 different
repositories and (ii) 40 excerpts from two distinct communities (34 and 6 excerpts from
Python and Go, respectively).

4 http://octokit.github.io/octokit.rb
5 https://github.com/marketplace/actions/first-interaction

123

Page 7 of 35 131Empirical Software Engineering (2023) 28:131

http://octokit.github.io/octokit.rb
https://github.com/marketplace/actions/first-interaction

Qualitative analysis.We applied qualitative coding to the 458 threads to understand how
developers discuss GitHub Actions. One author developed a preliminary coding schema
based on a random sample of 20 threads, which was refined through discussions with all
authors. Two authors then independently coded another set of 20 threads and measured
inter-rater agreement. Based on achieving an ‘almost perfect’ agreement (Cohen’s κ =
0.939 (McHugh2012)) and resolvingdisagreements throughdiscussion, the same twoauthors
divided the remaining threads equally among them and completed the annotation of all 458
threads. We also applied qualitative coding to the 40 chat excerpts from the DISCO dataset.
Two authors then independently coded all chat excerpts based on the defined code schema
and measured inter-rater agreement (Cohen’s κ = 1). Section 5.2 reports the coding schema
and the detailed results for both Discussion threads and Discord conversations.

4.4 Time Series Analysis

We conducted a time series analysis to answer RQ3 and RQ4. We collected longitudinal
data for different outcome variables and treated the adoption of GitHub Actions by each
project in our dataset as an “intervention”. This way, we could align all the time series of
project-level outcome variables on the intervention date and compare their trends before and
after adopting GitHub Actions. The following subsections detail the steps involved, from
aggregating the project variables to running the statistical models.

4.4.1 Aggregating Project Variables

We gathered Action data within an observation period of 12 months before and 12 months
after the Action adoption within each project. Similar to previous work (Zhao et al. 2017;
Wessel et al. 2020; Cassee et al. 2020; Kinsman et al. 2021), we exclude 30 days around
the Action adoption date to avoid the influence of the instability caused during this period.
Afterward, we aggregated individual pull request data into monthly periods, considering 12
months before and after the Action introduction. Next, we checked the activity level of the
candidate projects, since many projects on GitHub are inactive (Gousios et al. 2014). Our
data set comprises 662 active projects that had been using at least one GitHub Action for 12
months.

We focused on the same pull request-related variables as in previous work (Wessel et al.
2020; Kinsman et al. 2021):

Merged/non-merged pull requests: the number of monthly contributions (pull requests)
that have been merged (accepted) or closed but not merged (rejected) into the project, com-
puted over all closed pull requests in each time frame.

Comments on merged/non-merged pull requests: the median number of monthly com-
ments computed over all merged and non-merged pull requests in each time frame.

Commits ofmerged/non-mergedpull requests: themedian ofmonthly commits computed
over all merged and non-merged pull requests in each time frame.

Time to merge/time to close pull requests: the median of monthly pull request latency (in
hours), computed as the difference between the time when the pull request was closed and
the time when it was opened. The median is computed using all merged and non-merged pull
requests in each time frame.

Based on previous work (Cassee et al. 2020; Zhao et al. 2017;Wessel et al. 2020; Kinsman
et al. 2021), we also collected six known covariates for each project:

123

131 Page 8 of 35 Empirical Software Engineering (2023) 28:131

Project name: the name of the project to which the pull request belongs. This name is
used to uniquely identify the project on GitHub.

Programming language: the primary project programming language, as automatically
provided by GitHub.

Time since the first pull request: in months, computed since the earliest recorded pull
request in the project’s history.We use this variable to capture the project’smaturity regarding
its use of pull requests.

Total number of pull request authors: we count how many contributors submitted pull
requests to the project as a proxy for the community size of a project.

Total number of commits: we compute the total number of commits as a proxy for the
activity level of a project.

Number of pull requests opened: the number of monthly contributions (pull requests)
received in each time frame. We expect that projects with a high number of contributions
also observe a high number of comments, latency, commits, and merged and non-merged
contributions.

4.4.2 Statistical Approach

Wemodeled the effect of GitHub Action adoption over time across GitHub repositories using
a Regression Discontinuity Design (RDD) (Thistlethwaite and Campbell 1960; Imbens and
Lemieux 2008), following the work ofWessel et al. (2020). RDD is a technique used tomodel
the extent of a discontinuity at the moment of intervention and long after the intervention.
The technique assumes that if the intervention does not affect the outcome, there would be no
discontinuity, and the outcome would be continuous over time (Cook and Campbell 1979).
The statistical model behind RDD is

yi = α + β · timei + γ · interventioni +
δ · time_after_interventioni + η · controlsi + εi

where i indicates the observations for a given project.
To model the passage of time as well as the GitHub Action introduction, we rely on three

variables: time, time after intervention, and intervention. The time variable is measured as
months at the time j from the start to the end of our observation period for each project.

The intervention variable is a binary value used to indicate whether the time j
occurs before (intervention = 0) or after the (intervention = 1) adoption event. The
time_after_intervention variable counts the number of months at time j since the Action
adoption, and the variable is set to 0 before adoption. The controlsi variables enable the
analysis of Action adoption effects rather than confounding the effects that influence the
dependent variables. For observations before the intervention, holding controls constant, the
resulting regression line has a slope of β, and after the intervention β + δ. The size of the
intervention effect is measured as the difference equal to γ between the two regression values
of yi at the moment of the intervention.

Considering that in RQ3 we are interested in the effects of GitHub Actions on the
monthly trend of the number of pull requests, number of comments, number of commits,
and time to close for both merged and non-merged pull requests, we fitted eight models (4
variables × 2 cases). In RQ4, we measured the impact of adoption for the same variables
across the four most popular Action categories in our filtered dataset: utilities, continuous
integration, code quality, and deployment. We selected projects that have adopted one or
more of the four categories. In cases where a project employs multiple Actions, the project

123

Page 9 of 35 131Empirical Software Engineering (2023) 28:131

1 5 10 50

Fig. 3 Number of Actions per repository (log scale)

is considered in the analysis of multiple Action categories. Therefore, we fitted thirty-two
models (4 variables × 2 cases × 4 categories).

To balance false positives and false negatives, we report the corrected p-values after
applying multiple corrections using the method of Benjamini and Hochberg (1995). We
implemented the RDD models as a mixed-effects linear regression using the R package
lmerTest (Kuznetsova et al. 2017). We modeled project name and programming language as
random effects (Gałecki and Burzykowski 2013) to capture project-to-project and language-
to-language variability (Zhao et al. 2017). We evaluate the model fit using marginal (R2

m)

and conditional (R2
c) scores, as described by Nakagawa and Schielzeth (2013). The R2

m can
be interpreted as the variance explained by the fixed effects alone, and R2

c as the variance
explained by the fixed and random effects together.

Inmixed-effects regression, the variables used tomodel the intervention and the other fixed
effects are aggregated across all projects, resulting in coefficients useful for interpretation.
The interpretation of these regression coefficients supports the discussion of the intervention
and its effects, if any. Thus, we report the significant coefficients (p < 0.05) in the regression
and their variance, obtained using ANOVA. In addition, we log transform the fixed effects
and dependent variables that have high variance (Sheather 2009). We also account for multi-
collinearity, excluding any fixed effects for which the variance inflation factor (VIF) is higher
than 5 (Sheather 2009).

5 Results

In the following, we report the results of our study per research question.

5.1 How do OSS Projects useGITHUB ACTIONS? (RQ1)

Analyzing the set of 5,000 repositories, we identified 1,489 (29.8%) open-source software
projects that had adopted at least one GitHub Action at the time of our data collection. As
the box plot in Fig. 3 shows, many of these repositories adopt more than one Action, with a
median value of four and a maximum of 46.

In these repositories, we found 973 distinct predefined GitHub Actions. We collected
data from each Action’s repository and the GitHub Marketplace6 page to categorize these
GitHub Actions. If published in themarketplace, anAction is classified into 1–2 categories
by the publisher. Table 1 presents the categorization of GitHub Actions we found. Note
that the percentages do not add up to 100, since about half of the GitHub Actions are
assigned to two categories, a primary and a secondary.

The five most frequent categories of GitHub Actions are:
Utilities: GitHub Actions created to automate diverse steps of the development work-

flow on the GitHub platform, often in support of other GitHub Actions. For example,

6 https://github.com/marketplace?type=actions

123

131 Page 10 of 35 Empirical Software Engineering (2023) 28:131

https://github.com/marketplace?type=actions

Table 1 Categorization of
GitHub Actions found in our
sample

GitHub Actions’ Categories # of GitHub Actions %

Utilities 243 24.97%

Continuous integration 241 24.77%

Deployment 94 9.66%

Publishing 82 8.43%

Code quality 75 7.71%

Open Source management 61 6.27%

Code review 58 5.96%

Testing 57 5.86%

Project management 49 5.04%

Dependency management 47 4.83%

Container CI 34 3.49%

Chat 23 2.36%

Reporting 23 2.36%

Security 18 1.85%

Monitoring 9 0.92%

AI Assisted 7 0.72%

Code search 7 0.72%

Community 7 0.72%

Support 7 0.72%

Mobile CI 5 0.51%

API management 4 0.41%

Desktop tools 4 0.41%

Localization 2 0.21%

IDEs 2 0.21%

Mobile 2 0.21%

Code Scanning Ready 1 0.10%

Backup Utilities 1 0.10%

total GitHub Actions 973 119.53

the Read Properties Action inspects Java .properties files looking for predefined properties.
Another example of a utility Action is Replace string, which replaces strings that match
predefined regular expressions.

Continuous integration: GitHub Actions responsible for running the CI pipeline and
notifying contributors of test failures in CI tools (e.g., Retry Step, Chef Delivery).

Deployment: GitHub Actions designed to build and deploy the application upon
request. One example is the Action called Jekyll Deploy, responsible for building and deploy-
ing the Jekyll site to GitHub Pages.

Publishing: GitHub Actions responsible for automatically publishing packages to the
registry. For example, Action For Semantic Release is an Action that leverages semantic-
release to fully automate the package release workflow, determining the next version number,
generating the release notes, and publishing the package.

Codequality:GitHub Actions that analyze source code (e.g., code style, code coverage,
code quality, and smells) submitted through pull requests and give feedback to developers
via GitHub checks or comments.

