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Abstract

Context Continuous experimentation (CE) is used by many companies with internet-facing
products to improve their business models and software solutions based on user data. Some
companies deliberately adopt a systematic experiment-driven approach to software develop-
ment while some companies use CE in a more ad-hoc fashion.

Objective The goal of this study is to identify factors for success in CE that explain the
variations in the utility and efficacy of CE between different companies.

Method We conducted a multi-case study of 12 companies involved with CE and performed
27 interviews with practitioners at these companies. Based on that empirical data, we then
built a theory of factors at play in CE.

Results We introduce a theory of Factors Affecting Continuous Experimentation (FACE).
The theory includes three factors, namely 1) processes and infrastructure for CE, 2) the
user problem complexity of the product offering, and 3) incentive structures for CE. The
theory explains how these factors affect the effectiveness of CE and its ability to achieve
problem-solution and product-market fit.

Conclusions Our theory may inspire practitioners to assess an organisation’s potential for
adopting CE and to identify factors that pose challenges in gaining value from CE practices.
Our results also provide a basis for defining practitioner guidelines and a starting point for
further research on how contextual factors affect CE and how these may be mitigated.
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1 Introduction

Continuous experimentation (CE) is an experiment-driven software engineering approach
where assumptions about markets, customers, business models, product features and require-
ments are continuously tested with users. The aim is to reduce the risk of wasting resources
on requirements of little or no value to the users. For example, changes to a business model
or software solution can be compared to an old version or between new versions in an
experiment, e.g. through an A/B test or demonstrations with real users, and only changes
with a positive effect on usage are retained. Initially, this approach was primarily applied
by large internet-facing software engineering companies such as Microsoft (Kohavi et al.
2009, 2013), Google (Tang et al. 2010), and Facebook (Feitelson et al. 2013) that apply an
agile and continuous approach to software engineering. Lately, also more traditional software
engineering organizations, such as companies in the business-to-business domain (Rissanen
and Miinch 2015), are recognising the value of moving towards an experiment-driven devel-
opment model that provides the ability to evaluate product assumptions through continuous
user feedback (Fagerholm et al. 2017).

Performing CE is not an easy task and one that requires companies to adapt their processes,
structures, technical infrastructures, and culture (Fagerholm et al. 2014; Yaman et al. 2017).
Several researchers report on the benefits of adopting CE and a high-level model on how
CE is structured (the RIGHT model) has been proposed by Fagerholm et al. (2017). Despite
this, not all companies are able to adopt CE, even though they might have sufficient user data
available. We pose that this is due to the complex nature of software engineering and that
many different factors and processes are at play. Some of these factors have been identified
in previous research, such as having a service-oriented offering (Schermann et al. 2018) or
one with cyber-physical systems (Bosch and Eklund 2012; Giaimo 2016), and whether the
target users are consumers (B2C) or other businesses (B2B) (Rissanen and Miinch 2015;
Yaman et al. 2016). Also, only some companies are able to conduct experiments that affect
business value (Schermann et al. 2018). However, there is a lack of overarching theory that
describes which factors affect the efficacy of CE for different contexts. Thus, the aim of our
research is to investigate if there are any common patterns that can explain the varying utility,
challenges, and benefits (Auer et al. 2021) experienced by companies when applying CE.

We have performed a multi-case study of 12 companies to explore CE practices and
contexts (Clarke and O’Connor 2012; Petersen and Wohlin 2009), and constructed an
empirically-based theory through iterative and systematic analysis of this data. Our empiri-
cal data consists of 27 semi-structured interviews with practitioners working in various roles
relevant to CE, such as software developers, quality assurance, data scientists, and product
owners. We have previously published two initial findings based on parts of the interview
material. First, a paper based on five interviews at one company in the e-commerce domain
where we presented four conceptual scenarios in which experiments are used (Ros and Bjar-
nason 2018). Our analysis gave an indication that the context in which CE is performed
matters. Second, a paper based on 14 interviews from five companies, where the concept of
product-led growth in relation to continuous experimentation practices emerged in the anal-
ysis (Ros 2020). In this paper, with 13 additional interviews from seven companies added
to our empirical foundation, we expand on the initial findings by deepening the thematic
analysis and generating a theory of factors affecting CE, based on the full set of interviews.

The main contribution in this paper is a theory of Factors Affecting Continuous Experimen-
tation (FACE). FACE considers socio-technical factors in organizational contexts surrounding
CE and observed relationships between factors. According to FACE, there are three main
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factors that influence how well an organization can expect to conduct CE. These factors are:
(1) CE processes and infrastructure, in particular, the data infrastructure that companies have
for conducting telemetry and analysis of results; (2) the complexity of the problem that the
software solves for its users, limits the applicability of CE by making changes hard to deliver
and observe the effect of on users; and (3) incentive structures in the business model that, e.g.,
affect the motivation for conducting product improvement or the ease of defining business
relevant metrics for CE.

The rest of this paper is structured as follows. The background and related work on CE and
theory building are presented in Section 2, and our research method is outlined in Section 3.
Our FACE theory is presented in Section 4 and the empirical underpinnings and explanations
for the theory are provided in Section 5. The findings are discussed in Section 6 including
limitations and factors of CE. Finally, we conclude the study in Section 7.

2 Background and Related Work

Companies in many different sectors have adopted Continuous Experimentation (CE) (Auer
and Felderer 2018; Ros and Runeson 2018), where features are evaluated through user feed-
back. Prototypes of a feature or product can be quickly validated with users before a costly
implementation is finalized and released to all users. After implementation, the change in
software can be subjected to a controlled experiment (such as an A/B test) where a compari-
son can be made with and without the new change. Only changes that have a positive impact
on user feedback are accepted. The results of an experiment might beget further questions,
especially for negative results, to figure out what went wrong. Thus, experiments are usually
executed in a sequence, which is why the practice is coined continuous experimentation.
Experiments in simulated (performed during prototyping) and live (performed after software
delivery) environments are both of interest in this study. The literature topics covered in this
section include software business models and how they relate to CE, an overview and related
work of CE, and theory building in software engineering.

2.1 Software Business Models and Product Management

CE provides a way to measure the value that software development brings to users and
businesses. As such, studying CE entails understanding how that value is created, delivered,
and captured. In this study, we use business models and business strategy as a lens to structure
our analysis of this value. A business strategy in the management field is a long-term vision for
a company (Johnson et al. 2008). A business model is a concrete plan to execute that vision.
The term business model is narrowly used in industry to refer to how a company collects
revenue (Vanhala and Smolander 2013). In this paper, the broader definition by Osterwalder
et al. (2010) is used: “A business model describes the rationale of how an organization
creates, delivers, and captures value”.

Similarly to business models, software product management also focuses on value creation
through a combination of business and technical perspectives (Ebert and Brinkkemper 2014),
though with a more distinct focus on the software product. Product management spans the
entire software development cycle, from ideation and requirements, to delivery and mainte-
nance, and interfaces both business processes and stakeholders such as customers and users.
A product manager is a prime driver for requirement engineering for a software product or
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service, with the aim of maximising the business value over time, while aligning with the
company’s business strategy and technical roadmap.

In the business model innovation field, experiments have been studied as a method to find
a combination of a working business model and product (Brunswicker et al. 2013; Sorescu
2017; Wrigley and Straker 2016). This contrasts somewhat with the way experiments are used
in CE research, where the focus is more on product improvement (Fagerholm et al. 2017)
and where changing the business model might be considered out of scope for daily software
engineering work. In addition, successfully implementing changes in an established business
model is notoriously hard and risky (Chesbrough 2007; Chesbrough and Rosenbloom 2002).
As such, business models are mainly used to describe the context of companies in this study,
not as a subject of experiments.

There have been several attempts to describe commonalities in software engineering busi-
ness models with frameworks (Rajala et al. 2003; Schief and Buxmann 2012). For example,
Rajala et al. (2003) include aspects of product strategy, revenue logic, distribution model,
and service and implementation model. The business model canvas (Osterwalder 2004) is
probably the most popular framework to describe business models succinctly. We use an
adaption of this framework as described in the next subsection.

2.1.1 Lean Startup

Lean startup is a methodology, originating in industry from Ries (2011), that applies lean
manufacturing principles (Krafcik 1988) to entrepreneurship in general. Lean startup has also
been studied in a software engineering context (Bjarnason 2021; Bosch et al. 2013; Fagerholm
et al. 2017). The idea is to conduct product development in short cycles to obtain feedback
as early as possible on whether a proposed business model is feasible and viable. Ries calls
it the build—measure—learn cycle, where each cycle consists of a business hypothesis and an
experiment to validate the hypothesis. As such, CE and lean startup have a clear connection.

Lean startup advocates exploring the solution domain through simulated experiments and
testing early versions of the solution on a limited set of customers, starting with simple
prototypes, e.g. sketches and mockups, to learn about customer needs in a cost effective
manner and to validate solution ideas before building them (Bjarnason 2021; Gutbrod et al.
2017; Vargas et al. 2020). The goal is to identify a minimum viable product (MVP), which
is the smallest set of features that solve the users’ problems.

Maurya proposes an adaptation of the business model canvas to suit lean startup needs,
called the lean canvas (Maurya 2012). The lean canvas is divided into a product and a market
part. The product part contains the problem—solution pair that the product addresses, what key
metrics are measured, and what the cost structure is for acquiring customers, developing code,
operations, etc. The market part contains what the unfair advantage is, such that the product
cannot be easily copied, what the channels to customers are, what the target customers are,
and the revenue streams. The two parts are tied together with a value proposition message.

Maurya (2012) also describes the three phases of a startup that (1) start with finding a
working problem—solution pair, i.e. problem—solution fit, (2) then identifying and validating
that there is a good fit between the product and the market, and finally (3) once product—market
fit is validated, the business can focus on growth. Experiments are often used differently at
these stages where the initial focus is prototyping with simulated users and or product and
later on live experiments can tune the product for product-market fit and growth.
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2.1.2 Product-Led Growth and Growth Engineering

A specific archetype of business models has recently been popularized in industry, under
the name of product-led growth (Bartlett 2020). A business model that has a product-led
growth relies on the product itself to acquire new end-users rather than on the direct sales
& marketing activities (e.g. advertisement or cold calling) of the sales-led business models.
The purpose is to have an offering that can scale to high levels of demand. Furthermore, a
new role has also been introduced to business with product-led growth, described by Kemell
et al. (2019); Troisi et al. (2020), called growth marketers, growth engineers, or growth
hackers. These roles are hybrids between marketers and software engineers that work with
experiments in a data-driven fashion to propel a company’s customer acquisition growth.
Two of the companies in our study have employees with such titles.

A more precise definition of product-led growth—as the term is used in industry—has not
been found. Instead the following typical characteristics are derived from Bartlett (2020):

— the software development organization elicits requirements in order to meet market needs;

— there is no customer specific development in order to ensure software development is
directed towards improving the product for all users;

— the channels to acquire customers are scalable to many customers and are often organic
(i.e. word of mouth instead of direct sales);

— the primary source of revenue is through product sales or subscriptions.

