Empirical Software Engineering (2023) 28:139
https://doi.org/10.1007/510664-023-10355-2

®

Check for
updates

Technical leverage analysis in the Python ecosystem

Ranindya Paramitha' @ - Fabio Massacci'-?

Accepted: 5 June 2023 / Published online: 13 October 2023
© The Author(s) 2023

Abstract

Context: Technical leverage is the ratio between dependencies (other people’s code) and
own codes of a software package. It has been shown to be useful to characterize the Java
ecosystem and there are also studies on the NPM ecosystem available.

Objective: By using this metric we aim to analyze the Python ecosystem, how it evolves,
and how secure it is, as a developer would perceive it when deciding to adopt or update (or
not) a library.

Method: We collect a dataset of the top 600 Python packages (corresponding to 21,205
versions) and used a number of innovative approaches for its analysis including the use of
a two-part statistical model to deal with excess zeros, a mathematical closed formulation to
estimate vulnerabilities that we confirm with bootstrapping on the actual dataset.

Results: Small Python package versions have a median technical leverage of 6.9x their own
code, while bigger package versions rely on dependencies code a tenth of their own (median
leverage of 0.1). In terms of evolution, Python packages tend to have stable technical leverage
through their evolution (once highly leveraged, always leveraged). On security, the chance
of getting a safe package version when choosing a package is actually better than previous
research has shown based on the ratio of safe package versions in the ecosystem.
Coclusions: Python packages ship a lot of other people’s code and tend to keep doing so.
However, developers will have a good chance to choose a safe package version.

Keywords Dependencies - Software libraries - Technical leverage - Empirical analysis -
Vulnerabilities - Python ecosystem - Security

1 Introduction

Many software packages are developed using third-party libraries, which are called depen-
dencies in developers’ jargon. This practice is in line with the principle of software re-use

Communicated by: Martin Monperrus

Bd Ranindya Paramitha
ranindya.paramitha@unitn.it

Fabio Massacci

fabio.massacci@ieee.org

Department of Information Engineering and Computer Science, Universita degli Studi di Trento,
Trento, Italy

Foundational Security, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10355-2&domain=pdf
http://orcid.org/0000-0002-6682-4243
http://orcid.org/0000-0002-1091-8486

139 Page2of31 Empirical Software Engineering (2023) 28:139

(Frakes et al., 2005), but could also bring risks to software projects (Cox et al., 2015; Lauinger
et al., 2018), or could be even useless as shown in the study by Soto-Valero et al. (2021b).
Yet, it is hard to provide an indicator of such potential security risk that could be easily used
by developers (Dashevskyi et al., 2016).

A recent development has been the introduction of the notion of technical leverage by
Massacci et al. (2021), which mirrored the financial intuition behind internal code defects
and technical debt (Cunningham, 1992). Technical leverage of a software package is the
ratio between the lines of code from dependencies and own code, written by the package
developer(s). Their research found that if Java libraries have a technical leverage higher than
the industry mean (4x leverage), then they are 60% more likely to be vulnerable than libraries
with lower technical leverage.

However, the findings relative to an ecosystem might not transfer to a different one for
a variety of reasons. For example, some previous works by Decan et al. (2019) and Kikas
et al. (2017) have shown the importance of analyzing different ecosystems as the underlying
dependency networks may evolve in different ways. The nature of the programming language
may also have an impact; for instance, Java is first compiled into bytecode that runs on the
Java Virtual Machine (JVM), i.e. a software-based interpreter, while Python is a language
that is directly interpreted (Khoirom et al., 2020).

The purpose of this paper is to extend the existing studies in the Maven ecosystem done
by (Massacci et al., 2021) and npm ecosystem Anonymous (2022) to the PyPI ecosystem.
In comparison to npm and Java, Python is particularly interesting because of its target appli-
cations and its usage for data science and related fields. Furthermore, Python’s growing
popularity and the existence of dependency-related attacks in this ecosystem, including the
recent attack on PyTorch (Pernet, 2023) and other types of attack like typosquatting and
combosquatting (Vu et al., 2020), makes it an interesting target of analysis.

Further, previous studies on dependencies (Wang et al., 2020; Prana et al., 2021) did not
clearly distinguish between packages and versions during the analysis. We found that the
usage of package granularity better reflects what developers actually experience (you choose
a package first, and then a version) and therefore adopted this perspective.

RQ1: How is technical leverage distribution in the Python ecosystem?

To this extent, we analyzed the history of the top 600 packages in PyPI for a total of 21,205
different versions. We found that smaller Python packages (with less than equal to 100
KLOC) have higher statistically significant technical leverage than larger packages. Most
of the small package versions ship other people’s codes more than 6.88 times bigger than
their own code, while most of the big package versions ship other people’s codes around a
tenth of their own. From a technical perspective, in this work, we elected to use a statistical
method (Lachenbruch, 2022) hardly used in software engineering that takes into account the
presence of excess zeros so that we can deal uniformly with packages with no leverage and
package with large leverage.

While the previous work for Java (Massacci et al., 2021) focused more on static measures
with limited dynamic measures (only change direction analysis), we believe the dynamic
measures to understand how technical leverage evolves over time are also important. Hence
our next research question:

RQ2: How does the technical leverage metric change when we move to newer versions
in a package?
We regress the technical leverage of package versions and their succeeding version. Our
analysis shows that the technical leverage tends to stay stable through the package evolution,
in other words: if a package is highly leveraged, it will stay so.

@ Springer

Empirical Software Engineering (2023) 28:139 Page3of31 139

Another gap is the need of understanding the chance of getting a safe/vulnerable package
version when choosing a package. Most papers that analyze ecosystems typically focus on
reporting the ratio between vulnerable or not vulnerable versions (Alfadel etal.,2021; Bagmar
etal.,2021). Massacci et al. (2021) used the interquartile distribution of leverage of a package
vs. the number of vulnerabilities in the package to show the correlation, but they did not
actually estimate the individual probabilities. This calculation would be necessary as in real
life, developers are choosing a package first before choosing a package version (Pashchenko
et al., 2020; Derr et al., 2017; Kula et al., 2018). In several cases, as noted in Dashevskyi
et al. (2016), the choice of the package is not actually a choice as it is dictated by external
constraints and only the choice of the version (or whether to update to a new version) is
available.

So in this paper we propose to estimate the risk of adopting a vulnerable package as
opposed to the risk of choosing a version to propose a better estimation with a closed math-
ematical formula. We also compared this formula to bootstrapping simulations and found it
to be a statistically good approximation.

RQ3: Does technical leverage capture the risk of having vulnerabilities?

Glancing at the ecosystem, more than a quarter (26.5%) of our package version dataset is
vulnerable. Based on this information, one can have the impression that if developers pick
randomly 10 package versions, most likely 3 of them would be vulnerable. This percentage
would be the reported result if we were using the same method as previous works (Alfadel
et al., 2021; Wang et al., 2020). Yet this method can be inaccurate as its findings can be
dominated by a handful of packages with many vulnerable versions. If you do not choose
those packages you might actually be safe. We, therefore, propose a better estimation of what
developers actually experience. We also compute the probability of getting a safe package/
package version when choosing a package with a closed mathematical formula. We compared
this formula to bootstrapping simulations on the dataset and found it to be a statistically good
approximation. Then we found that the chance of getting a safe package version is actually
higher than the direct percentage of vulnerable versions: from 10 package versions, only 2
will be vulnerable (and only 1 for packages with no dependencies).

The rest of the paper is structured as follows: the next section §3 defines several termi-
nologies used in this work, including the notion of technical leverage from Massacci et al.
(2021). We then present our analysis procedure in §4 and in §5, we describe the data we used
in this analysis. The analysis results are presented and discussed in §6, §7, and §8. We then
elaborate on previous related works on dependencies and their impacts on software security,
large-scale analysis, and attack surface analysis on §10, followed by several threats to validity
of our work in §11. Finally, the last section §12 describes the conclusion and future works
of this research.

2 Motivating Example

Figure 1 illustrates a real use case that can happen in the Python ecosystem. As a developer,
you may want to adopt a boto3 as a dependency. It offers some useful functionality, there
is a version that seems compatible with your code (1.10.12), the package is considerably
small (only 3KLoC), and it has no vulnerability (Limited, 2023). Therefore, you decide to
adopt this version of bot o3, thinking that you only leverage on a small package and slightly
increase your uncontrollable risk.

@ Springer

139 Page4of31 Empirical Software Engineering (2023) 28:139

1-1 11 11 Lown Your own code
Your wWhat ‘/°“ tThink Your Your
Project > Project Project

. X Other people's code
+ you are doing AQ A A=365 Ldir | (directly ueed by you)

What you are

é Other people's code
trans (imported by other people)

REALLY Jo'mg

&

6
%
arlliby

L
AN

docutils

Adopting a “seemingly small” package of three (3) thousand lines of code can bring a hu-
mongous amount of dependency code to the project and increase significantly the ratio of
uncontrollable risk (the area of triangles is proportional to the corresponding code size).
The technical leverage of boto3 (A = 36.5x) captures in a single number this potential risk.
Here, the risk is actually realized by a vulnerability in the url1ib3 library.

Fig. 1 What developers think they are doing vs. What they are really doing

However, what actually happens when you adopt this package is that the package you
adopt depends on other packages. These dependencies may increase your uncontrollable risk
by some orders of magnitude. In this example, the added code base of 3KLoC is multiplied
by A = 36.5x. Further, one of the “hidden” (transitive) dependencies actually has a vulnera-
bility: package ur11ib3 with CVE-2021-33503 (NIST, 2023). These “hidden” vulnerable
dependencies and the increase of “unknown” uncontrollable risks motivate our empirical
research on how packages are dependent on each other in the Python ecosystem and how it
affects the security of the packages.

3 Terminology

In this paper, we use the terminology that is commonly utilized among the users of the Python
Package Index (PyPI). Several of these terms are also common to the Java environment, as
consolidated in Pashchenko et al. (2018):

— A package is a separately distributed software component. In the Python ecosystem, it
typically consists of several modules, standard code organization units for non-trivial
Python code. They are .py files containing a logically grouped set of classes or methods
and usually have a page in the Python Package Index (PyPI) Foundation (2022). For
a specific version of a package, i.e. boto3 version 1.22.3, we use the term: package
version.

— A dependency is a package version whose functionalities are used by another package
version (dependent version).

— A direct dependency (£4;,) is a specific group of dependencies, that is directly used in
the dependent package version.