123

Page 11 of 35 131Empirical Software Engineering (2023) 28:131

Table 2 Most-used GitHub Actions across repositories

Action # of Repositories % out of 1,489

actions/checkout 1,442 96.84%

actions/cache 485 32.57%

actions/setup-node 461 30.96%

actions/upload-artifact 353 23.71%

actions/setup-python 279 18.74%

github/codeql-action/init 156 10.48%

github/codeql-action/analyze 156 10.48%

actions/setup-java 152 10.21%

actions/download-artifact 148 9.94%

codecov/codecov-action 143 9.60%

In addition, we found that 42 (5.93%) out of 973GitHub Actions are verified byGitHub.
Creators are verified if they have an existing relationship with GitHub, and GitHub works
closely with the creator to generate these GitHub Actions.

Table 2 shows the ten most popular GitHub Actions. The most popular one, action-
s/checkout is used by the vast majority (97%) of repositories that have adopted at least one
GitHub Actions. The five most popular GitHub Actions are the following:
actions/checkout: A verified utility Action that checks out a repository under $GITHUB_-
WORKSPACE. Therefore, a workflow can access the repository for further workflow tasks.
actions/cache: A verified utility and dependency management Action that allows caching
dependencies and building outputs to improve workflow execution time.
actions/setup-node: A verified utility Action that sets up a Node.js environment for use in a
workflow, allowing users to specify a Node.js version.
actions/upload-artifact: A verified utility Action that uploads artifacts from a workflow,
allowing developers to share data between jobs and store data once a workflow is complete.
actions/setup-python: A verified utility Action that sets up a Python environment for use in
a workflow, allowing the use of Python features and commands.

Research Question 1

How do open-source software projects use GitHub Actions?

Out of 5,000 GitHub repositories, 1,489 (29.8%) adopted the GitHub Actions feature,
with a median of four GitHub Actions used per repository. We found 973 unique pre-
defined GitHub Actions being used within the workflows. TheseGitHub Actions are
spread across 27 categories. The most recurrent ones are utilities, continuous integration,
and deployment.

Comparison to our previous work: In our previous work, we found that only
0.7% of repositories considered in our analysis had adopted GitHub Actions. This
number has changed dramatically, with GitHub Actions now having found much more
widespread adoption.

123

131 Page 12 of 35 Empirical Software Engineering (2023) 28:131

5.2 How is the use ofGITHUB ACTIONS Discussed by Developers? (RQ2)

We categorized 458 GitHub Discussion threads and 40 developers’ conversation excerpts
containing the phrase “GitHub Action”. Table 3 shows an overview of this categorization,
indicating how many threads and excerpts we found in each category. We present the cate-
gories in the following.
Help wanted in the context of GitHub Actions(no error message): The largest group of
Discussion threads that mention GitHub Actions concerns requests for help in the context
of the feature. We distinguish requests for help that mention a specific error message and are
primarily aimed at soliciting help in debugging from those that are less specific.Conversations
that do not provide a specific error message might ask for help in configuring a particular
Action or mention that automation is not working as intended.
Marginal mention of GitHub Actions: While all threads and chat excerpts in our dataset
contain the phrase ‘GitHubAction,’ the feature is not themain topic of all such conversations.
In some cases,GitHub Actions is mentioned as part of a long discussion thread announcing
a release where GitHub Actions only affected a small number of features. In other cases,
GitHub Actions are only mentioned several months after the threads were started, and they
are only marginally related to the thread topic.
Error/debug message in the context of GitHub Actions: Complementing the first category
discussed above (Help wanted in the context of GitHub Actions), Error/debug message
in the context of GitHub Actions contains discussions that start with a specific error or
warning message and ask for help. In most cases, the error or warning has been provided
verbatimby thedeveloper starting thediscussion.Errors can come from theGitHub Actions
feature itself or from the various applications, such as linters or code review bots, that are
invoked via a GitHub Actions.
Potential of usingGitHub Actions: Since GitHub Actions is still a relatively new feature,
not all developers are aware of it. This category captures discussions in which developers
suggest the use of GitHub Actions to address a specific task, e.g., “alternatively, the JIRA

Table 3 Categorization of Discussion threads and developers conversations on Discord

Category # threads (%) # chat excerpts (%)

Help wanted in the context of 132 (28.82%) 7 (17.50%)

GitHub Actions (no error message)

Marginal mention of GitHub Actions 126 (27.51%) 14 (35.00%)

Error/debug message in the context of 87 (19.00%) 2 (5.00%)

GitHub Actions

Potential of using GitHub Actions 67 (14.63%) 14 (35.00%)

Issue reproducing output with 20 (4.37%) 0 (0%)

GitHub Actions

Plan to use GitHub Actions 16 (3.49%) 1 (2.50%)

Non-English thread 7 (1.53%) 0 (0%)

Other 3 (0.66%) 2 (5.00%)

123

Page 13 of 35 131Empirical Software Engineering (2023) 28:131

issue transitions at both PR creation andmerge can be accomplished usingGitHub Actions
listening to those events”7 or “you could use theVercel CLI directly as part of aGitHubAction
(or similar) to deploy when releasing”.8

Issue reproducing output with GitHub Actions: In many cases, the goal of using a GitHub
Action is to automate a process otherwise conducted manually (or using a different tool).
Discrepancies can occur when developers struggle to reproduce results they achieved with
the help of a GitHub Action, e.g., “This only happens with builds in GitHub Actions and
I am unable to reproduce this locally”.9

Plan to use GitHub Actions: Compared to the large number of GitHub issues dedicated to
discussing projects’migration plans toGitHub Actions,whichwe identified in our previous
work, we found a smaller number of such discussion threads in this work, likely because the
GitHub Actions feature is more established now. An example of such a discussion thread
is “Migrating from Azure Pipelines toGitHub Actions”,10 a thread that discusses the pros
and cons of migration as well as how to implement it for a specific project.
Non-English thread:Asmall number of discussion threads in our datasetwere not in English.
Other: Three of the discussion threads in our dataset did not fit any of the above categories
and were assigned to the ‘Other’ category. An example is a discussion thread on GitHub’s
docs project11 about how to structure documentation about GitHub Actions.

Research Question 2

How is the use of GitHub Actions discussed by developers?

Discussion threads and chat excerpts that mention GitHub Actions predominantly
focus on requests for help in the context of the feature, with or without concrete error
messages. A smaller group of discussions concerns plans for using the feature or debating
its potential.

Comparison to our previous work: A couple of years after the data collection for
our previous work, in which we analyzed GitHub issues about GitHub Actions (since
GitHub Discussions did not yet exist), we now find fewer discussions about the potential
of GitHub Actions and more discussions about specific issues, such as errors and
discrepancies.

5.3 What is the Impact ofGITHUB ACTIONS? (RQ3)

To answer this question, we investigated the effects of GitHub Action adoption on project
activities along four dimensions: (i) merged and non-merged pull requests, (ii) human con-
versation, (iii) efficiency to close pull requests, and (iv) modification effort. We start by
investigating how Action adoption impacts the number of merged and non-merged pull
requests. We fit two mixed-effect RDDmodels, as described in Section 4.4.2. For these mod-
els, the number of merged/non-merged pull requests per month is the dependent variable.
Table 4 summarizes the results of these models. In addition to the model coefficients, the

7 https://github.com/cli/cli/discussions/3264
8 https://github.com/vercel/next.js/discussions/20905
9 https://github.com/gatsbyjs/gatsby/discussions/32773
10 https://github.com/hyperledger/fabric/discussions/2456
11 https://github.com/github/docs/discussions/2501

123

131 Page 14 of 35 Empirical Software Engineering (2023) 28:131

https://github.com/cli/cli/discussions/3264
https://github.com/vercel/next.js/discussions/20905
https://github.com/gatsbyjs/gatsby/discussions/32773
https://github.com/hyperledger/fabric/discussions/2456
https://github.com/github/docs/discussions/2501

Table 4 The Effects of GitHub Actions on PRs. The response is log(number ofmerged/non-merged PRs)
per month

Merged PRs Non-merged PRs
Coeffs Sum Sq. Coeffs Sum Sq.

Intercept -0.603*** -0.820***

TimeSinceFirstPR -0.001** 0.5 -0.002*** 1.5

log(TotalPRAuthors) -0.054*** 694.6 0.136*** 457.5

log(TotalCommits) 0.099*** 206.7 0.006 65.9

log(OpenedPRs) 0.841*** 10688.9 0.403*** 3349.3

log(PRComments) 0.081*** 240.0 0.310*** 1428.8

log(PRCommits) 0.270*** 295.8 0.151*** 214.6

time -0.00003 0.0 0.012*** 8.3

interventionTrue 0.036*** 2.2 -0.041*** 2.9

time_after_intervention -0.008*** 1.5 -0.007** 1.1

Marginal R2 0.87 0.71

Conditional R2 0.93 0.82

*** p < 0.001, ** p < 0.01, * p < 0.05
Time series predictors in bold

table also shows the sum of squares, with variance explained for each variable. We also
highlighted the time series predictors time, time after intervention, and intervention in bold.

Analyzing the model for merged pull requests, we found that the fixed-effects part fits
the data well (R2

m = 0.87). However, considering R2
c = 0.93, variability also appears

from project-to-project and language-to-language. Among the fixed effects, we note that the
number of monthly pull requests explains most of the variability in the model, indicating
that projects receiving more contributions tend to have more merged pull requests, with other
variables held constant. Regarding the Action effects, there is a discontinuity at adoption
time, followed by a statistically significant decrease after the introduction.

Similar to the previous model, the fixed-effect part of the non-merged pull requests model
fits the data well (R2

m = 0.71), even though a considerable amount of variability is explained
by random effects (R2

c = 0.82). We note similar results on fixed effects: projects receiving
more contributions tend to have more non-merged pull requests. In addition, pull requests
receiving more comments tend to be rejected. The effect of Action adoption on the non-
merged pull requests differs from the previous model. Regarding the time series predictors,
the negative trend in the number of non-merged pull requests before the Action adoption is
reversed, toward an increase after adoption.

To investigate the effects of Action adoption on pull request communication, we fit one
model to merged pull requests and another to non-merged ones. The median of pull request
comments per month is the dependent variable. Table 5 shows the results of the fitted models.
Considering the model of comments on merged pull requests, we found that the combined
fixed-and-random effects (R2

c = 0.58) fit the data better than the fixed effects (R2
m = 0.30),

showing that most of the explained variability in the data is associated with project-to-project
and language-to-language variability, rather than the fixed effects. We also observe that the
time to close pull requests explains the largest amount of variability in the model, indicating
that the communication during the pull request review is strongly associated with the time
to merge it. Regarding the Action effects, we note no statistically significant trend before

123

Page 15 of 35 131Empirical Software Engineering (2023) 28:131

Table 5 The Effects of GitHub Actions on Pull Request Comments. The response is log(median of com-
ments) per month

Merged PRs Non-merged PRs
Coeffs Sum Sq. Coeffs Sum Sq.