The last of the above characteristic, regarding the source of revenue, is related to the
licensing model that software is sold under. According to Bartlett (2020), product-led growth
is associated with freemium. A freemium product (Niculescu and Wu 2014) is available both
for free and as a paid premium version. The premium version might, e.g., have more features
or offer improved customer support. As such, freemium encourages growth by allowing more
customers to use the product and spread the word.

2.2 Continuous Experimentation

CE has been studied from many different perspectives (Ros and Bjarnason 2018). In soft-
ware engineering venues, the topics have been varied, e.g., designs of specialized tools for
optimizing experiments (Ros and Hammar 2020; Schermann and Leitner 2018) and descrip-
tions of the CE process in use at various companies (Bosch 2012; Fagerholm et al. 2017).
Although software engineering is the focus of this study, there has also been considerable
practitioner-focused research on CE in data science and user experience research venues. In
the data science field, the seminal paper by Kohavi et al. (2009) provides a practical guide
to starting with live experiments on software in a production environment, using random-
ized controlled experiments (e.g. A/B tests). In user experience research (Sauro and Lewis
2016; Schumacher 2009), live experiments has a less prominent role in favor of simulated
experiments, such as user observations, card sorting, or interviews.

2.2.1 Process and Infrastructure Models
The infrastructure and process of how several different companies conduct CE have been

described with reference models and experience reports (Bosch 2012; Feitelson et al. 2013;
Kohavi et al. 2009). The models are conceptual generalizations based on observations of CE
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in industry, but they do not explain the underlying factors behind the generalizations, which
is the purpose of FACE. The RIGHT model by Fagerholm et al. (2017) contains a description
of the process and infrastructure needs for conducting CE based on a multi-case study. The
earlier HYPEX model by Holmstrom Olsson and Bosch (2014) has similar goal but is less
comprehensive. These reports and models served as a starting point for the questions in the
interview guide in this study, in particular the RIGHT model.

The process model in RIGHT is inspired by the build—measure—learn cycle of lean start-
up Ries (2011). Fagerholm et al. use the concepts of a minimum viable feature (MVF) to
bridge the theoretical gap between prototyping simulated experiments and live experiments,
and so the model considers both types of experiments. There are five main phases of the
CE process in RIGHT. (1) In the ideation phase hypotheses are elicited and prioritized and
a change to the software is proposed. (2) Implementation of the minimum change that tests
the hypothesis follows. (3) Then, a suitable experiment design and a criterion for success
is selected (a metric in the case of a live experiment). (4) Execution involves deploying the
product into production and monitoring the experiment. Finally, (5) an analysis and decision
is made whether the results are satisfactory; if not the process restarts.

The technical infrastructure needs in RIGHT include tools for managing experiments and
analytics, instrumentation in the product, and a continuous delivery pipeline. These tools are
often referred to as an experimentation platform when considered as a whole, e.g. by Gupta
et al. (2018) and Kohavi et al. (2009). The organizational infrastructure includes roles!
involved with CE, of which there are many, since the CE phases cover the whole software
engineering process. The necessary roles are according to Fagerholm et al. (2017): Business
Analysts and Product Owners elicit hypotheses and maintain a CE road map; Data Scien-
tists design, execute, and analyze experiments; Software Developers and Quality Assurance
develop and verify the software; and Operations Engineers and Release Engineers deploy
and deliver the software.

2.2.2 Factors Affecting Continuous Experimentation

We are aware of one other attempt at analysis of how effective CE is for various companies,
albeit from a startup perspective. Melegati et al. (2022) studied factors affecting CE in terms
of enablers and inhibitors of CE at early-stage startups. Many of the identified inhibitors
point to a lack of resources to conduct experiments, which is more pressing for startups due
to a general lack of resources. Also, the research only considers pre-deployment prototype
experiments, which is much less technically demanding.

There are also many studies that describe or report experiences about conducting CE for
various circumstances. We have identified five such clusters of papers with domain specific
challenges in a systematic literature review (Auer et al. 2021). Two of the clusters relate to
factors that might influence the gains with CE: business-to-business (B2B) and cyber-physical
systems. The challenges in the remaining three clusters are either overlapping (mobile and
cyber-physical systems) or potentially solved by statistical solutions (e-commerce and social
media).

The challenges with CE in the business-to-business (B2B) cluster are many (Rissanen
and Miinch 2015; Ros and Bjarnason 2018; Yaman et al. 2016). B2B companies are usually
involved with their customers’ software engineering or IT departments, which causes issues

1 The titles of roles associated with the tasks in RIGHT vary greatly among companies, e.g., the Business
Analyst role can also be performed by an individual with a title of growth engineer (Troisi et al. 2020) or user
researcher (Schumacher 2009).
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with control of software deployment or with access to end-user data. Both of these are
necessary and require constant collaboration efforts to resolve. Furthermore, the incentives
to improve the software product in terms of end-user experience might not be there, e.g., if
the company in question generates revenue per project instead of through the value delivered
to users. These issues might not be faced to the same degree by companies with a business-
to-consumer (B2C) business model.

For cyber-physical systems (Bosch and Eklund 2012; Giaimo 2016; Mattos et al. 2018;
Olsson and Bosch 2019), the focus of the research is on suggesting and describing the required
infrastructure to enable CE, such as continuous delivery of software and how telemetry can
be implemented. Without this, CE is not as useful. The body of work on these domains is
still in the early stages and no such companies are included in this study.

2.2.3 Previous Work

This work is the culmination of a research project with two prior publications (Ros and
Bjarnason 2018 and Ros 2020). The findings from these papers are synthesized and expanded
upon in FACE.

The first paper (Ros and Bjarnason 2018) was a single case study on a B2B company
that develops behavior algorithms and used CE in four different scenarios: (1) to verify that
changes in their algorithms are beneficial; (2) to help their customers use their algorithms
correctly; (3) to validate that their algorithms outperform their competitors’; and finally, (4) as
a black box optimization method to tune the algorithms automatically (Brodén et al. 2019).
The degree of tool support was different between the scenarios, ranging from fully automated
to no support. The scenarios give an early indication on how CE differs depending on the
purpose.

The second paper (Ros 2020) used five of the 12 cases that this study is based on in a
comparative case study. The study was about the role that a company’s business model plays
in relation to CE. The differences attributed to business models were sufficiently explained
by whether the business model had product-led growth or not. Four drivers of a product-led
growth focus were identified as affecting CE: (1) development and sales & marketing worked
more closely together in the product-led cases, with mutual benefits; (2) the prioritization
process used data to a higher degree to inform development; (3) what features were included
were based on market needs rather than by customer requests, thereby decreasing excessive
feature bloat; and finally, (4) the availability of metrics relevant to business was higher in the
product-led cases.

2.3 Theory Building

Theories provide a means of structuring and conveying knowledge in a condensed form.
Theories can be of different types, some provide explanations of phenomena or predict the
outcome, e.g., of applying a certain practice. Theories that describe a particular aspect of
software engineering are gaining traction (see, e.g., Rodriguez et al. (2022) or Munir et al.
(2018)), presumably due to their usefulness in supporting research design and on improving
software engineering practice. According to Stol and Fitzgerald (2015), it is preferable to base
subsequent practitioner guidelines on theories such that they are underpinned with theoretical
knowledge on why they hold.
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We used the guidelines by Sjgberg et al. (2008) to build our theory based on a gen-
eralization of multiple cases observed in the real world. There are other theory building
approaches (Wieringa and Daneva 2015), such as basing them on existing theory from other
fields or grounded theory (Glaser and Strauss 1967; Stol et al. 2016), which is sometimes used
when the researchers want no preconceived notions about how the data should be interpreted,
etc.

We have framed our theory by applying Sjgberg et al.’s first four steps for theory building,
namely defining constructs, defining propositions, providing explanations and by determin-
ing the scope of our theory. The fifth step of testing the theory through empirical research
remains as future work. According to Sjgberg et al. (2008), a theory consists of constructs
about which the theory makes statements in the form of propositions that describe relation-
ships between constructs. In addition, a theory also contains explanations about why the
propositions hold and a scope within which the theory is valid. We use this structure to frame
our theory in terms of constructs, propositions, and scope, see Section 4, and by providing
explanations for our theory grounded in the empirical data, see Section 5.

3 Method

The current study aims at investigating which organizational factors influence an organi-
zation’s ability to gain from CE. We therefore launched a multi-case study of companies
applying CE, followed by a theory building process, aimed at providing a generalized descrip-
tion of factors affecting a company’s ability to obtain gains from CE. The resulting theory was
inducted through iterative analysis of the interview data. An overview of our research method
is provided in Fig. 1. The empirical data in our study is from case companies and we use
the guidelines by Runeson and Host (2009) for case study research, covering the interview
process and thematic coding. The theory was then created through the codes and themes,
based on the process for building theories by Sjgberg et al. (2008) which includes defining
constructs, propositions, explanations and scope of validity for the theory. The theory is based
on data from 12 case companies, denoted A-L, see Section 3.3.

Objectives Current CE practices Theorising
L) : ! L}

Knowledge, theory Previous research 1st iteration Coding book  Theory of CE
Methodology i Case study i Theory formulation

v f '
- unit of analysis 5 case companies i 47 case companies

¥ ; ¥

- data collection 12 interviews : +15 interviews

H ¥ H
- data analysis Initial coding Thematic coding

- Pilot study ! Multiple case study ' Theory building

- 1st iteration study

Fig.1 An overview of the research method of the research project culminating in FACE. Two previous studies
(to the left) Ros and Bjarnason (2018) and Ros (2020) were used as a starting point for the theory building
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3.1 Multi-Case Study with Interviews

We performed semi-structured interviews in order to gain insights into what and how con-
textual factors affect an organization’s ability to perform CE, and thereby provide a rich
empirical basis for our theory building process. We designed an interview guide based on
previous related research by Fagerholm et al. (2017), Kohavi et al. (2009), and Olsson and
Bosch (2014), sampled and recruited companies and practitioners to include in our study,
performed the interviews of these using an interview guide, and analyzed the interview data
using a code book. The first author led the interview study, including the design of the inter-
view guide and the code book, recruiting of the interviewees, performing and analysing all of
the interviews. The second and third authors reviewed and provided feedback on the research
design and the research artefacts, provided feedback on the interview guide, participated in
two interviews each, and performed independent coding of one interview to improve the
coding process.

An interview guide was used to support the interviews and to ensure that all relevant aspects
were covered in each interview, namely: interviewee information, case company context, CE
process and infrastructure, experimentation details, and the interviewees views on CE. The
guide was designed with probes such that it could be adapted to the interviewee’s background
and role. The guide was based on our knowledge of the area and of previous research on
CE, in order to cover as many relevant aspects as possible, and thereby further enhance the
richness of the resulting empirical data. The descriptive models by Fagerholm et al. (2017)
and Holmstrom Olsson and Bosch (2014) were used as the theoretical basis to derive the
interview questions. Additional descriptions of CE from experience reports (Kohavi et al.
2009; Bosch 2012) were used to ensure that the questions covered all aspects of the CE process
and infrastructure, and the context around CE in terms of the organization and business.

