
https://doi.org/10.1007/s10664-023-10361-4

Automated detection, categorisation and developers’
experience with the violations of honesty in mobile apps

Humphrey O. Obie1 · Hung Du2 · Kashumi Madampe1 ·Mojtaba Shahin3 ·
Idowu Ilekura4 · John Grundy1 · Li Li5 · Jon Whittle6 · Burak Turhan7 ·
Hourieh Khalajzadeh2

Accepted: 12 June 2023 /
© The Author(s) 2023

Abstract
Human values such as honesty, social responsibility, fairness, privacy, and the like are things
considered important by individuals and society. Software systems, including mobile soft-
ware applications (apps), may ignore or violate such values, leading to negative effects
in various ways for individuals and society. While some works have investigated different
aspects of human values in software engineering, this mixed-methods study focuses on hon-
esty as a critical human value. In particular, we studied (i) how to detect honesty violations
in mobile apps, (ii) the types of honesty violations in mobile apps, and (iii) the perspec-
tives of app developers on these detected honesty violations. We first develop and evaluate
7 machine learning (ML) models to automatically detect violations of the value of honesty
in app reviews from an end-user perspective. The most promising was a Deep Neural Net-
work model with F1 score of 0.921. We then conducted a manual analysis of 401 reviews
containing honesty violations and characterised honesty violations in mobile apps into 10
categories: unfair cancellation and refund policies; false advertisements; delusive subscrip-
tions; cheating systems; inaccurate information; unfair fees; no service; deletion of reviews;
impersonation; and fraudulent-looking apps. A developer survey and interview study with
mobile developers then identified 7 key causes behind honesty violations in mobile apps and
8 strategies to avoid or fix such violations. The findings of our developer study also articulate
the negative consequences that honesty violations might bring for businesses, developers,
and users. Finally, the app developers’ feedback shows that our prototype ML-based models
can have promising benefits in practice.

Keywords Human values · Honesty · Mobile apps · Machine Learning · App reviews ·
Mixed-methods · Developer experience

Communicated by: Nicole Novielli, Shane McIntosh and David Lo

This article belongs to the Topical Collection: Special Issue on Mining Software Repositories (MSR).

B Kashumi Madampe
kashumi.madampe@monash.edu

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Published online: 27 September 2023

Empirical Software Engineering (2023) 28:134

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10361-4&domain=pdf
http://orcid.org/0000-0003-1363-8786

1 Introduction

Human values, such as integrity, privacy, curiosity, security, and honesty, are the guiding
principles for what people consider important in life (Cheng and Fleischmann 2010). These
values influence the choices, decisions, relationships, and the concept of ethics for people and
society at large whether or not they are formally articulated in this terminology (Schwartz
1992). The relationship between human values and technologies is important, especially for
ubiquitous technologies like mobile software applications (apps) (Obie et al. 2021). Mobile
apps are a convenience to modern society and have seen usage in carrying out both simple
and complex tasks, from entertainment (e.g., video sharing apps) and health (e.g., fitness
trackers) to finance (e.g., banking apps). End-users of these apps hold certain expectations
influenced by their human values considerations, e.g., the privacy of data, transparency of
processes in apps, and ethical behaviour of platforms and software companies (Obie et al.
2021). The violation of these value considerations is detrimental to the end-user, software
platforms, companies, and society in general (Whittle et al. 2011).

Recent work on human values in software engineering (SE), based on the Schwartz theory
of basic human values (Schwartz 1992, 2012), has mapped human values to specific ethical
principles. For example, Perera et al. mapped values to the GDPR principles (Perera et al.
2019) andWinter et al. mapped values to the ACMCode of Ethics (Winter et al. 2018). Other
studies such as Obie et al. (2021) have explored the violation of human values in mobile
apps using app reviews as a proxy. The recent study by Obie et al. showed that the value of
honesty (a sub-item of benevolence based on Schwartz theory (Schwartz 1992)) is violated
by mobile apps (Obie et al. 2021).

Honesty, often perceived to be a very important human value (Miller 2021), describes
a character quality of being sincere, truthful, fair, and straightforward, and refraining from
lying, cheating, deceit, and fraud (Dictionary 2012). The importance of the value of honesty
is clearly articulated in the ACMCode of Ethics: “Honesty is an essential component of trust.
A computing professional should be transparent and provide full disclosure of all pertinent
system limitations and potential problems. Making deliberately false or misleading claims,
fabricating or falsifying data, and other dishonest conduct are a violation of the Code.”
(Gotterbarn et al. 2017). Nonetheless, there have beenmany flagrant violations of the value of
honesty by mobile app platforms and software companies in ways that are collectively called
dark patterns (Dong et al. 2018; van Haasteren et al. 2019; Hu et al. 2019; Samhi et al. 2022;
Gao et al. 2022). These dark patterns, a violation of the value of honesty, entail sophisticated
design practices that can trick or manipulate consumers into buying products or services or
giving up their privacy (Barr 2022). Furthermore, some of these dark patterns and honesty
violations have been flagged in a recent report by the Federal Trade Commission (FTC)
(Henderson 2022). Other examples include companies deliberately hiding data breaches
from the authorities and customers (Bowman 2021; Shaffery 2021). These violations of the
value of honesty result in decreased trust from users, poor uptake of apps, and reputational
and financial damage to the organisations involved. This also emphasises the need to consider
human values more proactively in software engineering practice.

This work aims to gain a comprehensive understanding of honesty violations in mobile
apps. To this end, we conducted amixed-method study. Given that user’s comments expressed
in app reviews have been shown to be a proxy for detecting users’ challenges and requirements
(AlOmar et al. 2021; Obie et al. 2021; Shams et al. 2020; Di Sorbo et al. 2016; Guzman and
Maalej 2014), we first developed and evaluated seven machine learning models to learn the
features that are representative of the violation of honesty in app reviews. The best-performing

123

134 Page 2 of 52 Empirical Software Engineering (2023) 28:134

model (a Deep Neural Network) has an F1 score of 0.921, a precision of 0.911, and a recall
of 0.932. Beyond the automatic detection of honesty violations, we then manually analysed
401 reviews containing honesty violations. Our resulting taxonomy shows that honesty vio-
lations can be characterised into ten categories: unfair cancellation and refund policies,
false advertisements, delusive subscriptions, cheating systems, inaccurate information,
unfair fees, no service, deletion of reviews, impersonation, and fraudulent-looking apps.
Finally, we conducted a developer study1 with mobile app developers to explore their expe-
riences with honesty violations. The analysis of qualitative data from the developer study
resulted in identifying a set of causes (business, developer, app platform, user and competitor
drivers), parties responsible for the honesty violations (product owners, managers, busi-
ness analysts, user support roles – in addition to developers, and business), consequences
of honesty violations on businesses, app developers, and end users (e.g., bad reputation for
the company, developers experiencing negative emotions, and identity theft of users), and
strategies the app developers use to avoid (e.g., strengthening designing practices) and fix
(e.g., thoroughly investigating the violation and fixing it) honesty violations in the apps they
develop. The developer study also shows that the automatic detection of honesty violations in
app reviews bring several benefits to businesses, developers, app platforms, and users. From
this point onwards, the terms “mobile app developer” and “developer” are used interchange-
ably.

We published preliminary results of our machine learning-based classification work at the
Mining Software Repositories (MSR) conference in 2022 (Obie et al. 2022).We substantially
extend this previously published work here by (i) the inclusion of two new machine learning
models, deep neural network (DNN) and generative adversarial network (GAN), with the new
DNN replacing the prior support vector machine (SVM) as the best model; (ii) evaluation of
these new models; and (iii) adding a new research question (RQ3). RQ3 includes four sub-
questions to seekmobile developers’ views on the causes behind honesty violations inmobile
apps (RQ 3.1), the potential consequences of honesty violations (RQ3.2), possible solutions
to avoid or fix such violations (RQ3.3), and potential benefits of automated identification of
honesty violations in mobile apps (RQ3.4).

This work makes the following key contributions:

– We present several machine learning models and datasets to aid the automatic detection
of the violation of the human value of honesty in app reviews. Our publicly available
replication package supports researchers and practitioners to adapt, replicate, and validate
our study (Obie et al. 2022).

– We provide insights into the different categories of honesty violations prevalent in app
reviews by creating a taxonomy based on a manual analysis of the honesty violations
dataset.

– We survey 70 app developer practitioners and interview 3 practitioners to get their feed-
back on the prevalence of honesty violations in their mobile apps, the causes of these
issues, and feedback on our proposed machine learning-based classifier to help identify
such violations from user app reviews.

– We present an actionable framework for developers which gives a better understanding
of the causes and consequences of honesty violations and strategies that can be used to
avoid and fix honesty violations.

– We present a set of practical implications and future research directions to deal with the
challenges of the violations of the human value of honesty in apps that would benefit
end-users and society.

1 Approved by Monash Human Research Ethics Committee. Approval Number: 35070.

123

Page 3 of 52 134Empirical Software Engineering (2023) 28:134

The rest of the paper is organised as follows: Section 2 highlights motivating examples of
honesty violations. Section3 summarises the related studies. In Section 4, we elaborate on
the research design. The findings of this study are reported in Sections 5, 6, and 7 for different
research questions. Section8 reflects on the findings and provides implications, followed by
reporting on possible threats in Section 9. We conclude the paper in Section 10.

2 Motivating Examples

Consider an example review of dubious charges to a user account for a calendar reminder
app: “I’ve been charged $45+ on 2 separate occasions in the month I’ve had the ‘premium’
version. It advertises $3.50 for a premium subscription but saw nowhere where it said they
would make additional charges.

Such reviews are common for many subscription-based apps. They are also very common
for appswith optional premiumversionswhere users find themselves unwittingly signed up to
the premium charges. Many end users perceive these as deliberate attempts by app providers
to dishonestlymakemoney. Some companies have been convicted of such dishonest practices.
For example, Shaw Academy offered users a free trial to its online education platform and
charged them a subscription fee even if they had cancelled before the end of the trial period
and refused to refund the users (Yiacoumi 2021). The outcome of an investigation by the
Australian Competition & Consumer Commission (ACCC) ordered the company to refund
approximately $50, 000 to the affected users and pledge to improve their system (Yiacoumi
2021).

Consider another example of dishonesty from a dating app. The dating platform (http://
www.Match.com) has been accused of faking love interests using bots and fake profiles to
fool consumers into buying subscriptions and exposing them to the risk of fraud and other
deceptive practices (Perez 2019). During a period of over three years, the company allegedly
delivered marketing emails (i.e., the “You have caught his eye” notification) to potential
consumers after the company’s internal system had already flagged the message sender as
a suspected bot or scammer. The company also violated the “Restore Online Shopper’s
Confidence Act” (ROSCA) by making the unsubscription process tedious. Internal company
documents showed that users need to make more than six clicks to cancel their subscription.
This resulted in the U.S. Federal Trade Commission (FTC) suing http://www.Match.com for
“deceptive advertising, billing, and cancellation practices” (Perez 2019).

3 RelatedWork

Mining App Reviews: Many works have provided insights into app user reviews and how
these reviews can aid software professionals in app requirements, design, maintenance (Pel-
loni et al. 2018; Carreño and Winbladh 2013; Seyff et al. 2010) and evolution (Ciurumelea
et al. 2017; Li et al. 2018, 2010; Palomba et al. 2015). Guzman and Maalej adopted Natural
Language Processing (NLP) techniques to locate fine-grained app features in reviews with
the aim of supporting software requirements tasks (Guzman and Maalej 2014). A related
work utilised Latent Dirichlet Allocation (LDA) technique and linguistic rules to group fea-
ture requests from users as expressed in their reviews, and the results from this study showed
that users care about frequent updates, improved support, more customisation options, and
new levels (for game apps) (Iacob and Harrison 2013).

123

134 Page 4 of 52 Empirical Software Engineering (2023) 28:134

http://www.Match.com
http://www.Match.com
http://www.Match.com

Some studies have focused on the automatic classification of app reviews into useful
categories. To aid software professionals in prioritising accessibility issues, AlOmar et al.
developed a machine learning model for identifying accessibility-related complaints in app
reviews (AlOmar et al. 2021). Panichella et al. introduced a taxonomy for classifying app
reviews and, using a combination of NLP and sentiment analysis, classified app reviews into
their proposed taxonomy (Panichella et al. 2015).

Other works have introduced tools to support the extraction of insights from app reviews.
For example, Vu et al. proposed MARK, a keyword-based tool for detecting trends and
changes that relate to occurrences of serious issues in reviews (Phong et al. 2015). Similarly,
Di Sorbo et al. introduced SURF, a tool that condenses thousands of reviews into coherent
summaries to support change requests and planning of software releases (Di Sorbo et al.
2016). Our ownwork has classified various app reviews into different human value violations
(Obie et al. 2021, ?), human-centric issues discussed in app reviews (Mathews et al. 2021;
Khalajzadeh et al. 2022), and a myriad of problems users have with eHealth apps (Haggag
et al. 2022).

The above studies show that app reviews are a useful resource for gathering requirements,
detecting issues, and more generally supporting software professionals in evolving their
apps. This work also aims to support app maintenance and evolution by effectively detecting
potential violations of the value of honesty from the user’s perspective in app reviews. In
addition, it would aid software professionals in delivering software products that build trust
in users, as the honesty (real or perceived) of companies can affect how users engage with
their products (Zhu et al. 2021).

Human Values in Software Engineering (SE): Human values are enduring beliefs that
a specific mode of conduct or end state of existence is personally or socially preferable to
an opposite or converse mode of conduct or end state of existence (Rokeach 1973). Human
values have been well-studied in the social sciences and have begun to see adoption in other
fields, including design (Aldewereld et al. 2015) and software engineering (SE) (Mougouei
2020; Li et al. 2021).

The study of human values in SE is a relatively nascent line of research (Perera et al. 2020;
Mougouei et al. 2018) and is mostly based on the widely accepted and adopted Schwartz
theory of basic human values (Schwartz 1992, 2012). The Schwartz theory is built on a survey
conducted in over 80 countries covering different demographics. This theory categorises
values into 10 broad categories, namely: self-direction, stimulation, hedonism, achievement,
power, security, conformity, tradition, benevolence, and universalism. These 10 categories, in
turn, are made up of 58 value items, e.g., the value category of benevolence covers the value
items of honesty, responsible, helpful, forgiving, loyal, mature love, a spiritual life, meaning
in life, and true friendship (c.f (Schwartz 1992)). However, our focus in this work is on the
value item of honesty, based upon the prevalence of the value category of benevolence in
prior research (Obie et al. 2021), the recent cases of the violations of honesty by companies in
the media, e.g., Perez (2019); Yiacoumi (2021), and the need to understand this phenomenon
more closely in SE.

Studies in the social sciences have investigated the value of (dis)honesty at the individual
and organisational levels (Fochmann et al. 2021), and the policy implication of dishonesty
in everyday life (Mazar and Ariely 2006); while others have explored the motivation for
dishonest behaviours (Cheating 2016) including students in classroom settings (Lang 2013)
and workers in crowd-working environments (Jacquemet et al. 2021). Keyes argues that
euphemising the violation of the value of honesty desensitises people to its implications and
consequences in society (Keyes 2004).

123

Page 5 of 52 134Empirical Software Engineering (2023) 28:134

However, within the context of SE, Whittle et al. argued that software companies need to
consider human values in the development of software systems and make them “first-class”
entities throughout the software development life cycle (Whittle et al. 2011). Another study
made a case for the evolution of current software practices and frameworks to embed human
values in technology, instead of a revolution of the SE field (Hussain et al. 2020).

Another line of research considered methods for measuring human values in SE. For
example, Winter et al. introduced the Values Q-sort instrument for measuring human values
in SE (Winter et al. 2018). Applying the Values Q-sort instrument to 12 software engineers
resulted in 3 software engineer values “prototype”. Similarly, Shams et al. utilised the portrait
values questionnaire (PVQ) to elicit the values of 193Bangladeshi female farmers in amobile
app development project (Shams et al. 2021). The result of the study showed that conformity
and security were the most important values, while power, hedonism, and stimulation were
the least important. More recently, Obie et al. argued that the instruments for eliciting and
measuring values should be contextualised to specific domains (Obie et al. 2021).

App Reviews and Human Values: Recent studies have adopted the use of app reviews
as an auxiliary data source for eliciting values requirements. Shams et al. analysed 1,522
reviews from 29 agricultural mobile apps to understand the values that are both represented
and missing from these apps (Shams et al. 2020). Obie et al. proposed a keyword dictionary-
based NLP classifier to detect the value categories violated in app reviews (Obie et al. 2021).
The results of the application of the classifier to 22,119 reviews showed that benevolence
and self-direction were the most violated categories, while conformity and tradition were the
least violated.

Related works such as Shams et al. (2020); Obie et al. (2021) have provided insights to
violations of value categories. Our work complements these by zooming in on a specific
value item; honesty (within the most violated category of benevolence (Obie et al. 2021)), to
provide a more nuanced understanding of its violations. In addition, we provide a taxonomy
of the different categories of honesty violations in reviews to better understand how the
violation of the value of honesty is reported. Our practitioner survey and interviews suggest
that the automated identification of honesty violations from app reviews would be practically
useful. We hope that other researchers would be encouraged to investigate other specific
value categories, their discussion of violations by users in app reviews, and more generally
to explore the field of human values in SE.

4 Research Design

Our goal in this study is to develop a deep understanding of honesty violations in mobile apps
by automatically identifying reviews discussing honesty violations, categorising the types of
honesty violations, and exploring the perspectives of app developers about their perspectives
on such honesty violations. To do this, we have formulated the following research questions
that we need to answer (RQs):

– RQ1. Can we effectively identify reviews documenting honesty violations automatically?
We formed a large labelled dataset of app reviews and then trained a variety of machine
learning classifiers to answer this RQ. Our best-performing classifier has an F1 score of
0.921.