@ Springer

Empirical Software Engineering (2023) 28:139 Page50f31 139

— Adependency tree is arepresentation that connects package versions (as nodes) with other
package versions through directed edges, which connect the dependency from dependent
package versions to their direct dependencies.

— A transitive dependency ({4r4n5) of a package version at a root of a dependency tree
includes all package versions in the tree that are connected to the root through a path
with more than one edge.

— A standard dependency (€5:4). As the Java ecosystem, Python packages also leverage
some functionalities from standard packages of the programming language. These func-
tionality dependencies are considered as the size of the baseline of programming language
packages. We do not consider them here as we are comparing packages in the same
ecosystem.

To measure the exposure to dependencies we use the Technical Leverage metric as intro-
duced by Massacci et al. (2021). Similar papers have used similar concepts such as Gkortzis
et al. (2021) on software reuse. We refer to the original paper for the discussion on the paral-
lel with finance and technical debt (Allman, 2012). We only introduce the minimal notation
that we use to make the paper self contained. To quantitatively measure the size of package
versions and their dependencies, we use the following metrics:

— Own code size (£yyy) as the number of lines of own code in all files of a package.

— Dependency code size (£4.p) as the number of lines of code in the dependencies. This
includes direct (€4;,), transitive (€;-4n5), and standard dependencies (£5;4).

— Total code size (£14141) as the sum of own code size and dependency code size.

As Massacci et al. (2021), in this work we also chose Lines of Code (LoC) as a measure
of code size as it is a simple metric that can be easy to understand and transferable to
different ecosystems. Other metrics may be exclusive to a specific language, e.g. the number
of pointers in C or objects in Java. Function points have also been used in the literature to
estimate effort (Huijgens et al., 2017) but computing them is a complex process and several
approximations have been proposed (Jorgensen et al., 2006). Most importantly, function
points are used to estimate the cost before the software has been built. After the software has
been built, which is our case, both old (Slaughter et al., 1998) and new research Banker
et al. (2021) in management science has shown that the number of LoCs is a good proxy for
financial outcomes. For example, Banker et al. (2021) has shown that using modified, not
compliant LoCs to measure technical debt has a strong correlation with a number of financial
indicators for firm performance.

To measure a package, we first download the package from PyPl usingpip download.
We are using the default of pip download which by default is using the most recent
stable version for dependency resolution unless it is explicitly told otherwise. The pack-
age should be downloaded with all its dependencies inside different folders. We then
consider all these other package folders as dependencies except the package’s main one
(named “<PACKAGE_NAME-PACKAGE_VERSION>"). After we separate the own and
dependency codes, we then iterate through . py files and apply python-loc-counter
package (Foundation, 2023d) to get the LoCs of the source code (not including comments
and blank lines).

To measure technical leverage, we need to identify ‘third-party’ code. The qualifier ‘third-
party’ is important as noted by Pashchenko et al. (2018): developers might have decided
to structure their own code in separate packages. They might be mistakenly counted as
other people’s code while in reality are developed within the same project and by the same
developers, hence, should be counted as their own code. In Maven, all < group >.* packages
should be counted as the same project, even though they are dependencies. This gives us a

@ Springer

139 Page6of 31 Empirical Software Engineering (2023) 28:139

technical means to easily assess direct vs transitive dependencies. However, assessing this is
much harder in Python. This possibility of counting first-party dependencies as third-party
ones is a potential threat to the validity of any analysis in Python so we also discuss it at length
in Section 11. For this work, we only handle the case that can be processed automatically
with close to no errors: a package version n depending on a previous version n — x of exactly
the same package. For this case, we remove the previous version of the same package from
the dependency list which consequently reduces the technical leverage.

Definition 1 The original technical leverage A of a library is the ratio between the size of
code imported from third-party libraries including the baseline of programming language
libraries £;4 and the own code size of the library:

_ Lair + Lirans + Lsta

van

A (1)

In this work, we omit the standard dependencies £;4 from the application of Definition 1.
The calculation of these standard dependencies only matters for comparing projects across
ecosystems, i.e. a single analysis putting together Java and Python and C projects. Since the
€514 1s the same for all packages running Python, this will just be a uniform constant shift
that does not require calculation. Besides, standard libraries are generally mature and rarely
contain vulnerabilities. Therefore, including standard libraries will not add any value to the
analysis besides making technical leverage look artificially bigger.

Definition 2 The size changes A{ are the size difference between two consecutive versions
(i and i + 1) of a package: Al is dependency size change and A/, is own size change.

i+1 ZX;‘ (2)

Definition 3 The change direction 6 characterizes the type of evolution of a library between
two consecutive versions.

Ay =1Ux

6 = arccos

Algep *{+1UA&W>O 3

NN —1 otherwise

own dep

Figure 2 from Massacci et al. (2021) also categorized the change direction (#) into four
main directions of a library evolution.

In addition to these definitions, we also use the difference of technical leverage to show
changes in dependence (to others code) from one package version to the next.

Definition 4 (NEW) The technical leverage differential A shows the dependency-own ratio
change between two package versions rg and ry :

Ak =y = g @)

When the technical leverage of a new package version (r1, the version to be adopted by
developers), is bigger than the older package version (rp), it says that developers become
exposed to others’ code instead of their own (AA > 0). On the other hand, if the difference is
negative (AA < 0), developers become more dependent on their own code instead of others’,
which lowers the ratio of uncontrollable risk in the software project.

While the amount of risk depends on the total amount of code, what we are interested in
here is the ratio of “uncontrollable” risk that comes from codes that are not our own wrt the
risk due to one’s own attack surface. If “both” internal and external code increase, the risk
does increase, but the “ratio” is the one that remains constant.

@ Springer

Empirical Software Engineering (2023) 28:139 Page70f31 139

/—- Dependency adopting 6 ~ 0°

B Y N N U ——— — Work mostly with own code

Work mostly with dependencies

——) Mostly Increasing code base

¢m=== Mostly Reducing code-base

‘

Fig.2 Change direction and developers’ behavior (Massacci et al., 2021)

4 Methodology and Analysis Procedure

In this section, we describe the methodology that we have used for the analysis of the dataset.

4.1 RQ1: Python ecosystem overview.

To answer RQ1, we want to determine whether there is a statistically different distributions
of leverages between small and large packages in terms of own size. Since there are many
package versions with no dependencies (A = 0), we use a statistical test by Lachenbruch
(2022), composed by two separated tests for zero and non-zero data. To the best of our
knowledge this is the first time that such a test has been used in mining software repositories
and we think it is also an innovative contribution of this paper.

Lachenbruch’s statistical test addresses the problem in statistical analysis for datasets with
excess zeroes. It combines a discrete point-mass variable (binomial test) for the zero part
and a continuous random variable (can be t-test, Wilcoxon test, Kolmogorov-Smirnov test,
or some other tests) for the rest. The idea is that the distribution of the packages belonging
to a class c is captured by the following formula:

fi0d) = [p)Z§ {(1 = przo)hi)] ®)

For our case, we have d = 1 for the case when package versions have dependencies (A > 0)
and d = 0 otherwise. p,—o is the probability of having no dependencies and h(}) is a
lognormal fit of the subset of the data which has dependency/ies (A > 0). To compare two
classes with this distribution we run two tests for A from (5) both whend = O andd = 1 where
the classes to compares are small libraries (i = 1) and big libraries (i = 2). Lachenbruch
(2022) has shown that we can use a binomial proportion test as the first part of the test (B)
and T-test for the second part (7"), which is then combined into a test that has a chi-square
distribution using (6).

X>=B>+T1? (6)

@ Springer

139 Page8of31 Empirical Software Engineering (2023) 28:139

4.2 RQ2: Technical leverage evolution across versions.

When analyzing the evolution of a package, we want to find out how similar two consecutive
versions are. For this purpose, we order the package versions by their release date. In rare
cases where there are any faulty intermediary versions for that we do not have the data, we
skip those faulty versions. We cannot use the preceding test as-is because it is a test for
difference between two classes. However, we can use the same idea of proving first the case
for package versions with no dependencies (A = 0) and the the case for package versions
with dependencies (A > 0).

The first test is therefore to determine if packages with no dependencies will remain so
and packages with dependencies will continue to use them rather than dropping them. These
scenarios generate a latin square with the two states of the present version (A = 0, A > 0)
and the two states of the next version, on which then we compute the Fisher Exact Test.
Regarding package versions with dependencies (A > 0), we regress the technical leverage
of package versions with the technical leverage of their succeeding package versions.

A further restriction would be to determine whether the generation of the next leverage
state is simply a Markov process: the leverage of the next state only depends on the previous
leverage state. To this extent, we can use the tests mentioned by Bickenbach et al. (2001).

4.3 RQ3:Technical leverage vs. vulnerabilities in Python.

Our focus here is the relation between technical leverage and security risk, measured by
the presence of security vulnerabilities. For each package version in our database, we count
the vulnerabilities based on the vulnerabilities published in Snyk (SnykDB, 2022) until
May 2022. When the data was gathered, Snyk was still publishing all vulnerabilities back
until 2013. The number of vulnerabilities considered in this work is the sum of the number
of direct vulnerabilities (vulnerabilities on the project itself) and indirect vulnerabilities
(vulnerabilities from dependencies). On self-introduced vulnerabilities (vulnerabilities that
are deliberately introduced by developers in their own code (Massacci et al., 2022)), we
consider them a relatively new phenomenon and they are so rare to make the news. It is
unclear how many of those kinds are actually present so we did not make this distinction.

The first step is to analyze the ecosystem considering the ensemble of all package versions
as usually reported in ecosystem empirical analysis (Alfadel etal.,2021; Bagmaretal., 2021).
This view is good to understand the view of the ecosystem in general. However, any analysis
based on versions will be biased by packages with many versions. Different packages from
different developers can have different ways of versioning: some generate minor patches for
areally small change, and some others only generate minor patches for a huge set of changes.

Let’s see an example of a small “ecosystem” with 3 packages: ansible, anyio, and
antlr4-python3-runtime. ansible has 158 versions, all of which are vulnerable
(0% safe). anyio has 40 versions and ant1r4-python3-runtime has 16 versions, all
of which are not vulnerable (100% safe). If we use package version granularity, we will get
56/214 = 26.17% are safe. However, this result is heavily influenced by ansible which
has 158 vulnerable versions. If we instead use package granularity, we have a package that
is 0% safe and two packages that are 100% safe. Therefore, if we take the average among
these three, we will get 0% + 100% + 100% = 200%; 200%/3 = 66.67%, which is much
higher than the previous result with package version granularity.