The interview guide was designed iteratively in the research project (see Section 2.2.3) by
the authors with small updates after each initial interview. The first version of the interview
guide is available in the pilot study by Ros and Bjarnason (2018). Note that, the analysis for
the first iteration study (Ros 2020) was conducted after all interviews were conducted, but
included only five of the 12 cases. The last 15 interviews (G2-L2 in Table 2) used the final
version of the interview guide, which is provided in Appendix B.

We sampled and selected case companies through a mix of convenience sampling and
snowballing guided by the aim of our study. We selected companies that had any experience
in conducting experiments. In three of the cases we selected a branch of the company as
the case (cases D, I, and G). Candidate companies were identified through searching on
LinkedIn and Google for job listings for data scientists where A/B testing was mentioned,
through personal contacts, and through asking the interviewees (i.e. snowballing) for other
companies involved with CE; these methods contributed roughly equal to the final tally
of interviewees. The cases were not restricted by geographical location; though, nine of
the companies are from Sweden and the rest from North America, Australia, and Europe.
Our aim was to interview practitioners with insights and experience of applying CE, and
primarily in the roles with heavy CE involvement: software developers, product owners,
and data scientist. We applied snowball sampling also within the companies by asking for
additional interviewees within the companies during the initial interviews. The managers
closest to CE were contacted via e-mail with information about the study and a request to
perform interviews. In total 35 companies were contacted of which 12 were included in our
study. Of the remaining, 11 did not respond and 13 were not applicable due to having no
experimentation experience.
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The semi-structured interviews were held during an initial 3 month period for the pilot
study, which was then continued a year and a half later for another year. Interviewees were
selected from the case organisation until a complete picture of how and why they used CE was
obtained. Albeit in two cases (B and E) the process was completed early due to the subsequent
interview prospects not wanting to be interviewed. Each interview was approximately 60 to
120 minutes long and was held as an open conversation aligned with the interview guide (see
Appendix B). The interviews were audio recorded after permission for this was granted by the
interviewees. The majority of the interviews were performed at the companies’ premises. For
six companies, this was not feasible due to their location, in which case the interviews were
held on-line via Zoom or Skype. After the interviews, the audio recordings were transcribed
word-by-word into 231 pages. Some of the interviews were done in Swedish and quotes from
those interviews were translated to English.

Thematic coding was performed on the interview transcripts using the pre-defined codes
of our code book. The code book was defined based on previous knowledge and insights
into CE, from primarily three core publications (Bosch 2012; Fagerholm et al. 2017; Kohavi
etal. 2009). It was iteratively refined throughout the coding process by discussing these codes
within the group of authors. The codes were added per paragraph of transcribed text, and each
paragraph could have multiple codes. The codes were clustered into 11 themes according
to thematic analysis. The codes cover areas such as the company context, management of
data, the business model, product, and CE process for the company, see Appendix C. After
having coded the full set of transcripts, cross-case analysis was performed to identify factors
and patterns common to several cases. The theory was gradually inducted as this cross-case
analysis matured, see below.

3.2 Theory Building

We have built the theory by analysing our empirical data and gradually defining constructs,
propositions, the scope and explanations for the theory as proposed by Sjgberg et al. (2008).
The final step of theory building, namely testing our theory, remains as future work. The
first author defined the initial version of the theory through analysis of the empirical data.
The theory was then refined by the first and the second author through multiple iterations
of review and discussions. As the theory matured, it was reviewed by all three authors and
further improved.

The constructs and propositions of FACE represent the factors that affect CE and the
relationships between these factors, relevant to CE. The constructs were identified through
analysis of the thematically coded interview data. The themes from the thematic analysis
formed the first iteration of defining the constructs of the theory. An additional coding step
was carried out to find relationships between constructs within the transcripts. When such
occurrences were found they were coded with codes consisting of theme pairs. Initial ver-
sions of propositions were defined based on these theme—pair codes. The constructs and the
propositions were then gradually refined and adjusted through discussion within the team
of authors, to provide a clear and concise description of the factors that affect a company’s
ability to draw benefits from CE. Describing the relationships between the constructs through
visualisation (see Fig. 2) and written definitions (see Sections 4.2 and 4.3) facilitated this
inter-author discussion. The supporting evidence in the material was used as a basis for the
discussion. In total, 10 iterations of the theory were discussed in this way.

The scope and explanations of FACE were identified based on our empirical data. The
scope of our theory was defined through considering the common characteristics of our
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case companies, and thus the type of organizations that our theory may be applicable to.
Explanations for our theory are provided as part of the definition and description of each
construct and proposition.

The empirical underpinning of FACE provides a motivation for the concepts of our theory
grounded in the empirical data, thereby illustrating the empirical foundation for the constructs
and propositions. In Section 5, supporting evidence in the material for each proposition in
the theory is laid out along with expanded explanations. The empirical underpinning in terms
of the constructs and propositions provides an initial validation of FACE, and illustrates
its utility and explanatory power. As such, the empirical data is used both as a source and
validation, by having the data used at the detailed level to construct the theory and then at
the holistic level to describe our set of companies.

3.3 Case Companies

The twelve case companies in the study differ on many attributes such as size, product
domain, business model and CE practices. Our case companies range from small to huge
multi-national companies. Some of the companies work extensively with CE while some do
next to no experiments at all.

Table 1 contains an overview of the business models and states of CE practices for the 12
case companies. Each case company is ranked according to its expertise with CE and the extent
to which the company conducts experiments (both frequency of performing experiments and
on what parts of a product or service that are experimented on). The business model is
given as a brief summary for each company, primarily describing the company’s offering
and what type of customers that are targeted; either business-to-business (B2B), business-
to-consumers (B2C), or both (B2X). Under the business model column, direct sales refers
to having a business model where licenses to the product or service are sold by contacting
customers directly. See Appendix A for further details on specific companies.

The 27 interviewees at the case companies are described in Table 2, which show their
code corresponding to the case company and role name. Two additional roles have been
observed in the interviews in addition to the ones presented in RIGHT (Fagerholm et al. 2017)
(see Section 2.2), namely, the User Researcher and UX Designer, These roles have similar
responsibilities within CE to that of data scientists and software engineers, respectively.
That is, a UX designer or software engineer comes up with a change in user experience or
software, and a user researcher or data scientist analyzes the results. The user researchers
in the interviews primarily used prototyping qualitative experiments. The actual titles differ
significantly from their assigned role and the titles in use include, e.g., head of growth,
software engineer, head of customer success, growth engineer, head of research, etc.

4 Theory Formulation of FACE

Our FACE theory describes factors that affect continuous experimentation (CE) and how these
factors contribute to an organization’s ability to gain value through CE. The gains are achieved
through effectively conducting experiments that enable improving the problem—solution fit
(P2) and/or the product-market fit (P3). In essence, the theory states that the effectiveness of
experiments can be increased through efficient processes and tools for CE (P1), addressing
a user problem that is sufficiently simple to be measurable (P4), pivoting the business model
to simplifying said problem complexity (P5), and/or selecting a business model that provides
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incentives to conduct experimentation (P6). An overview of our theory is provided in Fig. 2.
In this section, the theory is defined by describing its constructs, propositions, scope, and its
validity is discussed. Expanded and empirically-based explanations of the theory are provided
in the succeeding Section 5 by exemplifying the constructs and propositions as observed in
our 12 case companies.

4.1 Definitions

The following terms are used to describe the constructs and propositions of FACE theory:

Experiment is an activity that introduces a change in a business offering with the goal
of learning or improving the offering based on feedback through user data. The term
includes live experiments where the experiment is executed with real users (e.g. A/B
tests or natural experiments) and simulated experiments where the change or users are
simulated. There must always be a way to decide if the goal of the experiment is met or
not, otherwise it is not an experiment by our definition.

Live experiments are executed in a post-deployment production environment with real
users. Randomized controlled experiments are the typical example and can be used to
give precise answers to whether experiments provide a quantitative improvement to some
metric. Live experiments have by definition higher infrastructure needs than simulated
experiments.

Simulated experiments are executed pre-deployment, outside of a production environ-
ment (e.g. with prototypes) or without real users (e.g. by using feedback from employees).
The fidelity of a prototype can be anything from a hand-drawn sketch to almost completed
functionality. It is expensive to get sufficient numbers of users to evaluate a prototype
quantitatively in a simulated environment, so qualitative data is often used instead.
Continuous Experimentation (CE) is the process of continuously using experiments.
This process encompasses the whole software engineering process and involves multiple
experiments conducted in iterative cycles. Experiments are continuous for two reasons.
First, an initial experiment is not always decisive, and many experiments in a row might be
needed to refine a change. Second, the experiment result might uncover new knowledge
about the business offering, market, or users that begets further related inquiries or even
new features.

P5 pivots can lead to
simplified target problem

C1 CE Processes
and infrastructure

C6 Incentive

C5 User problem TS

P1 efficient CE processes P4 high problem complexity
and infrastructure increases limits experimentation impact
experimentation effectiveness

P6 product-market fit
improving experiments
need incentive structures

C2 Experimentation
effectiveness

P2 experiments P3 live experiments
enable increased enable increased
problem-solution fit product-market fit
C3 Problem- C4 Product-
solution fit market fit

Fig.2 The constructs and propositions of the Factors Affecting Continuous Experimentation (FACE) theory.
The boxes represent constructs and the arrows are propositions
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Experimenter is a person initiating and or being in charge of an experiment. It is not a
formal role in the RIGHT model (see Section 2.2), but would usually correspond to the
data scientist or business analyst.

Change refers to a modification to a business offering. It can be a new functionality
(i.e. a feature), or a modification to an existing one, or a change to the quality of the
software. The change can be in any part of the software and they can be subtle for users
to perceive. The change does not need to be fully implemented, nor delivered to all users,
as is the case in simulated experiments with prototypes. The scope of the changes we have
observed in the interview material varies, from a small tweak of the font-size on a button,
to rebuilding a large part of the product?. For some companies a change corresponds
to a commit in a version control system (Kevic et al. 2017). A change corresponds to a
treatment in traditional statistics or medicine literature.

Goal is what an experimenter wants to achieve with an experiment. In a live experiment
with quantitative data, the goal can be described with a measurable improvement to a user
experience or sales metric. The term goal is preferred in this work, since the more specific
term hypothesis implies a deeper thought behind an experiment, which is not always the
case. For example, when Google tested 41 shades of blue for their links (Holson 2009),
the goal was to find the colour that got the most clicks, but the generalized learning
obtained is limited since the hypothesis was not based on theory on how and why colours
affect behaviour.

Business offering is a catch-all phrase referring to either a product, service, web shop,
etc. This term is used when the distinction between these are not important.

User data refers to data obtained from actual users of the business offering. User data
could also be obtained through other means, such as questionnaires, interviews, or by eye-
tracking. There are two categories of metrics derived from user data: (1) user experience
metrics and (2) sales metrics.