Intercept -0.086 -0.196***

TimeSinceFirstPR -0.0004 0.28 0.0002 5.7

log(TotalPRAuthors) 0.053*** 14.52 0.002 110.1

log(TotalCommits) -0.011 0.12 0.028*** 22.9

log(OpenedPRs) -0.013*** 31.04 0.083*** 498.4

log(TimeToClosePRs) 0.066*** 1258.88 0.108*** 3828.9

log(PRCommits) 0.355*** 497.59 0.215*** 461.9

time -0.001 0.10 0.0002 11.2

interventionTrue -0.023*** 0.90 0.034*** 2.0

time_after_intervention 0.006*** 0.92 -0.018*** 7.9

Marginal R2 0.30 0.56

Conditional R2 0.58 0.69

*** p < 0.001, ** p < 0.01, * p < 0.05
Time series predictors in bold

adoption; a discontinuity at the adoption time; and an apparent increase in the time trend
after adoption.

Turning to themodel of comments on non-merged pull requests, themodel fits the datawell
(R2

m = 0.56), and variability is explained by the random variables (R2
c = 0.69). This model

also suggests that communication during the pull request review is strongly associated with
the time to reject the pull request. Table 5 shows a discontinuity at adoption time, followed
by a statistically significant decrease after Action adoption.

We fitted two RDD models where median of time to close pull requests per month is the
dependent variable. The results are shown in Table 6. Analyzing the results of the effect of
GitHub Actions on the latency to merge pull requests, we found that combined fixed-and-
random effects fit the data better than the fixed effects. Although several variables affect the
trends of pull request latency, communication during the pull requests is responsible for most
of the variability in the data. This indicates the expected results: the more effort contributors
expenddiscussing the contribution, themore time the contribution takes tomerge.Thenumber
of commits also explains the amount of data variability, since a project with many changes
needs more time to review and merge them. We observe a discontinuity at adoption time,
followed by a statistically significant decrease after GitHub Action’s introduction.

Turning to the model of non-merged pull requests, we note that it fits the data well
(R2

m = 0.50), and variability is explained by the random variables (R2
c = 0.61). As above,

communication during the pull requests is responsible for most of the variability encountered
in the results. Similar to the previous model, none of the Action-related predictors have
statistically significant effects on the time to reject pull requests. We observe an increasing
trend before adoption, followed by a statistically significant discontinuity at adoption. After
adoption, however, there is no effect on the time to reject pull requests, since the time after
intervention coefficient is not statistically significant.

Finally, we studied whether Action adoption affects the number of commits made before
and during the pull request review. Again, we fitted two models for merged and non-merged

123

131 Page 16 of 35 Empirical Software Engineering (2023) 28:131

Table 6 The effects of GitHub Actions on time to close PRs. The response is log(median of time to close
PRs) per month

Merged PRs Non-merged PRs
Coeffs Sum Sq. Coeffs Sum Sq.

Intercept -0.803*** -0.064

TimeSinceFirstPR 0.002 51.6 0.001 158

log(TotalPRAuthors) 0.357*** 373.3 0.291*** 2075

log(TotalCommits) -0.037 0.1 -0.133*** 145

log(OpenedPRs) -0.216*** 135.3 -0.059*** 5211

log(PRComments) 1.262*** 24644.5 2.763*** 93257

log(PRCommits) 1.698*** 11716.7 0.698*** 4617

time -0.0003 13.2 0.039*** 57

interventionTrue -0.124*** 26.1 -0.327*** 181

time_after_intervention 0.019** 9.3 0.019 9

Marginal R2 0.35 0.50

Conditional R2 0.55 0.61

*** p < 0.001, ** p < 0.01, * p < 0.05
Time series predictors in bold

pull requests, where themedian of pull request commits per month is the dependent variable.
The results are shown in Table 7. Analyzing the model of commits on merged pull requests,
we found that the combined fixed-and-random effects (R2

c = 0.60) fit the data better than
the fixed effects (R2

m = 0.37). The statistical significance of all Action-related coefficients
indicates that the adoption of GitHub Actions affected the number of commits. We note
a statistically significant discontinuity at adoption time, followed by a decreasing trend after
adoption. Additionally, we can also observe that the number of pull request comments and

Table 7 The Effects of GitHub Actions on Pull Request Commits. The response is log(median of commits)
per month

Merged PRs Non-merged PRs
Coeffs Sum Sq. Coeffs Sum Sq.

Intercept 0.342*** 0.235***

TimeSinceFirstPR -0.0001 0.00 0.0003 2.28

log(TotalPRAuthors) -0.041*** 28.90 -0.042*** 111.58

log(TotalCommits) 0.010 7.11 0.008 37.73

log(OpenedPRs) 0.130*** 327.96 0.101*** 573.78

log(PRComments) 0.444*** 1189.16 0.524*** 2625.12

time 0.002 3.72 -0.006*** 0.11

interventionTrue 0.036*** 2.14 0.004 0.03

time_after_intervention -0.006*** 1.01 0.013*** 4.15

Marginal R2 0.37 0.36

Conditional R2 0.60 0.48

*** p < 0.001, ** p < 0.01, * p < 0.05
Time series predictors in bold

123

Page 17 of 35 131Empirical Software Engineering (2023) 28:131

the number of contributions per month explains most of the variability in the result. This
result suggests that the more comments and pull requests there are, the more commits there
will be.

Investigating the results of the non-merged pull request model, we also found that the
combined fixed-and-random effects fit the data better than the fixed effects. Similar to the
previous model, the number of pull request comments per month explains most of the results’
variability. Regarding the time series predictors, the model did not detect any discontinuity at
adoption time. However, the negative trend in the median of commits before the bot adoption
is reversed, toward an increase after adoption.

Research Question 3

What is the impact of GitHub Actions on the dynamics of pull requests?

After adopting GitHub Actions, on average, there are fewer accepted pull requests,
with more discussion comments and fewer commits, which take more time to merge. On
the other hand, there are more rejected pull requests, which contain fewer comments and
more commits.

Comparison to our previous work: We confirm the results from our previous
work. We have already shown that GitHub Actions increase the number of rejected
pull requests and decrease the number of commits on merged pull requests.

5.4 HowDoes the Impact ofGITHUB ACTIONS Differ Across Action Categories?
(RQ4)

To investigate the effects of GitHub Action adoption on project activities across the four
most used Action categories in our dataset, we fit thirty-two mixed-effect RDD models, as
described in Section 4.4.2. We considered the same activity indicators studied in the previous
research question: (i) merged and non-merged pull requests, (ii) human conversation, (iii)
efficiency to close pull requests, and (iv) modification effort.

We fitted four RDD models for each of the Action categories where number of merged
pull requests per month is the dependent variable. The results are shown in Table 8. The
statistical significance of the time series predictors for utilities indicates that the adoption of
GitHub Actions of this category affected the trend in the number ofmerged pull requests. In
addition, we fitted four RDD models where number of non-merged pull requests per month
is the dependent variable (see Table 9). In the model of code quality GitHub Actions,
although the model did not detect any discontinuity at adoption time, the positive trend in
the number of rejected pull requests before Action adoption is reversed toward a decrease
after adoption. Considering the other categories, the Action-related predictors do not have
statistically significant effects, meaning the trend in the number of merged and non-merged
pull requests is stationary over time and remains unaffected by the Action adoption.

Analyzing themodels of human discussions (see Table 10), where themedian of comments
per month in merged pull requests is the dependent variable (see Table 11), we found that
the introduction of utility GitHub Actions increases the discussions by developers on
merged pull requests. There is a discontinuity at adoption time, followed by a statistically
significant decrease after the utilities’ introduction. Turning to the models where the median
of comments per month in rejected pull requests is the dependent variable (see Table 11),

123

131 Page 18 of 35 Empirical Software Engineering (2023) 28:131

Ta
bl
e
8

T
he

E
ff
ec
ts
of

G
it
H
u
b

A
ct

io
n
s
on

M
er
ge
d
Pu

ll
R
eq
ue
st
s.
T
he

re
sp
on
se

is
lo
g(
nu

m
be
r
of

m
er
ge
d
P
R
s)
pe
r
m
on

th

U
til
iti
es

C
I

C
od
e
Q
ua
lit
y

D
ep
lo
ym

en
t

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

In
te
rc
ep
t

-0
.7
11

**
*

-0
.9
38

**
*

-0
.7
52

**
*

-0
.7
69

**
*

T
im

eS
in
ce
Fi
rs
tP
R

-0
.0
02

**
*
(0
.1
)

-0
.0
03

**
*
(2
.7
6)

-0
.0
00

4
(4
.6
1)

-0
.0
02

**
(1
4.
95

8)

lo
g(
To

ta
lP
R
A
ut
ho

rs
)

-0
.0
30

*
(8
45

.7
)

0.
03

7
(3
72

.2
0)

-0
.0
71

**
(2
62

.9
6)

-0
.0
80

**
(2
16

.6
24

)

lo
g(
To

ta
lC
om

m
its
)

0.
10

5*
**

(2
43

.4
)

0.
09

7*
**

(8
3.
95

)
0.
09

3*
**

(8
8.
59

)
0.
15

4*
**

(7
0.
46

1)

lo
g(
O
pe
ne
dP

R
s)

0.
82

3*
**

(6
07

4.
3)

0.
83

8*
**

(7
27

.1
6)

0.
90

1*
**

(8
27

.6
6)

0.
87

6*
**

(2
94

.8
45

)

lo
g(
PR

C
om

m
en
ts
)

0.
07

5*
**

(1
52

.4
)

0.
06

6*
**

(1
4.
34

)
0.
12

5*
**

(1
8.
11

)
0.
06

5*
(2
.1
23

)

lo
g(
PR

C
om

m
its
)

0.
28

5*
**

(2
01

.9
)

0.
28

7*
**

(2
0.
65

)
0.
24

6*
**

(1
3.
58

)
0.
22

6*
**

(4
.6
02

)

ti
m
e

0.
00

1
(0
.3
)

0.
00

2
(0
.0
2)

-0
.0
15

*
(0
.0
0)

-0
.0
13

(0
.0
03

)

in
te
rv
en
ti
on

T
ru
e

0.
03

5*
**

(1
.2
)

0.
02

9
(0
.0
9)

0.
06

3
(0
.5
5)

0.
12

2*
**

(0
.6
85

)

ti
m
e_
af
te
r_
in
te
rv
en

ti
on

-0
.0
08

**
(1
.0
)

-0
.0
12

(0
.2
7)

0.
01

3
(0
.2
4)