– RQ2. What types of honesty violations are reported in these app reviews? We manually
inspected a sample of 401 honesty violation reviews and classified the honesty violations
represented by each into ten distinct categories.

123

134 Page 6 of 52 Empirical Software Engineering (2023) 28:134

A dataset of
honesty-related

reviews

Answer RQ1

Answer RQ2

Machine learning

Qualitative analysis Interview and survey

Answer RQ3

Quantitative and qualitative analysis

Deep
understanding of

honesty
violations in
mobile apps

Fig. 1 High-Level Overview of Mixed-methods Approach

– RQ3. What is app developers’ experience with honesty violations in the mobile apps
they develop and their perspective on automatic detection of honesty violations? We
developed three subquestions to answer this RQ. We use in-depth interviews and a broad
survey with the participation of 73 mobile app practitioners.

RQ3.1.What are the causes of honesty violations in mobile apps, and who is respon-
sible for them? We want to know, according to developers’ experience with honesty
violations in mobile apps they develop, what causes these honesty violations in mobile
apps and who is responsible for them.

RQ3.2.What are the consequences of honesty violations in mobile apps on the end
users and app developers/owners according to developers’ experience? The goal of this
RQ is to understand the impacts of honesty violations on end users, and the developers
themselves/owners of the mobile apps, as experienced by the mobile app developers.

RQ3.3. What strategies do developers use to handle honesty violations in mobile
apps? This RQ aims to identify what strategies the mobile app developers use to avoid
and/or fix reported honesty violations in mobile apps (or if they indeed do so).

RQ3.4.What are the benefits of automatically detecting honesty violations in mobile
apps? Through this research question, we target exploring the potential benefits of auto-
matic detection of honesty violations.

Approach for answering the above research questions. A high-level overview of our
mixed-methods approach is given in Fig. 1 and elaborated in figures and text in the respective
sections answering the research questions.

5 Automatic Classification of Honesty Violations (RQ1)

5.1 A Dataset of Honesty-Related Reviews

Our first step for answering RQ1 and RQ2 is creating a dataset of user reviews documenting
perceived honesty violations by apps.

5.1.1 Data Collection

To build this dataset, we collected a total of 236,660 reviews - 214,053 reviews from the
public dataset of Eler et al. (2019), and an additional 22,607 reviews from the public dataset
of Obie et al. (2021). These reviews were collected from a total of 713 apps in 25 categories.
The apps and reviews were intended to cover a diverse range of categories and audiences.

123

Page 7 of 52 134Empirical Software Engineering (2023) 28:134

Table 1 Statistics of the dataset

Number of Apps 713

App Categories 25

All Reviews 236,660

Honesty-related Reviews (after keywords filter) 4,885

Honesty Violation Reviews (after manual validation) 401

Table 1 summarises the statistics of our combined app review dataset. Our dataset can be
found here Obie et al. (2022).

5.1.2 Data Labeling

Given the sheer size of the dataset and the manual labour required to label the dataset, we
used two approaches to label the 236,660 reviews: a keyword-based approach and manual
labelling.We first adopt a set of keywords to filter the 236,660 reviews to include those related
only to the value of honesty. These keywords are based on the dictionary of human values
created by Obie et al. (2021). The set of keywords comprises a total of 48 words semantically
related to honesty. The keywords are available here Obie et al. (2022).

After applying this keyword filter, the number of reviews was reduced from 236,660
reviews to 4,885 potential candidate honesty-related reviews (we call these 4,885 reviews
honesty_potential reviews).

However, adopting a keyword-based approach is error-prone andmay result in a lot of false
positives. Hence, we manually analysed the honesty_potential (4,885) reviews to exclude
the false positives. The application of keywords filter and subsequent manual analysis check
have been applied in recent studies (Eler et al. 2019; AlOmar et al. 2021).

The honesty_potential (4,885) reviews were labelled and validated in 25% increments in
the followingmanner. The first analyst labelled the first 25% percent of the honesty_potential
reviews to determine which of the reviews contain the violation of the value of honesty as per-
ceived by the user in the review. The second analyst validated the outcome. The disagreements
were resolved in a meeting using the negotiated agreement approach to address issues of reli-
ability (Campbell et al. 2013; Morrissey 1974). Then the next 25% were labelled by the first
analyst, validated by the second analyst, and disagreements resolved in ameeting as in the first
round. The same procedure was repeated for the third and fourth rounds of the labelling pro-
cess. Also, the labelling and validation were done over eight weeks to avoid fatigue. Based on
our manual labelling, we found that out of the 4, 885 filtered reviews (the honesty_potential
reviews), only 401 were honesty violations reviews, i.e., true positives. We refer to these
401 honesty violations reviews as honesty_violations reviews. During the labelling process,
we had a total of 105 reviews among the 4,885 honesty_potential reviews that we discussed
further and resolved. Due to the fact that we adopted the negotiated agreement technique,
measures like inter-rater agreement are not applicable. The negotiated agreement technique
was employed because it is beneficial in research like ours where the main objective is to
generate novel insights (Campbell et al. 2013; Morrissey 1974).

Next, we randomly selected 401 reviews from the remaining 4,484 honesty_potential
reviews (4,885 honesty_potential reviews - 401 honesty_violations reviews). We refer to
these 401 reviews, which contain honesty-related keywords (but not violations), as hon-
esty_non_violations reviews. We used a total of 802 reviews: 401 honesty_violations and
401honesty_non_violations reviews to build a balanced dataset called honesty_discussion

123

134 Page 8 of 52 Empirical Software Engineering (2023) 28:134

dataset for training and evaluating machine learning models in Section 5. We note here that
using the manually validated false-positive honesty_non_violations reviews is important for
machine learning models. It is because these reviews include certain keywords syntactically
related to honesty but semantically irrelevant to honesty violations - an important differ-
ence we want our models to learn. In summary, the honesty_discussion dataset consists
of 802 reviews: 401 honesty_violations reviews and 401 honesty_non_violations reviews.
These 802 reviews were the accurate results of manually labelling 4,885 reviews - a verified,
accurate and balanced dataset for a more effective classifier. Other studies have used similar
numbers of text documents in classification tasks (Levin and Yehudai 2017, 2019).

5.2 Classification Approach

Manually classifying honesty violations in app reviews is challenging for practitioners
because it is error-prone, labour-intensive, and demands substantial domain expertise. Hence,
an automated approach is required to recognise honesty violations in app reviews. This
research question aims to develop machine learning models to differentiate between honesty
and non-honesty reviews automatically. As shown in Fig. 2, the machine learning models are
applied on the 802 honesty_discussion dataset which consists of 401 honesty_violations
reviews and 401 honesty_non_violations reviews.

5.2.1 Data Preparation

We applied some common techniques to remove possible noise from the honesty_discussion
dataset. This step was needed so a learning model can classify reviews correctly. To achieve
this, we applied natural language processing techniques such as removing capitalisation,
removing emojis, tokenising, removing stop words, and removing punctuation.

Dataset of
honesty
potential
reviews
(4885)

Case
Normalisation

Emoji Removal

Tokenisation

Stop-Word
Removal

Punctuation
Removal

Word embedding
(BERT)

Data Preparation Feature Extraction Model Selection Model EvaluationData Collection

Logistic
Regression

Support Vector
Machine

Decision Trees

Gradient
Boosting Trees

Neural Network

Cross-Validation

Classifiers

Non-
Honesty
Review

Honesty
Review

Step
1

Step
2

Step
3

Step
4

Step
5

Sentence
embedding

Deep Neural
Network

Generative
Adversarial
Networks

Eler et al.
Dataset of

Accessibility
Reviews
(236,660)

Obie et al.
Dataset of
Mobile App
Reviews
(22,607)

Honesty-related
keyword filtering

Dataset of
non-

honesty
reviews
(401)

Dataset of
honesty
reviews
(401)

Fig. 2 Honesty app review classification process

123

Page 9 of 52 134Empirical Software Engineering (2023) 28:134

Case Normalisation: is the process of transforming original review texts into lowercase.
This type of text cleaning helps us avoid repeated features of the same words with different
font cases (e.g., “Honesty" and “honesty"). Furthermore, converting the text into lowercase
does not affect its context as well as the users’ expressions in our scenario.

Emoji Removal: Emojis are icons or a few Unicode characters that allow users to convey
ideas, concepts, and emotions. If emojis are not carefully preprocessed, they can potentially
affect the performance of a model in terms of accuracy. Hence, we removed emojis from the
review texts.

Tokenisation: is the process of splitting each original text into a set of words that do not
contain white space. We divided apps reviews into their constituent set of words.

Stop-Word Removal: Stop words such as is, am, are, for, the, and others do not contain
the conceptual meaning of a review and create noise for a classification model. Removing
stop words from the review texts helps us avoid repeated features of the same phases (e.g.,
“the bank account" and “bank account"). In our experiment, we used a comprehensive set
of stop words that are well-known to the natural language processing community.2 While
the removal of negative contractions such as “doesn’t", “couldn’t", “won’t", and others can
affect the decision ofmachine learningmodels in classifying text in some cases, our empirical
analysis shows that in this instance, this approach does not have a large influence on the overall
performance of our model.

PunctuationRemoval:Weobservedmany reviews in the data collection containing punc-
tuation such as “..., ??,:(," and others that do not significantly contribute to a classification
model. Hence, we removed punctuation from the app reviews.

5.2.2 Feature Extraction

After cleansing and preprocessing the dataset, we converted the app reviews in the dataset into
their vector representation by using the pre-trained Bidirectional Encoder Representations
from Transformers model (Devlin et al. 2019), so-called BERT3. This is a language repre-
sentation model trained on the BooksCorpus with 800 million words (Zhu et al. 2015) and
English Wikipedia with 2.5 billion words. The model receives a sequence of words as input
and outputs a sequence of vectors. The model converted the review texts with different words
into 768-dimensional vectors used as input into a machine learning model. Each of these vec-
tors is estimated by the average of embedded vectors of its constituent words. For instance,
given a review text s that consists of n-words, s = (w1, . . . , wn), then, s ≈ 1

n (w1+ . . .+wn),
where (w1+ . . .+wn) are the embedded vectors of (w1, . . . , wn). Furthermore, these vectors
capture both a semantic meaning and a contextualised meaning of their corresponding app
reviews.

5.2.3 Model Selection and Tuning

Selecting a classificationmodel that yields the optimal result is challenging.We selected seven
models, such as SupportVectorMachine (SVM),DecisionTrees (DT),NeuralNetwork (NN),
Logistic Regression (LR), Gradient Boosting Tress (GBT), Deep Neural Network (DNN),
and Generative Adversarial Networks (GANs) that are commonly used for text classification
in the natural language processing community (Aggarwal and Zhai 2012). Below is a brief
description of each classification model used in our work.

2 The stop words can be accessed at https://gist.github.com/sebleier/554280#gistcomment-3126707
3 The pre-trained BERT uncased model can be downloaded at https://huggingface.co/bert-base-uncased.

123

134 Page 10 of 52 Empirical Software Engineering (2023) 28:134

https://gist.github.com/sebleier/554280#gistcomment-3126707
https://huggingface.co/bert-base-uncased

Logistic Regression (LR) is a linear classifier. The data is fitted into a logistic function
that generates the binary output such as 0 (i.e., an honesty_non_violation app review) or 1
(i.e., an honesty violation app review) based on probability.

Support Vector Machine (SVM) (Noble 2006) is a classifier that finds hyperplane(s) in
N-dimensional space (i.e., the number of features), which can further distinguish the data
into multiple categories.

Decision Trees (DT) are a non-parametric supervised learning method used for classifi-
cation and regression. DT predict the value of a target variable by learning simple decision
rules inferred from the data features. Given a 768-dimensional vector representation of a
particular review text, DT classifies the review text into the category selected by most trees.

Gradient Boosting Trees (GBT) is one of the ensemble learners that builds trees and
boosts them for classification. When a new tree is created, it corrects errors of previous trees
fitted on the same provided data. This repeatedly correcting errors process is known as the
boosting process. In addition, the gradient descent algorithm is used for optimisation during
the boosting process. Thus, the method is called gradient boosting trees. The model classifies
app reviews into a category based on the entire ensemble of trees.

Neural Network (NN) is a multilayer perceptron model which contains a set of inter-
connected layers where each layer contains a finite number of nodes. Each neural network
architecture has one input layer, at least one hidden layer, and one output layer. The input
data is transformed layer by layer via the activation function(s). During the training process,
optimisation techniques such as stochastic gradient descent are used to optimise the perfor-
mance of the model. The classified category of a particular app review is the collected result
from the output layer.

Deep Neural Network (DNN) is the extension of NN with a larger number of hidden
layers that support the model to deeply learn the features in the vector representation of an
app review (i.e., the embedding vector). Layers in the DNN are placed in consecutive order
where the number of nodes subsequently decreases layer by layer. The first layer of the DNN
is an input layer which contains N number of nodes corresponding to N -dimensions of the
embedding vector. Nodes in one layer are, then, fully connected to nodes in the next layer.
The Sigmoid function is applied to transform the last hidden layer of the DNN to the output
layer, which contains the classified category of an app review.

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) is a generative
neural networkmodel that is widely used to generate high-quality data for evaluatingmachine
learning tasks such as classification and prediction. The model consists of two networks; the
generator network and the discriminator network. The generator network learns to curate the
embedding vector of an app review with an incorrect category. Both embedding vectors with
the correct category and generated embedding vectors are, then, used to train the discriminator
network to classify the category of app review. This aims to increase the robustness of the
discriminator in classifying the category of app reviews with less amount of labelled data.

Finding the hyperparameters for models to generate optimal results is known as the fine-
tuning process. We use grid search cross-validation to perform an exhaustive search to find
the best set of hyperparameters for each classifier. To reproduce our results, we provide the
selected hyperparameters for each selected model and the open-source GitHub repository in
Obie et al. (2022).

5.2.4 Cross Validation

To estimate the variance of the performance for each classification model, we used a K-fold
cross-validation technique (Kohavi et al. 1995). The technique splits the data into K equal-

123

Page 11 of 52 134Empirical Software Engineering (2023) 28:134

Table 2 Comparison of the confusion matrix and Matthews correlation coefficient (MCC) of classification
models

SVM LR NN RF GBT DNN GAN

True negative 0.432 0.407 0.358 0.371 0.358 0.407 0.383

True positive 0.457 0.469 0.482 0.420 0.420 0.506 0.482

False positive 0.025 0.049 0.099 0.085 0.099 0.049 0.074

False negative 0.086 0.074 0.062 0.124 0.124 0.037 0.062

MCC 0.785 0.753 0.676 0.581 0.555 0.826 0.726

sized subsets where one of the subsets is used for validation, and the remaining subsets are
used for training. This process is repeated K times, the average of the validation scores is used
to measure the performance for each classification model. In this study, we used a 10-fold
cross-validation technique. Here, we split the dataset in Sect. 5.1 into 10 chunks of data that
contains an equal number of app reviews. Then, we perform the evaluation process where
the training dataset contains 9 chunks of data, and another chunk of data is used as the testing
dataset. Note that this is repeated until each chunk of data has been used as the testing dataset
once. This approach helps us understand how well our selected models perform on unseen
data.

5.3 Results

In this section, we report the results of our experiment evaluating the performance of the
different machine learning models. We adopted the generally accepted metrics of accuracy,
precision, recall, and F1 score for this purpose. Other metrics such as the Matthews Corre-
lation Coefficient (MCC) and confusion table are shown in Table 2. We note here that all of
the models performed well (with F1 scores of 0.79 and above).

Table 3 shows the results of our 7 differentmachine learning classification algorithms.The
DNN algorithm came out to be the best performing model with an accuracy of 0.914,
precision of 0.911, recall of 0.932, and an F1 score of 0.921. The second-best performing
algorithm is the SVM model, with an accuracy of 0.889, precision of 0.949, recall of 0.841,
and an F1 score of 0.892. The high performance of our DNN model makes it useful in
practical applications for detecting the violation of the value of honesty in reviews.

One of the aims of our work is to introduce an automatic method for detecting hon-
esty violation reviews that performs better than current approaches. Similar studies on
text classification have compared their approaches to either the current state-of-the-art or
a baseline classifier (AlOmar et al. 2021; Maldonado et al. 2017). Hence we compare our

Table 3 Comparison of classification models

SVM LR NN RF GBT DNN GAN

Accuracy 0.889 0.877 0.840 0.790 0.778 0.914 0.864

Precision 0.949 0.905 0.830 0.829 0.810 0.911 0.867

Recall 0.841 0.864 0.886 0.773 0.773 0.932 0.886

F1 score 0.892 0.884 0.857 0.800 0.791 0.921 0.876

123

134 Page 12 of 52 Empirical Software Engineering (2023) 28:134

best-performing machine learning model (DNN) with a baseline classifier only since there
is no current state-of-the-art in detecting the violation of honesty in app reviews, similar to
what recent works have done (AlOmar et al. 2021; Maldonado et al. 2017).

We used the statistics of our dataset to compute the metrics of the baseline classifier.
The precision of the baseline classifier can be computed by dividing the number of honesty
violation reviews by the total number of honesty_potential reviews:

precision = 401

4, 885
= 0.0821

The recall is 0.5, as there are only two outcomes for a review classification: honesty
violations reviews or honesty_non_violations reviews, with a 0.5 probability of a review
containing the violation of the value of honesty. Based on the precision and recall values, we
compute the F1 score of the baseline classifier as:

F1 score = 2 ∗ 0.0821 ∗ 0.5

0.0821 + 0.5
= 0.1412

Table 4 summarises the comparison of our best-performing machine learning model
(DNN) with the baseline. As can be seen, the DNN model has a better performance than
the baseline classifier. Our DNNmodel has an F1 score of 0.921, while the baseline classifier
has an F1 score of 0.1412, respectively. Table 4 also shows that our DNN model surpasses
the baseline classifier by 6.523 times in detecting honesty violation reviews.