User experience metrics are derived from user data that measure the users’ experience,
such as degree of users that engage with the software during the experiment, time spent
on parts of the software, rate of users that complete a certain task etc.

Sales metrics are derived from user data originating from the sales process of the offering.
The sales metrics include revenue from sales or subscriptions, churn of subscribed users,
conversion rate of users to paying users, etc.

Proxy metric is a metric that substitutes for another more relevant metric that cannot be
used directly in an experiment for some reason. For example, consider an e-commerce
web shop with insufficient traffic to obtain statistical significance on conversion rate or
other sales figures. They could use clicks (i.e. a user experience metric) as a proxy metric
for purchases (i.e. a sales metric) since far more users click on products than buy them.
However, the signal-to-noise ratio would be much lower and an increase in clicks could
even lead to a decrease in purchases if the user experience becomes more complicated
as a result of the change (requiring more clicks). As such, the assumptions made when
choosing a proxy metric should be continuously verified.

Business model is the way a company has structured their activities, revenue streams,
costs, etc., to obtain and give value to users and or business, see Section 2.1.

Pivot is a major change in the business model done in order to better realize the business
strategy (Chaparro and de Vasconcelos Gomes 2021; Kirtley and O’Mahony 2020). This
may involve changes to the business offering (which is part of the business model), but a

2 Many authors caution against large changes in an experiment to minimize risks of errors, e.g. Fagerholm
et al. (2017); Kohavi et al. (2009).
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pivot could also entail changes to, e.g. revenue model or sales channels. The distinction
we draw between changes and pivots is that pivots have a larger scope and are often not
based on evidence to the same degree as a change involved in an experiment. A pivot
can be done for various reasons, such as to find a different user base or to overhaul the
business offering in a major way.

4.2 Constructs

FACE identifies six constructs as described below. These constructs are referenced by the
propositions of the theory.

C1 CE processes and infrastructure are software engineering practices, enabling
continuous experimentation. This is primarily technical infrastructure, such as an
experimentation platform, but also organizational infrastructure that provides neces-
sary competences and roles. Since continuous experimentation involves implementing
changes in the software for a business offering, this construct also encompasses stan-
dard practices for efficient software engineering, such as software testing and quality
assurance, while it is not the focus of this study.

C2 Experimentation effectiveness is the degree of effective continuous experimentation
conducted in an organization. It is a function of the throughput of experiments, the
impact the experiments have on users or business, and the ability to accurately measure
this experiment impact. Throughput is derived by the speed of which experiments are
executed from end-to-end and the capacity of how many experiments that an organisation
can handle simultaneously.

C3 Problem—solution fit is the degree to which an offering provides a solution to users’
problems. Problem and solution are part of the lean canvas business model (Maurya
2012; Ries 2011). There can be multiple problem—solution pairs in the same offering and
a solution can address multiple problems. The degree to which the problem—solution fit
can be measured depends on the specific offering but is usually measured with proxy
metrics based on user experience metrics.

C4 Product-market fit is “[a] measure of how well a product satisfies the market.” (Olsen
(2015), p. 7). This construct describes the ability of a business offer to generate economic
value (usually revenue from sales) and thus that there is a market for the offering. Product—
market fit is advocated in lean startup as the ultimate target for business success for all
companies (Maurya 2012), not just startups. Sales figures in the form of user retention,
growth of the user base, etc., can serve as proxy metrics for product-market fit.

CS User problem is what problem the users solve with the business offering and how the
problem is solved.

C6 Incentive structures is the way an organization has structured rewards (or punish-
ments) related to the business model and the value proposition therein. The construct
primarily concerns the way in which users are enticed to pay for, and employees are
enticed to improve, the business offering. This includes, e.g., the licensing and revenue
model under which the software is sold and how the performance of software developer
teams are measured.
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4.3 Propositions

The propositions describe how the constructs influence an organization’s ability to perform
effective experiments (P1 and P4) that in turn indirectly (P5 and P6) or directly (P2 and P3)
affects the problem—solution or product-market fit of their business model through continuous
experimentation.

P1: C1— C2 Efficient CE processes and infrastructure increase experimentation effec-
tiveness. Efficient CE processes brings: correct prioritization of experiments where the
changes with the highest potential impact are selected, that the experimenter and the
organization sufficiently trust the experiments so they can act on it, that the most relevant
metrics are selected, etc. Efficient CE infrastructure include a CE platform that enables
parallel experimentation, an advanced data infrastructure that can collect and analyze
data in all parts of the business offering, etc.

P2: C2— C3 CE experiments enable increased problem—solution fit. Experiments that
target problem—solution fit aim to improve the users’ ability to solve problems with the
product. Either live experiments or simulated experiments can be used for this purpose.
P3: C2— C4 Live experiments enable increased product-market fit. Product—market fit
is more difficult to target than problem—solution fit due to having to affect the customers’
overall purchasing intent. Thus, the users’ problems need to be sufficiently solved and
they have to be solved in a way that the customer want to pay for it. Experiments performed
live on real users can measure product—market fit.

P4: C5—C2 High problem complexity limits experimentation impact. Software that
solves complex problems is inherently complex (Brooks 1986). This complexity mani-
fests in difficulties to deliver changes, especially if it also affects users’ current workflow.
Also, complex problems are likely difficult to measure with a singular metric and to quan-
tify into sessions of usage. Furthermore, live experiments have strict requirements and
are thus affected by high problem complexity to a higher degree.

PS: C6— CS5 Pivots can lead to simplified target problem. CE usually involves making
changes to the solution part of the problem—solution pair, i.e., the software. However,
changes that address the problem is a bigger endeavour, because it will likely require
involvement of the whole company (i.e., software engineering, sales & marketing, and
management departments) and users. CE is not suited for such large changes because it
is too costly to reverse in case of failure. Instead, a pivot, i.e., a change of direction in the
business model that affects the value proposition and thus the product can be required to
realize changes to user problem complexity.

P6: C6— C4 Product-market fit improving experiments need incentive structures. Affect-
ing product-market fit with CE is challenging, according to P3. Market considerations
are outside traditional software engineering responsibilities and sales metrics might not
be available for CE depending on the licensing and revenue model. As such, targeting
product-market fit requires incentive structures to be in place with a link between business
value, user value, and software engineering activities.

4.4 Scope

The scope within which FACE is applicable is user-intensive software companies with a
user-facing offering, e.g., media content services (Case D), e-commerce web shops (Cases
E, H, and I), and application software products (Case K). Not all companies in the study
have software development as their primary activity, but software is a central part of their
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business model. The theory is derived from empirical observations on those companies and
it is unknown whether the theory is applicable or useful outside this context of software
intensive companies, e.g., non-profit organizations developing open-source software, B2B
companies without access to users, or companies that are involved with experimentation from
a marketing perspective but that do very little software development (e.g., news websites or
web shops without IT departments).

4.5 Theory Validity

We evaluate FACE using the criteria proposed by Sjgberg et al. (2008), namely testability,
empirical support, explanatory power, parsimony, generality, and utility.

Testability. FACE makes high level claims about company processes, organization, etc. As
such, the ability for research to set up randomized controlled experiments (Wohlin et al.
2012) to test the theory is very low due to the large scope—and consequently cost—that
would be required of such an experiment. However, the theory makes claims about real
world phenomena and those claims can be validated by using it in case studies (Runeson
et al. 2012) to analyse and explain CE practice at other companies.

Empirical support. The theory is based on an extensive multi-case study with 12 cases of
various contexts and 27 interviewees with various backgrounds and roles. The cross-section of
empirical underpinning per case and proposition is shown in Table 3 below. Each proposition
is supported by evidence from multiple cases, which is transparently reported in Section 4.

Explanatory power. While there is no ability to make quantitative predictions from FACE,
the theory can be used to differentiate between different instances of CE in real companies and
thus explain why some companies derive more value from CE than others. Descriptions of the
context of all case companies, that the theory is based on, are also available (see Section 3.3
and Appendix A). These descriptions can be used by practitioners to compare with their own
organization’s context, and thus judge the applicability of the theory for that context, using
theoretical generalisation (Runeson and Host 2009). The theory also uses terms and concepts
from established pre-validated knowledge, such as lean canvas from lean-startup (Maurya
2012; Ries 2011).

Parsimony. The number of constructs and propositions have been continuously reduced and
combined during the theory building process, as described in Section 3.2. The remaining
constituents of FACE are needed to explain the data from the cases.

Generality. The scope of the theory is user-intensive companies which limits the generality
of the theory to such companies. The case companies on which the theory is based are quite
different in terms of size, age, and domains (though e-commerce is over-represented) so the
breadth of the scope is wide.

Utility. FACE and the underpinning case descriptions can be used by software organizations
to understand their ability to perform CE and the factors that influence this. The interviewees
in the study were generally very interested in learning more about CE, which hints at the
overall industry relevance, in addition to the large number of industry authors active in the
research about CE (Auer and Felderer 2018; Ros and Bjarnason 2018). To further the utility
for practitioners, we plan in line with the advice by Stol and Fitzgerald (2015) to derive
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guidelines from the theory, that show what state-of-the-art CE is and how companies can
elevate their CE based on their context.

5 Theory Explanations and Empirical Underpinning

In this section, the supporting evidence from each of the 12 cases, for each of the six propo-
sition in FACE is presented in order, along with an expanded explanation of the meaning
and impact of each proposition. We refer to theory constructs as C1-C6 and propositions
as P1-P6, and italicize the key terms of our theory when mentioned in the text. Note that,
only the salient evidence is discussed in the text. See Table 3 for a mapping of the supporting
evidence per case and proposition. The strength of the evidence is judged qualitatively based
on how much and how direct the propositions are discussed at the interviews. As such, the
table does not reflect, e.g., how good or bad the cases are at conducting experiments (P1).

5.1 CE Processes and Infrastructure at the Case Companies (P1: C1—C2)

Companies in the study conduct and depend on CE to different degrees (see Table 1). The
case companies also have matching degrees of processes and infrastructure support to match
their level of CE (with some exceptions discussed here). All interviewees at companies
with frequent CE mentioned efficient process and infrastructure (C1) as crucial for efficient
experimentation (C2). The analysis on P1 is divided into four parts: (1) CE processes and
infrastructure efficiency at the case companies, (2) impact of efficient processes, (3) impact
of efficient infrastructure, and (4) the impact of low throughput.