-0
.0
05

(0
.0
13

)

M
ar
gi
na
l
R
2

0.
88

0.
91

0.
70

0.
95

C
on

di
tio

na
l
R
2

0.
93

0.
94

0.
92

0.
96

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

SS
st
an
ds

fo
r
“S
um

of
Sq

ua
re
s”

T
im

e
se
ri
es

pr
ed
ic
to
rs
in

bo
ld

123

Page 19 of 35 131Empirical Software Engineering (2023) 28:131

Ta
bl
e
9

T
he

E
ff
ec
ts
of

G
it
H
u
b

A
ct

io
n
s
on

N
on
-m

er
ge
d
Pu

ll
R
eq
ue
st
s.
T
he

re
sp
on
se

is
lo
g(
nu

m
be
r
of

no
n-
m
er
ge
d
P
R
s)
pe
r
m
on

th

U
til
iti
es

C
I

C
od
e
Q
ua
lit
y

D
ep
lo
ym

en
t

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

In
te
rc
ep
t

-0
.7
44

**
*

-0
.9
41

**
*

-1
.2
81

**
*

-1
.3
82

**
*

T
im

eS
in
ce
Fi
rs
tP
R

-0
.0
02

**
*
(0
.7
7)

-0
.0
02

**
(0
.9
55

)
-0
.0
04

**
*
(0
.4
49

)
-0
.0
01

(2
.8
64

)

lo
g(
To

ta
lP
R
A
ut
ho

rs
)

0.
12

7*
**

(4
50

.7
5)

0.
15

4*
**

(1
25

.3
77

)
0.
22

9*
**

(8
9.
94

3)
0.
19

1*
*
(2
6.
42

0)

lo
g(
To

ta
lC
om

m
its
)

0.
00

4
(6
6.
37

)
0.
00

8
(1
6.
05

3)
0.
01

0
(1
2.
97

5)
0.
06

2
(3
.4
97

)

lo
g(
O
pe
ne
dP

R
s)

0.
40

0*
**

(1
94

1.
50

)
0.
41

3*
**

(2
38

.5
75

)
0.
38

7*
**

(2
08

.7
73

)
0.
32

9*
**

(4
6.
80

1)

lo
g(
PR

C
om

m
en
ts
)

0.
31

8*
**

(8
46

.5
3)

0.
32

7*
**

(1
04

.5
32

)
0.
31

2*
**

(9
8.
28

7)
0.
19

6*
**

(1
4.
42

1)

lo
g(
PR

C
om

m
its
)

0.
15

3*
**

(1
27

.5
3)

0.
12

4*
**

(1
0.
73

5)
0.
15

2*
**

(1
1.
74

7)
0.
18

2*
**

(7
.6
44

)

ti
m
e

0.
00

9*
**

(2
.9
5)

0.
00

8
(0
.3
51

)
0.
01

6*
(0
.0
69

)
0.
03

3*
**

(0
.6
45

)

in
te
rv
en
ti
on

T
ru
e

-0
.0
38

**
*
(1
.8
7)

-0
.0
32

(0
.1
79

)
0.
00

4
(0
.0
08

)
-0
.1
12

*
(0
.7
08

)

ti
m
e_
af
te
r_
in
te
rv
en

ti
on

-0
.0
02

(0
.0
5)

-0
.0
01

(0
.0
01

)
-0
.0
26

**
(0
.8
93

)
-0
.0
19

(0
.2
04

)

M
ar
gi
na
l
R
2

0.
71

0.
74

0.
67

0.
72

C
on

di
tio

na
l
R
2

0.
82

0.
84

0.
79

0.
86

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

SS
st
an
ds

fo
r
“S
um

of
Sq

ua
re
s”

T
im

e
se
ri
es

pr
ed
ic
to
rs
in

bo
ld

123

131 Page 20 of 35 Empirical Software Engineering (2023) 28:131

Ta
bl
e
10

T
he

E
ff
ec
ts
of

G
it
H
u
b

A
ct

io
n
s
on

C
om

m
en
ts
of

M
er
ge
d
Pu

ll
R
eq
ue
st
s.
T
he

re
sp
on
se

is
lo
g(
nu

m
be
r
of

co
m
m
en
ts
on

m
er
ge
d
P
R
s)
pe
r
m
on

th

U
til
iti
es

C
I

C
od
e
Q
ua
lit
y

D
ep
lo
ym

en
t

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

In
te
rc
ep
t

-0
.1
14

0.
01

8
0.
34

0*
-0
.2
57

T
im

eS
in
ce
Fi
rs
tP
R

-0
.0
00

3
(0
.4
2)

-0
.0
00

4
(0
.1
34

)
0.
00

02
(0
.0
02

)
-0
.0
01

(0
.1
38

1)

lo
g(
To

ta
lP
R
A
ut
ho

rs
)

0.
05

3*
**

(1
4.
26

)
0.
08

2*
*
(2
.5
72

)
-0
.0
05

(0
.3
29

)
0.
13

3*
*
(1
.0
81

2)

lo
g(
To

ta
lC
om

m
its
)

-0
.0
06

(0
.2
1)

-0
.0
47

*
(0
.0
09

)
-0
.0
41

(0
.0
24

)
-0
.0
19

(0
.0
01

8)

lo
g(
O
pe
ne
dP

R
s)

-0
.0
18

**
*
(1
8.
63

)
-0
.0
00

1
(3
.8
28

)
0.
00

8
(4
.0
16

)
-0
.0
19

(0
.0
47

7)

lo
g(
T
im

eT
oC

lo
se
PR

s)
0.
06

8*
**

(8
03

.2
6)

0.
05

8*
**

(7
5.
50

1)
0.
06

7*
**

(6
6.
69

4)
0.
04

4*
**

(9
.8
72

9)

lo
g(
PR

C
om

m
its
)

0.
34

9*
**

(2
89

.5
9)

0.
42

1*
**

(4
3.
72

1)
0.
35

6*
**

(2
8.
00

)
0.
27

9*
**

(5
.8
2)

ti
m
e

-0
.0
02

(0
.0
2)

-0
.0
06

(0
.0
93

)
0.
00

1
(0
.7
03

)
-0
.0
13

(0
.4
73

)

in
te
rv
en
ti
on

T
ru
e

-0
.0
21

**
(0
.3
8)

-0
.0
04

(0
.0
0)

-0
.0
02

(0
.0
01

)
0.
03

1
(0
.0
51

)

ti
m
e_
af
te
r_
in
te
rv
en

ti
on

0.
00

7*
*
(0
.7
9)

0.
00

9
(0
.1
73

)
0.
01

0
(0
.1
25

)
0.
00

4
(0
.0
08

)

M
ar
gi
na
l
R
2

0.
30

0.
27

0.
27

0.
28

C
on

di
tio

na
l
R
2

0.
58

0.
61

0.
54

0.
74

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

SS
st
an
ds

fo
r
“S
um

of
Sq

ua
re
s”

T
im

e
se
ri
es

pr
ed
ic
to
rs
in

bo
ld

123

Page 21 of 35 131Empirical Software Engineering (2023) 28:131

Ta
bl
e
11

T
he

E
ff
ec
ts
of

G
it
H
u
b

A
ct

io
n
s
on

C
om

m
en
ts
of

N
on

-m
er
ge
d
Pu

ll
R
eq
ue
st
s.
T
he

re
sp
on

se
is
lo
g(
nu

m
be

r
of

co
m
m
en

ts
on

no
n-
m
er
ge
d
P
R
s)
pe
r
m
on

th

U
til
iti
es

C
I

C
od
e
Q
ua
lit
y

D
ep
lo
ym

en
t

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

In
te
rc
ep
t

-0
.2
11

**
*

-0
.0
13

-0
.0
25

-0
.3
55

T
im

eS
in
ce
Fi
rs
tP
R

0.
00

02
(5
.3
7)

0.
00

02
(2
.1
02

)
0.
00

1
(2
.9
04

)
0.
00

02
(1
.2
48

)

lo
g(
To

ta
lP
R
A
ut
ho

rs
)

-0
.0
03

(1
05

.7
0)

0.
02

3
(2
1.
69

6)
-0
.0
50

(1
1.
32

6)
0.
04

3
(6
.0
91

)

lo
g(
To

ta
lC
om

m
its
)

0.
03

3*
**

(2
3.
66

)
-0
.0
21

(3
.0
51

)
0.
03

5
(3
.4
87

)
0.
01

7
(0
.8
80

)

lo
g(
O
pe
ne
dP

R
s)

0.
08

1*
**

(2
92

.0
9)

0.
12

0*
**

(4
4.
05

7)
0.
06

2*
**

(3
5.
65

2)
0.
10

4*
**

(7
.6
06

)

lo
g(
T
im

eT
oC

lo
se
PR

s)
0.
10

7*
**

(2
16

3.
48

)
0.
10

6*
**

(2
76

.0
11

)
0.
11

8*
**

(2
84

.7
27

)
0.
10

1*
**

(5
9.
14

2)

lo
g(
PR

C
om

m
its
)

0.
20

4*
**

(2
36

.5
2)

0.
19

9*
**

(3
0.
27

6)
0.
24

6*
**

(3
3.
09

7)
0.
14

1*
**

(5
.0
55

)

ti
m
e

0.
00

1
(5
.9
4)

0.
00

9
(0
.1
96

)
-0
.0
09

(0
.1
46

)
0.
00

6
(0
.8
82

)

in
te
rv
en
ti
on

T
ru
e

0.
03

7*
**

(0
.9
2)

0.
02

9
(0
.0
40

)
0.
06

1
(0
.4
02

)
0.
00

7
(0
.0
03

)

ti
m
e_
af
te
r_
in
te
rv
en

ti
on

-0
.0
18

**
*
(4
.9
4)

-0
.0
27

**
*
(1
.5
12

)
-0
.0
03

(0
.0
13

)
-0
.0
30

**
(0
.5
22

)

M
ar
gi
na
l
R
2

0.
56

0.
54

0.
53

0.
57

C
on

di
tio

na
l
R
2

0.
68

0.
68

0.
63

0.
76

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

SS
st
an
ds

fo
r
“S
um

of
Sq

ua
re
s”

T
im

e
se
ri
es

pr
ed
ic
to
rs
in

bo
ld

123

131 Page 22 of 35 Empirical Software Engineering (2023) 28:131

we found that utilities, CI, and deployment GitHub Actions decreased the number of
comments on rejected pull requests.

