
Empirical Software Engineering (2023) 28:118
https://doi.org/10.1007/s10664-023-10354-3

Can the configuration of static analyses make resolving
security vulnerabilities more effective? - A user study

Goran Piskachev1,2 ·Matthias Becker1 · Eric Bodden1,3

Accepted: 5 June 2023 / Published online: 12 September 2023
© The Author(s) 2023

Abstract
The use of static analysis security testing (SAST) tools has been increasing in recent years.
However, previous studies have shown that, when shipped to end users such as development
or security teams, the findings of these tools are often unsatisfying. Users report high numbers
of false positives or long analysis times, making the tools unusable in the daily workflow.
To address this, SAST tool creators provide a wide range of configuration options, such as
customization of rules through domain-specific languages or specification of the application-
specific analysis scope. In this paper, we study the configuration space of selected existing
SAST tools when used within the integrated development environment (IDE). We focus on
the configuration options that impact three dimensions, for which a trade-off is unavoidable,
i.e., precision, recall, and analysis runtime.We perform a between-subjects user studywith 40
users frommultiple development and security teams - to our knowledge, the largest population
for this kind of user study in the software engineering community. The results show that users
who configure SAST tools are more effective in resolving security vulnerabilities detected
by the tools than those using the default configuration. Based on post-study interviews, we
identify common strategies that users have while configuring the SAST tools to provide
further insights for tool creators. Finally, an evaluation of the configuration options of two
commercial SAST tools, Fortify and CheckMarx, reveals that a quarter of the users do
not understand the configuration options provided. The configuration options that are found
most useful relate to the analysis scope.

Keywords Static analysis · Security · User study · Empirical research · SAST

Communicated by: Jacques Klein

B Goran Piskachev
gpiskach@amazon.de

1 Fraunhofer IEM, Paderborn, Germany

2 Amazon Web Services, Berlin, Germany

3 Department of Computer Science, Paderborn University, Paderborn, Germany

789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10354-3&domain=pdf
http://orcid.org/0000-0003-4424-5838


118 Page 2 of 28 Empirical Software Engineering (2023) 28:118

1 Introduction

Static application security testing (SAST) tools were introduced in the early 2000s. In recent
years, their popularity has increased significantly, as many commercial (Checkmarx, 2021;
Microfocus, 2021; Veracode, 2021; SonarSource, 2021; Github, 2021; Snyk, 2021) and open
source (of Maryland U, 2021; Facebook, 2021; Krüger et al., 2018) tools became available.
Thus, the research on these tools has strong industrial relevance. In particular, researchers
have been studying the usability of static analysis tools. Christakis et al. reported developers’
pain points when using program analysis tools such as, “high number of false warnings”,
“analysis running too long”, “bad warning messages”, and “wrong checks turned on by
default” (Christakis and Bird, 2016). Others have been studying different aspects, e.g.
explainability (Nguyen Quang Do and Bodden, 2014; Nguyen Quang Do et al., 2020), inte-
grated development environment (IDE) integration (Vassallo et al., 2018; Nguyen Quang Do
et al., 2020), and continuous integration (Zampetti et al., 2017).

Most issues reported by developers can be handled by choosing the right configuration
for the target program being analyzed. To enable this, tool vendors provide a wide range of
configuration options. For example, developers can select rules or write custom ones using
a domain specific language; they can set different thresholds for the analysis engine, or can
select the scope of the target program. In this paper, we study the configuration options
of SAST tools that are integrated into an IDE. In this scenario, a short analysis time is of
particular importance (Johnson et al., 2013; Christakis and Bird, 2016). Within an IDE, users
often have a specific context in which they work, e.g. the code last written or edited, or a
vulnerability relevant to a specific component of the project that the user is responsible for.
When this is the case, the SAST tool can be configured to provide the results quickly by
focusing on such a limited scope (Nguyen Quang Do et al., 2017).