5.1.1 CE Processes and Infrastructure Efficiency at the Case Companies

The four companies with High CE expertise in Table 1, cases A, D, G, and I, also have efficient
processes and infrastructure (C1) to support their CE. Case A has low demand on experiment

Table 3 Cross-section of

. L Proposition

empirical underpinning per case Case PT P2 P35 Pi D5 TG

and proposition in FACE. Cells _

are marked View for — E-commerce algorithms X X X N X

proposition—case pairs with

strong evidence and View for B Local search N XN\ o

pairs with only some evidence C E-commerce consultants N X N\
D Video Streaming X X X X X X
E Web shop X N\ I\
F Customer relations I\ X N X
G Engineering tools X X X X
H Web shop N BN I\
I Web shop X X X I\
J Product information X\ [\
K Business intelligence N X X N X
L Employee management I\ X I\
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throughput and instead focus their efforts on advanced statistical techniques and speed of
CE. Case D and G do experiments on all their parts of their software products and have
both advanced techniques and a streamlined processes for CE. Case I has similar advanced
CE at some teams in the company (though the experimentation expertise varies greatly at
the company between teams). As expressed by Interviewee 14 who’s team conducts large
amounts of CE: “If you have a team that has [CE] in its soul, then you want a streamlined
process for how to conduct experiments.” Developers in Case I should be able to put an idea
under test within hours of its inception and have experiment results a few days later. This
team struggled initially with their commercial-off-the-shelf CE platform used throughout the
company because the data volume overwhelmed it, until they built their own.

Two case companies in the study, Case E and [ in particular in some of their teams, strug-
gled with implementing the processes and infrastructure (C1) with the efficiency that they
desired. Case E has an ad-hoc software engineering process which causes issues for their
CE. According to Interviewee E1, there is a constant change of direction from management
in prioritization and what metrics to optimize for, incorrect CE execution such as stopping
experiments too soon or not using statistical tests, and management not taking account of CE
results. This often led to ineffective experimentation (C2). Some of these issues could also
be attributed to organizational culture, but the issues manifested as a lack of adherance to
processes (C1). At Case I two of the teams (responsible for search engine and recommenda-
tion engine, respectively) achieved efficient CE (C2) by having their own purpose built CE
platform for their part of the product, as described above. The other software engineering
teams at Case I, about 50, used a central support team with a data science focus that con-
ducted the CE independently. This was described as “fotally unreasonable” by I3 due to the
low CE throughput, caused by both technical limitations in the commercial cloud-based CE
platform (C1) and the overhead of having to involve another team.

5.1.2 Impact of Efficient Processes

CE requires following a rigid processes to ensure trustworthy results. This is important for
experiments using both qualitative and quantitative methods. In experiments with qualitative
data there is much manual and subjective work that must be conducted consistently across
users and experimenters. For quantitative methods, the tools must be used correctly to get
accurate numbers. In addition, there are many methods and techniques that can be used to
get more efficient experimentation:

— Having data-driven prioritization ensures that the most important experiments are done
first (done at Case A, D, G, I, and J). This could be done by analysing historic user data to
see where users have issues, by surveying users, or by splitting changes into the smallest
possible implementation (such that it can be aborted early in case of failure).

— Applying data mining after performing experiments can be used to get more information
out of the experiment results, such as dividing the users into segments and analyzing
whether the results differ in the segments (done at Case A and G).

— Making power calculations to figure out how many data points are needed in an experi-
ment is a recommended step to do before the experiment is started (Kohavi et al. 2009).
However, all interviewees except the ones at Case G admitted to never doing it or using
the same calculation for all experiments.

— Using both live and simulated experiments is recommended. Many companies only have
infrastructure for one type of experiment, but Case D and I have both and these companies
are able to select the experiments that best suit the situation at hand.
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— Optimizing the statistical test to a more precise version that suits the given situation
increases chances of obtaining statistically significant results (done at Case G and I).
However, Interviewee G3 also warned about spending too much time on this since it
requires specialized knowledge and is technically challenging.

— Using experiment designs with multiple variables achieves more nuanced results, such
as multi-variate tests or multi-armed bandits (done at Case A and G). This also requires
specialized knowledge and is technically challenging.

The amount and quality of available user data was a frequent topic of discussion for all
cases. User data is not an explicit part of FACE, but there are processes for adapting CE to
low availability of users data. Both the amount and quality of user data has a direct impact
on the CE throughput (C2). A certain pre-determined number of data points needs to be
collected to get some degree of certainty in the results. Low quality on user data lowers the
information that can be learned from each data point, thereby also lowering CE throughput
(C2). User data is a limitation at companies with vast amounts of user data too, since some
experiments only target certain users (e.g., that has a certain feature enabled or belongs to a
certain user segment).

5.1.3 Impact of Efficient Infrastructure

Getting started with CE was not described as technically hard by any of the interviewees. As
phrased by Interviewee G3, “The original CE system was like 15 lines of Scala, it was just
really really simple. It’s interesting how you can start up really easy.” Also, the requirements
for simulated experiments with qualitative data is even lower because the qualitative methods
do not rely on technical infrastructure. However, as live experimentation is scaled up the
demands on infrastructure (C1) increase to keep up with having efficient experimentation
(C2).

When the case companies discovered the value of CE they steadily increased their fre-
quency of CE to cover more of their new developments and also on old features that has never
been subjected to experiments. The infrastructure (C1) is a bottleneck to enable increased
CE but all case companies except Case H were able to keep up with increased infrastructure
demands due to CE being prioritized in the organizations. Case H lack the resources needed
to increase their infrastructure.

The overall CE infrastructure (C1) was similar at all cases, albeit at different levels of
maturity. The infrastructure includes three parts. (1) Data infrastructure to store and provide
query support for user data. This includes telemetry of user data and product data in all parts
of the software, collecting various information about users for segmentation, and a system
for storing and accessing this data (i.e., a data warehouse). In addition, all data needs to be
stored securely and in compliance with legislation (e.g., GDPR). (2) A CE platform with
support for starting and stopping experiments, configuring which metrics to target and what
additional metrics to monitor, support for segmentation and arranging metrics in hierarchies
if there are too many, alerting in case things go wrong, ways of running experiments in
parallel (non-overlapping in case their changes are conflicting), etc. Finally, (3) competences
to develop and support infrastructure and to conduct experiments (see Section 2.2.1). Also,
the developers need to be educated in CE if they are to take part in it, which was a challenge
for the cases where CE was scaled up, i.e. Case D, G, and 1.

Of the three infrastructure parts, data infrastructure is the most demanding to develop,
according to interviewees at Case D, G, and I, because data infrastructure must be imple-
mented in the entire software offering, rather than as a standalone development. Investment
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in data infrastructure is one of the reasons that Case A is able to conduct CE with High exper-
tise despite their small company and software department size. The case company’s product
relies on user data for algorithms, such as recommender systems that need the same infras-
tructure, and the case company was able to use this infrastructure for conducting advanced
experiments (multi-variate tests and multi-armed bandit variants, as described by Ros and
Runeson (2018)) even though CE is not widespread at the company.

5.1.4 Impact of Low Throughput on Experimentation Efficiency

There are additional consequences of low throughput to the impact and effectiveness of exper-
iments (C2), caused by either low capacity or low speed as follows, besides that companies
fail to perform the desired amounts of CE.

A low capacity to run experiments increases the risk of releasing features with user-
related issues, since only a subset of the desired experiments can be conducted. It is not
always obvious what changes will have an impact on users or not. This was something all
case companies experienced except the most advanced ones (Case G and I). As phrased by
Interviewee Al: “A/B tests are always unpredictable, that has been proven. Again and again
by us. We do release some non A/B tested functionality and I can’t be totally sure it is all good,
but it is what it is. [...] We always focus on what customers need as much as possible and do
our A/B tests on that.” Low capacity is primarily caused by lack of user data or developer
resources.

Low speed of CE can be frustrating, as Interviewee E1 put it when queried about challenges
of CE: “long lead times make the whole being data-driven thing almost impossible”. We
identified the following two additional consequences of low speed of CE. (1) Low experiment
speed can result in other changes made to the product or market causing the invalid CE results.
Due to, e.g., changes in company priorities (mentioned by E1 and J1), the experimenter
forgetting details about the change (mentioned by A3 and D1), or conflicting software changes
that make the change incompatible (mentioned by A3, A4, and K2). In addition, (2) it will be
hard to use the insights to inspire future changes in the follow-up projects if they are started
before the previous projects’ experiment is completed. Thus, CE is not really continuous
when experiments are slow (mentioned by B1).

The issues with lack of speed were observed at some of our case companies though caused
by different factors. At Case A the lack of speed was due to challenges with continuous
delivery and at Case B it was due to having experiments with very large scope. At Case D
and J the lack of speed was caused by various inefficiencies in their process due to their
recent start with CE. Finally, at Case C and H low user data volumes required long lead
times for experiments, and at Case K and L the use of primarily qualitative methods with
much manual work caused lack of speed.

5.2 CE impact at the Case Companies (P2: C2— C3 and P3: C2— C4)

All cases have experiences with using CE to increase problem—solution fit (P2). However, not
all companies are able to affect product-market fit (C4). Only Case D, G, and I experiment
with product—market fit regularly. Case B, E, and J target product-market fit only to some
extent, Case B and J have multiple user groups of which they are only able to target one
with experiments, and Case E have issues with CE processes (C1). The remaining cases
do not target product-market fit due to high problem complexity (P4) and lack of incentive
structures (P6).
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Sales metrics (revenue, conversion rates, churn rate, etc.) were mentioned often in the
interviews as an appealing metric to use for CE. As explained by Interviewee D1, such
metrics are both directly relevant to business, and users presumably only pay for software
that they think fulfills a need for them. As such, when an experiment can use sales metrics, CE
can be used to optimize the product for both business needs and user needs simultaneously,
thereby increasing experiment effectiveness (C2) and impact on product-market fit (C4).

According to P3, live experiments can increase product-market fit, while both simulated
prototyping experiments and live experiments can increase problem-solution fit (P2). None
of the case companies were able to target product-market fit (C4) with anything other than
controlled experiments with sales metrics. Presumably due to that it is harder to measure
product-market fit in a way that cannot be done with only a prototype since it requires users
to actually pay for something, hence sales metrics.

5.3 Problem Complexity at the Case Companies (P4: C5— C2)

When the product or service aims to solve a complex problem (CS), it is challenging to exper-
iment efficiently on it (C2). The problem complexity of the offerings at the case companies
span a wide range, from low complexity (Case D and G), medium (Case A and K), to high
(Case C and L). By problem complexity, we mean that there are various challenges in the
way the offering delivers value to users. We identified three issues with how problem com-
plexity affects CE: (1) problem complexity makes changes hard, (2) complex user experience
makes measurements hard, and (3) configurability addresses problem complexity but splits
CE effort.

Some degree of complexity in the user problem (C5) can be overcome by using simulated
experiments with qualitative methods. User observations are regularly used at Case K and L
and can be used even when the user experience cannot be quantified into meaningful sessions
nor specified as an adequate metric. The CE process with user observations at Case K and
L is slightly different than for a live experiment. There is usually no control group, instead
the experimenter selects a small group of users and observe their interaction with the change
in the product and compares with earlier results (as in a natural or quasi-experiments). As
such, qualitative methods can evaluate a change and is considered to be a valid experiment.
However, the efficiency of qualitative methods in terms of reliability per work hour is low due
to the cost of interviewing, recording, coding, etc., compared to the cost and scalability of a
live experiment once the infrastructure is in place. The ability to be precise in exactly which
change has what effect is also lower compared to live experiments. Qualitative methods do
have advantages with richer data that can be used to explain why changes fail or succeed.
But as a method for conducting an experiment with realistic circumstances they are limited.