Segmenting the analysis for specific categories, we found that the number of comments
in rejected pull requests statistically decreases in 3 out of 4 categories as well as in the whole
sample, as can be observed in Tables 11, 12, 13, 14, 15, and 16. Besides this indicator, theUtil-
ities category, which contains the largest number of GitHub Actions, resembles the whole
sample and also showed statistical differences in accepted pull requests (decreased), com-
ments in accepted pull requests (increased), commits in accepted pull requests (decreased),
and commits in rejected pull requests (increased). In the Code Quality category, the only
indicator for which we observed a statistically significant change is the number of rejected
pull requests (decreased), which is in the opposite direction of the whole sample. We con-
jecture that Code Quality GitHub Actions help contributors improve the quality of pull
requests that would otherwise be rejected and, thus, the number of rejected pull requests in
such repositories tends to decrease after the introduction of the Action.

Research Question 4

How does the impact of GitHub Actions differ across categories?

Analyzing the four most used types of GitHub Actions, we found that the number of
comments in rejected pull requests consistently decreased across categories (3 out of 4).
Several other indicators also changed after the adoption of GitHub Actions from the
Utilities category: accepted pull requests (decreased), comments in accepted pull requests
(increased), commits in accepted pull requests (decreased), and commits in rejected pull
requests (increased). In the Code Quality category, the only indicator that changed is the
number of rejected pull requests (decreased).

6 Discussion

This section discusses our results and the key implications for practitioners, researchers, and
educators.

Automation inSoftwareEngineering.The rise of GitHub Actions evidence the impor-
tance of automation in software engineering. OSS project maintainers, who are often busy
with coding and community-building activities, can save a lot of time by using GitHub
Actions to automate repetitive tasks such as replacing strings and running the integration
pipeline. Automation can bring not only time savings but also avoid human errors and provide
consistency in completed tasks (Storey and Zagalsky 2016). Themultiple benefits of automa-
tion can help explain the widespread adoption of GitHub Actions. Indeed, we have seen
an increase from 0.7% to circa 30% in the adoption of GitHub Actions since we conducted
our prior work (Kinsman et al. 2021). This result is in line with the studies conducted by
Decan et al. (2022) and Chen et al. (2021), who found GitHub Actions in 43.9% and 22%
of their sample of projects, respectively. We also found a large number of projects discussing
usingGitHub Actions. Given this impetus to automation, other software engineering tools
and platforms should consider offering automation capabilities or integration endpoints and
APIs so that the variety of tools used in software development can be integrated into large
and more complex workflows. Our results show that projects have a median of four GitHub
Actions, and we expect this number to grow as more tools are integrated into the workflow
pipelines. The power of automating tasks with GitHub Actions can also be explored in
other contexts. For example, software engineering educators can use GitHub Actions to

123

Page 23 of 35 131Empirical Software Engineering (2023) 28:131

Ta
bl
e
12

T
he

ef
fe
ct
s
of

G
it
H
u
b

A
ct

io
n
s
on

th
e
tim

e
to

m
er
ge

pu
ll
re
qu
es
ts
.T

he
re
sp
on
se

is
lo
g(
m
ed

ia
n
of

ti
m
e
to

m
er
ge

P
R
s)
pe
r
m
on

th

U
til
iti
es

C
I

C
od
e
Q
ua
lit
y

D
ep
lo
ym

en
t

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

In
te
rc
ep
t

-0
.6
72

**
*

-1
.6
64

**
*

-1
.0
78

-2
.2
00

**

T
im

eS
in
ce
Fi
rs
tP
R

0.
00

2
(5
0.
4)

0.
00

3
(2
6.
37

)
0.
00

1
(6
.8
3)

0.
00

6
(4
5.
16

)

lo
g(
To

ta
lP
R
A
ut
ho

rs
)

0.
31

5*
**

*
(3
68

.7
)

0.
30

7*
*
(5
3.
63

)
0.
48

0*
**

(3
9.
51

)
0.
44

9*
*
(5
9.
82

)

lo
g(
To

ta
lC
om

m
its
)

-0
.0
54

(0
.8
)

0.
10

5
(1
.9
3)

-0
.0
71

(1
.8
7)

0.
10

8
(0
.5
5)

lo
g(
O
pe
ne
dP

R
s)

-0
.1
83

**
*
(2
02

.2
)

-0
.3
27

**
*
(0
.0
9)

-0
.2
35

**
*
(4
.2
8)

-0
.3
84

**
*
(3
.8
1)

lo
g(
PR

C
om

m
en
ts
)

1.
29

4*
**

(1
59

48
.1
)

1.
15

1*
**

(1
50

0.
36

)
1.
26

8*
**

(1
28

8.
99

)
1.
38

4*
**

(3
22

.7
9)

lo
g(
PR

C
om

m
its
)

1.
73

9*
**

(7
52

2.
1)

1.
72

3*
**

(7
37

.9
0)

1.
60

8*
**

(5
75

.5
6)

1.
44

2*
**

(1
72

.3
5)

ti
m
e

0.
01

5*
(0
.4
)

0.
00

03
(0
.3
8)

-0
.0
10

(5
.0
9)

0.
00

5
(2
.0
2)

in
te
rv
en
ti
on

T
ru
e

-0
.1
83

**
*
(3
8.
6)

-0
.1
07

(1
.6
3)

-0
.0
09

(0
.0
2)

0.
00

8
(0
.0
1)

ti
m
e_
af
te
r_
in
te
rv
en

ti
on

0.
01

2
(2
.2
)

0.
01

7
(0
.5
9)

-0
.0
08

(0
.0
8)

0.
01

6
(0
.1
4)

M
ar
gi
na
l
R
2

0.
36

0.
29

0.
31

0.
36

C
on

di
tio

na
l
R
2

0.
55

0.
52

0.
52

0.
52

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

SS
st
an
ds

fo
r
“S
um

of
Sq

ua
re
s”

T
im

e
se
ri
es

pr
ed
ic
to
rs
in

bo
ld

123

131 Page 24 of 35 Empirical Software Engineering (2023) 28:131

Ta
bl
e
13

T
he

ef
fe
ct
s
of

G
it
H
u
b

A
ct

io
n
s
on

th
e
tim

e
to

cl
os
e
pu
ll
re
qu
es
ts
.T

he
re
sp
on
se

is
lo
g(
m
ed

ia
n
of

ti
m
e
to

cl
os
e
P
R
s)
pe
r
m
on

th

U
til
iti
es

C
I

C
od
e
Q
ua
lit
y

D
ep
lo
ym

en
t

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

In
te
rc
ep
t

0.
02

3
-0
.8
95

*
-0
.1
77

0.
03

8

T
im

eS
in
ce
Fi
rs
tP
R

0.
00

1
(1
47

.0
)

0.
00

5
(1
08

.7
)

0.
00

1
(6
3.
5)

0.
00

4
(3
9.
80

)

lo
g(
To

ta
lP
R
A
ut
ho

rs
)

0.
30

9*
**

(2
21

3.
0)

0.
11

8
(3
46

.3
)

0.
50

9*
**

(3
48

.4
)

0.
09

4
(9
8.
06

)

lo
g(
To

ta
lC
om

m
its
)

-0
.1
60

**
*
(1
51

.0
)

0.
12

0
(6
0.
9)

-0
.2
85

**
(3
.8
)

-0
.0
54

(9
.9
0)

lo
g(
O
pe
ne
dP

R
s)

-0
.0
39

*
(3
43

6.
0)

-0
.2
41

**
*
(2
46

.7
)

0.
00

4
(4
31

.1
)

-0
.1
60

(6
6.
34

)

lo
g(
PR

C
om

m
en
ts
)

2.
75

7*
**

(5
41

50
.0
)

2.
79

5*
**

(7
14

6.
2)

2.
64

2*
**

(6
12

2.
8)

2.
82

7*
**

(1
68

7.
45

)

lo
g(
PR

C
om

m
its
)

0.
77

2*
**

(3
28

3.
0)

0.
68

1*
**

(3
37

.8
)

0.
74

2*
**

(2
91

.0
)

0.
79

7*
**

(1
53

.5
7)

ti
m
e

0.
03

1*
**

(4
1.
0)

0.
01

1
(1
.1
)

0.
07

5*
(0
.0
)

0.
12

8*
*
(2
4.
97

)

in
te
rv
en
ti
on

T
ru
e

-0
.2
80

**
*
(8
6.
0)

-0
.2
26

(7
.9
)

-0
.4
10

**
(2
0.
9)

-0
.6
50

**
(2
0.
03

)

ti
m
e_
af
te
r_
in
te
rv
en

ti
on

0.
03

1*
(1
5.
0)

0.
02

0
(0
.8
)

-0
.0
40

(2
.2
)

0.
01

0
(0
.0
6)

M
ar
gi
na
l
R
2

0.
50

0.
47

0.
50

0.
49

C
on

di
tio

na
l
R
2

0.
61

0.
58

0.
58

0.
63

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

SS
st
an
ds

fo
r
“S
um

of
Sq

ua
re
s”

T
im

e
se
ri
es

pr
ed
ic
to
rs
in

bo
ld

123

Page 25 of 35 131Empirical Software Engineering (2023) 28:131

Ta
bl
e
14

T
he

E
ff
ec
ts
of

G
it
H
u
b

A
ct

io
n
s
on

C
om

m
its

of
M
er
ge
d
Pu

ll
R
eq
ue
st
s.
T
he

re
sp
on
se

is
lo
g(
nu

m
be
r
of

co
m
m
it
on

m
er
ge
d
P
R
s)
pe
r
m
on

th

U
til
iti
es

C
I

C
od
e
Q
ua
lit
y

D
ep
lo
ym

en
t

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

In
te
rc
ep
t

0.
36

0*
**

0.
38

8*
**

0.
28

4*
0.
37

5

T
im

eS
in
ce
Fi
rs
tP
R

-0
.0
00

1
(0
.0
2)

0.
00

1
(0
.3
35

)
-0
.0
00

2
(0
.0
00

)
0.
00

04
(0
.1
89

6)

lo
g(
To

ta
lP
R
A
ut
ho

rs
)

-0
.0
42

**
*
(3
2.
11

)
-0
.0
67

**
(4
.4
66

)
-0
.0
34

(2
.6
71

)
-0
.0
88

(1
.5
85

8)

lo
g(
To

ta
lC
om

m
its
)

0.
00

8
(7
.7
6)

0.
01

5
(1
.2
70

)
0.
02

6
(1
.1
39

)
0.
03

2
(0
.5
88

9)

lo
g(
O
pe
ne
dP

R
s)

0.
13

8*
**

(2
13

.8
5)

0.
12

8*
**

(2
2.
45

6)
0.
11

3*
**

(1
8.
12

1)
0.
15

3*
**

(7
.9
28

3)

lo
g(
PR

C
om

m
en
ts
)