This paper studies the configuration options that impact precision, recall, and analysis
time. We omit other options such as filtering and prioritization of warnings, as they are more
relevant when a project is analyzed as a whole. This is often the case when the analysis
time is not that critical, e.g. during nightly builds. We investigate two specific options: (1)
selection of security rules and (2) selection of analysis scope. We chose these options based
on previous studies (Nguyen Quang Do et al., 2020; Christakis and Bird, 2016) showing that
users find them to be highly relevant. To evaluate the users’ effectiveness in resolving the
findings reported by a SAST tool, we performed a between-subjects (Charness G et al., 2012)
user study. We divided the 40 participants/subjects into two groups of 20 participants each
and gave them the task to resolve the findings reported by a SAST tool, by assessing each
finding as true positive, false positive, or don’t know. The first group (treatment group) was
able to configure the SAST tool’s options via a configuration page and trigger the analysis
multiple times. The second group (control group) could run the analysis once in a default
configuration. The results show that the treatment group was more effective in resolving the
findings.

In a post-study interview, we asked participants to elaborate on the strategies they used
while solving the given task. It showed that most participants selected all entry points of the
project and iteratively ran the toolwith a single security rule. Yet, whenwe askedwhether they
would use the same strategy if that was their own project, most of them told they would apply
a different strategy, i.e., selecting specific entry points only with a subset of the security rules.
Then, we conduced a questionnaire in which we asked participants to label the configuration
options of two SAST tools, Fortify and CheckMarx, with two labels, indicating whether
the option is understandable, and the other indicating whether it is useful to them. We found

123



Empirical Software Engineering (2023) 28 :118 Page 3 of 28 118

that, on average, one quarter of the users do not understand the existing configuration options
in these tools. From those that can be understood, 78% of the participants find the options
to be useful for their use case (i.e., the mean over all options with standard deviation σ=16).
Finally, based on the data we collected, we formed a list of recommendations for future
SAST tools. To name a few, the tools should provide details about the security vulnerability
reported including description, examples, and possible fixes, and the rules of the tools should
be available to the users for inspection to better evaluate if the findings are true or false
positive.

This paper makes the following contributions:

– a user study showing that users of SAST tools can resolve security vulnerabilities more
effectively when they configure the tool to their context,

– the identification of the common strategies that users have while configuring SAST tools
to find and resolve security vulnerabilities,

– an evaluation of the existing configuration options of two SAST tools in terms of com-
prehensibility and usefulness for the end users, and

– recommendations for SAST tools creators based on our research described in this paper.

The dataset and all materials we created and used for this research, are available as an
artifact via the link https://research-sast-config.github.io/.

In the following, we start by discussing the related work. In Section 3, we outline our
methodology. The results of our study are discussed in Section 4. Section 5 outline the
possible threats to validity, and we finally conclude in Section 6.

2 Related work

Static analysis has been used in industry for a long time. However, it started to gain popularity
with the introduction of more sophisticated SAST tools for development teams such as
(Microfocus, 2021; Checkmarx, 2021; Grammatech, 2021). With the increased number of
new open-source and commercial tools on the market, researchers have studied different
aspects, such as usability, incorporation into users’ workflow, quality of results, etc. In the
following, we discuss existing studies on static analysis tools. We categorize the studies into
three groups: (1) studies that focus on usability of static analysis tools, (2) studies targeting
the security aspect, and (3) studies on the quality of the results. Table 1 summarizes all studies
by stating their goal, methodology, and scale in terms of number of participants, number of
companies involved and/or size of data analyzed.

2.1 Usability of static analysis

Within this group of studies, we identified two subgroups: studies that focus on usability
and studies that focus on the adaption and integration of the tools within the companies’
processes.

(Nguyen Quang Do et al., 2020) performed a survey with developers from the German
company Software AG and analyzed the usage data of (Checkmarx, 2021) for two of the
company’s projects. They identified needs and motivations that developers have while using
static analysis tools. Based on that, they provide recommendations for new features and
research ideas for future consideration.A similar studyhas been conducted earlier atMicrosoft
by (Christakis and Bird, 2016). They performed a survey and interviews with developers, and
analyzed data from live site incidents, which are high-critical bugs handled by the on-call

123



118 Page 4 of 28 Empirical Software Engineering (2023) 28:118

engineers. They identified usability issues and functionalities that program analysis should
provide for better usability. Similar results were reported also in the study by (Johnson et al.,
2013), in which they performed semi-structured interviews with 16 developers from a single
company and four graduate students. All these studies are complementing with our study and
they have identified several overlapping results. Our study is the only one that includes a users
study. It is also the only one that measures the effectiveness in resolving the vulnerabilities
produced by a given tool.