The robustness of the DNN model on the unseen samples was evaluated by using 401
data samples which were randomly selected from the remaining 4, 083 (4, 885 − 802) hon-
esty_non_violations reviews. Based on the data in Table 2, we can show that the accuracy of
the DNNmodel on classifying honesty_non_violations reviews is 0.814 which is calculated
as:

Accuracy(honest y_non_vi olat i ons) = T N

0.5
= 0.407

0.5
= 0.814

where T N indicates true negatives. The accuracy of themodel on the unseen samples (verified
honesty_non_violations reviews only), however, reduces to 0.768. To further understand
the limitations of the DNN model, the false positive reviews (incorrectly predicting true
negatives) were selected and analysed. Examples of these reviews include:

“It was great! I loved it! But then there was a little problem. At day 5 of me using it,
there was a bit of lag on the app. I checked my connection and my phone but everything
was fine, then the next morning when I opened the app, it was pure black. I waited for 4-
7 minutes but nothing happened. I restarted the app then open it again then everything
was fine. Please fix this problem I just don’t want this to happen. I really love this app
so please fix it. Thank you.”

Table 4 Comparison of our model to a baseline classifier

Our (DNN) approach Baseline classifier

Precision Recall F1 Precision Recall F1

Classification 0.911 0.932 0.921 0.0821 0.5 0.1412

Improvement - - - 11.096x 1.864x 6.523x

123

Page 13 of 52 134Empirical Software Engineering (2023) 28:134

“It was nice to see the changes you made. It is easier to delete and move things
but, you then overdo it. You overcompensated. More ads. Now, it keeps telling me I’m
offline when I’m not. I get to the page, touch visit, nothings happening except it telling
me I’m offline, check my network connection. It was fine the other day. All my other
apps are working, not sure what is going on. Help.”

“Pinterest used to be a great app for recipes with the occasional ad. Now it’s the
single worst app to have because of the overabundance of ads. My screen jumps up
and down and will not hold the recipe in place and when I finally do get to the recipe,
my screen goes black and the app closes. With all my prep work on the counter ready
to go I have to go back and endure the same pain of finding the recipe, scrolling past
the ads, and hoping it doesn’t do the same again.”

In these cases, the reviews focus on describing technical issues while using app rather than
the fact that the app provides inaccurate information. Furthermore, the reviews mentioned
“ads” but not mentioning whether the ads were relevant to the user’s preferences. Given the
sentiment of such reviews, the content of the populated ads in app may be neutral or relevant
to the user’s preferences. These examples demonstrates that there are two potential limita-
tions of the DNN model such as (1) the confusion between technical issues and inaccurate
information; and (2) the confusion between ads and false ads.

RQ1 Answer: The DNN model surpasses the baseline classifier in identifying the viola-
tion of the value of honesty in reviews. Our model achieves an F1 score of 0.921 with
an improvement of 6.523 times the baseline classifier in classifying honesty violation
reviews from honesty_non_violation reviews.

6 Categories of Honesty Violations (RQ2)

6.1 Categorisation Approach

While themachine learningmodels in Section 5 could effectively distinguish between honesty
violations reviews and honesty non-violations reviews, we are also interested in understand-
ing the types of honesty violations reported in reviews. To this end, we applied the open
coding procedure (Glaser et al. 1968) on the 401 honesty_violations reviews. As discussed
in Sect. 5.1, these reviews include honesty violations. First, an analyst followed the open
coding technique to label all these 401 reviews and identified 10 types of honesty violations.
The 401 honesty_violations reviews were assigned to these 10 categories. The results of the
open coding were stored in an Excel spreadsheet file and shared with the second and third
analysts. Then, the second analyst cross-checked the first 100 labelled reviews while the
third analyst cross-checked the remaining 301 labelled reviews. Next, the first analyst held
Zoom meetings with the second and third analysts to discuss and resolve the conflicts and
disagreements. Note that the disagreements were resolved using the negotiated agreement
approach (Campbell et al. 2013; Morrissey 1974). During the labelling, we had a total of 21
reviews among the 401 honesty_violations reviews that we discussed further and resolved.
Sometimes we discussed the reviews not because we had different labels, but because the
analyst identified the review and recommended further clarification and discussion. However,
we were able to come to an agreement for all of the reviews after discussions. Due to the fact
that we adopted the negotiated agreement technique, measures like inter-rater agreement are

123

134 Page 14 of 52 Empirical Software Engineering (2023) 28:134

not applicable. The negotiated agreement technique was employed because it is beneficial
in research like ours where the main objective is to generate novel insights (Campbell et al.
2013; Morrissey 1974).

6.2 Results

Our analysis of the 401 honesty_violations reviews revealed 10 categories of honesty vio-
lations reported in app reviews. Below we provide a definition of these categories, sample
reviews, and a summary of their prevalence. While we highlight the different categories
within the violation of the value of honesty and provide example reviews, we note that the
categories are not mutually exclusive. Table 5 shows these categories and the frequency of
the corresponding reviews per category.

6.2.1 Unfair Cancellation and Refund Policies

This category covers all reviews where the users perceive the cancellation and refund policy
as unfair, nontransparent, or deliberatelymisleading. It also includes situationswhere the user
feels that the developers deliberately make it difficult for the user to cancel their subscription.
For example, in some apps, the user can sign up for a subscription with the click of a button
within the app but cannot cancel the subscription from within the app; the user is asked to log
in to a website to cancel the subscription. In other cases, the cancellation instruction is not
clear and leads to a loop of cancellation steps. Examples of reviews claiming these practices
include:

“The app allows you to accidentally sign up to premium with a push of a button.
When you want to cancel, however, you can’t do that via the app... You have to go to
the webpage, enter details and cancel there.”

“Deceptive billing practices - information on cancelling is circular; emailed a link
that advises to email. [It] doesn’t have colour tag functionality across web and app;
very poor UX and worse customer service.”

Sometimes, the app also makes it easy for the user to mistakenly activate a premium
subscription in the way the interface and flow are designed, e.g.:

Table 5 Frequency (f) of app
reviews in the honesty violation
categories (out of 401 total
honesty_violations reviews –
note that some reviews fall into
multiple categories)

Honesty Violation Category f

Unfair cancellation and refund policies 48 (12%)

False advertisements 55 (14%)

Delusive subscriptions 33 (8%)

Cheating systems 93 (23%)

Inaccurate information 15 (4%)

Unfair fees 106 (26%)

No service 64 (16%)

Deletion of reviews 6 (1.5%)

Impersonation 9 (2%)

Fraudulent-looking apps 29 (7%)

123

Page 15 of 52 134Empirical Software Engineering (2023) 28:134

“Use with caution. It’s unscrupulous about signing you up for a subscription when
you’re skipping past the in-app ads. It’s not made clear once you’ve subscribed, and
there’s no way of cancelling it through the app.”

Another aspect of this category focuses on situations where the user perceives the refund
steps and policies to be dishonest and unfair. This also involves situations where the refund
policy does not cater to accidental subscriptions, e.g.:

“DO NOT SIGN UP FOR FREE TRIAL! IT IS A SCAM. YOU WILL GET CHARGED
ANYWAY, AND YOU WILL NEVER GET YOUR MONEY BACK!! Once again, after
numerous attempts to blame Google, this developer has still not refunded my $38. Once
again, I cancelled 3 full days before the free trial ended but was still charged. Once
again, [I] contacted the developer, who told me that I would receive a full refund within
7 to 10 days, and still nothing. I have saved the email, pricing this to be true. DO NOT
TRUST THIS DEVELOPER. SCAM!!!!”

6.2.2 False Advertisements

This category relates to situations where the user perceives that the advertised features and
functionalities of the app as described by the developers are not contained in the app. The user
downloads the app or pays for a subscription on the basis of accessing certain functionalities
or features only to find out the descriptions, including screenshots on the app distribution
platform are different from the actual functionalities available in the app. Two examples of
these are shown below:

“Couldn’t find Google Assistant integration anywhere. Even though it’s been adver-
tised everywhere when searching the web for the app... It’s even in the description of
the app here. That’s false advertising. I will edit my review when it’s out of Beta and
working in the final version.”

“The app doesn’t listen to the watch at all. I’ve tried completing and snoozing and
it does nothing. The watch app can only add tasks, so the screenshots they’re sharing
here are DECEPTIVE.”

In some cases, the app lures users into downloading the app on the basis that it is free-
for-use only for the user to find out that the free-for-use is a trial version for a specific time
period and not perpetually free as implied in the app description:

“The actual free version doesn’t allow you anything, not even to learn how to use the
app properly. That role is filled by 7 days of free premium. The free, on the description,
is a lie. Is a paid-only app with temporary free access to its full features that gets
practically useless after the 7-day trial... I don’t like to be lied to.”

In addition, the app developers (through the app description) make promises to users to
give them certain benefits like a free premium subscription when a particular action is carried
out (e.g., inviting a particular number of friends to sign up). However, they never truly fulfil
their promises when the user fulfils their end of the bargain. These unfulfilled obligations are
perceived by the end-user as a violation of honesty, e.g.:

“I love this app however I sent the link to several friends and they got the app and
I received no premium time whatsoever. Don’t be dishonest with your apps. That’s
lame.”

123

134 Page 16 of 52 Empirical Software Engineering (2023) 28:134

Another example relates to scenarios where the user is invited to make certain commit-
ments based on a future reward and the developers bail out on their prior commitment:

“Shame on Them! Liars. I paid for the season pass TWICE (ONCE for my apple
device and the other for my Samsung Device). I was falsely promised access to ALL
FUTURE CONTENT. Now they are trying to charge me for the Parisian Inspired
TOKENS! HOW DARE THEY LIE AND BAIT AND SWITCH.”

6.2.3 Delusive Subscriptions

Any review describing complaints related to unfair or nontransparent automatic subscription
processes are classified under this category. There are instances where no notifications are
provided to let the user know they are subscribed to the app or premium version of the app,
and the user only finds out about the subscription from the deductions in their bank accounts:

“I just realised that I have been charged for some crappy premium service fee which
I had no idea about when using the app. Why is this charge by default? Why was I not
informed in the first place? Beware of scam for useless monthly premium fees!”

“I can’t believe I was charged 55.99. What are you giving me? Gold? I unsubscribed
but saw mysterious charge in my bank account.”

Additionally, there is the issue of lack of user consent in the subscription process where
certain apps do not provide a confirmation mechanism that prevents accidental subscriptions
by the user, e.g.:

“Made me pay 1 year worth of subscription without my confirmation. Only used its
free trial because I had to use it once. What a scam...”

In some scenarios, the automatic subscription is hidden behind an in-app ad/feature, and
an unsuspecting user who clicks on the feature is automatically subscribed to the premium
version of the app without a clear warning or confirmation, e.g.:

“Deceptive practices. If you click the in-app “ad" that simply says enable notifi-
cations, you’ll automatically be signed up and billed for their premium service. This
bypasses the Google/Apple stores subscription model and bills your card directly. Not
to mention it’s impossible to downgrade from this service in the app itself; you have
to visit their website, which is a deliberately obstructive hurdle considering you can
upgrade in the app just fine.”

6.2.4 Cheating Systems

All reviews concerning the user’s perception of fraud by other persons or cheating within the
inner workings of the app are classified under this category. Users complain of unfairness in
either the process or outcome of the app, especially processes/outcomes that are supposedly
statistically random. While accusations of this kind from the users are prevalent and subjec-
tive, they may not really be the case. However, we labelled these kinds of reviews based on
the perception of the users as captured in their comments. Reviews related to this category
are mostly found in games or game-like systems. For example:

123

Page 17 of 52 134Empirical Software Engineering (2023) 28:134

“This game cheats. It uses words not found in the dictionary. Also it told me a word
was unplayable, but it was the first best word option.”

“I play it with my sister often. However, there is the problem of the game and AI
cheating. I rolled a 2 and a 3 at the start of the game and it moved me FOUR spaces
forward not five. Four. That happened several times and I can assure you I was looking
everytime it happened. I am very disappointed at the fact this game is cheating...”

In some of the reviews, users complain that the game works properly when the user loses
and parts with money and only freezes when the AI system in the app is about to lose. Based
on the reviews, the users seem to be using real money in the games/apps. This complaint is
a recurring theme within this category:

“You have to pay for it, then the game just freezes when you win against the CPU?
Reset it over and again, keeps freezing unless it rolls something to not land on my
property. Also, is the dice rigged against the CPU? Honesty? With as much as I owned
in the beginning, none of the 3 CPUs would land on anything I owned. Anytime the
last CPU needs to raise money, game freezes, guess ya just can’t win.”

“there’s a glitch in it that freezes the game from continuing when you’re winning.
The dice just disappears, but the trains and clouds and aircrafts keep moving. It’s like
It is designed so that one doesn’t win them.”

“When playing against the computers when you’re about to win and bankrupt the
final computer the game conveniently freezes. It does not allow you to win. Not a very
fun game to play, I want my money back.”

We consider this category important as some of these apps require the use of real money
to play or for in-app purchases. If apps are dishonest in the underlying process of the systems
that are expected to be fair, then that constitutes not only a violation of the value of honesty,
it might potentially be a crime. This is worth considering, especially when the exact issue is
raised by several users:

“Although you say that the dice is random, i cannot help but feel that it is rigged.
Take a look at your reviews, there are many other players that feel the same. Can’t be
all of us are wrong. Or maybe we are suffering from mass hysteria?”

Other non-game examples include cases where the user reports not having the full value
of the fee they were charged for the app and feels cheated. For instance:

“Whenever I pay for parking the app always steals 5 minutes off my parking time.
For example, I pay for 60 minutes and the timer starts at 54 minutes and 59 seconds. I
am very upset, this has been happening for a while and probably to many more people
as well. That is a lot of money!”

“This app will not give you re requested amount of parking time. If you park for 15
minutes it will immediately say you have 11 minutes left. I understand that you have
to charge but at least give me the requested amount of parking time.”

123

134 Page 18 of 52 Empirical Software Engineering (2023) 28:134

6.2.5 Inaccurate Information

This category covers where users perceive that the app provides false or inaccurate informa-
tion as captured in their reviews. This includes situations where inaccurate information can
increase the likelihood of the user inadvertently making wrong selections at a cost to them.
In the review below, the user complains the design of an app feature tricks them into paying
for the wrong parking spot:

“When you need to pay for additional time, and click ’Recent’ to pay for the most
Recently parked in place - the first item is not the place you just parked in so it tricks
you into paying for the wrong place (dark pattern). Please make the Recent accurately
reflect the most recently parked in place.”

Another example review in this category is quite severe as it relates to a health emergency
app providing potentially inaccurate information that might be detrimental to the user:

“Try to use this in an actual emergency and you’ll just end up as a dead idiot holding
a cellphone. The information is either useless or completely false in most cases. Don’t
bother downloading.”

Other less severe but important reviews where the user perceives the app provides inac-
curate information or notification are shown below:

“Do not buy unless you are sure you want to. You will NOT be able to get it set
up and working within the 15 minute refund window. The instructions online are so
cryptic it (and wrong).”

“Very annoying every time when you open the app it shows you have a notification.
Then checking your notifications you don’t have any.”

6.2.6 Unfair Fees

This category relates to issues surroundingwhat the user considers to be unfair fees or charges.
This also applies to cases where the user feels that they have not received a fair deal or that
the app charges more money than it ought to. Because the definition of honesty also covers
fairness, we also consider these kinds of issues a potential violation of the value of honesty.
In the example below, the user complains of being charged more than they think is fair; they
were charged a car parking rate for parking a bike.

“Went through the sign up process and parked my bike in a bike parking zone. Put
in the correct zone details for the bike parking area and got charged a car parking
rate. Rang support and they said there is no bike parking at that location. I explained
there was and they told me to ring the council.”

Other examples of fees considered by the user to be unfair are:

“The app charges you 0.25 per transaction. So I paid 0.75 to pay for parking it
charged me 0.25 service fee then I extended my parking 0.25 and it charged me again
0.25!!! Biggest scam in the world.”

123

Page 19 of 52 134Empirical Software Engineering (2023) 28:134

“The only annoying things are that I have to buy any extra Monopoly Board in
the same game when I already paid the main game. Can you not give extra Monopoly
Boards in the same game for free. You are not fair!”

This category is also reflected in the form of hidden charges where the user is not aware of
subsequent charges made to their account. These hidden charges can take the form of a vague
bill (as shown in the review below) or not notifying the user with respect to extra charges.

“This is a notorious company with horrible app I’ve ever used. They hide the history
and details very deep for you to check and trace. And the monthly bill is also vague. I
experienced they secretly bill me!”

“LOOK OUT PEOPLE. THIS IS A SCAM. THEY DID NOT WARN OF A DEPOSIT
FEE AND THEY TOOK 33% OF THE DEPOSIT. I RECOMMEND SUING THEM
NOW.”

Another related issue within this category is dubious charges where the user account has
been charged, and it is not clear why those charges occur. Abnormally high fees (more than
the standard subscription fees) and overcharging of the user account are also captured under
this category. For example:

“It charged me £74.50 when I bought a ticket for £1.50 it’s a absolute scam I want
my money back!”