0.
46

0*
**

(7
64

.6
9)

0.
40

3*
**

(7
0.
61

7)
0.
42

0*
**

(6
0.
07

3)
0.
42

5*
**

(1
3.
84

55
)

ti
m
e

0.
00

04
(1
.1
8)

0.
00

5
(0
.5
31

)
0.
00

5
(0
.0
91

)
-0
.0
03

(0
.0
39

8)

in
te
rv
en
ti
on

T
ru
e

0.
04

0*
**

(1
.7
4)

0.
02

5
(0
.0
79

)
-0
.0
01

(0
.0
02

)
0.
06

7
(0
.1
98

2)

ti
m
e_
af
te
r_
in
te
rv
en

ti
on

-0
.0
06

**
(0
.4
9)

-0
.0
07

(0
.1
10

)
-0
.0
06

(0
.0
42

)
-0
.0
07

(0
.0
26

)

M
ar
gi
na
l
R
2

0.
38

0.
37

0.
30

0.
35

C
on

di
tio

na
l
R
2

0.
59

0.
62

0.
55

0.
69

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

SS
st
an
ds

fo
r
“S
um

of
Sq

ua
re
s”

T
im

e
se
ri
es

pr
ed
ic
to
rs
in

bo
ld

123

131 Page 26 of 35 Empirical Software Engineering (2023) 28:131

Ta
bl
e
15

T
he

E
ff
ec
ts
of

G
it
H
u
b

A
ct

io
n
s
on

C
om

m
its

of
N
on
-m

er
ge
d
Pu

ll
R
eq
ue
st
s.
T
he

re
sp
on
se

is
lo
g(
nu

m
be

r
of

co
m
m
it
on

no
n-
m
er
ge
d
P
R
s)
pe
r
m
on

th

U
til
iti
es

C
I

C
od
e
Q
ua
lit
y

D
ep
lo
ym

en
t

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

C
oe
ff
s
(S
S)

In
te
rc
ep
t

0.
19

6*
**

0.
45

7*
**

0.
27

0
0.
34

4

T
im

eS
in
ce
Fi
rs
tP
R

0.
00

03
(2
.1
1)

0.
00

1
(1
.1
63

)
0.
00

04
(1
.1
05

)
-0
.0
00

5
(0
.6
89

)

lo
g(
To

ta
lP
R
A
ut
ho

rs
)

-0
.0
35

**
(1
13

.3
5)

-0
.0
84

**
(1
7.
38

8)
-0
.0
49

(1
2.
73

2)
-0
.0
32

(5
.7
63

)

lo
g(
To

ta
lC
om

m
its
)

0.
01

0
(3
7.
98

)
0.
00

8
(6
.7
60

)
0.
00

3
(6
.0
40

)
0.
01

2
(1
.4
55

)

lo
g(
O
pe
ne
dP

R
s)

0.
10

1*
**

(3
41

.0
1)

0.
11

8*
**

(4
7.
49

1)
0.
11

9*
**

(4
4.
60

9)
0.
06

4*
*
(7
.6
77

)

lo
g(
PR

C
om

m
en
ts
)

0.
51

7*
**

(1
46

2.
07

)
0.
46

7*
**

(1
62

.6
36

)
0.
48

6*
**

(1
61

.8
48

)
0.
58

6*
**

(5
3.
57

)

ti
m
e

-0
.0
03

(0
.0
1)

-0
.0
14

*
(0
.6
4)

0.
01

1
(0
.0
89

)
-0
.0
20

(0
.4
5)

in
te
rv
en
ti
on

T
ru
e

-0
.0
11

(0
.0
6)

0.
06

9*
(0
.8
1)

-0
.0
16

(0
.0
7)

-0
.0
57

(0
.0
7)

ti
m
e_
af
te
r_
in
te
rv
en

ti
on

0.
00

9*
*
(1
.1
2)

0.
00

1
(0
.0
01

)
-0
.0
20

(0
.5
1)

0.
03

6
(0
.7
4)

M
ar
gi
na
l
R
2

0.
36

0.
32

0.
34

0.
29

C
on

di
tio

na
l
R
2

0.
48

0.
45

0.
44

0.
50

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

SS
st
an
ds

fo
r
“S
um

of
Sq

ua
re
s”

T
im

e
se
ri
es

pr
ed
ic
to
rs
in

bo
ld

123

Page 27 of 35 131Empirical Software Engineering (2023) 28:131

Table 16 Segmented analysis comparison (whole sample vs. different categories)

Indicator Whole Sample Utilities CI Code Quality Deployment

Merged PRs - -

Non-merged PRs + -

Comments in Merged PRs + +

Comments in Non-merged PRs - - - -

Commits in Merged PRs - -

Commits in Non-merged PRs + +

Time to merge a PR +

Time to close a PR

build automation tools to better support their assignments, including those related to con-
tributing to OSS Pinto et al. (2017). GitHub Actions can also automate multiple aspects
related to code quality checking still unexplored (Aniche et al. 2016; dos Santos and Gerosa
2018; Aniche et al. 2016).

Problems may arise from the integration of distinct automation tools. We identified
almost 1,000 distinct GitHub Actions in the repositories, and projects often use more
than one GitHub Actions in their repositories (median number of four and a maximum of
46 in a single repository). Wessel et al. (2021) showed that the use of multiple automation
tools may cause noise and inconsistencies. As some GitHub Actions provide limited
configuration options and are hard to change, researchers and practitioners should find ways
to seamlessly integrate such tools in their repositories. A promising approach is the use of
meta-bots to integrate and moderate the interactions of multiple bots (Wessel et al. 2022).
Such meta-bots can be responsible for mediating the communication between the tools and
the environment. Another approach is the adoption of process execution languages, such as
BPEL andBPMN (Ouyang et al. 2006), to allow end users to describe their workflow and how
information moves among the activities, which may include manual and automated tasks.
Future work can investigate how to facilitate such end-user programming to build complex
workflows and automation scenarios. Approaches such as orchestrations and choreographies
(Leite et al. 2013) can also be investigated in this context. Future work can also investigate the
interplay of GitHub Actions and other automation tools, such as development bots (Wessel
et al. 2018). It is still not clear when each platform should be used and how the interoperability
problems should be addressed.

CI/CD is one of the most automated parts of the workflow. Our results are in line
with Golzadeh et al. (2022), who showed that GitHub Actions are replacing other con-
tinuous integration platforms. Almost one-fourth of the GitHub Actions we found are
categorized as continuous integration andmany other categories of actions are closely related
to continuous integration or continuous delivery, including deployment, publishing, testing,
etc. The popularity of these types of GitHub Actions can be explained by the popularity
of CI/CD automation tools themselves. The literature has shown that these tools streamline
the review of external contributions (Cassee et al. 2020). Hilton (2016) showed that projects
can process more outside contributions after the adoption of CI without any change in code
quality. With less time spent reviewing external pull requests, maintainers can focus on
improving other aspects of the development workflow. Given the availability and widespread
use of GitHub Actions for CI/CD, projects considering automating this part of the work-

123

131 Page 28 of 35 Empirical Software Engineering (2023) 28:131

flow should consider adopting GitHub Actions. Projects that use existing tools should
become aware that they may need to migrate to GitHub Actions at some point.

GITHUB ACTIONS are still not optimal. When looking for references to GitHub
Actions in the projects, the most common type of message we found was requests for
help. Developers were soliciting help in configuring a particular GitHub Action or men-
tioning that automation was not working as intended. Projects should be aware that, as often
occurswith novel technologies or features,GitHub Actions can introduce unforeseen prob-
lems. Projects should be prepared to assist developers in debugging and configuringGitHub
Actions they adopt. Our results also reveal that the use of GitHub Actions sometimes
makes debugging more difficult, since developers cannot reproduce locally issues related to
GitHub Actions.

Project activity changes with the introduction of GITHUB ACTIONS. The adoption
of new technology can bring unanticipated consequences to group behavior (Healy 2012).
According to Mulder (2013), many effects are not directly caused by the new technology
itself but by the changes in human behavior that it provokes. For example, with the automa-
tion of repetitive tasks, human developers can focus on other tasks, which may help explain
some of the changes we observed after the adoption of GitHub Actions. Our results
suggest that the introduction of GitHub Actions causes changes in several activity indi-
cators. In particular, we noted fewer accepted pull requests, with fewer commits and more
communication, and more rejected pull requests, with fewer comments and more commits.
GitHub Actions can also introduce a secondary evaluation step to the pull request. Espe-
cially at the beginning of the adoption, the number of commits may increase due to the need
to meet all requirements imposed by the GitHub Actions. Our results may also imply
possible negative consequences. GitHub Actions may change the discussion patterns in
the project. Utility actions, for example, may lead developers to discuss more. Thus, prac-
titioners, who may already handle a high amount of messages in their repositories, must
be aware that introducing some actions may increase the number of messages even more.
Additional effort is also necessary to investigate the impact on newcomers, who already face
a variety of barriers (Balali et al. 2018; Steinmacher et al. 2015) and may suffer from the
disturbance in communication. For newcomers, interacting with GitHub Actions can be
inconvenient, leading developers to losemotivation or even abandon their contributions. Sim-
ilar effects have been observed when newcomers interact with other automation tools, such
as development bots, which are often perceived as disruptive and noisy (Wessel et al. 2021).
Therefore, designers should envision automation tools as socio-technical rather than purely
technical applications, considering human interaction, developers’ collaboration, and ethical
concerns (Storey and Zagalsky 2016). The literature still lacks design strategies that include
end-user perspectives to enhance the interplay between automation tools and developers on
social coding platforms. Future work can devise guidelines and best practices about how to
build GitHub Actions and adopt them in projects to holistically consider the dynamics of
the project. Considering different cognitive styles and preferences may also be the subject of
future research (Santos et al. 2023).

Distinguishing human and GITHUB ACTIONS contributions in empirical studies.
To enable large-scale empirical studies on the usage of automation workflows (i.e., bots,
GitHub Actions) in social coding platforms, it is necessary to determine which projects
rely on this automation andwhich user accounts work as proxies for automation tools. Several
bot detection techniques have been proposed to automatically identify bot contributions in

123

Page 29 of 35 131Empirical Software Engineering (2023) 28:131

software repositories (Golzadeh et al. 2020; Abdellatif et al. 2022; Dey et al. 2020). These
techniques usually rely on profile information, account activity, and comment patterns in
issue and pull request comments. One of the biggest challenges with identifying automated
contributions made by bots remains the occurrence of mixed accounts used by both humans
and bots. Since GitHub Actions can also be implemented to act on behalf of a regular
GitHub user account (i.e., a mixed account), the outcome of empirical analyses may be
affected if these accounts are not properly identified.