5.3.1 Impact of Problem Complexity on Making Changes

Some software offerings can be hard to implement changes on, due to having to be integrated
with other software, causing communication barriers with their developers, or that there are
requirements or expectations from customers that the software should not change. In such
cases, the CE process becomes hard due to the complexity of implementing the change in
the experiment. This affects the ability to conduct controlled experiments (C2).

When experimenting with software with integration needs, the experimenter has to inter-
face with software that is external to the organization. The experimenter cannot make changes
incompatible to it, or they have to communicate with the software engineering organization
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responsible for the integrated system, which would cause delays in CE. At Case C their
business is centered around integrating different systems to build web shops, Interviewee C2
mentions this regarding their customers’ ability to A/B test on their site: “What customers
can change is actually only content [text and images]. [...] Supposedly, at best, the customers
can A/B what it looks like [user interface].” Case H is one of their customers that did do their
own A/B testing with involvement from Interviewee C1. At Case A, where their product is
used in other companies’ software, the interviewees complain that they cannot change how
their product is being used (sometimes incorrectly) and that deploying the changes takes
considerable time for some customers.

Finally, user or customer expectations or requirements can hinder CE because some users
might not want changes. At most of the case companies, the users are able to overcome
changes easily, so this aspect of problem complexity (C5) was only discussed by intervie-
wees at Case D, K, and L. At Case D they mention how their B2B product has customer
requirements that mandate the behavior of certain features. It is not possible for them to
make changes to these features even if it would be beneficial to their other customers. Of the
other B2B companies in the study, only Case D and F accept customer requirements to their
product in this way. At Case K and L, the interviewees mentioned that their users do not want
frequent changes due to their software being used in a corporate setting where users do not
want changes to disrupt their work flow.

5.3.2 Impact of Product Complexity on Defining Measurements for Controlled
Experiments

The user experience of software with a complex and open-ended work flow cannot be neatly
quantified into chunks or summarized with a single metric. Sales metrics can sidestep the
issue of defining a user experience metric, but not all companies can use it for experiments
directly and it might not be a suitable target for all experiments. Case F, K, and L cannot
use sales metrics at all due to lack of incentives given by their business model, thus P6 is
not in play, and they also have complex and open-ended user experiences (CS). All of the
other case companies mention using metrics that are related to the user experience as a target
metric to improve problem—solution fit (C3). User experience metrics are also monitored on
experiments that target product—market fit (C4) to ensure that business value does not come
at the expense of users at all cases able to target product-market fit.

Case E, K, and L have similar underlying reasons for having a complex and open-ended
user experience (C5) as explained in the interviews. The software is used throughout the day,
such that it cannot be neatly quantified. The goal that users have when they use the software
is hard for the software engineers to extract and measure, and the number of features is so
large that there might not be enough user data on some features to measure it.

While it is always possible to find something to measure in the user experience of all
software, such as number of clicks or other user interactions, it is far from certain that
optimizing those metrics will transfer to concrete gains. According to Interviewee L2, good
user experience metrics should measure whether the user is able to accomplish their goals
with using the software or not. Clicks was specifically mentioned as often being a “terrible
metric” by Interviewee A4 and G3 due to being able to be too easily influenced by experiments
without having a real impact on more relevant measures. Intuitively, the number of clicks
should be kept low to have an efficient user experience. But if the program is something users
enjoy spending time on (and revenue is earned through that), then the number of clicks will
be beneficial to increase instead.

@ Springer



Empirical Software Engineering (2024) 29:21 Page 250f42 21

5.3.3 Impact of Configurability on CE

When software is built to be configured into multiple unique variants (as in software product
line development (Pohl et al. 2005)) the problem of having enough user data for each feature
is exasperated. In such cases, the amount of users for each such unique configuration is lower
than for the total set of users, which leads to experiments taking longer to complete due to
having less amounts of user data per time period. Having software be capable of configuration
is viewed here as a consequence of dealing with high problem complexity. Case A has a
product with some degree of configuration. They do experiments at different customers and
analyze them independently. However, they have a limited number of customers so it is not
described by the interviewees as very challenging for them to handle. Case F has a product
with a very high degree of configuration and they are not able to conduct CE partially because
of that. They have a lot of features in their product and the features exist in multiple variants
and experiments would have to be repeated for the different variants, which is not efficient
or might not be feasible.

5.4 Business Model Pivots at the Case Companies (P5: C6— C5)

According to P4, there are limits to what can be done with CE when the problem complexity
(C5) is high. Companies can simplify what problem the software solves by pivoting their
business model to solve another problem, one for which CE can be applied to achieve a
higher problem—solution fit (C3). CE is not suitable for all development tasks (Bosch et al.
2018; Melegati et al. 2019) and is unlikely to help reduce problem complexity significantly;
we see two reasons for that. First, while CE can improve problem—solution fit (C3), actually
changing what problem the software solves is a large change that goes beyond the scope
of CE. Changes in an experiment need to be sufficiently small such that the change can be
reversed in case of bad results. Second, high problem complexity (C5) limits the ability to
gain from experimentation (P4), which is a catch-22 scenario; CE requires a goal to target,
but no goal can be specified due to the high complexity.

Case D pivoted recently by changing their target users from business customers to pri-
vate individuals. After the pivot, their prioritization was data-driven to meet market needs
and they had less customer requirements on their user experience, thus they were able
to simplify the user experience. They also increased their CE significantly as a result of
the pivot. Note that, the pivot that Case D conducted was not done specifically to enable
CE. Rather, the goal was to reach a larger market which needed a simplified product, and
increased experimentation effectiveness (C2) was a side-effect of simplifying the problem
complexity.

No other company in the study has gone through a similar substantial pivot. Though,
at Case K, they have experimented with licenses, such as, changing from bulk sales to a
more dynamic licensing with single orders. The Product Owner (Interviewee K1) said this
improved incentives for performing CE somewhat. Interviewees A5, C2, and F1 mentioned
pivoting (though not necessarily with that term) in regards to what changes they would have to
implement to improve CE in their company. Cases A and F would need freemium licensing
while Case F would need drastic changes from a consultancy based code deliveries to a
product or service.
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5.5 CE Incentive Structures at Case Companies (P6: C6— C4)

Some companies in the study have business models with incentive structures (C6) that
enhance experimentation effectiveness (C2) and enable targeting improved product-market
fit (C4). These business models provide incentive structures that motivates and facilitates CE,
e.g., by having metrics available that software engineers can use to directly affect the product
sales and user growth. Part of the differences in incentive structures can be explained by the
sales-led and product-led growth dichotomy, see Section 2.1.2. Companies with a business
model with product-led growth rely on the product to obtain customers, while the companies
with a sales-led growth rely on a sales department to obtain customers. Incentive structures
impact CE in three ways as explained in the subsections below: (1) user-business alignment,
(2) sales & marketing interplay, and (3) increased user-data.

5.5.1 Impact of User-Business Alignment

According to P3, affecting product-market fit (C4) relies on using live experiments (C2)
that target sales metrics. While the availability of sales metrics is necessary to experiment
on product—market fit (C4), incentive structures (C6) are also necessary. Case A and C are
examples that have sales metrics from their B2B customers, but cannot target product—market
fit (C4) with those figures, since an increase in their customers sales figures does not come
with direct immediate business value to them. As such, CE to improve the sales figures is
only done for product—market fit purposes (C4) at Case A and not at all at Case C.

In contrast, Case D and G use various sales metrics extensively in experiments, presumably
due to their user-business alignment. At both cases, the sales metrics come from software sales
and they also both have a subscription-based license model where the user pays continuously
to use their service. Interviewee G3 phrased it as such: “Our incentives are mostly aligned
with our customers’ because it wouldn’t mean anything if somebody purchases [our flagship
product] and then decide that they hate it and a week later they cancel the subscription.”
Interviewee D2 also expressed the importance of user-business alignment: “So the way you
build things for freemium is that it has to solve a user problem, that’s part of the product
breed, that’s part of why you do the thing, all your metrics align to that.” Freemium is a
license variant where the product has a free and a paid premium version, see Section 2.1.2.

Case D and G both also use metrics from the sales funnel to find and prioritize issues
with their product. As explained by Interviewee D2: “There’s industry standard metrics, like
the AARRR model Acquisition, Activation, Retention, Revenue, and Referral. We use them to
analyze our platform and our product and see where we are missing things.” The AARRR
Pirate Metrics Framework was proposed by McClure (2007) and covers multiple business
model aspects.

5.5.2 Impact of Development and Sales & Marketing Interplay

Companies with product-led growth models will have the same incentives (C6) on the soft-
ware engineering department and the sales & marketing department: to increase the sales
figures. This makes it easier for them to cooperate. At Case D they had a few individuals
with the hybrid role of growth engineer that worked as an intermediary between the two
departments. At Case G they included growth engineers/marketers in their specialized team
that conducted experiments. They were primarily tasked with finding and analyzing potential
changes in the product to experiment on.
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5.5.3 Impact of Increased User-Data

The case companies that have a strategy of finding many customers and growing rapidly have
incentive structures (C6) that lead to gaining access to more data as the company’s user base
increases. User-data volume is critical for CE throughput and to affect problem—solution fit
(C3) and product—market fit (C4). The interviewees at cases with sales-led growth (Case A,
C, E K, and L) all mentioned a focus on large important business customers that can pay
more instead of many customers, which gives a higher return on the manual work that the
sales force put in. Another difference lie in that the product-led growth cases (Case D and
G) both have a freemium license model that further increases user-data, since the users that
use the software for free contribute with user-data.

6 Discussion

We have presented a theory of Factors Affecting Continuous Experimentation (FACE) on
what contextual factors in a company’s business model and software organization affects
continuous experimentation (CE) and how. The theory is based on empirical observations in
12 case companies through semi-structured interviews and subsequent theory building. In
summary, the theory states that processes and infrastructure increase experiment through-
put (P1) and experiments can increase problem—solution fit (P2) and live experiments can
increase product—-market fit (P3). However, CE is limited by how complex of a problem
the software solves for users (P4), the problem complexity can be reduced by pivots in the
business model (P5). Finally, CE on product-market fit requires business models with the
right incentive structures that connect business and user value (P6).

We address two discussion points: (1) what the limitations of CE as a method for software
engineering are and (2) which factors affect a company’s ability to conduct CE.

6.1 What are the Limitations of CE?

There are limitations to what can be achieved with CE. According to best practice in CE (see
Section 2.2), each experiment should be split into the smallest constituent to avoid having
to do unnecessary implementation work in case the change is bad. As such, CE entails
incremental work. In the road-map for continuous software engineering, Fitzgerald and Stol
(2017) argue that sometimes abrupt changes are needed when creativity and innovation is
involved, because incremental work constraints the creativity to similar solutions to what
currently exists.