6.2.7 No Service

This category mainly covers reviews in which the user complains of not being able to access
the app’s main functionality after purchase, leading to undesirable consequences for the user.
The main difference between the false advertisement category and this category is that the
former deals with features/functionalities of the app that do not work as advertised. The latter
deals with situations where the app does not work at all, i.e., does not even serve its main
purpose for the user after the user has made financial commitments in the form of a purchase
or subscription. In the example below, the user is fined for illegal parking after paying for
parking using the app:

“Horrible experience with this app. Causing a lot of frustrations with users. when
it fails and I get a ticket there is no much help I can get. sometimes I just pay the fines
just because the complaint system is awfully inconvenient. I feel cheated and it looks
like a money making tool for whoever is collecting the fines.”

Another related example is shown below:

“I spent 20 euros with all the DLCs included, I feel pretty deceived not being able
to play the game.”

6.2.8 Deletion of Reviews

This category highlights reviews where the app developers are suspected of deleting reviews
left by the user, especially negative reviews. A review captures user feedback, describing their
experience of an app, and intending users of an app typically consult the reviews left by other
users on the app distribution platform before downloading the app (Obie et al. 2021). Thus,

123

134 Page 20 of 52 Empirical Software Engineering (2023) 28:134

the act of deleting unfavourable reviews by the app developers is perceived as a dishonest
practice by the users because leaving only positive reviews may not paint an accurate picture
of the app. Users may also feel like the app developers are trying to hide their complaints or
other nefarious practices.

It can be argued that certain comments are deleted by app developers because those
comments contain ad hominemattacks from the users instead of complaints relating to the app
itself. While it is debatable whether app developers are justified in deleting perhaps vitriolic
ad hominem comments, we do not make any judgement as to this but simply categorise users’
perceptions and complaints of this practice as captured in their reviews. Examples of reviews
depicting this accusation are shown below:

“I left them a negative review and the developer deleted it. Now I’m going to review
them on YouTube and all social media platforms. Basically, they are scammers.”

“Deleted my honest review. Warning. Steer clear. They keep trying to make you slip
up and pay for premium. I signed up for a free trial last year and they make it too
difficult for you to find where to cancel. Was charged about $40... shame such a good
app is tarnished by such shady practices.”

6.2.9 Impersonation

An impersonation is an act of pretending to be another person or entity (Dictionary 2021). It
also involves the act of giving a false account of the nature of something. This category covers
all reviews relating to impersonation or misrepresentation by the app or app developers. This
includes scenarios where an app pretends to have the authority of (or relationship to) an
organisation when in reality, it has no such relationship. An example review is captured
below:

“STAY AWAY... this app is a scam. the stickers make it look like it’s Brisbane council
approved. it’s not and they are no help. I still got a fine for using the app correctly and
the Brisbane council parking police have no access to check if you have paid or not
and do not accept this as a payment method.”

Another example in this category reflects situations where users feel that they are inter-
acting with bots instead of humans when they have signed up to the platform to interact
with humans. This is similar to false advertising-related lawsuits of the Match.com platform
described in Section 2. An example of this is:

“Good game, fake players online. I wanted a challenging Monopoly game. But when
I start. I can tell that some are bots not real people online. For example, they quickly
trade when it is their turn. A normal human will take some time to choose options.”

6.2.10 Fraudulent-looking Apps

This category includes reviews reporting suspicious-looking apps based on observations of
users or apps deemed to be fake by the users.We created a separate category for these kinds of
reviews. Although the users flag the apps in these reviews as fraudulent, they do not provide
specific reasons for their accusations beyond their perception of the app as fake or fraudulent.
Furthermore, these types of reviews do not fit any of the categories described above, and we
sought to highlight them based on the user accusations captured in their reviews. Examples
of these reviews include:

123

Page 21 of 52 134Empirical Software Engineering (2023) 28:134

“...Be careful with this kind of dishonest apps”

“This is a fraud app don’t download”

Furthermore, Table 6 shows the breakdown of honesty violations across different app
categories. Out of the 401 honesty_violations reviews, Games (28.9%), Auto & Vehicles
(22.2%), and Finance (12.7%) are the app categories with the most number of honesty
violations, while Medical (0.2%) and Music & Audio (0.2%) are the app categories with the
least number of honesty violations.

The Games category with the highest number of honesty violations often experiences
a high degree of competition, as developers strive to attract users to their apps amidst a
crowded marketplace. This fierce competition might lead some developers to misrepresent
or exaggerate the features of their games to improve visibility and attract a larger audience.

Apps within the Auto & Vehicles category may experience a similar pressure to compete
for users. These apps often target nichemarkets and specific user demographics, such as those
searching for parking services. In an attempt to attract these users, developers might also
stretch the utility of their app features to increase exposure, and perhaps hide certain features
that the users expect to be standard behind a paywall, e.g., a notification that parking is about
to expire. Knowingly or unknowingly, the designs of these apps sometimes mislead users
into accidentally signing up for a premium subscription to access these features. The Finance
category often includes apps that provide services related tomoneymanagement, investment,
and banking. Due to the lucrative nature of the financial sector, dishonest developers may
engage in deceitful practices to target users seeking financial advice or services (e.g., crypto
trading), which can lead to increased revenue for the app and the developers.

The Medical category is likely to have a lower number of honesty violations due to
the critical nature of the information and services provided by these apps. Users rely on
medical apps for accurate information and reliable tools, and any violation of honesty could
significantly affect their health and well-being. As a result, there is a higher expectation of

Table 6 Frequency (f) of
honesty violations across
different app categories

App Category f

Games 116 (28.9%)

Auto Vehicles 89 (22.2%)

Finance 51 (12.7%)

Productivity 47 (11.7%)

Photography 26 (6.5%)

Tools 19 (4.7%)

Maps Navigation 11 (2.7%)

Travel and Local 10 (2.5%)

Health Fitness 7 (1.7 %)

Video Players Editors 7 (1.7%)

Social 6 (1.5%)

Communication 5 (1.2%)

Entertainment 3 (0.7%)

Education 2 (0.5%)

Music Audio 1 (0.2 %)

Medical 1 (0.2 %)

123

134 Page 22 of 52 Empirical Software Engineering (2023) 28:134

Fig. 3 Developer Study

integrity from developers and a stronger regulatory environment for such apps, which may
contribute to the lownumber of honesty violations in this category.Apps in theMusic&Audio
category may experience fewer instances of dishonesty due to the relatively straightforward
nature of the services they provide. Users typically expect to access music or audio content,
and there may be less room for misrepresentation or exaggeration.

RQ2 Answer: The result of our analysis of the honesty violations dataset shows that hon-
esty violations can be characterised into ten categories: unfair cancellation and refund
policies, false advertisements, delusive subscriptions, cheating systems, inaccurate infor-
mation, unfair fees, no service, deletion of reviews, impersonation, and fraudulent-looking
apps.

7 Developers’ ExperienceWith Honesty Violations in Mobile Apps
(RQ3)

7.1 Practitioner Study Design Approach

Our analysis of app reviews in RQ1 and RQ2 indicates that honesty violations exist in mobile
apps from the perspective of end users. Butwhat about app developers’ experiencewith them?
This motivated us to explore mobile app developers’ experience with honesty violations in
mobile apps.

We took an interview and survey-based approach, referred to as the developers’ study,
(Fig. 3) to understand developers’ experience with honesty violations in the mobile apps
they develop. In parallel, we conducted a set of in-depth semi-structured interviews, and
we conducted a broad survey – both with mobile app developers. Collecting data from
both interviews and surveys strengthened our findings well. The replication package, which
consists of the artefacts we developed to collect data in both studies, is available online.4 In
this section, first, we explain the interview study and then the survey study.

7.1.1 Step Int: Interview Study

Step Int.1: Protocol Development: For the interview study, to recruit participants, we
prepared an advertisement and an explanatory statement; and to collect data, we prepared
a pre-interview questionnaire and an interview guide. The details about the artefacts are
explained under participant recruitment and data collection below.

4 https://github.com/kashumi-m/ReplicationPackageMobileAppsHonestyViolations.

123

Page 23 of 52 134Empirical Software Engineering (2023) 28:134

https://github.com/kashumi-m/ReplicationPackageMobileAppsHonestyViolations

Step Int.2: Participant Recruitment: We recruited participants by sharing the explanatory
statement and posting an advertisement on social media platforms such as LinkedIn, Twitter,
and Facebook with a link to the explanatory statement. The explanatory statement consisted
of details of the study, including the procedure, potential benefits, and how we preserve the
confidentiality of the participants. Potential participants contacted us, showing their interest
in participating in the interview study. We recruited three participants to proceed with the
data collection.
Step Int.3: Data Collection: Data collection for the interview study consisted of two parts:
a pre-interview questionnaire and an online interview.

The data collection for the interviews was done by the third author, who has a pragmatic
view and has 8+ years of experience working with and interviewing developers.

Pre-interview Questionnaire. Each participant was given a pre-interview questionnaire to
fill in before the interview. The questionnaire consisted of questions about their demograph-
ics (age, gender, country of residence, professional experience, including total experience in
the software industry and total mobile app development experience), context (type of apps
the participants develop based on the list of app types as in Google Play Store, types and
frequency of honesty violations the participant had experienced for their apps), who is respon-
sible for honesty violations in mobile apps, and the participant’s opinion about automatic
detection of honesty violations in mobile apps (usefulness, beneficiaries, how beneficial).
We included the definition of honesty and honesty violations at the beginning of the pre-
interview questionnaire so that participants’ interpretation of the terms aligns with ours. We
also repeated the definition of honesty violations at the beginning of each relevant question
section to ensure that participants’ interpretation of the term remains the same until the end of
the questionnaire. The pre-interview questionnaire was hosted on Qualtrics5 and took around
fifteenminutes to complete. Having a pre-interview questionnaire helped us in collecting data
on closed-ended questions early so that we had a high-level understanding of participants’
background with honesty violations in mobile apps and also led us to have more time for
in-depth discussions during the interviews.

Online Interview. After we confirmed that participants had filled out our pre-interview
questionnaire, we conducted online interviews with them at an agreed time using Zoom.
Each semi-structured interview lasted approximately thirty minutes and was audio recorded.
During the interviews, we focused on asking open-ended questions from the participants
so that we could gain much more rich data on their experiences with honesty violations
in mobile apps. The interviews started by showing some examples of honesty violations
reported in mobile app reviews to the participants. This made it easy for the participants to
answer the questions. First, we asked the participants about the reasons for honesty violations
happening in mobile apps, then asked about the impact of honesty violations on end users
and developers/owners of the mobile apps. After that, we asked participants what possible
strategies exist to avoid honesty violations. We also asked them what strategies they adopted
to address honesty violations that they had encountered in their mobile apps (if any). The
interviews ended with an open question, allowing the participants to share anything else they
liked to share about honesty violations in mobile apps. After the interviews ended, the audio
recordings were transcribed using Otter.6

5 https://www.qualtrics.com/
6 https://otter.ai/

123

134 Page 24 of 52 Empirical Software Engineering (2023) 28:134

https://www.qualtrics.com/
https://otter.ai/

Fig. 4 Example of Qualitative Analysis: Investigating Causes of Honesty Violations in Mobile Apps

Step Int.4: Data Analysis: Qualitative data analysis. The qualitative data collected were
analysed using open coding and constant comparison techniques as in Glaser and Strauss’s
Grounded Theory (Glaser et al. 1968). The third author analysed the data and findings were
shared with the team in weekly meetings. We used MAXQDA7 to analyse the data. The
responses to the questions (raw data) were interpreted in small chunks of words (codes), and
they were constantly compared to group similar codes together to develop the concepts. The
concepts were then constantly compared to develop categories. Figure4 shows an example
of qualitative analysis. Quantitative data analysis. As some closed-ended questions of the
interview studywere repeated in the survey study, the quantitative datawere analysed together
with the quantitative data collected from the survey study. Descriptive statistics were used to
analyse the data.

7.1.2 Step Survey: Survey Study

Step Survey.1: Survey Questionnaire Development: We developed a questionnaire with
a mix of open-ended and closed-ended questions. The survey contained demographics, con-
texts, causes, consequences, strategies, and automatic detection of honesty violations in
mobile apps. The questions on demographics, context, and automatic detection were the
same questions we used in the pre-interview questionnaire of the interview study. We fur-
ther used open-ended questions to allow participants to freely share their experiences about
causes, consequences, and strategies.

Step Survey.2: Participant Recruitment: We used Prolific8 to recruit participants for
the survey study. The participants were recruited batch-wise, i.e., 10 x 7, which altogether
resulted in recruiting 70 participants.

Step Survey.3: Data Collection: The data collection of the survey study was straightfor-
ward. The link to the survey questionnaire hosted on Qualtrics was shared through a Prolific
post. The participants took around twenty minutes on average to complete the survey.

StepSurvey.4:DataAnalysis: The sameprocedure as in the interview studywas followed
to analyse the collected data.

7 https://www.maxqda.com/
8 https://www.prolific.co/

123

Page 25 of 52 134Empirical Software Engineering (2023) 28:134

https://www.maxqda.com/
https://www.prolific.co/

7.2 Interview and Survey Study Results: Participant Information and Their Context

7.2.1 Participant Information.

Figure 5 is a summary of the participant information (location, gender, age, total experience,
mobile app development experience). The majority of the participants were from Spain (10
participants), followed by South Africa and Greece (8 participants each); were male (59
participants); had an average total software engineering experience of 8.55 years, and an
average mobile app development experience of 2.60 years.

7.2.2 Types of Mobile Apps Participants Develop.

A summary of the types of mobile apps our participants develop is shown in Fig. 6. While
the developers are not limited to developing one type of app, our participants selected many
types, and the key app type they mentioned as they develop is tools (13.33%).

7.2.3 Developer Experience: Reported Honesty Violations In App Reviews.

We asked our participants which types of honesty violations they received for their apps they
developed for the company that they worked for. The results are shown in Fig. 7. According

Fig. 5 Participant Information (Excluded in Figure: One participant had mentioned total work experience as
82 years but within the age range of 31–35; Included in Figure: One participant with less than 1 year of mobile
app or without mobile app development experience)

123

134 Page 26 of 52 Empirical Software Engineering (2023) 28:134

Fig. 6 Types of Mobile Apps Participants Develop

to our participants’ experience, the most reported honesty violation by the users is inaccurate
information (sometimes+about half the time+most of the time=73.97% of participants). This
is followed by no service (sometimes+about half the time+most of the time=54.79% of
participants).

7.3 Interview and Survey Study Results

We found several causes, consequences, and mitigation and fixing strategies for honesty
violations in mobile apps. Further, we found how useful automatic detection of honesty vio-
lations is, the benefits of automatic detectionwhichmitigatesmany causes, and consequences
of honesty violations, and helps improve strategies in handling honesty violations in mobile
apps. These are summarised in Table 7 and explained in the subsections below. We quote
interview participants by IP<ID> and survey participants SP<ID>.

Fig. 7 Developer Experience in Receiving Honesty Violations in Mobile App Reviews

123

Page 27 of 52 134Empirical Software Engineering (2023) 28:134

Ta
bl
e
7

Fi
nd
in
gs

(A
ut
om

at
ic
de
te
ct
io
n
m
iti
ga
te
s
ca
us
es
,c
on
se
qu
en
ce
s,
an
d
im

pr
ov
es

th
e
st
ra
te
gi
es

m
ar
ke
d
in

bo
ld
);
(#
):
pa
rt
ic
ip
an
tc
ou

nt
)

B
us
in
es
s

D
ev
el
op
er
s

A
pp

Pl
at
fo
rm

s
U
se
rs

H
on

es
ty

vi
ol
at
io
ns

in
m
ob

ile
ap

ps

C
au
se
s

M
ax
im

is
e
re
ve
nu

e
(3
1)

Po
or

de
si
gn

in
g
(1
2)

V
ag
ue

au
di
ts
(1
)

Fa
ls
e
cl
ai
m
s
(c
om

pe
tit
or
s
in

ad
di
tio

n
to

us
er
s)
(7
)

M
ar
ke
tc
om

pe
tit
io
n
(6
)

Po
or

te
st
in
g
(6
)

Im
pr
op

er
de
fin

iti
on

of
ta
rg
et
au
di
en
ce

C
on

se
qu

en
ce
s

B
ad

re
pu

ta
ti
on

(2
2)

E
xt
ra

w
or
k
to

fix
ho

ne
st
y
vi
ol
at
io
ns

(6
)

Id
en
tit
y
th
ef
t(
9)

F
ac
e
le
ga
li
ss
ue
s
(8
)

E
xp
er
ie
nc
e
ne
ga
tiv

e
em

ot
io
ns

(7
)

E
xp

er
ie
nc

e
ne

ga
ti
ve

em
ot
io
ns

(2
1)

L
os
e
us
er

tr
us
t
(8
)

H
ar
m

w
or
k
pe
rf
or
m
an
ce

(3
)

L
os
e
tr
us
t
in

ap
ps
/
co
m
pa
ny
/
de
ve
lo
pe
rs

(1
4)

L
os
e
us
er
s
(7
)

H
ar
m

pe
rs
on

al
re
pu

ta
tio

n
(7
)

L
os
e
m
on

ey
un

kn
ow

in
gl
y
(1
9)

L
os
e
re
ve
nu

e/
bu

si
ne
ss

(1
8)

L
os
e
tim

e
(4
)

St
op

us
in
g/

un
in
st
al
l/
no

t
in
st
al
l
ap

ps
(1
3)

A
vo
id
in
g
st
ra
te
gi
es

St
re
ng

th
en

de
si
gn

in
g
pr
ac
ti
ce
s
(7
)

St
re
ng

th
en

de
ve
lo
pm

en
t
pr
ac
ti
ce
s

(6
)

St
re
ng

th
en

te
st
in
g
pr
ac
ti
ce
s
(2
0)

B
e
tr
an
sp
ar
en
t
w
ith

cu
st
om

er
s/
us
er
s

(1
6)