7 Limitations and Threats to Validity

This section discusses the limitations and threats to validity and howwe havemitigated them.
Generalizability: Since we selected top-starred software projects, our findings might not

be generalized to other or all GitHub projects. In particular, our work focused on open-source
repositories. Since the usage of Actions might slightly differ for closed-source projects, our
findings might also not be generalized to closed-source, private, or industry repositories on
GitHub. One way to overcome this threat is by studying less popular projects hosted on
GitHub and also projects that are not open-source. Additionally, even though we considered
a large number of projects and our results indicate general trends, we recommend running
segmented analyses when applying our results to a given project.

Reliability of Results: To ensure consistency and improve the reliability of our qual-
itative findings, we have calculated the inter-rater agreement. After achieving an ‘almost
perfect’ agreement (Cohen’s κ = 0.939 (McHugh 2012)), the disagreements between the
two researchers who coded the developer’s conversations (Discussion threads and conversa-
tions on Discord) have been extensively discussed throughout multiple meetings to reach an
agreement.

Construct Validity: As stated by Kalliamvakou et al. (2014), many merged pull requests
appear non-merged. Since we consider the number of merged pull requests, our results may
be affected by this threat. Our study can be replicated when automated ways of detecting this
issue are developed.

Internal Validity: We applied multiple data filtering steps to the statistical models to
reduce internal threats. We varied the data filtering criteria to confirm the robustness of our
models. For example, we filtered projects that did not receive pull requests in all months
and observed similar phenomena. We also carried out a series of placebo tests (Imbens and
Lemieux 2008) using the same model with the adoption artificially set to different dates to
confirm the model’s robustness. The assumption of exogeneity of the treatment might be a
threat. Another internal limitation of our analysis is that a single project on GitHub might
have more than one Action in its workflow and, thus, would be considered twice in our
models. Previous research has highlighted that many social and technical aspects affect the
pull request acceptance (Tsay et al. 2014; Dey and Mockus 2020). Such aspects might act as
potential confounding effects on our models. Following previous work that also considered
interventions to pull requests (Cassee et al. 2020; Wessel et al. 2020, 2022; Kinsman et al.
2021), we added a set of six control variables, including the total number of pull request
authors (as a proxy to the community size), the total number of commits (as a proxy to the
activity level), time since the first pull request (capturing the pull request usage maturity)
that might influence the independent variables to reduce confounding factors. However, in
addition to the already identified variables, other factors might influence the results, and
further research is necessary to establish causal relations.

123

131 Page 30 of 35 Empirical Software Engineering (2023) 28:131

8 Conclusion

In this paper, we investigate how software developers use GitHub Actions to automate
their workflows, how they discuss these GitHub Actions, and the effects of the adoption
of GitHub Actions on pull request dynamics. We collected and analyzed data from 5,000
active GitHub repositories. To understand the impact on practice, we statistically analyzed a
sample of 662 open-source projects hosted on GitHub.

Firstly, the findings showed that circa 30% repositories used GitHub Actions. We
also found that 973 unique predefined GitHub Actions were used within the workflows.
Further, we collected and analyzed GitHub Actions related discussions and chat excerpts
on Discord and found that most of them were related to developers asking for help. These
findings indicate that GitHub Actions can introduce additional issues related to debugging
and contributing. By modeling the data around the introduction of GitHub Actions, we
noticed different results between merged and non-merged pull requests. For merged pull
requests, the number of pull requests and commits decreased while comments increased, and
for non-merged pull requests the number of pull requests and commits increased while the
number of comments decreasesd.

Practitioners need to make informed decisions about whether to adopt GitHub Actions
into their projects and how to use them effectively. GitHub Actions might allow them to
automate repetitive tasks in their projects with their own custom Action. GitHub Actions
provides hundreds of different GitHub Actions, potentially making it difficult for practi-
tioners to decide which Action to use. Our work provides empirical data on which GitHub
Actions are currently used and how they can impact development processes. Learning from
those adopters can provide insights to assist the open-source community in deciding whether
to useGitHub Actions and how to use themeffectively. Futurework includes the qualitative
investigation of the effects of adopting GitHub Actions and the expansion of our analysis
for considering the effects of different types of GitHub Actions and activity indicators.

Acknowledgements This work was partially supported by the NSF grants 1815503, 1900903, 2236198,
2247929, 2303042, and the Australian Research Council’s Discovery Early Career Researcher Award
(DECRA) funding scheme (DE180100153). We thank Timothy Kinsman for his participation in the initial
stage of this study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdellatif A, Wessel M, Steinmacher I, Gerosa MA, Shihab E (2022) BotHunter: An approach to detect
software bots in GitHub. In: International Conference on Mining Software Repositories (MSR), IEEE
Computer Society, pp 6–17. https://doi.org/10.1145/3524842.3527959

Aniche M, Bavota G, Treude C, Van Deursen A, Gerosa MA (2016) A validated set of smells in model-view-
controller architectures. In: 2016 IEEE International Conference on SoftwareMaintenance and Evolution
(ICSME), IEEE, pp 233–243

123

Page 31 of 35 131Empirical Software Engineering (2023) 28:131

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3524842.3527959

Aniche M, Treude C, Zaidman A, Van Deursen A, Gerosa MA (2016) SATT: Tailoring code metric thresholds
for different software architectures. In: 2016 IEEE 16th international working conference on source code
analysis and manipulation (SCAM), IEEE, pp 41–50

Balali S, Steinmacher I, Annamalai U, Sarma A, Gerosa MA (2018) Newcomers’ barriers... is that all? an
analysis ofmentors’ and newcomers’ barriers inOSS projects. Comput Supported CoopWork 27(3):679–
714

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J R Stat Soc: Ser B 57(1):289–300

Brown C, Parnin C (2019) Sorry to bother you: Designing bots for effective recommendations. In: Proceedings
of the 1st International Workshop on Bots in Software Engineering, IEEE Press, BotSE ’19, p 54–58.
https://doi.org/10.1109/BotSE.2019.00021

Calefato F, Lanubile F, Quaranta L (2022) A preliminary investigation of MLOps practices in GitHub. In:
Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, Association for Computing Machinery, New York, NY, USA, ESEM ’22, p 283–288.
https://doi.org/10.1145/3544902.3546636

Cassee N, Vasilescu B, Serebrenik A (2020) The silent helper: the impact of continuous integration on code
reviews. In: 27th IEEE International Conference on Software Analysis, Evolution and Reengineering,
IEEE Computer Society

Chen SK, Fuchs WK, Chung JY (2001) Reversible debugging using program instrumentation. IEEE Trans
Softw Eng 27(8):715–727. https://doi.org/10.1109/32.940726

Chen T, Zhang Y, Chen S, Wang T, Wu Y (2021) Let’s supercharge the workflows: An empirical study of
GitHub actions. 2021 IEEE 21st International Conference on Software Quality. Reliability and Security
Companion (QRS-C), IEEE, pp 01–10

Cook T, Campbell D (1979) Quasi-Experimentation: Design and Analysis Issues for Field Settings. Houghton
Mifflin

Cordeiro M, Silva D, Teixeira L, Miranda B, d’AmorimM (2021) Shaker: a tool for detecting more flaky tests
faster. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
IEEE, pp 1281–1285

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in GitHub: Transparency and collaboration
in an open software repository. In: Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, ACM, New York, NY, USA, CSCW ’12, pp 1277–1286. https://doi.org/10.1145/
2145204.2145396

Decan A, Mens T, Mazrae PR, Golzadeh M (2022) On the use of GitHub actions in software development
repositories. In: 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp 235–245. https://doi.org/10.1109/ICSME55016.2022.00029

Dey T, Mockus A (2020) Effect of technical and social factors on pull request quality for the npm ecosystem.
In: Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp 1–11

Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A (2020) Detecting and characterizing
bots that commit code. In: 17th International Conference onMining Software Repositories (MSR), ACM,
pp 209–219. https://doi.org/10.1145/3379597.3387478

Duvall P, Matyas S, Duvall P, Glover A (2007) Continuous Integration: Improving Software Quality and
Reducing Risk. Addison-Wesley, A Martin Fowler signature book

Erlenhov L, de Oliveira Neto FG, Scandariato R, Leitner P (2019) Current and future bots in software devel-
opment. In: Proceedings of the 1st International Workshop on Bots in Software Engineering, IEEE Press,
BotSE ’19, p 7–11. https://doi.org/10.1109/BotSE.2019.00009

Gałecki A, Burzykowski T (2013) Linear mixed-effects models using R: A step-by-step approach. Springer
Science & Business Media

Golzadeh M, Decan A, Legay D, Mens T (2020) A ground-truth dataset and classification model for detecting
bots in GitHub issue and PR comments. arXiv:2010.03303

Golzadeh M, Decan A, Mens T (2022) On the rise and fall of CI services in GitHub. In: 2022 IEEE 29th
International Conference on Software Analysis, Evolution and Reengineering (SANER)

Gousios G, Pinzger M, van Deursen A (2014) An exploratory study of the pull-based software development
model. In: Proceedings of the 36th International Conference on Software Engineering, ACM, pp 345–355

Gousios G, Storey MA, Bacchelli A (2016) Work practices and challenges in pull-based development: The
contributor’s perspective. In: Proceedings of the 38th International Conference on Software Engineering,
ACM, New York, NY, USA, ICSE ’16, pp 285–296. https://doi.org/10.1145/2884781.2884826

Hata H, Novielli N, Baltes S, Kula RG, Treude C (2022) GitHub discussions: An exploratory study of early
adoption. Empir Softw Eng 27(1):1–32

123

131 Page 32 of 35 Empirical Software Engineering (2023) 28:131

https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1145/3544902.3546636
https://doi.org/10.1109/32.940726
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1109/BotSE.2019.00009
http://arxiv.org/abs/2010.03303
https://doi.org/10.1145/2884781.2884826

Healy T (2012) The unanticipated consequences of technology. Nanotechnology: ethical and social Implica-
tions pp 155–173

Hilton M (2016) Understanding and improving continuous integration. In: Proceedings of the 2016 24th ACM
SIGSOFT International SymposiumonFoundations of SoftwareEngineering,Association forComputing
Machinery, New York, NY, USA, FSE 2016, p 1066–1067. https://doi.org/10.1145/2950290.2983952

Hu Z, Gehringer E (2019) Use bots to improve GitHub pull-request feedback. In: Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, Association for Computing Machinery,
New York, NY, USA, SIGCSE ’19, p 1262–1263. https://doi.org/10.1145/3287324.3293787