Furthermore, in CE, experiments are ultimately used as a method for optimizing software
towards a given goal by taking small steps in the right direction. However, there is a risk of
getting stuck in local optima where no individual small change can improve the current soft-
ware design, but there might be a better solution to be found if a larger change is introduced.
Larger changes are pivots, the impact of which in FACE are described by the proposition PS.
When a pivot is introduced to a product that has been polished with CE, it is quite likely that
the new version of the product performs worse because it is less polished. There could be
minor problems that over time could be improved with CE to find a better solution. Whether
or not it is worth the effort of maintaining multiple versions of the software product during
this period is ultimately a business decision that cannot be settled within the confinements
of CE.
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The value provided by CE diminishes over time. When CE is first introduced at a company
there are low-hanging fruits to experiment on. At the case companies, Case A, D, E, G, I,
and J, there were long held assumptions about the product and customers that were finally
able to be tested and this led to some surprises. However, over time CE becomes established
at the company and more parts of the product are stabilized; thereby relatively reducing the
gains of CE. Also, the size of experiments becomes smaller since the experimenters become
more adept at reducing the scope of the experiments, which has also been reported previously
by Kohavi et al. (2013). Hence the utility of each individual experiment tends to decrease
unless a pivot happens. This could result in a reporting bias in favor of CE when studying
companies that recently adopted CE.

Finally, FACE cannot make claims about applicability of CE to companies outside the
defined scope. However, we argue that an experiment-driven approach to software devel-
opment is unsuitable for much of the software outside the scope, that is, software that is
not user-intensive (e.g., company intranet websites (Paulsson et al. 2022) or not user-facing
(e.g., low level software libraries). Other requirements elicitation techniques or software
performance optimization methods might be better suited for these examples, such as using
profiling tools to pinpoint performance bottlenecks with low lead-time.

In summary, CE can increase problem—solution fit and product-market fit. However, CE
should not be the only strategy for improving software at companies due to the limitations of
incremental work. Pivots also play an important role in enabling the product to be optimized
with CE.

6.2 What Factors are at Play in CE?

In this study, we show that CE is used for different purposes: problem—solution fit or product—
market fit. Similar observations has been done before. Schermann et al. (2018) and Ros and
Bjarnason (2018) describe that experiments are either regression-based to verify or validate
features, or business-based to optimize. Our results highlight that most companies are only
able to experiment with improving problem—solution fit and few are able to affect product—
market fit. However, according to the entrepreneur Andreessen (2007): “The only thing that
matters is getting to product—-market fit”. Our main research goal in constructing the theory
is to find the factors that explain differences in why companies can apply CE to different
effect. That is, why some companies are able to experiment with product-market fit and
others cannot.

From previous research, we know that the availability of user data is the main limita-
tion (Kohavi et al. 2009) and that offering software-as-a-service (SaaS) (Kohavi et al. 2009)
facilitates easier CE. Also, there is substantial work conducted on the challenges of applying
CE in a B2B setting by Rissanen and Miinch (2015); Ros and Bjarnason (2018); Yaman
et al. (2016) and in cyber-physical systems by Bosch and Eklund (2012); Giaimo (2016);
Mattos et al. (2018). FACE synthesizes these findings; in fact most of these studies are all
on aspects of complexity in the problem the product solves for users; corresponding to P4.
FACE highlights additional factors as follows.

Three of the propositions (P1, P4, and P6) affect companies’ ability to use CE to increase
problem—solution fit or product—market fit and those form the factors. The first (P1), on CE
processes and infrastructure, covers many aspects and not all are regarded by us as very
impactful on whether a company can apply CE or not. While the throughput would be lower
without sufficient processes and infrastructure, it is unlikely to be a complete blocker to CE.
In addition, several of the companies (see Section 5.1) have described how they gradually
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improved their CE support in parallel with ramping up CE. Data infrastructure is an exception
that requires significant investment. The final three derived factors correspond to constructs
C1, C5, and C6, and are:

1. Data infrastructure is needed to be able to use the metrics that are desired and to cover
telemetry of all parts of the software. Companies that rely on user data for other parts of
their products, such as recommendation systems, will get a head start on CE by reusing
data infrastructure.

2. User problem complexity is the complexity of the problem that the software solves for
users. High problem complexity makes quantifying the user experience hard and making
changes in the software hard, which severely impacts the ability to experiment. Modifying
the user problem is challenging but possible with pivots in the business model.

3. Incentive structures are required to provide a measurable link between business value,
user value, and software engineering activities, such that experiments can affect product-
market fit. Companies that do not have access to sales metrics in experiments will derive
less benefits from experiments since user experience metrics are hard to define in a way
that they can be used for optimization.

The final factor, incentive structures, seems to be particularly impactful. For example,
Cases D and G have freemium product licenses and thereby rely on the product to convince
users to convert to paying customers. CE plays a key role to help develop their offering to
be able to acquire more users. Incentive structures is not explicitly pointed out as a factor
influencing CE in previous work (see 2.2.2), though the inverse is mentioned, such that
incentives are lacking for B2B companies for conducting experiments (Rissanen and Miinch
2015; Yaman et al. 2017).

7 Conclusions

We conducted a multi-case study with 12 companies and built a theory called Factors Affect-
ing Continuous Experimentation (FACE), based on the empirical material for understanding
what factors are at play for companies conducting continuous CE. Six propositions are
included in FACE. (1) Efficient infrastructure and process improves experimentation effec-
tiveness. Starting with experiments is easy, but companies can put endless effort into: scaling
up experiments, obtaining more insights from experiments, and improving the speed of exper-
iments. (2) Experiments can affect either the problem—solution fit or (3) product-market fit.
Targeting product-market fit is far more challenging, but preferable, since it can improve
business and user value simultaneously. Many companies are restricted to only improve the
user experience and thereby problem—solution fit. (4) The complexity of the problem the soft-
ware solves for users strongly limits experiment applicability. High complexity can limit the
ability to make desired changes in the software or to quantify the user sessions. Following
that, (5) pivots in the business model is necessary to simplify the problem complexity, exper-
iments on their own are unlikely to succeed. Finally, (6) improving product—market fit needs
incentive structures in the form of metrics from the sales process.

FACE can be used to evaluate company contexts to gauge CE applicability at their com-
panies. There is still future work to further validate the theory by using it in this way to
evaluate companies. Additionally, we plan to derive guidelines from the theory to further
guide practitioners in their CE.
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Appendix A: Case Companies
Case A: E-Commerce Algorithms

This case company offers an e-commerce platform that is sold to companies (B2B). The
platform consists of various algorithms for ranking products and an administration interface.
While the algorithms target end-consumers, the administration interface targets managers at
the e-commerce companies. The algorithms provide value for the end-consumers by increas-
ing the relevance of the product that they see on the web shops. The case company is fairly
small with about 50 employees and was established 20 years ago. The company’s business
model is to sell usage licenses to other companies and the company has salespersons work-
ing with direct sales as their only source of revenue. Company A has experienced several
periods of growth after which the company has had to scale down due to failure of a big
sale. The company conducts a medium amount of CE but only on the software that targets
their end-user consumers, not on the administrative interface. The company only performs
quantitative experiments since the software that is experimented on does not have a graphical
interface. Company A also assist their business customers with their CE.

Case B: Local Search Service

Case B offers a search engine service for search within alocal region, a.k.a., yellow pages. The
search engine is free to use and the major source of revenue is companies buying promotion
in the search result rankings and visual presentation. The case company has a large sales team
that work with direct sales by calling potential business customers. The company is about
20 years old and has stayed stable for some years at about 50 employees. The company was
recently acquired by a larger business group and additional products were integrated with
the local search service, such as a ticket booking service. CE is not frequently applied at the
case company and is only used to verify large changes to the search engine ranking algorithm
with quantitative data.

Case C: E-=Commerce Consultants

Case company C is a consultancy firm that develops and maintains web shops for other com-
panies with relatively large demands on traffic volume and/or product catalogue. The work
includes a lot of integrating various software systems, e.g., product information management
(PIM), content management systems (CMS), payment gateway systems, search or recom-
mendation engines, etc. These software systems each come with their own administrative
tools and the case company helps their customers to use these tools. Company C has built its
own software to optimize and support the process of building the web shops, but the business
model is to sell consulting hours in a per project basis. The company has existed for more
than 20 years, currently has about 100 employees and is experiencing steady growth in the
number of employees. The company does not conduct any CE on its own software but has
assisted its customers in conducting quantitative experiments on their web shops.

Case D: Video Sharing

Case company D develops and sells a video sharing platform where users can record and
edit videos for marketing purposes. The company has been operating for 10 years, and has
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about 200 employees of which about 30 people are in the software development department,
distributed over four teams. Recently, the company pivoted its business model by adding a
new product that is targeted at individuals; aimed at consumers and smaller companies that
wish to market themselves. This new product is the defining boundary of case D. Prior to the
pivot, the customers have mainly been other businesses (B2B) that Company D has reached
through a fairly big sales department with direct sales. The new product has an entirely
separate development department and no sales persons are involved. The pivot enabled the
use of CE at the company. The new B2C product is offered under a freemium license,
where the free version is offered with limited video uploading capacity, and the paid version
offers additional features. The B2B part of the company performs no CE. In contrast, the
B2C team conducts extensive CE and has various specialized roles for supporting CE and
related activities, viz., data scientists and data engineers for quantitative experiments and
user researchers for qualitative experiments.

Case E: Web Shop

This case company offers a web shop with a subscription service to physical goods. The
web shop drives sales through their online presence only and does not have any retail stores.
The company was founded less than 10 years ago and has experienced rapid growth in
revenue and number of employees. At the time of the interview, the company has around
3000 employees, most of whom work with delivering the physical goods. The company’s
IT department accounted for about 250 employees. In addition to the web shop, the IT
department also operates in-house software systems for handling logistics, marketing, etc.
The interviewee at the company was involved with optimizing multiple of these products at
the company. There is a drive from the management to be data-driven and CE is encouraged
on a strategic level. However, this is hindered in practice by chaotic management, caused by
the rapid expansion.

Case F: Customer Relations Product

Case F sells a customer relations product (and service) to other businesses. The product
is highly customizable and each new customer gives rise to a new integration project. The
integration includes adapting to another company’s data model and internal software systems,
e.g., for human resources. The company is 30 years old and has 200 employees, 35 of which
are in software development, divided into three teams. Sales is a large part of the company,
and all sales are done through direct sales. Half of the company is committed to pre-sales and
operations that support customers before and after sales due to the complex integration. No
free version or trial of the product is available. Company F has conducted a few prototyping
qualitative experiments on recent new features, but not on all developments. The company
is aware of the concept of quantitative experiments but has not conducted any and have no
concrete plans for applying CE in the near future. However, the company has some of the
technological pre-requisites to conduct post-deployment CE in place already, and make use
of feature flags to verify new developments at specific customers, but not in a systematic way.