H
av
e
m
or
al
st
an
da
rd
s
(5
)

123

134 Page 28 of 52 Empirical Software Engineering (2023) 28:134

Ta
bl
e
7

co
nt
in
ue
d

B
us
in
es
s

D
ev
el
op
er
s

A
pp

Pl
at
fo
rm

s
U
se
rs

Fi
xi
ng

st
ra
te
gi
es

T
ho
ro
ug
hl
y
in
ve
st
ig
at
e
th
e
vi
ol
at
io
n

an
d
fix

(3
0)

H
ot
fix

(1
7)

B
e

tr
an
sp
ar
en
t
ab
ou

t
th
e

vi
ol
at
io
n

w
ith

cu
st
om

er
s/
us
er
s
(1
4)

H
av
e
to
ol
s
in
pl
ac
e
to
re
so
lv
e
ho
ne
st
y

vi
ol
at
io
ns

(2
)

A
ut
om

at
ic
de

te
ct
io
n
of

ho
ne

st
y
vi
ol
at
io
ns

B
en
efi

ts
R
et
ai
n/

im
pr
ov
e
re
pu

ta
tio

n
(1
1)

Q
ui
ck

de
te
ct
io
n
of

ho
ne
st
y
vi
ol
at
io
ns

(2
0)

T
ra
ns
pa
re
nc
y
by

kn
ow

in
g
w
ha
tt
o
ex
pe
ct

fr
om

th
e
ap
p
(1
5)

R
ed
uc
e/
av
oi
d
le
ga
lr
is
ks

(4
)

Im
pr
ov
e
de
ve
lo
pe
r
sa
tis
fa
ct
io
n
(5
)

Fi
nd

ho
ne
st
ap
ps

in
st
or
es

(4
)

G
ai
n
m
or
e
re
ve
nu
e
(3
)

A
vo
id

fix
es

(2
)

Im
pr
ov
e
us
er

sa
tis
fa
ct
io
n
(1
3)

R
et
ai
n/

ga
in

us
er
s
(3
)

R
ed
uc
e
ef
fo
rt
on

fix
in
g
(2
)

Im
pr
ov
e
us
er

tr
us
t(
6)

123

Page 29 of 52 134Empirical Software Engineering (2023) 28:134

7.3.1 Causes (RQ3.1)

QUANTITATIVE FINDINGS: The majority of the participants (22.65%) selected the choice
product owners as responsible for honesty violations in mobile apps, followed by developers
(20.54%), managers (19.34%), business analysts (13.81%), and user support roles (7.18%)
(Fig. 8). But, as the answers to the open–ended questions, and during the interviews, the
experiences they shared were about businesses, developers, app platforms, users and com-
petitors causing honesty violations (explained under qualitative findings below). However,
in agile contexts, as a common practice at present, the developers are cross–functional and
play multiple roles.
QUALITATIVE FINDINGS: Our participants identified several causes of the existence of
honesty violations in mobile apps. We categorised them according to what the driver of the
violation seems to be: business drivers, developer drivers, app platform drivers, user drivers,
and competitor drivers. Some honesty violations in mobile apps may of course have multiple
of these drivers.

Business Drivers. We found intentional and unintentional reasons driven by business
needs or perceived needs, for the existence of honesty violations in their mobile apps.

Intentional reasons: Businesses intentionally violate honesty in mobile apps, as identified
by our participants. The reasons for ill-intended activities mentioned include due to revenue
maximisation and market competition.

Maximise revenue: Our participants mentioned that when the objective of a business is
to gain more profit, they may be tempted to scam/fool their app users:

“I try to think these ‘violations’ aren’t meant to be there, but I did see ‘tricks’ to implement
them, mostly: unfair fees or hidden fees, and mostly is because corporate greediness” - SP46

This has become relatively easy as the smartphone user population is high and most users
are not knowledgeable enough to understand the violation:

It’s an easy way to make money since most of the population has a smartphone and many
of those users are not knowledgeable. - SP26

As shared by SP37, tricking users into gaining more money has also led to bad practices
such as doing R & D on these tricks:

“I think though that most app developers that do that kind of violations are not at all naive
and do it for the money. In every app store (Apple or Google) there are tons of apps that aim
to make the most money with the cheapest tricks. I feel like that a good chunk of the market is
only there to milk naive consumers. I have heard stories of fellow developers/managers that
pour more R & D on how to trick people out of their money rather than put time and effort
to come up with a good idea for an app and polish it” - SP37

Market competition:Due to high competition in the mobile app market, businesses may
make releases that include honesty violations. These could be innovative features:

“It is more and more difficult to publish applications, and the need to stand out from the

Fig. 8 Responsible Parties of Honesty Violations in Mobile Apps

123

134 Page 30 of 52 Empirical Software Engineering (2023) 28:134

competition requires to release innovative things requiring more interaction with the user
(camera, localization,...) and it is often a hinders adoption” - SP23

And exaggerations and misleading information:
“..with all of the competition in the mobile space it is hard to stand out which makes

companies feel a need to often exaggerate details to gain an edge”- SP38
Unintentional reason: The reason shared by one participant is that businesses improperly

define their target audience, which results in broad markets, and not being able to follow
local laws. For instance, if themarket is too broad and the app is available for various countries
and regions, the laws of particular countries or regions may not be followed specifically:

“Also can happen in my opinion unintentionally:... Market too broad, not targeting your
users correctly, Not following the local laws” - SP64

Developer Drivers. We found poor engineering practices were reported to cause honesty
violations in mobile apps, including poor design and inadequate testing.

Poor design: As shared by our participants, developers not considering honesty when
designing the app functionality can result in many kinds of honesty violations in the apps.
This could be because of the developers’ unawareness of the user expectations of honesty,
neglecting the requirement of honesty when designing the app, and poor product analysis:

“This could be caused by negligence on the part of the mobile app development team when
designing and developing the app hence causing it not to function properly. Also providing
false information or omitting vital information.” - SP39

Poor testing: Our participants mentioned that bugs that were not found before releasing
the apps can result in honesty violations:

“Probably due to malware or because of a bug during the planning or construction phase.
Especially for the no service situation, most of the time it happens due to limited internet
connection.” - SP56
App Platform Drivers. One of our participants mentioned that vague audits done by app
platforms allow honesty violations to exist in mobile apps:

“This is because app platforms like PlayStore and others do very vague audits for these
types of applications; an ethical developer will never create an app with those purposes, what
he will do is provide a real service and then try to gain some benefits if possible. The blame is
on these fake ‘developers’ and digital platforms who make them public without performing
a proper audit.” - SP69
User Drivers. Some of our participants mentioned that app reviews with honesty violations
do not always indicate that there is an honesty violation in the app i.e., false claims exist,
which may also be unfair to the app. As shared by our participants, the reasons for users
making false claims may include:

(a) end-user ignorance, i.e., they have not paid attention to what they signed up for:
“I think usually they happen because people are distracted and don’t pay attention to what

they sign up for” - SP55,
(b) faulty understandings because similar apps have honesty violations:
“I think people are confused and may think they are getting scammed when they aren’t.

There are also a lot of apps out there that are scammy so it puts the customer in a state of
paranoia or fear” - SP26,

(c) misusing their right to honesty by lowering the threshold, which seems to be unfair:
“The fact that there’s a general discrepancy in how much an app is worth to the user

compared to a developer who puts effort into making and improving gives the users the idea
that they can rightfully lower their honesty threshold” - SP22,

(d) hate towards the purpose of the app from diverse user groups:
“Once, I got a lot of bad reviews (claiming it’s a scam, and similar) during a very short

123

Page 31 of 52 134Empirical Software Engineering (2023) 28:134

time period (1 day), all from Russia. It seems my app was a target of some gay hating group,
since this app was a gay dating app” - SP19,

and (e) claims from unintended target market:
“In my opinion, it happens when you don’t define the scope of your app well, meaning:*

Intended target (age, for example)* Market.... So you have many variables, many different
laws, moral systems/opinions, cultural differences, so things that are seen as normal here
are not in other places.” - SP46.

Our participants did not mention the quantity of such false claims they receive. Therefore,
an interesting research question to be explored in the future would be, what percentage of
honesty violations reported by mobile apps are false claims.

Competitors. One of our participants mentioned that competitors also report honesty
violations through app reviews, which we think assume to be false claims:

“People might be from other company that produces similar product” - SP2

7.3.2 Consequences (RQ3.2)

We asked the participants about the impact of honesty violations in apps on owners (busi-
nesses), developers, and users. Fromwhat the participants shared, we found the consequences
of honesty violations in mobile apps.

Business. Bad reputation, facing legal issues, loss of user trust, loss of users, and loss
of revenue/business are the consequences of honesty violations in apps on businesses as we
found.

Bad reputation:Themajority of the participantsmentioned that if honesty violations exist
in the apps, that will create a bad reputation for the business. For example, the businesses
may look like they are frauds, incompetent, and dishonest:

“If the violation is found, it’s a huge setback to business reputation” – SP25
One participant mentioned that if the violation is intentional, then the business deserves a

bad reputation:
“It could worsen their reputation, but again if they happen to do fraudulent acts they kind

of deserve having their reputation down.” – SP12
Bad reputation will also lead to the rest of the consequences discussed below.
Face legal issues: As shared by some participants, users may take legal actions in some

cases. As mentioned by SP64, businesses may get sued for not following the law of the
country. Therefore, businesses need to be mindful and follow the laws according to the
country/region before releasing the product:

“Getting removed from the store, having to make urgent changed, getting sued if the laws
of the country are not being followed.” – SP64

The impact if the found violations are not fixed could be heavy, as shared by SP68:
“They could impact them heavily if they don’t act on solving possible problems that caused

those violations in the first place especially where there is relative legislations.” – SP68
Lose user trust: If honesty violations are found in apps, then the users might not trust the

app/business anymore. This could even lead to not trusting the future apps of the company
as well:

“It could impact the owners of the mobile app because their customers would end up not
trusting other future apps from the owner” – SP40

Even if the violations are fixed, regaining the trust back from the users is difficult:
“no matter how much developers try to fix their issues when users have lost trust it’s hard

to regain it back they move to other apps which is bad for developers because creating an
app takes time and money” – SP3

123

134 Page 32 of 52 Empirical Software Engineering (2023) 28:134

Lose users As shared by the participants, the businesses may lose users if honesty viola-
tions are found in the apps. The users could be existing users or new users. The users may
not download or subscribe/re-subscribe to the services in the app or switch to other apps.
Sometimes, the users might discuss the violations in public, which will discourage new users
from installing the app:

“It could impact downloads and/or subscriptions or re-subscriptions.” – SP58
Lose revenue/business All the above-mentioned consequences may lead to revenue loss

and in extreme cases where the app gets removed from the store, businesses may lose their
businesses too as shared by our participants:

“The developers or owners of the mobile apps can be impacted by negative reviews, which
would lead to decreased sales” – SP62

Developers. Extra work to fix honesty violations, experiencing negative emotions, harm-
ing work performance and harming personal reputation are the consequences of honesty
violations on developers as we found.

Extra work to fix honesty violations Irrespective of the claim being true or false, the
developers will have to work extra. Additional tasks may need to be done to look into the
reported violations. If the app reviews are false, then as shared by our participants, the
developers will lose time unnecessarily by looking for a violation which does not exist in the
app:

“The developers will be confronted with additional tasks and will try to search for eventual
bugs mentioned by the users. In case of dishonest reviews, the app developers may lose time
looking for bugs that don’t even exist.” – SP66

Experience negative emotions As mentioned by our participants, the developers experi-
ence negative emotions such as stress and anger when they receive honesty violation reported
reviews. They also feel guilt about having the app developed with honesty violations:

“Developers and owners can experience a lot of stress.” – SP1
Harm work performance Three participants mentioned that finding honesty violations

damage the work performance of the developers. They could get demotivated to work, which
harms their performance:

“maybe they are ashamed and in the long run it kills motivation” – SP38
Harm personal reputation Our participants also stated that finding honesty violations

in the apps developers develop impacts their personal reputation negatively, which is prob-
lematic for the career of the developers:

“A bad thing that could happen to developers is the result of negative reviews they receive
from customers, thus resulting in a declining career.” – SP70

Also, SP67 stated that it is common for developers to get the blame as they are at the
bottom of the tree of the team structure:

“It could affect the developers because they are usually the ones to get the blame for these
violations. The blame just gets pushed down the tree until it hits the developers that just have
to take it.” – SP67

Users. Identity theft, experiencing negative emotions, loss of trust in apps/company/
developers, loss of money unknowingly, loss of time, stop using/uninstalling/not installing
apps are the consequences of having honesty violations in apps on users.

Identity theft One of the concerns our participants mentioned (as an impact on end users
due to the existence of honesty violations in mobile apps) is identity theft. The apps with
honesty violations could compromise personal and sensitive data. For example, their home
address and credit card details. These could be used by third parties in various activities. This
could even lead to frustration in users, affecting their mental health as well:

“It could make the end users prone to fraudulent activities on their finances by making

123

Page 33 of 52 134Empirical Software Engineering (2023) 28:134

use of their personal information to extract money or some resources from them without their
consent. It could also make them prone to some physical attacks such as the end users’ home
address being exposed, thereby making their locations traceable.” – SP40

Experience negative emotions If honesty violations are found in mobile apps, users
may experience negative emotions as shared by our participants. These include frustration,
unhappiness, stress, and anger:

“End users become very frustrate due to these honesty violations.” – SP41
Lose trust in apps/company/developers As stated by our participants, when users find

honesty violations in the apps they use, no matter how legitimate the brand of the company
is, users may end up not trusting and distancing themselves from the app and company:

“They create a feeling of lack of trust with the company responsible for the violations” –
SP65

This is more related to cancellations and refund policies:
“if we look at cancellations and refund policies, I think everyone as if you’re a user of

a mobile app, you would want to be able to trust the app that you’re using. And especially
if you’re paying money for it, for example, a subscription service or even just a one-time
payment. If it’s a subscription model then you would want to be able to save the cancel your
subscriptions without having any issues. If the app that you’re using doesn’t actually provide
that sort of honesty, capabilities like then you and I personally wouldn’t be comfortable using
an app that was an honest to their users” – IP3

Lose money unknowingly Users losing money without them knowing is one of the
key impacts of honesty violations claimed by our participants. This could also lead to a
problematic living in physical life as money plays a huge role:

“Honesty violations can impact users in various ways. In my opinion, the worst effect
it can have is when a person loses money that they weren´t expecting to lose, it can very
realistically impact their ability to buy essentials - pay rent - pay bills - etc, if not refunded.”
– SP38

Lose time Similar to losing money, losing time due to the existence of honesty violations
can cause negative effects on the lives of people by wasting the valuable time they could use
to do other important work:

“People will be made addicts to apps and forced to spend huge amounts of time, which
they could use for more productive work.” – SP34

Stop using/uninstall/not install apps When users find honesty violations in apps, they
are likely to either stop using them or uninstall them. If any potential new users get to know
the existence of the violations in the apps, they might not even install them:

“It could scare them away from using the app or ever downloading it. This would be very
negative for everyone involved if the app does do what it is supposed to do.” – SP67

7.3.3 Strategies (RQ3.3)

We explored strategies that developers use to avoid honesty violations, and strategies the
developers use to fix honesty violations when they receive feedback containing honesty
violations for the app.

Mitigating strategies. The mitigation strategies include having better engineering prac-
tices, being transparent with the customers/users, and having moral standards.

Having better engineering practicesWe found that having better engineering practices
in place helps software teams to avoid honesty violations to occur in the apps they develop.
This includes strengthening design practices, development practices, and the testing process.

123

134 Page 34 of 52 Empirical Software Engineering (2023) 28:134

(a) Strengthening design practices: Viewing the app from the user perspective helps in
avoiding honesty violation occurrences in the apps being developed, as reported by partici-
pants:

“Keep clear communication with your manager, Keep on top of the timeline that is given,
explain how users will see the app to your manager.” – SP67

Having honesty as a first-class app requirement, and complying with regulations/policies
(e.g., GDPR) also helps to mitigate occurrences of honesty violations in apps according to
our participants:

“...Other than that, we gotta respect the GDPR.” – SP29
(b) Strengthening development practices: Some participants mention that they have codes

in place to flag honesty violations:
“We also have codes in place which will flag an app in violation” – SP14
They also believe that having security measures in place avoids honesty violations from

happening. For example, as SP18 mentioned, the violations could occur by attacks on the
app, so they use security measures accordingly. Measures such as pen tests could avoid risks,
and encryption could avoid data leakages and thefts:

“Of course as always we use source code encryption. Attackers generally repack renowned
apps into rogue apps using reverse-engineering techniques. Then they upload those apps into
third-party app stores with the intent to attract unsuspecting users. It has been a consistently
good practice to test our application against randomly generated security scenarios before
every deployment. Especially, pen testing can avoid security risks and vulnerabilities against
our mobile apps. Detecting loopholes in the system is an absolute necessity. Since these
loopholes could grow to become potential threats that give access to mobile data and features.
The sensitive information that is transmitted from the client to the server needs to be protected
against privacy leaks and data theft. When it comes to accessing confidential data, the mobile
apps (yes, we have more than one app in our company) are designed in a way that the
unstructured data is stored in the local file system and/or database within the device storage.
We use encryption methods like AES with 512-bit encryption, 256-bit encryption and SHA-
256 for hashing. We have security measures in place to safeguard against malicious attacks
at backend servers.” – SP18

(c) Strengthening the testing process: A strong pre-release testing process is necessary. As
shared by our participants, getting the QC teams to do stringent reviews, and having multiple
testing rounds helps to avoid having honesty violations in apps after release:

“ The app goes through multiple rounds of testing to make sure such violations do not
happen. – SP25

Through our analysis, we also found that testing for honesty violations during UAT and
testing the app with diverse users helps to mitigate honesty violations. Approaches such
as sending the beta version of the app to users, and asking a variety of users to test the
app help in looking at the app from different angles, which eventually helps in identifying
honesty violations early. As shared by one participant, having users involved in testing before
releasing could help in identifying 50% of the problems with regard to honesty violations:

“Before I release the application, to say general public, you, you might want to test it out
on a certain set of users and look into the things that they feedback on and try and figure out
where all whether the feedback that they give violates any of these honesty statements, and
from there onwards you might be able to improve on specific ones that are being violated.
But if, yeah, that would be the initial thing. Then once I think from there, you can sort of read
out maybe like 50% of the problems regarding honesty violations. Then maybe once you’ve
actually released your application to the general public, then from there on, you would have
a much larger audience size and also a lot more feedback that you can work on.” – IP3

123

Page 35 of 52 134Empirical Software Engineering (2023) 28:134

Being transparent with customers/users Being more transparent with customers/users
helps identify and address honesty violations “reported” in the apps as reported by our
participants. For example, they commented that having additional confirmation steps, and
being transparent in the app description helps inform the users about the app:

“Present the end user with correct information and make them do additional confirmation
steps.” – SP57

Havingmoral standards Being a person who values things such as honesty, fairness, and
credibility helps to avoid honesty violations in mobile apps, as shared by our participants:

“We are simply not designing and developing apps in such a way. Honesty and integrity
is key” – SP8

Fixing strategies. The fixing strategies shared by our participants include thoroughly
investigating honesty violations flagged by users and fixing, hot-fixing, being transparent
about the violation with customers/users, and having tools in place to help resolve honesty
violations.