Imbens GW, Lemieux T (2008) Regression discontinuity designs: A guide to practice. J Econom 142(2):615–
635

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils
of mining GitHub. In: Proceedings of the 11th Working Conference on Mining Software Repositories,
ACM, New York, NY, USA, MSR 2014, pp 92–101. https://doi.org/10.1145/2597073.2597074

Kavaler D, Trockman A, Vasilescu B, Filkov V (2019) Tool choice matters: JavaScript quality assurance tools
and usage outcomes in GitHub projects. In: Proceedings of the 41st International Conference on Software
Engineering, IEEE Press, pp 476–487

KinsmanT,WesselM,GerosaM, TreudeC (2021)Howdo software developers useGitHub actions to automate
their workflows? In: Mining Software Repositories Conference (MSR), IEEE

Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmertest package: tests in linear mixed effects models.
J Stat Softw 82(13)

Leite LA, Ansaldi Oliva G, Nogueira GM, Gerosa MA, Kon F, Milojicic DS (2013) A systematic literature
review of service choreography adaptation. Serv Oriented Comput Appl 7:199–216

Lin B, Zagalsky A, Storey M, Serebrenik A (2016) Why developers are slacking off: Understanding how
software teams use Slack. In: Proceedings of the 19th ACM Conference on Computer Supported Coop-
erative Work and Social Computing Companion, ACM, New York, NY, USA, CSCW ’16 Companion,
pp 333–336. https://doi.org/10.1145/2818052.2869117

McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 22(3):276–282
Mirhosseini S, Parnin C (2017) Can automated pull requests encourage software developers to upgrade out-

of-date dependencies? In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, IEEE Press, ASE 2017, p 84–94

Monperrus M (2019) Explainable software bot contributions: Case study of automated bug fixes. In: Proceed-
ings of the 1st International Workshop on Bots in Software Engineering, IEEE Press, Piscataway, NJ,
USA, BotSE ’19, pp 12–15. https://doi.org/10.1109/BotSE.2019.00010

Mulder K (2013) Impact of new technologies: how to assess the intended and unintended effects of new
technologies. Handb Sustain Eng(2013)

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear
mixed-effects models. Methods Ecol Evol 4(2):133–142

Ouyang C, Dumas M, Ter Hofstede AH, Van der Aalst WM (2006) From BPMN process models to BPEL
web services. In: 2006 IEEE International Conference on Web Services (ICWS’06), IEEE, pp 285–292

Pinto GHL, Figueira Filho F, Steinmacher I, GerosaMA (2017) Training software engineers using open-source
software: the professors’ perspective. In: 2017 IEEE 30thConference on Software Engineering Education
and Training (CSEE&T), IEEE, pp 117–121

Santos I, Pimentel JF, Wiese I, Steinmacher I, Sarma A, Gerosa MA (2023) Designing for cognitive diver-
sity: Improving the github experience for newcomers. In: Proceedings of the 2023 ACM/IEEE 45th
International Conference on Software Engineering: Software Engineering in Society

dos Santos RM, Gerosa MA (2018) Impacts of coding practices on readability. In: Proceedings of the 26th
Conference on Program Comprehension, pp 277–285

Saroar SG, Nayebi M (2023) Developers’ perception of GitHub actions: A survey analysis. In: 2023 Interna-
tional Conference on Evaluation and Assessment in Software Engineering (EASE)

Sheather S (2009) A modern approach to regression with R. Springer Science & Business Media
Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing their first

contribution in open source software projects. In: Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing, pp 1379–1392

Storey MA, Zagalsky A (2016) Disrupting developer productivity one bot at a time. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, ACM,
New York, NY, USA, FSE 2016, pp 928–931. https://doi.org/10.1145/2950290.2983989

Subash KM, Kumar LP, Vadlamani SL, Chatterjee P, Baysal O (2022) Disco: A dataset of Discord chat
conversations for software engineering research. In: Proceedings of the 19th International Conference
on Mining Software Repositories, pp 227–231

123

Page 33 of 35 131Empirical Software Engineering (2023) 28:131

https://doi.org/10.1145/2950290.2983952
https://doi.org/10.1145/3287324.3293787
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2818052.2869117
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1145/2950290.2983989

Thistlethwaite DL, Campbell DT (1960) Regression-discontinuity analysis: An alternative to the ex post facto
experiment. J Educ Psychol 51(6):309

van Tonder R, Le Goues C (2019) Towards s/engineer/bot: Principles for program repair bots. In: Proceedings
of the 1st International Workshop on Bots in Software Engineering, IEEE Press, BotSE ’19, p 43–47.
https://doi.org/10.1109/BotSE.2019.00019

Tsay J, Dabbish L, Herbsleb J (2014) Influence of social and technical factors for evaluating contribution in
GitHub. In: Proceedings of the 36th international conference on Software engineering, pp 356–366

Valenzuela-Toledo P, Bergel A (2022) Evolution of GitHub action workflows. In: 2022 IEEE 29th Interna-
tional Conference on Software Analysis, Evolution and Reengineering – Early Research Achievements
(SANER-ERA)

Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and productivity outcomes relating to
continuous integration in GitHub. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ACM, New York, NY, USA, ESEC/FSE 2015, pp 805–816. https://doi.org/10.
1145/2786805.2786850

Wessel M, Steinmacher I (2020) The inconvenient side of software bots on pull requests. In: Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, Association for
Computing Machinery, New York, NY, USA, ICSEW’20, p 51–55. https://doi.org/10.1145/3387940.
3391504

Wessel M, de Souza BM, Steinmacher I, Wiese IS, Polato I, Chaves AP, Gerosa MA (2018) The power
of bots: Characterizing and understanding bots in OSS projects. Proc ACM Hum-Comput Interact
2(CSCW):182:1–182:19. https://doi.org/10.1145/3274451

Wessel M, Serebrenik A, Wiese I, Steinmacher I, Gerosa MA (2020) Effects of adopting code review bots
on pull requests to OSS projects. In: 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp 1–11. https://doi.org/10.1109/ICSME46990.2020.00011

Wessel M, Wiese I, Steinmacher I, Gerosa MA (2021) Don’t disturb me: Challenges of interacting with
software bots on open source software projects. Proceedings of theACMonHuman-Computer Interaction
5(CSCW2):1–21

Wessel M, Abdellatif A, Wiese I, Conte T, Shihab E, Gerosa MA, Steinmacher I (2022) Bots for pull requests:
The good, the bad, and the promising. In: Proceedings of the 44th International Conference on Software
Engineering, Association for ComputingMachinery, New York, NY, USA, ICSE ’22, p 274–286. https://
doi.org/10.1145/3510003.3512765,

Wessel M, Serebrenik A, Wiese I, Steinmacher I, Gerosa MA (2022) Quality gatekeepers: Investigating the
effects of code review bots on pull request activities. Empir Softw Eng 27(108). https://doi.org/10.1007/
s10664-022-10130-9

WyrichM, Bogner J (2019) Towards an autonomous bot for automatic source code refactoring. In: Proceedings
of the 1st International Workshop on Bots in Software Engineering, IEEE Press, Piscataway, NJ, USA,
BotSE ’19, pp 24–28. https://doi.org/10.1109/BotSE.2019.00015

Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B (2017) The impact of continuous integration on other
software development practices: a large-scale empirical study. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, IEEE Press, pp 60–71

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Mairieli Wessel is an Assistant Professor in the Department of Software Science (SwS) at Radboud Uni-
versity, The Netherlands. She obtained her Ph.D. in Computer Science from the University of São Paulo,
Brazil. Her main research interest is in software engineering (SE) and computer-supported cooperative work
(CSCW), focused on software bots and open-source development. Her research goal is to design intelligent
support for developers by leveraging bots’ capabilities. For more information, visit http://www.mairieli.com

Joseph Vargovich is an Advanced Software Engineer at Honeywell and finished a Master’s degree program
in Computer Science. His research interests include Operating Systems, Computer Graphics, Open Source
Software, and Machine Learning.

123

131 Page 34 of 35 Empirical Software Engineering (2023) 28:131

https://doi.org/10.1109/BotSE.2019.00019
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/3387940.3391504
https://doi.org/10.1145/3387940.3391504
https://doi.org/10.1145/3274451
https://doi.org/10.1109/ICSME46990.2020.00011
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1109/BotSE.2019.00015
http://www.mairieli.com

Marco Gerosa is a Full Professor at the Northern Arizona University, USA, and a Ph.D. advisor at the Uni-
versity of São Paulo, Brazil. He received his Ph.D. from the Catholic University of Rio de Janeiro in 2006.
He researches Software Engineering and CSCW, and recent projects include the support of OSS communi-
ties and the use of AI to enhance software engineering. He published more than 200 papers and serves on
the program committee (PC) of top-tier conferences, including ICSE, FSE, MSR, ICSME, and CSCW. For
more information, visit http://www.marcoagerosa.com

Christoph Treude is a Senior Lecturer in Software Engineering at the School of Computing and Informa-
tion Systems at The University of Melbourne. His research is focused on enhancing software quality and
boosting the productivity of software developers. Currently, he serves on the Editorial Boards of the IEEE
Transactions on Software Engineering and the Springer journal on Empirical Software Engineering. He also
holds the role of Open Science Editor for the Elsevier Journal of Systems and Software. He has served as
the General Chair for ICSME 2020, ICPC 2023, and TechDebt 2023. Additionally, he regularly contributes
as a member of various software engineering conference program committees. For more information, visit
https://ctreude.ca/

123

Page 35 of 35 131Empirical Software Engineering (2023) 28:131

http://www.marcoagerosa.com
https://ctreude.ca/

	GitHub Actions: The Impact on the Pull Request Process
	Abstract
	1 Introduction
	2 Workflow Automation with GitHub Actions
	3 Related Work
	3.1 Development Bots
	3.2 Continuous Integration and Continuous Delivery
	3.3 GitHub Actions

	4 Research Design
	4.1 Selecting Projects
	4.2 Analyzing the Use of GitHub Actions
	4.3 Categorizing GitHub Actions Discussions
	4.4 Time Series Analysis
	4.4.1 Aggregating Project Variables
	4.4.2 Statistical Approach

	5 Results
	5.1 How do OSS Projects use GitHub Actions? (RQ1)
	5.2 How is the use of GitHub Actions Discussed by Developers? (RQ2)
	5.3 What is the Impact of GitHub Actions? (RQ3)
	5.4 How Does the Impact of GitHub Actions Differ Across Action Categories? (RQ4)

	6 Discussion
	7 Limitations and Threats to Validity
	8 Conclusion
	Acknowledgements
	References