Case G: Software Engineering Tools

Case G is a huge international company with multiple products that focus on supporting the
software engineering process. The main products are a project tracker, issue tracker, and a
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team collaboration platform. The company has existed for roughly two decades and today
have more than 4000 employees. The majority of these employees are within IT. Each of
the company’s products has its own development organization. The company advocates agile
software development. Notably the company has no large sales department and do not use
direct sales at all, despite their focus on business to business (B2B). The company conducts
huge amounts of experiments on all aspects of their products—both on new and old products,
and makes use of both quantitative and qualitative experiments. A specialised team supports
product teams in applying a CE approach. Since there are multiple teams involved with CE
on multiple products, the company has an extensive CE platform. The company also has a
formal process for conducting CE developed by the CE team.

Case H: Web Shop

This case company offers a web shop for business customers only. The company has over 2 000
employees, of which most are employed at retail stores. The company used case company
C to develop their web shop and also has their own small IT department that manages and
improves the web shop. The company has conducted ad hoc experiments on occasion and
uses off-the-shelf CE tools (Google Analytics) for supporting their CE. The biggest limiting
factor of the Company H’s CE practices is the lack of human resources at the IT department.

Case I: Web Shop

The next case is a huge international conglomerate. The company has along and rich history in
retail and have operated a web shop for over 20 years. The web shop is becoming increasingly
important to the company. The company has about 200000 employees of which about 5000
are employed in the IT organization. The company have many products for managing their
logistics, etc., but in this study we focus on their web shop product only. Several cross-
functional development teams are responsible for various parts of the web shop (such as the
recommender engine). Not all parts of the web shop are experimented on, but the trend is
moving towards more CE work. There are multiple teams involved with CE at the company,
some of them have their specialized CE infrastructure but most teams use a centralized
experimentation platform and contact a data science team for help with CE.

Case J: Product Information Platform

Case J offers a service for product information within the building industry that is free to
use. The company was established less than 10 years ago. The source of revenue come from
customers that want to know who accessed their product’s information in order to obtain
sales leads. The case company describes their business model as being a middle man that
sells information, and has a sales department that works with direct sales. The company also
relies on organic growth based on their free users. There are about 200 employees at the case
company, half of which work within the IT organization. Company J does not make use any
of qualitative methods and quantitative experiments are new to the company. Currently, the
company does not experiment on all parts of their software. There is a small and dedicated
team with two employees that conducts experiments, and the company expects that the other
software engineering teams will soon start applying CE.
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Case K: Business Intelligence

This company offers several advanced business intelligence products for different needs.
The products are used to make graphs, tables, and other visualizations from various data
sources. The products are advanced to use and the flagship product even has a proprietary
domain-specific programming language for data manipulation. Since the company is more
than 20 years old, the products are in different stages of the life cycle, albeit all of them
are still offered. The company is a large enterprise with about 3000 employees and 500
of them in the development department. The company has grown rapidly during the latest
years with an increase in the number of employees. The sales department is very large
and uses primarily direct sales to other businesses. The company has a team specialized in
user experience research that gathers qualitative feedback on a regular basis. The company
conducts qualitative experiments to evaluate both prototypes and completed functionality
with users. However, not all development teams are on board with this yet so not all features
are evaluated in this way. The user experience research team is aware of and interested in
quantitative experiments but getting such systems in place has not been a company priority.

Case L: Employee Management Product

The final case company develops a product for employee management. The product is
intended to be embedded in the customers’ intranet and has both administrative and end-
users within each customer organization. The company was founded 20 years ago and has
about 250 employees of which about a third in the IT department. The company relies on
direct sales with a sales force and most of the revenue comes from projects that integrate
their product at customer sites. The company pays close attention to user experience and has
a team involved with user research that conducts qualitative experiments with prototypes.
Since the product is still considered to be early in development this CE is somewhat frequent.

Appendix B: Interview Guide

The following questions should be adapted to suit the interviewees background and role. The
nested bullet lists indicate probes that are only asked when the answer to the main question
requires clarification.

B.1 Introduction

— Inform about consent

— Interview will be recorded
— Free to withdraw at any time (including afterwards)
— Data will be treated confidentially and anonymized

— Explain purpose of study

— Investigating context and process of experimentation and data use
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B.2 Case Context

9}

9.
10.

. What does your company do?
. What is the overall business strategy?
. What is the business model?

(a) What user problem does your offering solve?

(b) Solution: Product? Service? Consultancy? Other?

(c) Who are the customers? B2B? B2C? B2X?

(d) What are the key metrics and how is it measured (channels)?
(e) Costs and revenue?

. How stable is the business model?

(a) How do you know when to pivot (change direction)?

. How many employees are there in: Total? Dev? Sales & marketing? Ops?
. Could you describe your own role(s)?

(a) What is your background?

. What does your team do within the company?

(a) Is it cross-functional?

. In what ways does your company use user data?

(a) Is there a specialized data science or engineering team?
(b) Could you shortly describe your overall infrastructure for data?

How does your SE team prioritize what to build?
How does user data help with prioritization?

B.3 Experimentation Process

L.

How was experimentation introduced at the company?

(a) In what department was it started?
(b) In what departments is it done now?

. Why do you do experiments?

(a) Knowledge? Prioritization? Optimization? Regression? Validation?

. Could you break down the steps that are taken by you and your team when conducting

an experiment?

(a) Duration? Roles? MVF? Analysis? Power?
(b) Are you aware of any missing steps?

. What do you experiment on?
. To what extent do you experiment?

(a) Duration? Frequency? Coverage?

. Is there overlapping experimentation?

(a) From different teams?

@ Springer



Empirical Software Engineering (2024) 29:21

Page 350f42 21

(b) Coordinated?

B.4 Experimentation Details

L.

Could you describe your infrastructure for experimentation?

(a) CI/CD pipeline? Reporting? Reliability? Scalability?
(b) Do you use blue/green deployment or feature flags?
(c) What would you like to improve in your infrastructure?

. What type of experiment designs do you use?

(a) A/A experiments? MVTs? Bandit testing?
(b) Do you have decision algorithms taking causal decisions?

. Do you use any qualitative methods?

(a) Focus groups? User studies?
(b) Do you have specialized teams or individuals for it?
(c) How does it interplay with quantitative experimentation?

. What types of metrics do you use?

(a) What metrics would you want to use?
(b) How does your metric translate to company or team success?

. Are experiments analyzed or executed in different segments?

(a) Explicit segments: Verticals? Products? B2B customers? Web pages?
(b) Implicit through data mining?
(c) How do you handle diverging results?

. Do you ever do experiments involving external code bases?

(a) How did it affect experimentation?

. How do you share knowledge from experiments?

(a) Mail? Meetings? Documentation?

. Do you do any long term follow ups on experiments?

(a) Repetitions? Long-running experiments?

B.5 Holistic Experimentation View

1.
2.

What are the main challenges with experimentation?
What are the main benefits with experimentation?

3. Do you face any ethical dilemmas involving your use of user data or experimentation?

4.

How do you strive to improve your experimentation?

B.6 Final Remarks

1.
2.

Do you have any final comments, anything that should have been asked?
Could you recommend us any additional interviewee (or organization?)?
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3. We will get back to you within 1 to 2 weeks about a summary of what was said here.

Appendix C: Code Book

All paragraphs of the interview text were coded. Multiple codes were used on the same
paragraph. Some codes are marked with an X to indicate that they can vary, e.g., Scenario X
is as Scenario optimization or Scenario validation, these were expanded upon during coding.
The division of detail codes into sections are intended only for improved readability, they
are not themes or categories. The first two sections indicate context around experimentation,
and the last two are on experimentation process and evidence of actual use.

C.1 Software Development and Infrastructure

Testing (any testing aspects discussed)

— Prioritization (any prioritization aspects discussed)

— System architecture X (description of type of architecture e.g. embedded or micro ser-
vices)

— Data infrastructure (description of e.g. data warehouses, query engines, data science
teams, data engineering teams)

— Data availability (whether data is capable to be used for experiments)

— Data governance (cleaning, data provenance, data)

— Experimentation platform (description of an experimentation platform in use at company)

— Infrastructure improvements

— Infrastructure challenges

— Organizational structure (How departments are structured and how much of e.g. sales
and development there is at a company with relevance to experimentation)

— Company culture (descriptions of culture that influences experimentation)

— Knowledge sharing (how knowledge is shared between departments )

— Technical infrastructure

— Software stack technology

— CICD pipeline

— Infrastructure maturity

C.2 Business Model and Strategy

— Pivoting (change in business model according to strategy)

— Product customization (general or tailored to different market segments)

— Product complexity (description of a complex product in e.g. size or user experience)

— Problem-solution pair (what problem the product solves for users)

— Key metrics

— Market constraints (ethics, legislation)

— Cost structure

— Revenue stream (pricing model)

— Growth model (how new customers are acquired, channels, customer segments, number
users, etc.)

— Channels (path to customers)

— Unique value proposition

@ Springer



Empirical Software Engineering (2024) 29:21 Page 37 of42 21

— Target customers
— Unfair advantage

C.3 Experimentation Process

These codes describe strategies for various stages in the process and why experimentation
is conducted.

— Ideation (how ideas/hypotheses are elicited and prototyping is performed at the company)

— Experiment design (how design are decided, pros and cons of designs)

— Metrics (which are used, what specific metrics mean, how they are derived)

— Analysis (how analysis is conducted)

— Scenario X (different experiment archetypes e.g. optimization, validation, verification,
learning)

— Dark patterns (a dark pattern is an unethical anti-pattern in UX for tricking users)

— Experimenter X (used to indicate what role initiates and owns an experiment)

— Role X (used to indicate experimentation involvement)

— Experiment handover (description of how experimentation is conducted by some special-
ist and then hand over to product team after completion)

— Experiment inhibitor (something hinders experimentation, use in combination with
another context giving code)

— Experiment enabler (something enables experimentation, use in combination with
another context giving code)

— Experimentation frequency

C.4 Experimentation Usage

These codes are used to gauge how much experimentation is done at a particular company,
the first three should be mutually exclusive at a company unless there is some conflicting
reports by different interviewees.

— Experimentation awareness (awareness of experimentation at a company but no intent
to start)

— Experimentation intent (aware of experimentation at a company and want to start exper-
imentation but have not done so yet)

— Experimentation adoption (in the process of adopting experimentation and/or increasing
scale of exp)

— Experiment duration

— Experiment goal

These codes are used when a technique is mentioned as being used at the case.

— Sprint experiment (experiment is conducted as part of ordinary development and is
prioritized with other software development)

— Stand-alone experiment (experiment that is conducted outside of the development orga-
nization)

— Controlled experiment usage (A/B test, quasi experiment)

— Optimization usage (multi-armed bandits, A/Bn tests, MVT, simulations)

— Qualitative methods usage (focus groups, observations)

— Survey usage (questionnaires)
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— Data mining usage

— Feature flag experiments (considerations for running experiments through feature flags
in the same deployment environment)

— Blue-green deployment experiments (considerations for running experiments through
parallel deployments)

— Repeating experiments (same hypothesis repeated for some reason e.g. disbelief, bugs,
etc.)

— Experimentation cycles (describes an actual cycle of experimentation where one exper-
iment lead to a new hypotheses and so on)

— Overlapping experiments (considerations for running many experiments in parallel)
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