Another reason to use package granularity instead of package version is that it reflects bet-
ter how developers are choosing dependency on the real-life development process Dashevskyi

@ Springer

Empirical Software Engineering (2023) 28:139 Page9of31 139

et al. (2016). A survey by Derr et al. (2017) on Android developers shows that most of them
use search engines to search for libraries. Therefore, it is intuitive that they will pick first a
library (or in this paper, we use the terminology a package), then a version of it. Other inter-
views with developers by Pashchenko et al. (2020) mentioned that developers rely more on
high-level information to select a package than on the package’s source code. This shows us
that developers are not directly choosing a package version. They first choose a package, and
then choose one version of it. Therefore, we want to observe a broader view from packages
(coarser granularity), specifically to know whether a group of packages with a given average
technical leverage is statistically more prone to being vulnerable than another.

To accomplish this observation, we conducted two steps: (1) mathematical probability
calculation and (2) simulations. Before conducting these two steps, we cluster the packages
into three clusters based on their average technical leverage:

— No dependencies (A = 0)
— Below the industry average (0 < A < 4)
— Above the industry average (A > 4)

The choice of A = 4 as the boundary for group division is based on the reported value 400%
for the industry average from BlackDuck (Pittenger et al., 2016). To statistically test the
differences among these clusters, we compute a Chi-square contingency test on the number
of packages with/ without vulnerabilities in these three groups.

4.3.1 Probability of selecting an unsafe version

At first, we need to calculate from the data the probability that a package with a given technical
leverage is vulnerable and then whether the such probability is actually significantly different
among the distinct technical leverage clusters.

To calculate the probability of getting a safe package version with a given average technical
leverage we identified three conditions as described in the first part of Table 1. The variables
we used are then described in the second part of the same table.

At first, we compute the probability that a package will be totally safe: no version of the
package has ever had a vulnerability and, if past is prologue, will be unlikely to have one.

Ny=0,A=x
Np—y

The next case is picking a vulnerable version of a package. Unfortunately, one cannot
simply gather all package versions belonging to a package with a given leverage and calcu-
lating the number of safe versions over the total number of package versions, as this can be
biased by a big package with many package versions.

So we estimate the probability by multiplying the probability of a package being chosen
and the sum of the probabilities of getting a safe version in each package. As a first approx-
imation, which we will refine later in the paper, we assume that the probability of a package
being chosen in the first place is the same across different packages.

Pr[safe pkg|A] = @)

1 vi
» o L ‘ - 8
r[safe vers|\] Nach Zpackagel < ni) ®
AE[2i jli] = A

Finally, instead of assuming that the probability of a package being chosen is always
the same, we use the downloads of the packages as a reference (from van Kemenade et al.

@ Springer

139 Page 10 0f 31 Empirical Software Engineering (2023) 28:139

Table 1 Variables for the Estimation of Vulnerabilities

Probability variable Description

Pr [safe pkgl)\] Probability that a package with a given average leverage will have no vul-
nerable version

Pr [safe vers\k] Probability that one will get a version with no vulnerabilities for a package
with given average leverage

Pr [safe vers downll)»] Probability that one will get a version with no vulnerabilities for a package
with given average leverage taking into account the popularity (number of
downloads) of the package

Variable Description

Aij Technical leverage of individual version j of package i

E[x; li] Average leverage of versions j for package i

di.j If version j of package i is vulnerable and zero otherwise

n; Number of version j of package i

v; Number of vulnerable versions j for package i

d; Number of downloads of package i

Ny—o Number of packages i where v; =0

Npa=) Number of packages i where X is the average of leverage across versions
E[; jlil=A

Ny—0,A=1 Number of packages i where where v; = 0 and E[A; ;|i] = A

Dpa=) Number of downloads of all packages i where A is the average of leverage

across versions E[2; ;|i] =2

Ntot Total number of package under observation

(2022) v. August 4 th 2022). We use the number of downloads as it gives the view of how
many people are using the package, assuming that the more people using a package, the
more interested attackers are in exploiting the package. Pashchenko et al. (2020) shows that
developers most likely look directly at PyPI to determine which package to download, as
well as mentioned in other studies (Derr et al., 2017; Kula et al., 2018).

1 vi
P downl|A] = —— ;i\ 1~ ?
r[safe vers downl|A] D, Zpackagel ; ni) ©
AE[Ai jli] = &

At this point, we want to know the difference in the probabilities of getting a safe version
among the three groups that we have identified (A = 0,0 < A < 4, A > 4). To this extent, as
we can not assume that the probability distribution would be Gaussian, we run the Kruskal-
Wallis test (one-way ANOVA on ranks). To account for the multiplicity of downloads, for
each “sample” (package) in the three groups, the probability of the corresponding sample
(1 -) was replicated for its number of downloads (d;). We then have 3 lists of values: a
list of probabllltles that a package is safe for A = 0, a list of probabilities that a package is
safe if A is between zero and four, and a list for the remaining packages. On these lists we
ran a Kruskal-Wallis test to determine if there is a statistically significant difference between
them.

The formula in (8) ignores the popularity of packages (assuming all packages are being
equally used by developers) and (9) considers it, assuming more popular packages will be
subject to more intense scrutiny. The first formula ignores the fact that security researchers

@ Springer

Empirical Software Engineering (2023) 28:139 Page 110f31 139

are unlikely to obtain fame for the discovery of a vulnerability in packages nobody uses.
Therefore a package might not have known vulnerabilities for the simple reason that nobody
looked at it. The second equation emphasizes it. We keep both formulas to cover both sides
of the spectrum.

4.3.2 Simulation

To see whether our equations reflect what developers will actually get, we ran simulations
to simulate how developers choose a package version. First, we ran a simulation where all
packages have the same probability of being chosen, and then we ran a second simulation
where the probability of being selected is proportional to the number of downloads. The
algorithm of the simulation is shown in Algorithm 1. The weighted random function we use
to get the weighted probability is then shown in Algorithm 2.

Algorithm 1 Simulation of developers choosing random package version.

input : List of package versions with technical leverage and number of vulnerabilities (data)
input : Category of observation (cat)
input : Dictionary of packages and their downloads count (downloads_dict) opt.
input : Number of trials (trials) opt.
output : Mean (mean) and standard deviation (stdev) of the simulation
1 packages < getAllPackagesInCategory(data,cat) // Get the list of all
packages in the cat
2 sample < length(packages) // Default sample size is the number of
packages in the cat
if isNone(trials) then trials <— 10000 // Default trials to be done

5

trial_results <[] // Initialise result list
for j|j € [0, trials) do

NN e W

// Do sampling
8 count_safe <~ 0 // Initialise counter
9 for i|i € [0, sample) do
10 chosen_pkg < random(packages) // Randomly select a package
11 if not is None(downloads_dict) then
// Do weighted random if the list of downloads is given
12 chosen_pkg < weighted Random (packages, downloads_dict)
13 data_pkg < getAllversions(data, chosen_pkg) // Get all versions of the
chosen package
14 chosen_inst < random(data_pkg) // Randomly select an version
15 if not isVuln(chosen_inst) then
// Add the counter if chosen version is not vulnerable
16 count_safe < count_safe+ 1
17 prob < count_safe/sample // Calculate probability
18 trial_results.add Element(prob) // Add trial result to list

19 mean < getMean(trial_results) // Calculate mean of trial results
20 stdev < getStdDev(trial_results) // Calculate std. dev. of trial results

We ran both simulations for the 3 groups of package’s technical leverage we defined
earlier, each with 10,000 trials, and the number of samples is the number of packages in each
group. We then check whether the results of the formula are inside the confidence interval of
the simulations in Subsection 4.3.2 to see whether the formula reflects the simulation result.

@ Springer

139 Page 12 0of 31 Empirical Software Engineering (2023) 28:139

We also want to understand the difference between using the downloads in calculation vs.
assuming all packages have the same probability of being chosen. For this reason, we run a
Chi-square contingency test on the number of safe versions we got from normal vs. weighted
simulation (Subsection 4.3.2) for the 3 groups of technical leverage.

Algorithm 2 Weighted random using downloads data.

input : Dictionary of packages and their downloads count (downloads_dict)
input : List of all packages in a specific category (packages)
output : Weighted randomized chosen package (chosen_package)

1 Function weighted Random(packages, downloads_dict) :
2 cumulative_weight <— {} // Initialise cumulative weight dictionary
3 total < 0 // Initialise cumulative counter
4 forall pkg € packages do
// Iterate packages
5 total < total + downloads_dict[pkg] // Add to cumulative counter
6 cumulative_weight.add Element (total, pkg) // Add {total: package} to
dictionary
7 random_num <— random(1, cumulative_weight.getLastKey()) // Randomly select
a number
8 forall e/mt € cumulative_weight do
// Iterate cumulative_weight, continue while
random_num > elmt.key()
9 if random_num < elmt.key() then
// Return the package name if found
10 return elmt.value()

5 Data Selection

We analyzed the top 600 Python packages by van Kemenade et al. (2022) (v. May 2022)
which resulted in 21,205 package versions in PyPI (Foundation, 2022) from 482 different
packages. Half of the packages have at least 24 package versions, with a maximum of 1438
package versions in one package. While the maximum of own size (/) and dependency
size (I4ep) are around the same number, the median of dependency size is twice the own size.
Regarding the dependency adoption, 61.63% package versions in our dataset have at least
one dependency, and the rest (38.37%) have no dependency (Table 2).

6 RQ1: Python ecosystem overview

6.1 Technical Leverage

The distribution of technical leverage in the Python ecosystem is shown in Fig. 3. We catego-
rized the package versions into two categories based on their own size (/,y,,): small package

versions with /,,,, < 100K LOC and big package versions with /,,, > 100K LOC. The
details on categorized package versions in our data selection are shown in Table 3, which

@ Springer

Empirical Software Engineering (2023) 28:139 Page 130f31 139

Table 2 Descriptive Statistics of Python Dataset

mean st.dev min Q25% median Q75% max
#Pkg. version 43.99 108.85 1 11 24 44 1438
lown (KLOC) 27.81 113.75 0.02 1.83 5.98 20.31 2442.05
Idep (KLOC) 51.22 78.19 0 0 8.66 88.94 1337.10

This statistical data is inferred from 21,205 package versions of the top 482 Python packages (already con-
sidering transitive dependencies). Most Python packages have less than 50 versions, but the maximum can
reach more than 1400 versions. Regarding dependencies, most Python packages depend on other people’s
code twice as big as their own

shows that 95.46% package versions in our data are small package versions, while the rest
are considered big (4.54%).