Thoroughly investigate the violation and fix Themajority of our participantsmentioned
that they thoroughly investigate any reported honesty violation by users and then move
forward with fixing it. For that, they said that they have team discussions, consult supervisors,
and even get more developers involved in fixing:

“I usually consult my supervisors on how to best go about handling such situations if and
when they occur.” – SP6

One participant mentioned, they talk with the legal department as well before fixing, and
then change the code:

“Talk with the legal department and change the code respectively.” – SP68
Thorough investigation includes checking the reliability of the claims, checking the align-

ment of the claim with business policies – which sometimes hinders fixing the violation,
internally validating the policy applied, removing the app temporarily from the app store,
testing the app thoroughly, and adding to the sprint, prioritise, and then fix:

“I have to consult the architect to discuss the solution. Sometimes it’s not possible to fix
it due to business policies” – SP25

Hotfixing Some participants mentioned that they do ‘hotfixes’, i.e., they fix the honesty
violation in the app immediately:

“If I had any, I would immediately make the violation in question disappear by fixing the
violation.” – SP35

Some stated that hotfixes depend on the size of the company. For example, if the app
is owned by a solo developer/small company, then they will fix it quickly rather than large
established companies which may have long processes:

“If you are the solo developer of your own application, then you can address it pretty
quickly. So you got your feedback, then you probably can use that feedback to generate a list
of things that you can improve on. Then there will be a pretty quick turnaround based on user
feedback, but usually on larger company sizes. There’s a lot of feedback and you probably
want to address the feedbacks that are more serious. And so that would take some time and
then that’s usually a really long process before it gets like from gathering the requirements
to putting it into user stories and having developers work on it and then push to production
might take potentially months. So it’s not a quick process. If it’s a big company, but obviously
it depends on how the company works.” – IP3

Be transparent about the violationwith customers/users Wefound that our participants
consider being transparent about the issue and changes they make in the app as important.
They mentioned that they inform their users through app descriptions about temporal deac-
tivations due to technical issues, and also do the same after fixing by sharing what was fixed.

123

134 Page 36 of 52 Empirical Software Engineering (2023) 28:134

Fig. 9 Participants’ Opinion about Automatic Detection of Honesty Violation in Mobile App Reviews

However, we could not find if they mention the type of honesty violation in their temporary
app description updates. Some also mentioned that they share a report with full transparency
with their users/customers:

“Summarily, I put out a notice to users that there’ll be a temporal downtime in order to
address technical issues that could affect their use of the app after I do this, I temporarily
deactivate the app and identify the vulnerability, write a code that can patch it up, then I
activate it and announcer to the users that the app is running again.” – SP40

Have tools in place to resolve honesty violationsTwo of our participants mentioned that
they would have measures/tools implemented to resolve the honesty violations:

“My team investigates them and implements tools to resolve them.” – SP39

7.3.4 Usefulness And Benefits Of Automatic Detection Of Honesty Violations (RQ 3.4)

Usefulness Our participants shared their opinion about the automatic detection of honesty
violations inmobile app reviews (Fig. 9). Note that, participants did not use our tool to answer
this question, but shared their general opinion about the automatic detection of honesty viola-
tions in mobile app reviews. The majority of the participants somewhat agreed (43.84%) that
automatically detecting honesty violations in mobile app reviews with high accuracy is use-
ful, then 32.88% strongly agreed with it, and the rest neither agreed nor disagreed/somewhat
disagreed/strongly disagreed.

Benefiting Parties According to our participants, end users (20.80%) will be majorly ben-
efited from automatic detection, followed by businesses (20.07%), developers (19.34%),
product owners (14.23%), managers and user support roles (8.76% each), and business ana-
lysts (7.66%). 0.36% of the responses were for no one too. This is summarised in Fig. 10.
However, from the qualitative data, we found businesses, developers, app platforms, and end
users have the potential to get the most out of automatic detection.

Benefits We asked our participants how automatic detection of honesty violations could be
beneficial. They shared a variety of benefits which we categorised as benefits for businesses,

Fig. 10 Benefiting Parties

123

Page 37 of 52 134Empirical Software Engineering (2023) 28:134

developers, and users. In this section, we use the term “automatic detection” as a short term
for “automatic detection of honesty violations”.

Businesses. Retain/improve reputation, reduce/avoid legal risks, gain more revenue,
retain/gain users, and improve user trust are the benefits for businesses from automatic detec-
tion.

Retain/improve reputation As automatic violation accelerates the honesty violation fix-
ing process, businesses are able to fix them early before that can negatively impact their
reputation, and also users may leave positive user reviews which will improve the busi-
nesses’ reputation:

“They will be aware of the violations in time and fix them before it can ruin their reputa-
tion” – SP9

Reduce/avoid legal risks Since automatic detection helps improve the fixing process in
the software team, the team will be aware of the honesty violations, and they will take action
to fix the issues in a timely manner, which will avoid any legal issue occurrences, and if any
risks were there, those will get reduced too as shared by our participants:

“Just avoiding further issues with the law, and economic backlash.” – SP64
Retain/gain users Since automatic detection improves the app and how users see it,

businesses will not lose users and also will gain new users as shared by our participants. This
is interconnected to gaining more revenue – as not losing any users and gaining new users
means better revenue, and a good reputation – as users will be retained with the business
because of the good reputation of the business:

“I think they will benefit in a sense that once the reviews are there it can be fixed with
immediate effect, this resulting in good customer care service as well as prompting user to
give good/positive reviews which could lead to new clients in the end, which benefits the
app/business in the end.” – SP17

Maintain or increase revenues Happy customers may result in better revenue as noted
by some of our participants. While some honesty violations are done to increase revenue, in
contrast, ensuring that users enjoy the app with better user experience and less concern about
dishonest practices being reported in reviews can lead to an increase in customer attraction,
retention and hence revenue. For example, one participant stated:

“The consumers will benefit from having a better experience through the app, and the
developers and owners of the app will, in turn, benefit from satisfied customers leaving better
reviews, resulting in increased sales and a good reputation.” – SP62

Improve user trust As an app will be improved by having automatic honesty violation
detection, users will trust the app as shared by our participants:

“The app will improve and other users are going to trust in the app and download it” –
SP36

Developers. Through our analysis, we found the potential benefits the developers may
have due to automatic detection. The benefits for developers are quick detection of honesty
violations, improve developer satisfaction, avoiding fixes, and reduced effort on fixing.

Quick detection of honesty violations Having the detection of honesty violations auto-
mated could benefit the developers by accelerating the detection process. They will spend
less time doing investigations, and will focus on fixing more:

“For the owners and developers of the app, it will be easier to sort them out and do what
they have to do.” – SP12

Improve developer satisfaction As their work gets easier and less hectic, developers’
satisfaction will be benefited from automatic detection as shared by our participants:

“And also having a good state of mind.” – SP46

123

134 Page 38 of 52 Empirical Software Engineering (2023) 28:134

Avoid fixes If honesty violations are found early and fixed early, that will avoid future
fixes as mentioned by our participants. Because of this, the developers may use their time to
improve the app rather than spending time on fixing:

“Developers and product owners can employ their time in improving the app instead of
fixing it.” – SP42

Reduce effort on fixing The developers’ time spent on the entire fixing process including
reading the app reviews, analysing them, and thenmoving forwardwith fixingwill be reduced
by having automatic detection involved in the process, as stated by our participants:

“Automation will create less work for them. Also, it will take automatic action rather than
slow and expensive human interference.” – SP53

App platforms. One of the participants mentioned that app platforms could benefit if they
use automatic detection.

Improve auditsOne of the causes found for the existence of honesty violations in mobile
apps is vague audits by app platforms. This could possibly be improved if the app platforms
use automatic detection to examine apps with several app reviews reported with honesty
violations:

“I think that the one group that would benefit the most is end users. App stores might be
finally cleaned up from scummy apps and trashy developers.” – SP37

Users. Not only businesses, developers, and app platforms can benefit from automatic
detection, but also users, as mentioned by our participants. The benefits to users are trans-
parency by knowing what to expect from the app, finding honest apps in stores, and improved
user satisfaction.

Transparency by knowing what to expect from the app: As stated by our participants,
if automatic detection is available for users, they may also use it to better understand the app.
A high level of transparency will be available through it and because of that users will know
what to expect from the app – whether to expect honesty violations in apps or not. This will
help users in deciding whether to download an app or not:

“They will have a framework which guides and informs them regarding the apps they are
using/working.” – SP14

Find honest apps in stores If the businesses, developers, and app platforms adopt maxi-
mum use of automatic detection, the users will obviously find honest apps in stores as shared
by our participants:

“They will limit the ability of some companies to mock customers and try to curry favour
with them. In addition, they will guide end users not to use apps that cheat them.” – SP67

Improved user satisfaction The user satisfaction will be improved if the software teams
use automatic detection as apps will be improved which will give less frustration to the users
and better user experience, which result in better user satisfaction:

“Customers won´t feel as if they are being lied to and so they will have a much hap-
pier experience with the product, and therefore customer support will have fewer unhappy
customers to deal with.” – SP38

RQ3 Answer: The developer study revealed seven causes, seven responsible parties, six-
teen consequences of honesty violations, nine strategies developers use to avoid/fix the
honesty violations, and thirteen benefits and nine benefiting parties of automatic detection
of honesty violations in mobile apps.

123

Page 39 of 52 134Empirical Software Engineering (2023) 28:134

8 Discussion and Recommendations

8.1 Technology (Mobile Apps) as values artefacts

Software artefacts such as mobile apps, like other technological artefacts, express human
values (Whittle 2019). Although less formally articulated, human values may be reflected
throughout the different phases of the software development life cycle (Nurwidyantoro et al.
2021). Values are represented in the conception and abstraction of ideas, in the way soft-
ware features are arranged, described and even implemented and these embodied values are
typically those of their creators, e.g., software developers and other stakeholders (Lennox
2020).

Some studies have argued that technological artefacts are value-agnostic tools that can
be used for good or bad (i.e., theory of the social determination of technology) (Joerges
1999), while others contend that technological artefacts are not value-agnostic, i.e., they
hold value qualities and promote certain values over others (Winner 1980), e.g., the bitcoin
blockchain technology (Nakamoto 2009) is an embodiment of the value category of self-
direction. Irrespective of the sociotechnological stance on values in technological (software)
artefacts, there is an agreement on the role of software artefacts in changing habits in people
and influencing society in general, despite the intentions of the software companies behind
these artefacts (Obie et al. 2021;Agre 1997). Sullinswrites, “Since the verydesign capabilities
of information technology influence the lives of their users, the moral commitments of the
designers of these technologies may dictate the course society will take and our commitments
to certain moral values will then be determined by technologists" (Sullins 2018).

Furthermore, while we do not conflate values with ethics (values are the guiding princi-
ples of what people consider important in life (Rokeach 1973), while ethics are the moral
expectations that society agrees upon to decide which values are acceptable or not (Whittle
2019)), the value of honesty is an ethically desired value in most societies. Thus we argue
for a conscious effort in developing honest software artefacts, including mobile apps, and
the promotion of honesty in software development practices. Our intention in this paper is
not to serve as moral arbiters of values in mobile apps (or other software artefacts) but rather
to promote a healthy discussion of these issues in the software research and development
community, and point the field towards a critical technical practice of mobile SE, i.e., the
reflective work of sociocultural criticisms, highlighting the hidden assumptions in technical
processes, and the interaction between the social, cultural and technical aspects of (mobile)
SE.

8.2 The Role Of App Distribution Platforms

App distribution platforms such as the Apple store and the Google Play store have an impor-
tant role to play in supporting human values andminimising their violations in apps published
on their platforms. They can serve as enforcers of ethical systems supporting values such as
honesty, akin to the manner in which they protect end-users’ devices frommalicious apps (Li
et al. 2015, 2017). For instance, they can ensure that app developers are transparent in their
billing process and enforce a mandatory multi-step (at least two steps) confirmation not only
for subscriptions but also for in-app purchases.

Another issue on the violation of the value of honesty is related to non-transparency in the
subscription process in apps. For example, while some apps provide a reminder to the user
before the end of a trial period so the user can decide to cancel their subscription or progress to

123

134 Page 40 of 52 Empirical Software Engineering (2023) 28:134

a premium service, some other apps provide no reminder whatsoever. A reminder-to-cancel
(or upgrade) feature for apps can be necessitated by the distribution platforms to protect the
end-user from unintentional subscriptions.

In addition, for games or game-like apps involving the use of money for play, end-users
perceptions of unfairness in these systems can be assuaged by a practice of auditing the
systems to ensure statistical outcomes that are not only probable but fair to both the end-user
and app developers alike, similar to the way casino systems are routinely audited for fairness
and transparency. The results of the audits can then be shown as part of the app information
on the app stores.

8.3 Transparent Policies and Agreements

In cases of disputes between end-users and app vendors, where an end-user perceives that
they have been unfairly treated, it is typical for the app vendors to refer the end-user to the
end-user licence agreement (EULA) signed by the end-user during installation (King 2017).
A EULA is a legally binding contract between the end-user and the app vendor (Chee et al.
2012).

Someappvendors place their data handling andbilling processes in thefine print ofEULAs
that are typically difficult to understand by the average user because they are written in legal
terms (King 2017). Some studies have also shown that most end-users who clicked “I agree”
do not understand the terms to which they agreed and often expressed genuine concern
when the terms are clearly expressed to them Chee et al. (2012). Thus it is important to
develop transparent legal policies and easy-to-comprehend EULAs to inform and empower
the end-user and help them understand the terms and implications of these kinds of legal
contracts. Transparency and comprehensibility would alleviate wariness and misgivings in
this area. Also, we reiterate the position of O’Neill (2002), that while transparency may
undo secrecy, “it may not limit the deception and deliberate misinformation that undermine
relations of trust. If we want to restore trust we need to reduce deception and lies, rather than
secrecy” (O’Neill 2002). This area is particularly ripe for interdisciplinary research between
the computing sciences, humanities, and law.

8.4 An Actionable Framework for Developers

Figure 11 shows an actionable framework we have developed from the findings of our inves-
tigation of developers’ perspective of honesty violations in mobile apps and the potential
benefits of automatic detection. Almost every stakeholder involved in mobile app devel-
opment is responsible for honesty violations in mobile apps, and honesty violations affect
individual developers, users, and businesses at various levels. Developers use various avoid-
ing strategies to mitigate the occurrence of honesty violations in the apps they develop, and
if violations are found after releasing the apps to the public, they use a variety of fixing
strategies. Automatic detection has the potential to avoid certain causes, consequences, and
support developer strategies (Table 7). While a minority believe no one will get benefits from
automatic detection, it will be beneficial to multiple stakeholders involved, including end
users, development team members, businesses, and app platforms.

The framework could be used as a guide to get a deeper understanding of honesty violations
in mobile apps. We believe that this understanding will help developers immensely to be
responsible for developing mobile apps. Developers may also consider using the avoiding
and fixing strategies given in this figure, as these were shared bymany developers worldwide.

123

Page 41 of 52 134Empirical Software Engineering (2023) 28:134

Fig. 11 Causes and Consequences of Honesty Violations in Mobile Apps, Common Strategies Developers
Use to Avoid/ Fix Them, and The Automatic Detection Benefits

123

134 Page 42 of 52 Empirical Software Engineering (2023) 28:134

Furthermore, mobile app developers could consider using automatic detection to improve
their internal processes, the app, and the end-user experience, which eventually helps in
improving the business.

Researchers may consider evaluating the framework proposed in Fig. 11. Additionally,
researchers may also consider exploring how various roles in teams (as in Fig. 11) are respon-
sible for honesty violations in mobile apps. They may also consider investigating the impact
on those roles as we only focused on businesses, developers, and users. Similarly, as team
roles have the potential to get many benefits from automatic detection, a fruitful area to
investigate will be the benefits of automatic detection. Ultimately, all of these findings could
improve Fig. 11 to give the public and development teams a broad, yet in-depth knowledge
of honesty violations in mobile apps, how important it is to address them in mobile apps, and
how technology can aid this.