(Vassallo et al., 2018) studied the different contexts in which static tools are used by
developers, i.e., development environment, review, and continuous integration. Moreover,
they studied the configuration options for these contexts and found out that most developers
use the same configuration among all environments (IDE, continuous integration, or review).
In comparison, our study targets only the IDE. They performed a survey with 42 participants.
To confirm their findings, they interviewed eleven developers from six companies.

We discuss two studies that target the integration of static analysis tools into the develop-
ment workflow and processes. (Sadowski et al., 2015) proposed the Tricoder platform that is
used by Google to integrate different program analysis tools in one system and improve the
user experience. They explain the requirements and how the system was deployed. They col-
lected usage data from the deployed system to confirm the design decisions of the platform.
Our user study is complementing this approach by collecting data from a survey instead of
usage data from the tool. (Zampetti et al., 2017) studied how static analysis tools are inte-
grated in the pipeline in open-source Java projects fromGitHub. They used repositorymining
techniques which is different source of data and moreover, they answer different research
questions compared to our work.

2.2 Studies on adaption of security tools

Next, we discuss studies with a particular focus on detecting security vulnerabilities with
static analysis tools. (Thomas et al., 2016) performed an experiment with 13 developers in
which the participants were given the task to use a tool that reports security vulnerabilities in
the IDE. After interacting with the tool, the participants were interviewed. In a similar study,
(Smith et al., 2015) invited 10 developers from the same project to solve four tasks when
using an extended version of FindBugs. The participants were asked to orally explain their
thoughts, which the authors used to formulate questions. Then, they used the card-sorting
method to come to relevant conclusions. Compared to these studies, our work is the only one
that focuses on specific configuration options. (Smith et al., 2020) evaluated the usability of
the user interfaces of four SAST tools. They used heuristic walkthroughs and an experiment
followed by an interview with twelve participants. In a survey study with multiple stages,
(Witschey et al., 2015) identified factors that can predict the adoption of security tools by
developers. (Patnaik et al., 2019) have mined 2,491 Stack Overflow questions to identify
usability issues that developers face when using cryptography libraries. Compared to all
these studies, our work does not target the usability aspect of the tool.

2.3 Taint analysis results and comparison

Several previous studies focus on thequality of the analysis results in termsof recall, precision,
or runtime, reported by taint analysis tools. (Luo et al., 2019) performed a quantitative
and qualitative analysis of the taint flows reported by (Arzt S et al., 2014), by analyzing
2,000 Android apps. They identified that the selection of sources and sinks was one of

123



Empirical Software Engineering (2023) 28 :118 Page 5 of 28 118

Table 1 Related studies: goal, methodology, and scale

Study Goal Methodology Scale

(Nguyen Quang Do
et al., 2020)

identify developers’
goals and motivations
for using static
analysis tools

a survey and an analysis
of company’s usage
data of CheckMarx

87 participants and data from
two internal projects at
Software AG

(Christakis and
Bird, 2016)

identify practitioners’
needs from program
analysis

a survey, interviews
with group managers,
and an analysis of live
site incidents

375 participants and 256 live
site incidents reports from
17 services at Microsoft

(Johnson et al.,
2013)

identify developers’
usability issues with
static analysis tools

semi-structured
interviews

16 developers from single
company and 4 graduate
students

(Vassallo et al.,
2018)

study the developers’
usage context of static
analysis tools

a survey and
semi-structured
interviews

42 participants through open
invitation and 11
interviewees from six
companies

(Sadowski et al.,
2015)

provide a set of
principles for building
and integrating
program analysis
tools in practice

case study of Tricoder
as a platform for
program analysis tools

Tricoder usage data at Google

(Zampetti et al.,
2017)

study the CI and usage
of static analysis tools

mining repository
techniques

20 open source GitHub
projects

(Thomas et al.,
2016)