Exploiting the nature of Python package manager (pip), we have already considered tran-
sitive dependencies in our calculations, which was not accounted for in the previous work in
Java (Massacci et al., 2021). A third of big package versions (33.68%) has no dependencies
(A = 0), which is similar also to small package versions (38.60%).

Over half of the small package versions rely on a 6 times bigger code base as dependencies
(Mmediang,y; = 6-88). This number drops to 0.13 (Aediany,) in big package versions (own
size [y, greater than 100 KLOC). In other words, the total dependency size in 50% of bigger
package versions is a tenth of their own code base. This drop of technical leverage as the

80001 L3 m Small (<= 100 KLOCs)

m=m Big (> 100 KLOCs)
7000 A

6000
5000 A

4000

#Package version

3000 A
2402

2000 - 1954

1000 A
570

0 0 .o 3.0

25 27 29 inf

Technical Leverage

Small package versions has own size (lown) < 100 KLOC, while big package versions
have own size (lown) > 100 KLOC. We clustered the package versions into buckets
of technical leverage along an exponential scale: (2'~!, 2%). Both for small and big
package versions, a third of them have no dependencies (A = 0). More than half of the
big package versions have technical leverage between 0 and 1, and none of them has
technical leverage of more than 8.

Fig.3 Overview of technical leverage metrics in Python ecosystem

@ Springer

139 Page 14 of 31 Empirical Software Engineering (2023) 28:139

Table 3 Statistics on small vs. big package versions

Small package versions mean st.dev min Q25% median Q75% max

A =0 (7813 versions)

lown 9.75 17.26 0.02 0.87 3.07 10.90 99.50

A > 0 (12,430 versions)

A 29.94 90.23 0.004 1.22 6.88 27.62 2037.68
lown 15.00 16.88 0.02 2.76 7.72 20.81 99.71
ldep 82.33 85.62 0.03 17.40 59.84 128.50 133.71
Big package versions mean st.dev min Q25% median Q75% max

A = 0 (324 versions)

lown 158.47 39.34 100.98 131.20 149.89 183.51 248.79
A > 0 (638 package versions)

A 0.50 0.62 0.006 0.03 0.13 0.94 2.64
lown 432.09 491.01 100.07 162.13 228.85 33543 2442.05
ldep 98.52 76.52 1.73 7.37 99.47 156.47 332.98

This table compares small and large packages for their leverage and lines of codes, measured in KLOC -
thousands of lines of code. Small package versions are package versions with /yy, < 100K LOC, while big
package versions have /), > 100K L OC. Most small package versions (more than half) ship other people’s
code more than 6 times bigger than their own code. For big package versions, most package versions ship
dependencies ten times smaller than their own codes

size increases is in line with the negative Pearson correlation mentioned by Massacci et al.
(2021), which also can be observed in Fig. 4 in which the distributions of technical leverage
have the trend from top-left to bottom-right.

To understand whether our grouping of small and big package versions makes sense, we
use the two-part (Lachenbruch, 2022) test as mentioned in Section 4.1. The results of our
calculation are shown in Table 4. From these results, we reject the Hy that both small and
big package versions have the same distribution. Small and big packages appear to have

Small package versions : Big package versions
(<= 100KLoCs) ! (> 100KLoCs)
-—

(big versions median)

Technical leverage (log-scale)

10! 102 10 10* 105 10° 10
Own size (log-scale), LoCs
For small package versions, only less than 13% of the code they ship are actually their
own (correspond to the technical leverage median 6.88), while for big package versions, the
proportion is higher (technical leverage median = 0.13).

Fig.4 Technical leverage in comparison to the own size of a library

@ Springer

Empirical Software Engineering (2023) 28:139 Page 150f31 139

Table 4 Two-part test in comparing small vs. big package versions distributions regarding technical leverage

Var Calculation Result
r1 P[L=0|lown < 100, 000] 0.3860
P2 P[x =0 loyn > 100, 000] 0.3368
h1(A) Fit lognormal on small package versions with n=1.6938,0 =2.0179
dependencies
ho (X)) Fit lognormal on big package versions with n=—2.3823,0 =2.6131
dependencies
7 =3.0636
B Binomial proportion test p = 0.0022
t = 60.2953
T T-test of the lognormal means p~0
dof =2
p~0
x2 Result of the two-part test X2 =3644.9101

The two-part test was done to understand whether it makes sense to divide the ecosystem data into small and
big packages or not. The result of the test shows a significant difference between the two groups (p-values
< 0.05) which implies that the grouping does make sense

different tendencies. The distinction into two categories does make (statistical) sense for
what concerns technical leverage.

6.2 Change direction

In addition to technical leverage, we also observe the change direction metrics () through
the Kernel Density Estimation (KDE) plot in Fig. 5. This figure shows that developers of
small package versions (Fig. 5a) tend to add codes into their own code base (the peak at 90°)
more than adding dependencies (the other peak at 0°). The second peak is at 0° followed
by 270° which shows that developers of small packages in Python tend to change (either
add or reduce) their own code. Regarding big package versions, developers of bigger Python
package versions (Fig. 5b) tend to add more codes into their own code base as shown by the
peak at 90°.

Own size <= 100KLOCs Own size > 100KLOCs
0.025 0.025
0.020 0.020
> 0.015 > 0015
@ @
c c
© @
0 0010 QO 0010
0.005 0.005
0.000 0.000
0 50 100 150 200 250 300 0 50 100 150 200 250 300
0 (degrees) 8 (degrees)

Large packages have a large peak at 90°showing that their developers tend to add own code.
Small packages have two peaks: they add their own code (90°) but also add noticeably more
code from dependencies (0°).

Fig.5 KDE:s of change direction for small and big package versions

@ Springer

139 Page 16 of 31 Empirical Software Engineering (2023) 28:139

Main finding for RQ1:
As in Java, Python developers also tend to ship other people’s code, but with a tendency
to increase their own code base.

7 RQ2: Technical leverage evolution across versions

The changes of technical leverage (1) between two consecutive package versions are shown in
Table 6. We sort the package versions using the release dates of the package versions. Table 6
shows the changes in technical leverage over the data we collected, grouped by powers-of-two
intervals. The data show us that A is very stable, as most of the time a release version stays
in the same technical leverage group as its predecessor. The table shows the pattern on the
diagonal from the upper-left to the bottom-right (95.48%). Regarding adding vs. reducing
dependencies, the proportion of package versions that reduce dependencies appears to be
more than the package versions that add dependencies, but it is still small (2.79% vs. 1.73%).
These technical leverage changes are summarized in Table 5.

Fisher-exact test on this contingency table returns p-value nearly 0, which shows that the
stability of technical leverage across versions is statistically significant. In other words, if
one does not adopt any dependencies, they are most likely to stay so. On the other hand, if
they already adopted several dependencies, they will keep leveraging on those dependencies
instead of dropping them altogether.

Other than the diagonal pattern where the technical leverage does not change, most changes
only happen to the preceding or succeeding interval (3.03%), while a jump of technical
leverage (from really small to really big and vice versa) is rarer (1.49%). To explain these
rare jumps, we take three examples (highlighted in Table 6):

1. kiwisolver (*) moves from leveraging on a huge zamount of code from depen-
dencies (v1.1.0: £4., = 52.97 KLOC, A > 256) to not adopting dependencies at all
(v1.2.0: » = 0). In this example, the previous version (1.1.0) adopts a huge depen-
dency: setuptools-61.2.0 (52.97 KLOC, 2.5 MB (Foundation, 2022)) which
makes A > 256 and in the next version (1.2.0) the developers decided to remove this
dependency and not replacing it with any other packages.

2. python-swiftclient (f) moves from leveraging on big dependencies codebase
(vL.7.0: £4.p = 141.85 KLOC, 64 < A < 128) to reduce such dependency drastically
(v2.1.0: £4ep = 3.15 KLOC, 1 < A < 2). In this example, the previous version (1.7.0)
has three dependencies but in the next version, the developers decided to remove one
dependency pbr-0.11.1 which consequently also dropped its transitive dependency:
pip-22.0.4 which in total reduce the size of dependencies significantly. They also
(slightly) increase the size of their own code, which reduces A quite significantly.

Table 5 Current vs. Next

L, . Current Next
package version’s technical =0 x>0
leverage
A=0 7759 130
A>0 91 12,743

We divided our data into two categories: no dependencies (A = 0) and
have dependencies (A > 0). Most of the package version transitions
(99%) do not change the state of the package based on dependency
adoption

@ Springer

Empirical Software Engineering (2023) 28:139 Page 17 0of31 139

Table 6 Technical leverage changes from one package version to the next

)»currenl)»next

0 0,11 (1,2] (2,4] (4,8] (8,16] (16,32] (32,64] (64, 128] (128,256] (256, 0]
0 7759 54 10 12 19 12 5 9 4 2% 3
0, 1] 35 2748 32 9 6 1 2 1 2
(1,2] 6 49 1723 13 14 1 1
(2,4] 10 10 30 701 23 4 2 2 1
4, 8] 11 6 20 52 2401 26 4 2 1
(8, 16] 11 2 5 6 62 985 14 5 2 1
(16,32] 4 1 2 4 52 1185 16 7
(32,64] 6 10 45 1333 10 4 1
(64,128] 1 2t 1 1 3 6 44 432 12
(128,256] 5 9 32 286 5
(256,00) 2% 3 1 1 1 1 2 22 234

We clustered the package versions based on their technical leverage with the power of 2. Most package versions
(95.48%) stay in their state, as shown by the pattern from top-left to bottom-right. We also give an example
for each rare jump case (cells with symbol) in the text of Section 7

3. lockfile (1) moves from not adopting dependencies at all (v0.10.2, A = 0) to leverage
on a big amount of code from dependencies (v0.11.0: £4,, = 138.71 KLOC, 128 < A <
256). In this example, the previous version does not adopt any dependencies, but the next
version adopts a new dependency called pbr which brings also another dependency:
pip. Apparently both packages in total add 138,705 lines of code to the project and the
increase of the own code is really small compared to this.