8.5 HumanValues in SE Research

Research in the broader area of human values in SE is still in its early stages (Perera et al.
2020). While the investigation of well-known values such as privacy and security has been
considerably developed, other values such as honesty, curiosity, and independence have
received little attention, possibly due to the subjective and abstract nature of these concepts.
This and other recent related works are based on an adaptation of the Schwartz theory of
basic human values (Schwartz 1992). However, the nascent field of human values in SE may
benefit from new conceptual theories of human values that are more situated closely within
SE.

Furthermore, there is a need for the development of tools and techniques, not only in
detecting the violation of human values in software artefacts but also providing automatic
recommendations for possible fixes. Directions for future work may include the following:
the development of approaches for generating end-user comprehensible EULA templates
supporting values, approaches for evaluating and auditing fairness in games and game-like
systems to support statistically probable results, and modules for static and dynamic analysis
tools to detect specific values defects. Another area worth investigating is the development
of tools for supporting the inclusion of values throughout the software development lifecycle
and the resulting software artefacts, including mobile apps.

9 Threats to Validity

Internal Validity The qualitative process of building the honesty_discussion dataset in
Section 5.1, categorising the different types of honesty violations in Section 6.1, categorising
causes, consequences, strategies of honesty violations and benefits of automatic detection in
Section 7 might have errors or omissions. This is due to the qualitative coding approach used,
a single author performing the majority of the coding, potential misinterpretation of data, and
choice of codes and concepts during analysis. Hence, it might have introduced some threats
to the internal validity of the study. We used three techniques to mitigate such threats. First,
the qualitative analysis was conducted iteratively over an ample timeframe to avoid fatigue.
Second, each review was analysed by one analyst and then was validated by at least one other
analyst, followed by several meetings between the analysts to resolve any disagreements and
conflicts; and interview and survey findings were analysed by one analyst but were then and
shared among other analysts during weekly meetings, including review of raw data, codes

123

Page 43 of 52 134Empirical Software Engineering (2023) 28:134

and emergent concepts. Third, the analysts have extensive research experience in the area of
human values in SE.

Construct Validity The analysts might have had different interpretations of the definition
of the value of honesty. Our strategy to minimise this threat was making sure the analysts
carefully examined seminal papers (Schwartz 1992, 2012) on the Schwartz theory, formal
definition of honesty from dictionaries, and existing software engineering research on human
values, including honesty (Obie et al. 2021; Shams et al. 2020). In this study, among many
options, we used seven machine learning algorithms to detect honesty violation reviews and
fourmetrics to evaluate the algorithms. Peters et al. (2017) claim that it is impracticable to use
all algorithms in one study. Hence, we accept that applying othermachine learning algorithms
to our dataset may lead to different performances. Themetrics precision, recall, accuracy, and
F1-score used in this study are widely applied and suggested to evaluate machine learning
models in software engineering.

External Validity Our initial sample of app reviews was 236,660 reviews collected from
Eler et al. (2019) and Obie et al. (2021), which was further reduced to 4,885 honesty-related
reviews after applying the keywords filter. Our keyword filter may have introduced false
negatives and potentially excluded honesty violations in the larger dataset. Hence, we cannot
claim that our results are generalisable to all app reviews in the Apple App Store and Google
Play Store and other platforms (e.g., online marketplaces). Similarly, the sample size of the
developer study does not guarantee generalisability as the number of participants is limited
(especially interview participants), and the majority represented Europe.

10 Conclusion

Mobile software applications (apps) are very widely used and applied and hence need to
reflect critical human value considerations such as curiosity, freedom, tradition, and honesty.
The support for – or violation of – these critical human values in mobile apps has been shown
to be captured in app reviews. In this work, we focused on the value of honesty. We presented
an approach for automatically finding app reviews that reveal the violation of the human
value of honesty from an end-user perspective. In developing our automated approach, we
evaluated seven different algorithms using a manually annotated and validated dataset of app
reviews. Our evaluation showed that the Deep Neural Network (DNN) algorithm provided
higher accuracy than the other algorithms in detecting the violation of the value of honesty
in app reviews, and also surpasses a baseline classifier with an F1 score of 0.921. We also
characterised the different kinds of honesty violations reflected in app reviews. Our manual
qualitative analysis of the reviews containing honesty violations resulted in ten categories:
unfair cancellation and refund policies, false advertisements, delusive subscriptions, cheating
systems, inaccurate information, unfair fees, no service, deletion of reviews, impersonation,
and fraudulent-looking apps. We used surveys and interviews to investigate developers’
perspectives of honesty violations in mobile apps and how automatic detection might be
beneficial. This resulted in the identification of a wide range of causes, consequences, strate-
gies for avoiding and fixing honesty violations, and potential benefits of automatic detection.
The results of our study highlight the importance of considering software artefacts, such as
mobile apps, as embodiments of human values with consequences on end-users and society
as a whole. We emphasise the role of app distribution platforms in supporting human values,
such as honesty, on their platforms, recommendations for developers, and discuss the need
for the software engineering research community to investigate methods and tools to better
minimise the violation of human values in software artefacts.

123

134 Page 44 of 52 Empirical Software Engineering (2023) 28:134

Acknowledgements This work is supported by ARC Discovery Grant DP200100020. Madampe and Grundy
are supported by ARC Laureate Fellowship FL190100035.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Cheating, Corruption, and Concealment (2016) pp 1–12. Cambridge University Press
Aggarwal CC, Zhai C (2012) A survey of text classification algorithms. In: Mining text data, pp 163–222.

Springer
Agre PE (1997) Social science, technical systems and cooperativework: beyond the great divide, chap. Lessons

learned in trying to reform AI. Erlbaum, toward a critical technical practice
Aldewereld H, Dignum V, Tan Yh (2015) Design for values information and communication technologies in

software development, pp 831–845. Springer Netherlands, Dordrecht
AlOmar EA, Aljedaani W, Tamjeed M, Mkaouer MW, El-Glaly YN (2021) Finding the needle in a haystack:

on the automatic identification of accessibility user reviews. In: Proceedings of the 2021 CHI conference
on human factors in computing systems, CHI ’21. Association for computing machinery, New York, NY,
USA. https://doi.org/10.1145/3411764.3445281

Barr K (2022) Pervasive ‘dark patterns’ are fooling people into signing up for services they don’t want. https://
gizmodo.com/dark-patterns-ui-cancel-subscription-1849542166

Bowman E (2021) After data breach exposes 530 million, facebook says it will not notify
users. https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-
says-it-will-not-notify-users

Campbell JL,QuincyC,Osserman J, PedersenOK(2013)Coding in-depth semistructured interviews: problems
of unitization and intercoder reliability and agreement. Sociological Methods &Research 42(3):294–320

CarreñoLVG,WinbladhK (2013)Analysis of user comments: an approach for software requirements evolution.
In: 2013 35th International conference on software engineering (ICSE), pp 582–591. https://doi.org/10.
1109/ICSE.2013.6606604

Chee FM, Taylor NT, de Castell S (2012) Re-mediating research ethics: end-user license agreements in online
games. Bull Sci Technol Soc 32(6):497–506

Cheng AS, Fleischmann KR (2010) Developing a meta-inventory of human values. In: Proceedings of the 73rd
ASIS&T annual meeting on navigating streams in an information ecosystem, vol 47. American society
for information science

Ciurumelea A, Schaufelbühl A, Panichella S, Gall HC (2017) Analyzing reviews and code of mobile apps for
better release planning. In: 2017 IEEE 24th international conference on software analysis, evolution and
reengineering (SANER), pp 91–102. https://doi.org/10.1109/SANER.2017.7884612

Devlin J, Chang MW, Lee K, Toutanova K (2019) Bert: pre-training of deep bidirectional transformers for
language understanding. In: Proceedings of the 2019 conference of the North American chapter of the
association for computational linguistics: human language technologies, vol 1 (long and short papers),
pp 4171–4186

Di Sorbo A, Panichella S, Alexandru CV, Shimagaki J, Visaggio CA, Canfora G, Gall HC (2016) What would
users change in my app? summarizing app reviews for recommending software changes. In: Proceedings
of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, FSE
2016, pp 499–510. Association for computing machinery, New York, NY, USA. https://doi.org/10.1145/
2950290.2950299

Dictionary C (2021) Definition of ‘impersonate’. https://www.collinsdictionary.com/dictionary/english/
impersonate

Dictionary C (2021) Definition of ‘honesty’. https://www.collinsdictionary.com/dictionary/english/honesty

123

Page 45 of 52 134Empirical Software Engineering (2023) 28:134

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3411764.3445281
https://gizmodo.com/dark-patterns-ui-cancel-subscription-1849542166
https://gizmodo.com/dark-patterns-ui-cancel-subscription-1849542166
https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-says-it-will-not-notify-users
https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-says-it-will-not-notify-users
https://doi.org/10.1109/ICSE.2013.6606604
https://doi.org/10.1109/ICSE.2013.6606604
https://doi.org/10.1109/SANER.2017.7884612
https://doi.org/10.1145/2950290.2950299
https://doi.org/10.1145/2950290.2950299
https://www.collinsdictionary.com/dictionary/english/impersonate
https://www.collinsdictionary.com/dictionary/english/impersonate
https://www.collinsdictionary.com/dictionary/english/honesty

Dong F, Wang H, Li L, Guo Y, Bissyandé TF, Liu T, Xu G, Klein J (2018) Frauddroid: automated ad fraud
detection for android apps. In: Proceedings of the 2018 26th ACM joint meeting on European software
engineering conference and symposium on the foundations of software engineering, pp 257–268

Eler MM, Orlandin L, Oliveira ADA (2019) Do android app users care about accessibility? An analysis of user
reviews on the google play store. In: Proceedings of the 18th Brazilian symposium on human factors in
computing systems, IHC ’19. Association for computing machinery, New York, NY, USA

Fochmann M, Fochmann N, Kocher MG, Müller N (2021) Dishonesty and risk-taking: Compliance decisions
of individuals and groups. J Econ Behav Organ 185:250–286. https://doi.org/10.1016/j.jebo.2021.02.
018, https://www.sciencedirect.com/science/article/pii/S0167268121%000822

Gao Y, Xu G, Li L, Luo X, Wang C, Sui Y (2022) Demystifying the underground ecosystem of account regis-
tration bots. In: ACM joint European software engineering conference and symposium on the foundations
of software engineering (ESEC/FSE 2022)

Glaser BG, Strauss AL, Strutzel E (1968) The discovery of grounded theory; strategies for qualitative research.
Nursing Research 17(4):364

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014)
Generative adversarial nets. In: Z. Ghahramani,M.Welling, C. Cortes, N. Lawrence, K.Weinberger (eds.)
Advances in neural information processing systems, vol 27. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2014/file/5ca3e9b122f61f%8f06494c97b1afccf3-Paper.pdf

Gotterbarn D, Bruckman A, Flick C, Miller K,Wolf MJ (2017) Acm code of ethics: a guide for positive action.
Commun ACM 61(1):121–128. https://doi.org/10.1145/3173016

Guzman E, Maalej W (2014) How do users like this feature? A fine grained sentiment analysis of app reviews.
In: 2014 IEEE 22nd international requirements engineering conference (RE), pp 153–162. https://doi.
org/10.1109/RE.2014.6912257

vanHaasterenA,Gille F, FaddaM,Vayena E (2019)Development of themhealth app trustworthiness checklist.
Digit Health 5:2055207619886463

Haggag O, Grundy J, Abdelrazek M, Haggag S (2022) A large scale analysis of mhealth app user reviews.
Empir Softw Eng 27(7):1–53

Henderson JG (2022) FTC report shows rise in sophisticated dark patterns designed to trick and
trap consumers. https://www.ftc.gov/news-events/news/press-releases/2022/09/ftc-report-shows-rise-
sophisticated-dark-patterns-designed-trick-trap-consumers

Hu Y, Wang H, Zhou Y, Guo Y, Li L, Luo B, Xu F (2019) Dating with scambots: understanding the ecosystem
of fraudulent dating applications. IEEE Transactions on Dependable and Secure Computing

Hussain W, Perera H, Whittle J, Nurwidyantoro A, Hoda R, Shams RA, Oliver G (2020) Human values in
software engineering: contrasting case studies of practice. IEEE Transactions on Software Engineering.
pp 1–15

Iacob C, Harrison R: Retrieving and analyzing mobile apps feature requests from online reviews. In: 2013
10th working conference on mining software repositories (MSR), pp 41–44 (2013). https://doi.org/10.
1109/MSR.2013.6624001

Jacquemet N, James AG, Luchini S, Murphy JJ, Shogren JF (2021) Do truth-telling oaths improve honesty in
crowd-working? PloS one 16(1):1–18

Joerges B (1999) Do politics have artefacts? Soc Stud Sci 29(3):411–431. https://doi.org/10.1177/
030631299029003004

Keyes R (2004) The post-truth era: dishonesty and deception in contemporary life, 1st, ed. St. Martin’s Press,
New York

Khalajzadeh H, ShahinM, Obie HO, Agrawal P, Grundy J (2022) Supporting developers in addressing human-
centric issues in mobile apps. IEEE Transactions on software engineering (TSE), arXiv:2203.12212

King C (2017) Forcing players to walk the plank: why end user license agreements improperly control players’
rights regarding microtransactions in video games. William and Mary Law Review 58(4):1365

Kohavi R et al (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection.
Ijcai, vol 14. Montreal, Canada, pp 1137–1145

Lang J (2013)CheatingLessons: Learning fromAcademicDishonesty.HarvardUniversity Press.https://books.
google.fm/books?id=hTeImwEACAAJ

Lennox J (2020) 2084: artificial intelligence, the future of humanity, and the god question. Zondervan
Levin S, Yehudai A (2017) Boosting automatic commit classification into maintenance activities by utilizing

source code changes. In: Proceedings of the 13th international conference on predictive models and data
analytics in software engineering, PROMISE, pp 97–106. Association for Computing Machinery, New
York, NY, USA

Levin S, Yehudai A (2019) Towards software analytics: modeling maintenance activities. CoRR
abs/1903.04909. arXiv:1903.04909

Li C, Obie HO, Khalajzadeh H (2021) A first step towards detecting values-violating defects in android apis

123

134 Page 46 of 52 Empirical Software Engineering (2023) 28:134

https://doi.org/10.1016/j.jebo.2021.02.018
https://doi.org/10.1016/j.jebo.2021.02.018
https://www.sciencedirect.com/science/article/pii/S0167268121%000822
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f%8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f%8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1145/3173016
https://doi.org/10.1109/RE.2014.6912257
https://doi.org/10.1109/RE.2014.6912257
https://www.ftc.gov/news-events/news/press-releases/2022/09/ftc-report-shows-rise-sophisticated-dark-patterns-designed-trick-trap-consumers
https://www.ftc.gov/news-events/news/press-releases/2022/09/ftc-report-shows-rise-sophisticated-dark-patterns-designed-trick-trap-consumers
https://doi.org/10.1109/MSR.2013.6624001
https://doi.org/10.1109/MSR.2013.6624001
https://doi.org/10.1177/030631299029003004
https://doi.org/10.1177/030631299029003004
http://arxiv.org/abs/2203.12212
https://books.google.fm/books?id=hTeImwEACAAJ
https://books.google.fm/books?id=hTeImwEACAAJ
http://arxiv.org/abs/1903.04909

Li H, Zhang L, Zhang L, Shen J (2010) A user satisfaction analysis approach for software evolution. In: 2010
IEEE international conference on progress in informatics and computing, vol 2, pp 1093–1097. https://
doi.org/10.1109/PIC.2010.5687999

Li L, Allix K, Li D, Bartel A, Bissyandé TF, Klein J (2015) Potential component leaks in android apps: An
investigation into a new feature set for malware detection. In: 2015 IEEE international conference on
software quality, reliability and security, pp 195–200. IEEE

Li L, Li D, Bissyandé TF, Klein J, Cai H, Lo D, Le Traon Y (2017) Automatically locating malicious packages
in piggybacked android apps. In: 2017 IEEE/ACM 4th international conference on mobile software
engineering and systems (MOBILESoft), pp 170–174. IEEE

Li X, Zhang Z, Stefanidis K (2018) Mobile app evolution analysis based on user reviews. In: SoMeT
Maldonado EdS, Shihab E, Tsantalis N (2017) Using natural language processing to automatically detect self-

admitted technical debt. IEEE Trans Softw Eng 43(11):1044–1062. https://doi.org/10.1109/TSE.2017.
2654244

Mathews C, Ye K, Grozdanovski J, Marinelli M, Zhong K, Khalajzadeh H, Obie HO, Grundy J (2021) Ah-cid:
a tool to automatically detect human-centric issues in app reviews. In: ICSOFT, pp 386–397

Mazar N, Ariely D (2006) Dishonesty in everyday life and its policy implications. J Pub PolMarket 25(1):117–
126. http://www.jstor.org/stable/30000530

Miller CB (2021) Honesty: the philosophy and psychology of a neglected virtue. Oxford University Press USA
- OSO, Oxford

Morrissey ER (1974) Sources of error in the coding of questionnaire data. Soc Methods Res 3(2):209–232
Mougouei D (2020) Engineering human values in software through value programming. Proceedings of the

IEEE/ACM 42nd international conference on software engineering workshops. pp 133–136
Mougouei D, Perera H, Hussain W, Shams R, Whittle J (2018) Operationalizing human values in software:

a research roadmap. ESEC/FSE 2018, pp 780–784. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3236024.3264843