study the perceptions
and actions taken by
developers when they
interact with static
analysis tool in the
IDE

experiment with an
interactive tool in the
IDE and an interview

13 participants from multiple
companies

(Smith et al., 2015) study the information
need of developers
while using static
analysis tool for
security
vulnerabilities

an experiment and card
sorting

10 developers working on the
same project

(Smith et al., 2020) study the user interface
of 4 tools and propose
areas for
improvements

heuristic walkthroughs,
an throughs, an
experiment and
interviews

12 participants

(Witschey et al.,
2015)

quantify the relative
importance of factors
that predict security
tool adoption

a multi-staged survey 119 participants from 14
companies and 61
participants from 5
mailing lists

(Patnaik et al., 2019) identify usability issues
of crypto libraries
used by developers

mining techniques 2,491 Stack Overflow
questions

(Luo et al., 2019) identify important
factors for
imprecision in
FlowDroid

a case study with
manual inspection

2000 analysed apps and
146 manually
inspected

123



118 Page 6 of 28 Empirical Software Engineering (2023) 28:118

Table 1 continued

Study Goal Methodology Scale

(Qiu et al., 2018) compare the results of
Android taint analysis
tools and identify
strength and
weaknesses

analysis and inspection
of the results by three
tools (FlowDroid,
Amandroid, and
DroidSafe)

collection of
microbenchmarks

(Habib and Pradel,
2018)

compare the results of
three static analysis
tools

automatic and manual
inspection of the bugs
reported from three
tools

collection of 15 Java
application (Defects4J)
with known bugs

(Zhang et al., 2017) reduce false positives
by proposing an
interactive approach
for resolving findings
from static analysis

experiment with
datarace analysis

evaluated on 8 Java projects
and data with known bugs
collected from Java
developers hired from
UpWork

(Lee et al., 2017) reduce false positives
via clustering
algorithms

experiment with buffer
overflow findings

evaluated on the findings
from the Sparrow static
analyzer on 14 C packages

the main factors for imprecision. Compared to our work, this methodology was performed
manually by experts who evaluated the quality of the findings. (Qiu et al., 2018) compared the
three Android taint analysis tools, FlowDroid, (Wei et al., 2018) and (Gordon et al., 2015).
They ran all tools under same configuration in order to gain a fair comparison of the tools’
capabilities. Their work on finding a common configuration among the three tools to make a
fair comparison provides useful insights on the importance of the configuration for the quality
of the findings. While they performed an automated experiment to compare the different
options, they do not include the intended user as in our user study. (Habib and Pradel, 2018)
investigated the quality of the findings from three static analysis tools Spotbugs, Infer, and
Error Prone. They used the real-world Java applications fromDefects4J with 594 known bugs
and inspected the findings, both, automatically and manually. They find that the tools detect
only 4.5% of the bugs and the types of findings they report are complementary. Compared to
our work, they did not reason how users resolve the findings. (Zhang et al., 2017) proposed an
interactive approach for resolving the findings from static analysis tools. They performed an
experiment with datarace analysis to evaluate their approach and show a 74% reduction in the
false positive rate. They used 8 real-world Java applications and a set of questions collected
from Java developers that they hired from UpWork. This approach complements our work
with interactive design. Finally, (Lee et al., 2017) proposed a clustering algorithm for static
analysis findings. They compared several algorithms on the buffer overflow findings from 14
C packages and show 45% reduction in the false positive rate. Compared to our work, this is
a fully automatic approach that can be used in combination with a tool like SecuCheck.

3 Methodology

Aiming to find new insights about how users of SAST tools use different configuration
options, we designed a user study that we explain in this section. To counter-act possible
learning effects by study participants, we applied a between-subjects study design (Charness

123



Empirical Software Engineering (2023) 28 :118 Page 7 of 28 118

G et al., 2012) consisting of a lab study and a semi-structured interview to find out to what
extent the configuration options in SAST tools are helpful to end users. Next, we explain the
recruiting of the participants, the study design, and the tools we used.