Next technical leverage (A)

8 e=
« original data oo
—— fitted line y = 0.0036 + 0.9850x
6 .
4
2 .
0
_2 —
Slope = 0.9850
. " 5 . Intercept = 0.0036
-4 R —squared= 0.9751
S Std. error =0.0000
p — value=0.0000
-6
-6 -4 -2 0 2 4 6 8

Current technical leverage (A)

All axis are using a log scale. Current package versions for all data points in this regression
have dependency /ies (A > 0). The regression shows that the next package versions’ technical
leverage has strong relations with their preceding package versions’.

Fig.6 Regression of the technical leverage between two consecutive package versions

@ Springer

139 Page 18 of 31 Empirical Software Engineering (2023) 28:139

The regression of package versions with dependencies is shown in Fig. 6. The regression
returns a very low p-value (p — value ~ 0) and high R-squared (R? = 97.51%) which shows
that technical leverage has a high tendency to be stable across versions. The tests to find out
whether this relation is a Markov process result on low x2 values and high p-value so we
cannot conclude that this relation is a Markov process.

After analyzing two consecutive package versions, we want to observe the entire evolu-
tion of technical leverages in different packages. For this reason, we use the notion of A\
(Equation 4). We show how AA evolves through package versions (versions) for all packages
in our dataset in Fig. 7a, where each line depicts a single package. In this figure, there are
some peaks of AA in the positive (> 0) side (i.e. adopting dependencies or reducing own

2000

1500

1000

500

-500

-1000

Delta technical leverage (AA)

-1500

-2000

0 20 40 60 80 100
Package version count

One line depicts the evolution of the delta lambda of an individual package. This figure is
misleading as only some packages have big transitions among their first few versions (the
peaks on the left part of the first graph), but they become stable as they grow (tend to
have really small changes between two consecutive changes). The lower figure provides the
correct illustration.

(a) Individual trajectories over time.

450
5 211 ¢
Q -
o
g > 00,8
[
ﬂ 27 S dmatlie i iamie 350 2
S s)
&) ..
5 - 300 £
? 23 000000 00 0 e . @@:c0s 1080 1 e te 8 s+ s+ s s 88 cce@ce® sess ses g
g 2 c000.000000000000000000000 00000 250
L A
3 0
3 1 200§
£ -2
£ 150 o
g -2)
£ s 100 £
[} Q
a @
=27 50 %

0 2 40 60 80 100
Package version count

The size of the bubbles is proportional to the number of packages with AX in the bucket
(29=1,279) at their i version. The big bubbles are cluttered in the bucket with 0 delta
technical leverage, which shows that most of the packages stay in their state and the peaks
in the previous graph only resemble a minority of packages.

(b) Global distribution of trajectories over time.

Fig.7 Evolution of technical leverage changes (AX) in 100 first versions across packages

@ Springer

Empirical Software Engineering (2023) 28:139 Page 190f31 139

code size) and the negative (< 0 side) (i.e. reducing dependencies or adding own code size).
These peaks are observed to be really high/low in the first 20 versions of a package. This
figure is actually misleading and we show precisely to illustrate our point that few outliers
may give a wrong impression.

However, in accordance with the previous result, we displayed in Table 6, technical lever-
age mostly does not change between package versions: most of the A are 0. The flattening
of the lines in Fig. 7a shows that this phenomenon is even more prevalent as the package
becomes more mature (high number of package versions. Nevertheless, we cannot observe
its prevalence for early package versions in Fig. 7a as the lines are too cluttered. Therefore,
we display Fig. 7b where the size of the bubbles depict the number of packages with AX in a
specific group at their specific i’ version. This figure clearly shows that even for the earlier
package versions, the phenomenon of stable technical leverage is also prevalent. The size of
the bubbles gets smaller when the number of package versions are getting bigger because the
number of packages with more than equal to that number of package versions is also getting
smaller, as shown by the red line in Fig. 7b.

Main findings for RQ2:
The technical leverage tends to stay stable through the package evolution in the Python
ecosystem. If you are highly leveraged, you will stay so.

8 RQ3: Technical leverage vs. vulnerabilities in Python
8.1 A finer granularity: from the view of package versions

Table 7 shows a view of the ecosystem when each version is considered an independent unit.
The number of vulnerabilities is always higher in package versions with dependencies (. > 0)
than in package versions without dependencies. This observation holds true for both small
and big package versions. We argue that this happens because technical leverage captures
the interplay of risk due to indirect vulnerabilities. Consider two packages A and B that both
have some (different) dependencies. Supposed package A contains 1 direct vulnerability and
9 indirect vulnerabilities, whereas package B contains 9 direct vulnerabilities and 1 indirect
vulnerability. Then intuitively, we would say that package A and package B suffer differently
from their vulnerable dependencies. If technical leverage would not be related to the presence
of indirect vulnerabilities, we would expect cases similar to A and cases similar to B to occur
with roughly the same frequency for a given value of technical leverage. However, this is
not the case. As you can see from the table, where . = 0, the bigger package versions (own
code > 100 KLOC) also have more vulnerabilities than the smaller ones because they have
bigger code bases.

We also show the boxplots of the number of vulnerabilities vs. own size (for A = 0) and
technical leverage (for A > 0) in Fig. 8 (small package versions) and Fig. 9 (big package
versions). For small package versions (Fig. 8) when the number of vulnerabilities is high, both
own size (for package versions without dependencies) and technical leverage (for package
versions with dependencies) tend to be higher than the median. On the other hand, for big
package versions, Fig. 9a shows no significant correlation between the own size and the
number of vulnerabilities in package versions without dependencies. On the other hand,

@ Springer

139 Page 20 of 31 Empirical Software Engineering (2023) 28:139

Table 7 Statistics on small vs. big package versions regarding vulnerabilities

Small package versions mean st.dev min Q25% median Q75% max
#Vuln. (A = 0) 0.47 242 0 0 0 0 52
#Vuln. (» > 0) 0.82 1.71 0 0 0 1 11
of which #Direct 0.19 0.63 0 0 0 0 [§

of which #Indirect 0.63 1.56 0 0 0 0 11
Big package versions mean st.dev min Q25% median Q75% max
#Vuln. (A = 0) 11.59 15.33 0 1 1 22 53
#Vuln. when A > 0 6.22 9.21 0 0 0 11 37
of which #Direct 6.17 9.24 0 0 0 11 37
of which #Indirect 0.05 0.43 0 0 0 0 4

Small package versions are package versions with /,,; < 100 KLOC, while big package versions have lyyn
> 100 KLOC. The proportion of vulnerable package versions is higher in the big package version group,
especially big package versions with dependencies (more than half of them have at least one vulnerability,
including vulnerability in the dependencies). By #Direct vulnerabilities we mean the vulnerabilities that
occurred in the project’s own code and by #Indirect vulnerabilities we mean the vulnerabilities that occurred
in the project’s dependencies

Fig. 9b shows that when the number of vulnerabilities gets really high (>27), technical
leverage tends to be higher than the median.

Glancing at the ecosystem, taking the number of safe package versions over the number
of package versions available, the chances of picking a safe package version are shown in
Table 8. This table shows that the chance of getting a safe package version seems to decrease
when the technical leverage increases. However, this is a misleading view because it can be
biased by packages with a lot of versions as we mentioned in Subsection 4.3. Therefore, in

10° 10
@ e 9

10° ° o =0 = 8 10 8
) L8 o = g) 102 3 (]
SR ‘ 5 L 0 o (=) =
9 10 } "H["]‘ =) T 4 g Median A
g ’IH L T o 10 L 8 g °© = Python=688
8103" ’ o i —— _ Adava=4
Q 1 1 9 o U E 8 gMassacci&Pashchenko,2021)
| . ()]
5 7 ‘ I

10 1 : B
E J Median S 101 ;
(@) lown = 3.1KLoCs ‘& 8

10 é 102 | 1

[~ Tk
10° 102
01 23 4656 7 8 385 0 1 2 3 4 5 6 7 9 10 1
Number of vulnerabilities Number of vulnerabilities
(a) lown vs. v; when A =0 (b) X vs. v; when A >0

For package versions without dependencies (A = 0), when the number of vulnerabilities is
considerably high (>6), the own size is higher than 10KLOC. A similar phenomenon for
package versions with dependencies (A > 0), when the number of vulnerabilities is high,
technical leverages are also higher than the median A = 6.8.

Fig.8 Vulnerabilities in small package versions (lpy, < 100K LOC)

@ Springer

Empirical Software Engineering (2023) 28:139 Page210f31 139

10°
O}
g n
? 15 TV E T P9 T TS Tab et o Median lown = 149.9KL0Cs
o)) e ° ° === = - = = = = - S T
S 1 8o SIS S
[
N
@
c
=
0
10*

0 1 3 4 5131516 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 35 36 38 41 42 43 44 45 48 49 50 52 53
Number of vulnerabilities

(a) lown; vs. v; when \; =0

D 10°
8
? 10¢
=)
L 10 la <
o
D 10 3 ! °
g I @ I oo Median A Python= 6.60
g 10! ;‘: : - ! 8 P -
@ i
= 8] ! LI A Java = 4 (Massacci&Pashchenko,2021)
g8 L
Q o =~ O = - S e | g
€ 101 g‘oo"[:' o fog__0 Yoo
5 ‘_ goo e Ll oL
w2 | |4 |
103

01 2345 6 7 8 910111213141516 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Number of vulnerabilities

(b) A; vs. v; when A; >0

For package versions without dependencies (A = 0), there is no significant correlation
between own size and the number of vulnerabilities. However, for package versions with
dependencies (A > 0), when the number of vulnerabilities is really high (>27), technical
leverage tends to be higher than the median A = 0.13.

Fig.9 Vulnerabilities in big package versions (I, > 100K LOC)

the next subsection, we observe the ecosystem in a different way with a coarser granularity
(package instead of package version) to avoid this bias.

8.2 A coarser granularity: from the view of packages

We clustered the packages as we defined in Subsection 4, and we run a Chi-square contingency
test on the number of packages with/ without vulnerabilities in these three groups (third and
fourth column in Table 9). The result returns ¥ = 12.08 with p-value = 0.0024 and degree of
freedom = 2. In the “no dependencies” group, the number of packages with vulnerability/ies

@ Springer

139 Page22of 31 Empirical Software Engineering (2023) 28:139

Table 8 The security of the . #Safe.vers
ecosystem from the view of A #Versions #Safe #Versions
k ions
package versions 0 8137 6416 78.85%
(0, 4] 5539 3982 71.89%
(4, inf) 7529 5190 68.93%

The chances to get a vulnerable package version seems to be higher
when technical leverage increase. However, this observation is mislead-
ing because it can be dominated by packages with a lot of versions

is less than average. In the second group (“below industry average”), the number of packages
with vulnerability/ies is more than average. Intuitively, when a package depends on more
dependency (higher technical leverage), the more likely it is to have more vulnerabilities.
Unexpectedly, the third group, which contains packages with the largest technical leverage
(above the industry average), has a lower number of packages with vulnerability (around the
average) compared to the second group (technical leverage below the industry average).