Nakamoto S (2009) Bitcoin: a peer-to-peer electronic cash system. http://www.bitcoin.org/bitcoin.pdf
Noble WS (2006) What is a support vector machine? Nat Biotechnol 24(12):1565–1567
Nurwidyantoro A, Shahin M, Chaudron M, Hussain W, Perera H, Shams RA, Whittle J (2021) Towards a

human values dashboard for software development: an exploratory study. In: Proceedings of the 15th
ACM / IEEE international symposium on empirical software engineering and measurement (ESEM),
ESEM ’21. Association for Computing Machinery, New York, NY, USA

ObieHO,HussainW,XiaX,Grundy J, Li L, TurhanB,Whittle J, ShahinM (2021)Afirst look at human values-
violation in app reviews. In: 2021 IEEE/ACM 43rd international conference on software engineering:
software engineering in society (ICSE-SEIS), pp 29–38

Obie HO, Ilekura I, Du H, Shahin M, Grundy J, Li L, Whittle J, Turhan B (2022) On the violation of honesty
in mobile apps: automated detection and categories. In: 2022 IEEE/ACM 19th international conference
on mining software repositories (MSR), pp 321–332. https://doi.org/10.1145/3524842.3527937

Obie HO, Ilekura I, Du H, Shahin M, Grundy J, Li L, Whittle J, Turhan B (2022) The replication repository
of this manuscript. https://anonymous.4open.science/r/ml_app_reviews-3ED6/README.md

Obie HO, Shahin M, Grundy J, Turhan B, Li L, Hussain W, Whittle J (2021) Does domain change the opinion
of individuals on human values? A preliminary investigation on ehealth apps end-users

O’Neill O (2002) Trust is the first casualty of the cult of transparency.https://www.telegraph.co.uk/comment/
personal-view/3575750/Trust-is-the-first-casualty-of-the-cult-of-transparency.html

Palomba F, Linares-Vásquez M, Bavota G, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2015) User
reviews matter! Tracking crowdsourced reviews to support evolution of successful apps. In: 2015 IEEE
international conference on software maintenance and evolution (ICSME), pp 291–300. https://doi.org/
10.1109/ICSM.2015.7332475

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can i improve my
app? Classifying user reviews for software maintenance and evolution. In: 2015 IEEE international
conference on softwaremaintenance and evolution (ICSME), pp 281–290. https://doi.org/10.1109/ICSM.
2015.7332474

Pelloni L, Grano G, Ciurumelea A, Panichella S, Palomba F, Gall HC (2018) Becloma: augmenting stack
traces with user review information. In: 2018 IEEE 25th international conference on software analysis,
evolution and reengineering (SANER), pp 522–526. https://doi.org/10.1109/SANER.2018.8330252

Perera H, HussainW,Mougouei D, Shams RA, Nurwidyantoro A,Whittle J (2019) Towards integrating human
values into software: mapping principles and rights of gdpr to values. In: 2019 IEEE 27th international
requirements engineering conference (RE), pp 404–409

Perera H, Hussain W, Whittle J, Nurwidyantoro A, Mougouei D, Shams RA, Oliver G (2020) A study on the
prevalence of human values in software engineering publications, 2015 – 2018. In: Proceedings of the

123

Page 47 of 52 134Empirical Software Engineering (2023) 28:134

https://doi.org/10.1109/PIC.2010.5687999
https://doi.org/10.1109/PIC.2010.5687999
https://doi.org/10.1109/TSE.2017.2654244
https://doi.org/10.1109/TSE.2017.2654244
http://www.jstor.org/stable/30000530
https://doi.org/10.1145/3236024.3264843
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3524842.3527937
https://anonymous.4open.science/r/ml_app_reviews-3ED6/README. md
https://www.telegraph.co.uk/comment/personal-view/3575750/Trust-is-the-first-casualty-of-the-cult-of-transparency.html
https://www.telegraph.co.uk/comment/personal-view/3575750/Trust-is-the-first-casualty-of-the-cult-of-transparency.html
https://doi.org/10.1109/ICSM.2015.7332475
https://doi.org/10.1109/ICSM.2015.7332475
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/SANER.2018.8330252

ACM/IEEE 42nd international conference on software engineering, ICSE ’20, pp 409–420. Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3377811.3380393

Perez S (2019) Dating app maker match sued by ftc for fraud. https://techcrunch.com/2019/09/26/dating-app-
maker-match-sued-by-ftc-for-fraud/

Peters F, Tun TT, Yu Y, Nuseibeh B (2017) Text filtering and ranking for security bug report prediction. IEEE
Trans Softw Eng 45(6):615–631

PhongMV, Nguyen TT, PhamHV, Nguyen TT (2015)Mining user opinions in mobile app reviews: a keyword-
based approach. In: 2015 30th IEEE/ACM international conference on automated software engineering
(ASE), pp 749–759.https://doi.org/10.1109/ASE.2015.85

Rokeach M (1973) The Nature of Human Values. Free Press
Samhi J, Li L, Bissyandé TF, Klein J (2022) Difuzer: uncovering suspicious hidden sensitive operations in

android apps. In: The 44th international conference on software engineering (ICSE 2022)
Schwartz S (1992) Universals in the content and structure of values: theoretical advances and empirical tests

in 20 countries. Adv Exp Soc Psychol 25
Schwartz S (2012) An overview of the schwartz theory of basic values. Online Readings in Psychology and

Culture 2
Seyff N, Graf F, Maiden N (2010) Using mobile re tools to give end-users their own voice. In: 2010 18th IEEE

international requirements engineering Conference, pp 37–46. https://doi.org/10.1109/RE.2010.15
Shaffery P (2021) Cyber security: When the cover up is worse than the crime: uber & the consequences

of hiding a data breach. https://www.pooleshaffery.com/news/2017/december/cyber-security-when-the-
cover-up-is-worse-than-t/

Shams RA, Hussain W, Oliver G, Nurwidyantoro A, Perera H, Whittle J (2020) Society-oriented applications
development: investigating users’ values from bangladeshi agriculture mobile applications. In: 2020
IEEE/ACM 42nd international conference on software engineering: software engineering in society
(ICSE-SEIS), pp 53–62. IEEE

Shams RA, Shahin M, Oliver G, Hussain W, Perera H, Nurwidyantoro A, Whittle J (2021) Measuring
bangladeshi female farmers’ values for agriculture mobile applications development. In: 54th Hawaii
international conference on system sciences, HICSS’21, pp 1–10

Sullins J (2018) Information technology and moral values.https://plato.stanford.edu/entries/it-moral-values/
Whittle J (2019) Is your software valueless? IEEE Software 36(3):112–115. https://doi.org/10.1109/MS.2019.

2897397
Whittle J, Ferrario MA, Simm W, Hussain W (2021) A case for human values in software engineering. IEEE

Software 38(1):106–113. https://doi.org/10.1109/MS.2019.2956701
Winner L (1980) Do artifacts have politics? Daedalus 109(1):121–136. http://www.jstor.org/stable/20024652
Winter E, Forshaw S, Ferrario MA (2018) Measuring human values in software engineering. In: 2018

ACM/IEEE 12th international symposium on empirical software engineering and measurement, pp 1–4
Yiacoumi R (2021) Online educator shaw academy to refund students: ‘free trial’ charged students

even when they cancelled. https://ia.acs.org.au/article/2021/online-educator-shaw-academy-to-refund-
students.html

Zhu L, Xu X, Lu Q, Governatori G, Whittle J (2021) Ai and ethics – operationalising responsible ai
Zhu Y, Kiros R, Zemel R, Salakhutdinov R, Urtasun R, Torralba A, Fidler S (2015) Aligning books and

movies: towards story-like visual explanations by watching movies and reading books. In: Proceedings
of the IEEE international conference on computer vision, pp 19–27

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

134 Page 48 of 52 Empirical Software Engineering (2023) 28:134

https://doi.org/10.1145/3377811.3380393
https://techcrunch.com/2019/09/26/dating-app-maker-match-sued-by-ftc-for-fraud/
https://techcrunch.com/2019/09/26/dating-app-maker-match-sued-by-ftc-for-fraud/
https://doi.org/10.1109/ASE.2015.85
https://doi.org/10.1109/RE.2010.15
https://www.pooleshaffery.com/news/2017/december/cyber-security-when-the-cover-up-is-worse-than-t/
https://www.pooleshaffery.com/news/2017/december/cyber-security-when-the-cover-up-is-worse-than-t/
https://plato.stanford.edu/entries/it-moral-values/
https://doi.org/10.1109/MS.2019.2897397
https://doi.org/10.1109/MS.2019.2897397
https://doi.org/10.1109/MS.2019.2956701
http://www.jstor.org/stable/20024652
https://ia.acs.org.au/article/2021/online-educator-shaw-academy-to-refund-students.html
https://ia.acs.org.au/article/2021/online-educator-shaw-academy-to-refund-students.html

Humphrey O. Obie received his PhD degree from Swinburne Univer-
sity of Technology, Australia. He is an Adjunct Research Fellow with
the HumaniSE Lab, Faculty of Information Technology, Monash Uni-
versity. He has tackled problems in several domains as a data scientist,
software developer, product manager, and researcher. His key interests
include human-centric software engineering, human-centric IoT and
smart cities, value-based software engineering, information visualisa-
tion, and visual data storytelling.

Hung Du is a research engineer at Applied Artificial Intelligence Insti-
tute (A2I2) in Australia. With a great expertise in both fundamen-
tal research and translational research, he has made significant con-
tributions across a wide range of domains of application, including
recommendation systems, finance, education, business compliance,
automation, and software engineering. He received the ACM SIG-
SOFT Distinguished Paper Awards at IEEE/ACM 19th International
Conference on Mining Software Repositories. His research interests
encompass Natural Language Processing, Deep Reinforcement Learn-
ing, Machine Learning Operations, Applied AI, and Translational
Research, driving his mission to advance knowledge and bridge the
gap between theory and real-world applications in the realm of arti-
ficial intelligence and machine learning.

Kashumi Madampe received the PhD degree from Monash Univer-
sity. She is a research fellow with Monash University, Melbourne,
Australia. Her research interests include developer productivity and
experience, software analytics and tools, user experience, and privacy
engineering. She worked in the software industry as a project manager
and a business analyst prior to her PhD. More details about her can be
found at https://kashumim.com.

123

Page 49 of 52 134Empirical Software Engineering (2023) 28:134

https://kashumim.com

Mojtaba Shahin is a Lecturer in Software Engineering at RMIT Uni-
versity, Australia. Previously, he was a Research Fellow at Monash
University. His research interests include Empirical Software Engi-
neering, Human and Social Aspects of Software Engineering, Soft-
ware Architecture, and Secure Software Engineering. He has pub-
lished over 45 papers in premier software engineering journals
and conferences, including TSE, EMSE, JSS, ICSE, and MSR. He
received an ACM SIGSOFT Distinguished Paper Award (MSR 2022).
He completed his PhD study at the University of Adelaide, Australia.

Idowu Ilekura is currently pursuing a Master’s degree in Coastal Engi-
neering at the esteemed IHE Delft Institute for Water Education in
the Netherlands. He has been awarded the highly regarded Erasmus
Mundus Joint Master’s Degree Scholarship, which is fully funded
by the European Union. Idowu’s research interests encompass Data
Engineering, Climate Change, Coastal Science, and Cloud Comput-
ing. With a solid background in Data Analysis and Science, he has
amassed more than three years of valuable experience in the field.

John Grundy is Australian Laureate Fellow and Professor of Software
Engineering at Monash University, Australia. His interests include
automated software engineering, human-centric software engineering,
requirements engineering and software security engineering. He is
Fellow of Automated Software Engineering and Fellow of Engineers
Australia.

123

134 Page 50 of 52 Empirical Software Engineering (2023) 28:134

Li Li is a Professor of Software Engineering at Beihang University.
Before that, he was an ARC DECRA Fellow and Senior Lecturer at
Monash University, Australia. He got his PhD in 2016 from the Uni-
versity of Luxembourg. He has published over 100 research papers
at prestigious conferences such as ICSE, ESEC/FSE, ASE, ISSTA,
POPL, PLDI, WWW, and prestigious journals such as ACM TOSEM
and IEEE TSE, TIFS, and TDSC. Li was named one of the Top-3 most
impactful earlier career software engineering researchers. He received
the MSR 2023 Ric Holt Early Career Achievement Award. He also
received 9 Best/Distinguished Paper Awards, including 4 ACM SIG-
SOFT/SIGPLAN and IEEE TCSE Distinguished Paper Awards and a
FOSS Impact Paper Award. Li is an active member of the software
engineering and security community, serving as a reviewer for many
top-tier conferences and journals.

Jon Whittle is Director of CSIRO’s Data61, the digital and data sci-
ences arm of Australia’s national science agency. With over 800 staff
and affiliates, Data61 is one of the largest collections of R&D exper-
tise in Artificial Intelligence and Data Science in the world. Data61
partners with over 200 industry and government organisations, over 30
Universities, and works across vertical sectors in manufacturing, agri-
culture, and the environment. Prior to joining Data61, Jon was Dean
of the Faculty of Information Technology at Monash University, the
largest university in Australia. He was named CEO Magazine’s 2019
Education Executive of the Year. Jon is also a former Technical Area
Lead at NASA, where he worked on AI software for NASA space mis-
sions. Jon has a PhD in Artificial Intelligence from the University of
Edinburgh, UK.

Burak Turhan is a Professor of Software Engineering at the Uni-
versity of Oulu and an Adjunct Professor (Research) in the Faculty
of IT at Monash University. His research focuses on empirical soft-
ware engineering, the interplay between AI and SE, quality assurance
and testing, human factors, and (agile) development processes. He is
a Senior Associate Editor of the Journal of Systems and Software,
an Associate Editor of ACM Transactions on Software Engineering
and Methodology and Automated Software Engineering, an Edito-
rial Board Member of Empirical Software Engineering, Information
and Software Technology, and Software Quality Journal, and a Senior
Member of ACM and IEEE. Please visit: <https://turhanb.net/> for
more information.

123

Page 51 of 52 134Empirical Software Engineering (2023) 28:134

https://turhanb.net/

Hourieh Khalajzadeh is a Senior Lecturer in the School of Information
Technology at Deakin University. Previously, she was a Research Fel-
low in the HumaniSE Lab at Monash University. Hourieh’s research
is situated at the intersection of software engineering and data sci-
ence. She is currently looking at the human-centric issues in Soft-
ware Engineering and is experienced in designing domain specific
visual languages for different applications, including big data analyt-
ics development.

Authors and Affiliations

Humphrey O. Obie1 · Hung Du2 · Kashumi Madampe1 · Mojtaba Shahin3 ·
Idowu Ilekura4 · John Grundy1 · Li Li5 · Jon Whittle6 · Burak Turhan7 ·
Hourieh Khalajzadeh2

Humphrey O. Obie
humphrey.obie@monash.edu

Hung Du
hung.du@deakin.edu.au

Mojtaba Shahin
mojtaba.shahin@rmit.edu.au

Idowu Ilekura
ilekuraidowu@gmail.com

John Grundy
john.grundy@monash.edu

Li Li
lilicoding@ieee.org

Jon Whittle
jon.whittle@data61.csiro.au

Burak Turhan
burak.turhan@oulu.fi

Hourieh Khalajzadeh
hkhalajzadeh@deakin.edu.au

1 Monash University, Melbourne, Australia
2 Deakin University, Melbourne, Australia
3 RMIT University, Melbourne, Australia
4 Data Science Nigeria, Lagos, Nigeria
5 School of Software, Beihang University, Beijing, China
6 CSIRO’s Data61, Melbourne, Australia
7 University of Oulu, Oulu, Finland

123

134 Page 52 of 52 Empirical Software Engineering (2023) 28:134

http://orcid.org/0000-0003-1363-8786

	Automated detection, categorisation and developers' experience with the violations of honesty in mobile apps
	Abstract
	1 Introduction
	2 Motivating Examples
	3 Related Work
	4 Research Design
	5 Automatic Classification of Honesty Violations (RQ1)
	5.1 A Dataset of Honesty-Related Reviews
	5.1.1 Data Collection
	5.1.2 Data Labeling

	5.2 Classification Approach
	5.2.1 Data Preparation
	5.2.2 Feature Extraction
	5.2.3 Model Selection and Tuning
	5.2.4 Cross Validation

	5.3 Results

	6 Categories of Honesty Violations (RQ2)
	6.1 Categorisation Approach
	6.2 Results
	6.2.1 Unfair Cancellation and Refund Policies
	6.2.2 False Advertisements
	6.2.3 Delusive Subscriptions
	6.2.4 Cheating Systems
	6.2.5 Inaccurate Information
	6.2.6 Unfair Fees
	6.2.7 No Service
	6.2.8 Deletion of Reviews
	6.2.9 Impersonation
	6.2.10 Fraudulent-looking Apps

	7 Developers' Experience With Honesty Violations in Mobile Apps (RQ3)
	7.1 Practitioner Study Design Approach
	7.1.1 Step Int: Interview Study
	7.1.2 Step Survey: Survey Study

	7.2 Interview and Survey Study Results: Participant Information and Their Context
	7.2.1 Participant Information.
	7.2.2 Types of Mobile Apps Participants Develop.
	7.2.3 Developer Experience: Reported Honesty Violations In App Reviews.

	7.3 Interview and Survey Study Results
	7.3.1 Causes (RQ3.1)
	7.3.2 Consequences (RQ3.2)
	7.3.3 Strategies (RQ3.3)
	7.3.4 Usefulness And Benefits Of Automatic Detection Of Honesty Violations (RQ 3.4)

	8 Discussion and Recommendations
	8.1 Technology (Mobile Apps) as values artefacts
	8.2 The Role Of App Distribution Platforms
	8.3 Transparent Policies and Agreements
	8.4 An Actionable Framework for Developers
	8.5 Human Values in SE Research

	9 Threats to Validity
	10 Conclusion
	Acknowledgements
	References