We then applied the formulas we defined in Section 4 to get the probability values. The
results are shown in Table 9. The probabilities of choosing a package with no vulnerabilities
at all are high for all technical leverage buckets. It does seem higher for packages with no
dependencies (A = 0). The probability of getting a safe version reaches 89.41% for packages
with no dependencies. On the other hand for packages with dependencies, the probability of
getting a safe package version happens to be higher when the package is heavily leveraged.

However, the trend slightly changes when we take into account the number of downloads.
In this calculation, the probability of getting a safe version for packages with no dependencies
(A = 0) is lower than for packages that are heavily leveraged (A > 4). Comparing the
calculation/simulation with and without “download” consideration, the chances of getting
a safe package version when choosing a package are actually lower when developers use
package popularity (downloads) in consideration.

The Kruskal-Wallis test on the probabilities of getting a safe package version in the 3
different groups of package’s technical leverage (taking downloads into account) gives us
statistic value = 10.71 and p-value = 0.0047.

We also ran our simulations as mentioned in Subsection 4.3.2 to see whether the formulas
reflect the result developers will actually get. The results of our simulations are shown in
Table 10. The mean of the simulations is very close to the value we got from the equations.
After the simulations, we ran a Chi-square contingency test on the number of safe versions

Table 9 Probability of being safe

E[% jlil Na=x Nv=0,A=». Nvsoa=r Prlsafepkgl Prlsafevers] Pr[safeversdownl]

0 197 169 28 85.79% 89.41% 78.60%
(0,4] 122 85 38 69.67% 81.01% 77.05%
(4, 00) 163 126 37 77.30% 89.91% 81.65%

We grouped the packages based on their average technical leverage. The calculation of our formula shows
that the probabilities of getting a safe package version are actually higher than just reporting the percentage
of vulnerable package versions: from 10 package versions, more than 8 are most likely to be entirely safe (i.e.
no vulnerability at all)

@ Springer

Empirical Software Engineering (2023) 28:139 Page230f31 139

Table 10 Simulation results: Probability of getting a safe package version when choosing a package

safe vers

downl] Weighted Simulation

E[}; j1i] #Vers Pr[f}Z{ Se] Simulation d; Pr

mean sdev conf.interval mean sdev mean sdev conf.interval

0 5088 89.4% 89.4% 2.2% (85%, 93%) 22.9 33.3 78.6% 78.6% 2.9% (73%, 84%)
(0, 4] 7360 81.0% 81.0% 3.6% (74%, 88%) 28.8 38.8 77.1% 77.0% 3.8% (70%, 84%)
(4,inf] 8757 89.9% 90.0% 2.4% (85%, 94%) 20.6 41.2 81.7% 81.7% 3.0% (75%, 87%)

For each group of E[4; ;|i], we ran 10,000 trials with #Pkg. sample each. Downloads d; are in millions

from normal vs. weighted simulation for the 3 groups of technical leverage. It returns x =
12.77 and p-value =0.0017. This result shows that the number of downloads has a statistically
significant effect on the probability of getting a safe version. The results of the formula always
fall inside the 95% confidence interval of the simulation result, which shows that the formula
reflects what developers will most probably get in real-life dependency adoption.

Main finding for RQ3:
Package granularity portrays a different picture of the ecosystem.

The chance of getting a safe package version when choosing a package is higher than the
chance that would be reported when just calculating the percentage of vulnerable package
versions in the ecosystem.

9 Implications of the Findings
Table 11 summarize the implications for developers and researchers matched with the main

findings from each research question. We discussed them in more detail in the following
subsections.

Table 11 Summary of Findings and Implications

RQ Main Finding Implication for Research and Practice

RQI AsinJava, Python developers also tend to ship ~ Understanding what else will come along when a
other people’s code, but with a tendency to package is adopted is key to assessing its level
increase their own code base. of uncontrollable risk.

RQ2 The technical leverage tends to stay stable Once a package has been adopted, the level of
through the package evolution in the Python uncontrollable risk is unlikely to change over
ecosystem. If you are highly leveraged, you time (this is good news or bad news if that risk
will stay so. was consciously or implicitly accepted)

RQ3 The chance of getting a safe library when Making statistics based on versions is good for

choosing a package is higher than the chance
that would be reported when calculating the
percentage of vulnerable package versions in

the ecosystem.

claiming to have done a ‘large case study’ but
is not representative of the reality on the field.

Life can be better than researchers depict it.

@ Springer

139 Page 24 of 31 Empirical Software Engineering (2023) 28:139

9.1 Implications for Practice

First, most of the top Python packages in the ecosystem are highly leveraged (RQ1, §6) This
means that companies or developers choosing a library will have a high uncontrollable risk.
While suggesting to not adopt anything would be unrealistic, we suggest developers to check
what other libraries will come along when they adopt a certain package. In this respect,
technical leverage is an easy-to-compute indicator. We believe that checking how big are
these packages and whether they (currently) have vulnerabilities or not would be useful to
understand the risk of adopting a certain package.

Second, once a development project has adopted a package, the percentage of uncontrol-
lable risk is unlikely to change over time (RQ2, §7). This awareness is important during the
consideration of adopting a package. If the choice was subject to a conscious deliberation in
terms of risk and opportunities this is actually good news as the accepted risk is unlikely to
change over time. If the risk was accepted tacitly, this is bad news.

Third, even when adopting a package in Python seems to dramatically increase one’s own
project, our empirical result shows that the chance of getting a safe version when adopting a
package is still considerably high (RQ3, §8). Therefore, life can be better than depicted by
researchers. If developers have to adopt 10 package versions from different packages with
no dependency, 9 of them would most likely be safe. However such difference is not so big
when dependencies are considered so weighting opportunities and risk is a rational decision.

An interesting option would be to apply dependency vendoring (copy-pasted dependencies
code to own code). Dependency vendoring is done in purpose to gain more control and
internalize the risk (Rosen et al., 2022). This makes sense because if one did dependency
vendoring, then the copy-pasted code becomes under the control of him/herself. In fact, people
do this to improve code quality and get reproducible builds (Fitzpatrick, 2015). However,
dependency vendoring is not cheap and our result in RQ3 (§8) shows that the probability of
having a safe library when choosing a package is higher than 80%, and therefore dependency
vendoring might not be the best option for small companies.

9.2 Implications for Research

At first, one result shows that more care should be given when applying default statistical
tests in the analysis of ecosystems. For example, the usage of Lachenbruch’s statistical
test (Lachenbruch, 2022) in mining software repository studies is extremely rare, while it is
a natural test to compare two classes in datasets with excess zeroes such as most software
repositories.

Second, our result in RQ3 (§8) shows that the usage of the correct granularity (e.g. package
vs version) for the analysis is important to present results that better reflect what developers
experience in real-life development. Any developer always chooses first a package that offers
the desired functionality (Dashevskyi et al., 2016; Pashchenko et al., 2020) and then a version
of that package. Sampling directly on versions thus creates a process for statistical analysis
that is not representative of reality and may offer misleading results.

10 Related Works

Dependencies and vulnerabilities. Dependencies are abundant in software ecosys-
tems. (Decan et al., 2019). Soto-Valero et al. (2021a) found that 89.2% of dependencies
that are loaded but not actually used will keep being loaded and still not used. This is aligned

@ Springer

Empirical Software Engineering (2023) 28:139 Page 250f31 139

with our result in §7, that once you are (heavily) leveraged, you will stay so (Decan et al.,
2019; Hejderup et al., 2022). Leveraging on dependencies can bring risks when the depen-
dencies are not maintained properly: it has been found that up to 81% of projects use outdated
dependencies (Kula et al., 2018; Hejderup, 2015; Pashchenko et al., 2022). The risk of these
outdated dependencies increases even more when they are the central packages that are being
used by a lot of packages in the ecosystem (Kikas et al., 2017).

However, Kula et al. (2018) mentioned that 69% of developers they interviewed are
unaware of the fact that they are using vulnerable dependencies. This finding is aligned
with the results found by Cox et al. (2015) and Lauinger et al. (2018). Cox et al. (2015)
applied their metric to 1642 Maven projects and found that security issues are more likely to
be detected in software with low dependency freshness. In the Javascript (npm) ecosystem,
Lauinger et al. (2018) utilized causality tree analysis and reported that a third of the websites
they analyzed are using a significant portion of vulnerable dependency inclusions.

Adopting dependencies. Thus, how could developers know the risk that dependencies
bring to their projects? Manadhata et al. (2010) proposed an attack surface metric to system-
atically measure the attack surface of software. They formally defined attack surface as the
triplets of system, channel, and data attackability. The “technical leverage” metric proposed
by Massacci et al. (2021) focuses on the system part of these triplets. This metric measures
how big the part of software is covered by dependency compared to the original code by the
developer, bringing the concept of leverage in finance to the technical software development
world. Using this metric, they found that in the Java ecosystem, a library with a dependency
size 4x their own code size increases the risk of having security vulnerability by 60%.

However, after using this metric, developers still need to decide which dependencies
to adopt, which versions to use, or even whether they should update to a version or not.
Bonaccorsi et al. (2003) introduced a model to assist developers in choosing dependencies
to adopt. This model gives scores to dependencies based on the support developers can get
from the FOSS community if they use these dependencies. However, this model does not
consider the security risk in the decision-making process.

Security-related empirical analysis on software ecosystem. The way of reporting vul-
nerable or safe packages/ package versions varies from paper to paper. Decan et al. (2018)
reports the absolute number of vulnerable packages in their dataset of npm packages, taking
into account the evolution throughout time. Similarly, in the Python ecosystem, Alfadel et al.
(2021) and Bagmar et al. (2021) also report the absolute number of vulnerable artifacts. The
difference is that Alfadel et al. (2021) considered a more fine-grained view from package
versions instead of packages.

Also using percentages, Wang et al. (2020) and Prana et al. (2021) report the percentage
of safe or/ and vulnerable versions in Java and other ecosystems. For the Python ecosystem,
Ruohonen et al. (2021) conducted a large-scale static analysis on over 197 thousand Python
packages and reported the percentage of packages affected with at least one security issue
(46%). By using a similar concept, Zimmermann et al. (2019) defined the “vulnerability
reporting rate” which is the ratio between the number of vulnerable packages over the total
number of packages at a specific point in time in the npm ecosystem.

The way of reporting the absolute number of vulnerable package/ package versions and
the percentage happen to be insufficient to reflect what developers will actually face when
they are going to adopt a package version. Therefore, this work addresses the gap by looking
at the ecosystem from the developers’ point-of-view and finds out how is the actual chance
of getting a safe or vulnerable package version as we illustrated in Table 10 (Section §8).

@ Springer

139 Page 26 of 31 Empirical Software Engineering (2023) 28:139

11 Threats to Validity

Package selection. From the top 600 Python packages, our dataset eventually included only
482 packages. This limitation happens because in the process of computing technical leverage,
we use pip install command (to download the package version and its dependencies)
and for some packages, the command executions failed due to a variety of reasons (i.e.
ModuleNotFoundError, AttributeError, etc.). These errors should be investigated in future
work to improve the dataset. Still, the surviving packages provide us 21,205 versions which
are already 2.5 times more than the previous work in Java. Further, packages that do not
easily installare less likely to be used in practice.

Direct vs. transitive dependencies. Given the nature of pip install, we
already considered transitive dependencies in our computation. This makes it difficult to
compare our result with the previous work in Java which only considered direct depen-
dencies. However, we believe that the results would be relevant for the general readers as
transitive dependency inclusion was also described as future work in the previous Java study.

Dependency resolution. As mentioned, we are using pip install to get dependencies
and calculate the technical leverage metric. In the case when the requirement of a package
allows several versions of the dependencies, we are using the default setting of pip, which
will get us the latest stable version (unless it is explicitly told to use an unstable version).
Hence, when the analysis is being rerun in the future, the result might be different (as the
next stable version will be selected). However, based on our results on RQ2: “A package’s
technical leverage tends to stay stable across versions”, we believe that the change will not
be significant.

Syntactic sugar. Codes in Python contain a lot of syntactic sugars and we acknowledge that
this might impact the calculation of lines of code. However, this would not make a difference
within the same ecosystem as every member will likely use the same syntactic sugar.

Vulnerabilities in non-python files. While we only count lines of codes from . py files, we
acknowledge the possibility of a vulnerability occurring in files written in other languages
that come with a package. However, we consider this threat negligible.

First-party considered as third-party. Third-party dependencies might actually be first-
party dependencies in the sense of Massacci et al. (2021). This is a problem that is inherent
to Python.

At first, there is no hierarchical structure and therefore one would need to look at different
features to determine whether two packages belong to the same team of developers for which
it can make sense to claim that the dependency is actually a first-party dependency. The most
obvious ones are looking at the maintainers, the source code repository, the developers, the
times of deployment, and even looking at the package name.

For our running example, boto and botocore are both maintained by AWS, but
this level of granularity is too coarse (AWS maintains 18 very different packages in
PyPI (Foundation, 2023a)). Another PyPI maintainer, Microsoft, maintains 510 different
packages (Foundation, 2023c). It is hard to assume that all 510 packages of Microsoft should
be considered as coming from the same project.

We also cannot use the software repository (e.g. Github) as a proxy because some repos-
itories are huge and have too many developers to be really as a single project (e.g. AWS has
386 repositories in Github (GitHub, 2023a))

Another possible way is grouping packages with the same release dates, but we also
cannot use this as a proxy as this is true for all projects with huge maintainers. For example,
botocoreand awscli have the same release dates in PyPI but we investigated their Github

@ Springer

Empirical Software Engineering (2023) 28:139 Page 27 0f31 139

repositories (GitHub, 2023b,c) and found that the respective developers are significantly
different. They just always release at the same time as it is the policy of the organization to
which the developers belong.

One cannot even use the name of the package as a proxy as aiobotocore is maintained
by Jettify/ Nikolas Novik (Foundation, 2023b) and this is a different group from botocore.

From the perspective of the results in this paper, this difficulty does not impact the notion
of transition (if leveraged, always leveraged) as a library wrongly attributed to be 3rd party
will uniformly move from numerator to denominator for all packages using the ‘root’ library:
you will become less leveraged and will stay less leveraged.

12 Conclusions and Future Works

Technical leverage is the ratio between the lines of code of third-party libraries and own code
line used in a software package. It has been used to analyze the relationship between the risk
and opportunity in the Java Maven ecosystem (Massacci et al., 2021) and the npm ecosystem
(Anonymous, 2022). In this work, we performed an empirical analysis that utilizes the same
metric on the Python ecosystem.

We first investigated the ecosystem as a whole to find the distribution of technical leverage
among packages. We gathered the data of a total of 21,205 package versions from 482 (out of
600) top Python packages. Smaller Python package versions (less than 100 KLOC) happen
to have higher technical leverage than bigger package versions (6.9x vs 1x).

Our analysis of the evolution of technical leverage across versions in Python packages
shows that Python packages tend not fo change through versions. If a package is already
highly leveraged, it will most probably stay so. Only at the very beginning of a package
history there are some oscillations. An interesting hypothesis to study for future work is
whether developer changes could be explained by Stokey’s economic theory of inaction in
the presence of fixed costs (Stokey et al., 2008). In computer science, this theory has been
shown to fit the development of exploits (Allodi et al., 2022).

The final investigation was related to security. To accurately reflect developers’ actual
probability of getting a vulnerable package we identified formulae to compute the probability
of getting a safe package when choosing a package (and then a safe version for that package).
We then complemented the formulas with simulations: at first when all package versions
have equal chance to be chosen, and then by using downloads as a metric of popularity-based
choices. The result from our formulas and simulations show that the chance of picking a safe
version vs. a vulnerable version is higher (8-to-2) than the traditionally reported ratio of safe
package versions based on the ratio between safe version and vulnerable versions (7-to-3).
This is most likely due to some outlier packages with several persistently vulnerable versions
that bias coarser calculation based on ensemble means.

For future work, we plan to improve our dataset with more package versions to have a
broader view of the ecosystem. Regarding our metrics on the probability of getting a safe
package version, a possible interesting future work is to observe different ways of approximat-
ing how developers choose a package other than download count, i.e. SourceRank (GitHub,
2023c). We also plan to analyze the security risk in updating one’s libraries with more precise
granularity. Does it always yield to a not vulnerable state? Most analyses provide information
in retrospect but this information does not correspond to what the developer knew at the time
the new version was made available.

@ Springer

139 Page 28 of 31 Empirical Software Engineering (2023) 28:139

Another interesting future work we are planning is to compare different ecosystems in
the same analysis (e.g. Java vs. Python). In this kind of comparison study, standard libraries
can potentially impact the comparison and it would be interesting to analyze them. When
analyzing different ecosystems, it can also be interesting to observe if low-level metrics such
as code entities and function points do affect technical leverage.

Acknowledgements We would like to thank Ivan Pashchenko for useful discussions on technical leverage and
Batbayar Narantsogt for providing the first initial code base for extracting libraries for Python. We also thank
the anonymous reviewers whose comments greatly helped to improve the paper. Any remaining mistakes were
ours. This work was partly funded by the EU under the H2020 Program AssureMOSS (Grant n. 952647).

Author Contributions Conceptualization: RP, FM; Methodology: RP, FM,; Software: RP; Validation: RP, FM;
Formal analysis: RP, FM; Investigation: RP; Data Curation: RP; Writing - Original Draft: RP, FM; Writing
- Review & Editing: RP, FM; Visualization: RP; Supervision: FM; Project administration: FM; Funding
acquisition: FM.

Funding Open access funding provided by Universita degli Studi di Trento within the CRUI-CARE Agree-
ment. This work was partly funded by the EU under the H2020 Program AssureMOSS (Grant n. 952647).

Data Availability We provide an online demo for computing technical leverage of Python package versions
for interested readers at the following URL.: https://techleverage.eu/livedemo/pypi. The full dataset generated
during and/or analyzed during the current study can be accessed through this Zenodo link: https://doi.org/10.
5281/zenodo.7186627.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Employment Ranindya Paramitha is employed by the University of Trento, Trento, Italy. Fabio Massacci
is employed by the University of Trento, Trento, Italy and Vrije Universiteit Amsterdam, Amsterdam, The
Netherlands.

Financial/ Non-financial Interest All authors certify that they have no affiliations with or involvement in any
organization or entity with any financial interest or non-financial interest in the subject matter or materials
discussed in this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alfadel M, Costa DE, Shihab E (2021) Empirical analysis of security vulnerabilities in python packages. 2021
IEEE International Conference on Software Analysis. Evolution and Reengineering (SANER), IEEE, pp
446457

Allman E (2012) Managing technical debt. Commun ACM 55(5):50-55

Allodi L, Massacci F, Williams J (2022) The work-averse cyberattacker model: theory and evidence from two
million attack signatures. Risk Anal 42(8):1623-1642

Anonymous (2022) Opportunities and Security Risks of Technical Leverage: A Replication Study on the NPM
Ecosystem. https://doi.org/10.5281/zenodo.6585292

@ Springer

https://techleverage.eu/livedemo/pypi
https://doi.org/10.5281/zenodo.7186627
https://doi.org/10.5281/zenodo.7186627
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.6585292

Empirical Software Engineering (2023) 28:139 Page290f31 139

Bagmar A, Wedgwood J, Levin D, Purtilo J (2021) I know what you imported last summer: A study of security
threats in the python ecosystem. arXiv:2102.06301

Banker R, Liang Y, Ramasubbu N (2021) Technical debt and firm performance. Manage Sci 67(5):3174-3194

Bickenbach F, Bode E, et al. (2001) Markov or not markov-this should be a question. Tech. rep., Kiel working
paper

Bonaccorsi A, Rossi C (2003) Why open source software can succeed. Res Policy 32(7):1243-1258

Cox J, Bouwers E, Van Eekelen M, Visser J (2015) Measuring dependency freshness in software systems. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol 2. IEEE, pp 109-118

Cunningham W (1992) The wycash portfolio management system. ACM SIGPLAN OOPS Messenger 4(2):29—
30

Dashevskyi S, Brucker AD, Massacci F (2016) On the security cost of using a free and open source component
in a proprietary product. In: International Symposium on Engineering Secure Software and Systems,
Springer, pp 190-206

Decan A, Mens T, Constantinou E (2018) On the impact of security vulnerabilities in the npm package depen-
dency network. In: Proceedings of the 15th International Conference on Mining Software Repositories
(MSR), pp 181-191

Decan A, Mens T, Grosjean P (2019) An empirical comparison of dependency network evolution in seven
software packaging ecosystems. Empir Softw Eng 24:381-416

Derr E, Bugiel S, Fahl S, Acar Y, Backes M (2017) Keep me updated: An empirical study of third-party
library updatability on android. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp 2187-2200

Fitzpatrick B (2015) Dependencies & vendoring. https://groups.google.com/g/golang-dev/c/
nMWOoEAGS5v8/m/pjZVLIZKX9E] pli=1

Foundation PS (2022) Pypi - the python package index. https://pypi.org/, Accessed 07 March 2022

Foundation PS (2023a) Aws. https://pypi.org/user/aws/

Foundation PS (2023b) Jettify. https://pypi.org/user/jettify/

Foundation PS (2023c) Microsoft. https://pypi.org/user/microsoft/

Foundation PS (2023d) python-loc-counter. https://pypi.org/project/python-loc-counter/

Frakes WB, Kang K (2005) Software reuse research: Status and future. IEEE Trans Softw Eng 31(7):529-536

GitHub I (2023a) Amazon web services. https://github.com/aws

GitHub I (2023b) boto/botocore. https://github.com/boto/botocore

GitHub I (2023c) nice-registry/sourceranks. https://github.com/nice-registry/sourceranks

Gkortzis A, Feitosa D, Spinellis D (2021) Software reuse cuts both ways: An empirical analysis of its rela-
tionship with security vulnerabilities. J Syst Softw 172:110653

Hejderup J (2015) In dependencies we trust: How vulnerable are dependencies in software modules? PhD
thesis, Computer Science, TU Delft

Hejderup J, Beller M, Triantafyllou K, Gousios G (2022) Prizi: from package-based to call-based dependency
networks. Empir Softw Eng 27(5):102

Huijgens H, Van Deursen A, Minku LL, Lokan C (2017) Effort and cost in software engineering: A comparison
of two industrial data sets. In: Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, pp 51-60

Jorgensen M, Shepperd M (2006) A systematic review of software development cost estimation studies. IEEE
Trans Softw Eng 33(1):33-53

van Kemenade H, Si R (2022) hugovk/top-pypi-packages: Release 2022.03. https://doi.org/10.5281/zenodo.
6319631

Khoirom S, Sonia M, Laikhuram B, Laishram J, Singh TD (2020) Comparative analysis of python and java
for beginners. Int Res J Eng Technol 7(8):4384-4407

Kikas R, Gousios G, Dumas M, Pfahl D (2017) Structure and evolution of package dependency networks.
In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), IEEE, pp
102-112

Kula RG, German DM, Ouni A, Ishio T, Inoue K (2018) Do developers update their library dependencies?
Empir Softw Eng 23(1):384—417

Lachenbruch PA (2002) Analysis of data with excess zeros. Stat Methods Med Res 11(4):297-302

Lauinger T, Chaabane A, Arshad S, Robertson W, Wilson C, Kirda E (2018) Thou shalt not depend on me:
Analysing the use of outdated javascript libraries on the web. arXiv preprint arXiv:1811.00918

Limited S (2023) boto3 vulnerabilities. https://security.snyk.io/package/pip/boto3/versions?page=8

Manadhata PK, Wing JM (2010) An attack surface metric. IEEE Trans Softw Eng 37(3):371-386

Massacci F, Pashchenko I (2021) Technical leverage in a software ecosystem: Development opportunities
and security risks. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
IEEE, pp 1386-1397

@ Springer

http://arxiv.org/abs/2102.06301
https://groups.google.com/g/golang-dev/c/nMWoEAG55v8/m/pjZVLIzKX9EJ?pli=1
https://groups.google.com/g/golang-dev/c/nMWoEAG55v8/m/pjZVLIzKX9EJ?pli=1
https://pypi.org/
https://pypi.org/user/aws/
https://pypi.org/user/jettify/
https://pypi.org/user/microsoft/
https://pypi.org/project/python-loc-counter/
https://github.com/aws
https://github.com/boto/botocore
https://github.com/nice-registry/sourceranks
https://doi.org/10.5281/zenodo.6319631
https://doi.org/10.5281/zenodo.6319631
http://arxiv.org/abs/1811.00918
https://security.snyk.io/package/pip/boto3/versions?page=8

139 Page 300f 31 Empirical Software Engineering (2023) 28:139

Massacci F, Sabetta A, Mirkovic J, Murray T, Okhravi H, Mannan M, Rocha A, Bodden E, Geer DE (2022)
“free” as in freedom to protest? IEEE Secur Priv 20(5):16-21

NIST (2023) Cve-2021-33503 detail. https://nvd.nist.gov/vuln/detail/ CVE-2021-33503

Pashchenko, Plate H, Ponta SE, Sabetta A, Massacci F (2018) Vulnerable open source dependencies: Counting
those that matter. In: Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, Association for Computing Machinery (ACM), ESEM 18, https://doi.
org/10.1145/3239235.3268920

Pashchenko I, Vu DL, Massacci F (2020) A qualitative study of dependency management and its security
implications. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp 1513-1531

Pashchenko I, Plate H, Ponta SE, Sabetta A, Massacci F (2022) Vuln4real: A methodology for counting actually
vulnerable dependencies. IEEE Transactions on Software Engineering 48(5):1592—16009. https://doi.org/
10.1109/TSE.2020.3025443

Pernet C (2023) Machine-learning python package compromised in supply chain attack. https://www.
techrepublic.com/article/pytorch-ml-compromised/

Pittenger M (2016) Open source security analysis: The state of open source security in commercial applications.
Black Duck Software, Tech Rep

Prana GAA, Sharma A, Shar LK, Foo D, Santosa AE, Sharma A, Lo D (2021) Out of sight, out of mind? how
vulnerable dependencies affect open-source projects. Empir Softw Eng 26(4):1-34

Rosen S (2022) Can vendoring dependencies in a build be officially supported? https://discuss.python.org/t/
can-vendoring-dependencies-in-a-build-be-officially-supported/13622

Ruohonen J, Hjerppe K, Rindell K (2021) A large-scale security-oriented static analysis of python packages
in pypi. 2021 18th International Conference on Privacy. Security and Trust (PST), IEEE, pp 1-10

Slaughter SA, Harter DE, Krishnan MS (1998) Evaluating the cost of software quality. Commun ACM
41(8):67-73

SnykDB (2022) Snyk vulnerability DB. https://snyk.io/vuln, Accessed 03 Feb 2022

Soto-Valero C, Durieux T, Baudry B (2021a) A longitudinal analysis of bloated java dependencies. In: Pro-
ceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp 1021-1031

Soto-Valero C, Harrand N, Monperrus M, Baudry B (2021) A comprehensive study of bloated dependencies
in the maven ecosystem. Empir Softw Eng 26(3):1-44

Stokey NL (2008) The Economics of Inaction: Stochastic Control models with fixed costs. Princeton University
Press

Vu DL, Pashchenko I, Massacci F, Plate H, Sabetta A (2020) Typosquatting and combosquatting attacks on the
python ecosystem. In: 2020 ieee european symposium on security and privacy workshops (euros&pw),
IEEE, pp 509-514

Wang Y, Chen B, Huang K, Shi B, Xu C, Peng X, Wu Y, Liu Y (2020) An empirical study of usages, updates
and risks of third-party libraries in java projects. In: 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, pp 35-45

Zimmermann M, Staicu CA, Tenny C, Pradel M (2019) Small world with high risks: A study of security threats
in the npm ecosystem. In: 28th USENIX Security Symposium (USENIX Security 19), pp 995-1010

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://nvd.nist.gov/vuln/detail/CVE-2021-33503
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1145/3239235.3268920
https://doi.org/10.1109/TSE.2020.3025443
https://doi.org/10.1109/TSE.2020.3025443
https://www.techrepublic.com/article/pytorch-ml-compromised/
https://www.techrepublic.com/article/pytorch-ml-compromised/
https://discuss.python.org/t/can-vendoring-dependencies-in-a-build-be-officially-supported/13622
https://discuss.python.org/t/can-vendoring-dependencies-in-a-build-be-officially-supported/13622
https://snyk.io/vuln

Empirical Software Engineering (2023) 28:139 Page310f31 139

Ranindya Paramitha is a Ph.D. student at the University of Trento,
Trento, 38123, Italy. She received her master’s degree in informatics
with distinction from Institut Teknologi Bandung, Bandung, 40132,
Indonesia. Her main research interest is in software security, focusing
on empirical analysis of secure software ecosystems, mining software
repositories, and how developers can apply security. She is involved
in an H2020 European Project: AssureMOSS and has also started to
actively serve the research community in several IEEE/ACM Interna-
tional Conferences/Workshops, such as by being a student volunteer
(ICSE’22) and program committee (ICSE SVM’23).

Fabio Massacci is a professor at the University of Trento, Trento,
38123, Italy, and Vrije Universiteit, Amsterdam, 1081 HV, The
Netherlands. Massacci received a Ph.D. in computing from the Uni-
versity of Rome “La Sapienza.” He received the IEEE Requirements
Engineering Conference Ten Year Most Influential Paper Award on
security in sociotechnical systems. He participates in the FIRST spe-
cial interest group on the Common Vulnerability Scoring System and
the European pilot CyberSec4Europe on the governance of cyberse-
curity. He coordinates the European A ssureMOSS project. He is a
Member of IEEE, the Association for Computing Machinery, and the
Society for Risk Analysis.

@ Springer

	Technical leverage analysis in the Python ecosystem
	Abstract
	1 Introduction
	2 Motivating Example
	3 Terminology
	4 Methodology and Analysis Procedure
	4.1 RQ1: Python ecosystem overview.
	4.2 RQ2: Technical leverage evolution across versions.
	4.3 RQ3: Technical leverage vs. vulnerabilities in Python.
	4.3.1 Probability of selecting an unsafe version
	4.3.2 Simulation

	5 Data Selection
	6 RQ1: Python ecosystem overview
	6.1 Technical Leverage
	6.2 Change direction

	7 RQ2: Technical leverage evolution across versions
	8 RQ3: Technical leverage vs. vulnerabilities in Python
	8.1 A finer granularity: from the view of package versions
	8.2 A coarser granularity: from the view of packages

	9 Implications of the Findings
	9.1 Implications for Practice
	9.2 Implications for Research

	10 Related Works
	11 Threats to Validity
	12 Conclusions and Future Works
	Acknowledgements
	References