3.1 Participants

We recruited the participants through our contacts in seven companies with software develop-
ment departments. We had a single point of contact that internally distributed our invitation
to potential participants, either developers or security experts. As the number of security
experts was insufficient, we additionally invited Ph.D. candidates doing research in security
or program analysis. Previous studies have shown that graduate students are valid proxies for
such studies (Naiakshina et al., 2020, 2018, 2019, 2017). The participation was voluntary
and without incentive. In total, we had 40 participants (P01-P40), 24 from industry and 16
Ph.D. candidates from academia. 23 participants have mainly software development respon-
sibilities, while 17 participants are security or program-analysis experts. Table 2 lists the
profile of each participant. The columns From and Role were collected prior to the session
with the participant, based on the information provided by the point of contact. The columns
Coding and Security originate from a self-assessment by the participant, collected during
the session. The column Study Type is the allocation of the two types of experiments, which
we explain in the following section. This allocation was done at random, separately for each
group, industry and academic participants.

3.2 Design

This subsection discusses the main aspects of the design of our user study.

3.2.1 Lab study

The goal of the study is to evaluate whether users that do configure the SAST tools within the
IDE are more effective in resolving the findings than users running the default configuration
only.

Usage scenario. The study focuses on users of SAST tools during development time. Our
selected tool, SecuCheck, runs within the IDE in the background while the user can review
or edit the code before checking it into the remote repository. Subsection 3.2.2 provides
further details on SecuCheck and the reasons for our tool choice. The user has given time
to use the tool and decide which of the findings from the tool are true positives and which are
false positives. Tomake this scenario as realistic as possible, we provide each participant with
a relative small project which still has a meaningful logic and is a complete Java application
(see Subsection 3.2.3). Each participant was given time to familiarize itself well with the code
before performing the tasks. The moderator explicitly asked the participants whether they are
familiar enough with the code in order to be able to resolve the findings from SecuCheck.

Each participant was given a time of 15 minutes to run the tool, look into the findings,
and resolve them. We chose this amount of time based on our test runs of the study where
we observed that the test participants were able to resolve a portion of the findings, but not
all. This is similar to a real-world scenario when the user has a limited time for such task and
typically the tools will produce large amount of findings. (Nguyen Quang Do et al., 2020)
explored this scenario and found out that typically developers spend only short amount of

123



118 Page 8 of 28 Empirical Software Engineering (2023) 28:118

Table 2 Participants’ profile

From Role Coding (years) Security(experience) Study Group

P01 industry developer 3-5 beginner control

P02 industry developer 6-9 beginner treatment

P03 industry developer 10+ knowledgeable control

P04 industry developer 6-9 knowledgeable control

P05 industry developer 10+ knowledgeable control

P06 industry developer 10+ beginner treatment

P07 industry expert 10+ knowledgeable treatment

P08 industry developer 10+ knowledgeable control

P09 industry expert 10+ knowledgeable control

P10 industry developer 6-9 knowledgeable treatment

P11 industry developer 3-5 beginner control

P12 industry developer 10+ beginner control

P13 industry developer 6-9 beginner treatment

P14 industry developer 6-9 knowledgeable control

P15 industry developer 10+ beginner control

P16 industry developer 6-9 beginner treatment

P17 academia developer 6-9 knowledgeable control

P18 academia expert 6-9 knowledgeable treatment

P19 industry developer 10+ knowledgeable treatment

P20 academia developer 6-9 beginner control

P21 academia expert 6-9 beginner treatment

P22 academia expert 3-5 beginner treatment

P23 academia expert 10+ knowledgeable control

P24 academia expert 3-5 beginner treatment

P25 academia expert 10+ beginner treatment

P26 academia expert 10+ expert treatment

P27 industry developer 3-5 beginner treatment

P28 academia expert 6-9 beginner control

P29 academia expert 6-9 knowledgeable control

P30 academia expert 6-9 beginner treatment

P31 industry developer 10+ knowledgeable treatment

P32 industry expert 10+ beginner control

P33 academia developer 6-9 expert control

P34 industry expert 10+ knowledgeable treatment

P35 industry expert 3-5 expert treatment

P36 academia expert 3-5 knowledgeable control

P37 industry developer 6-9 knowledgeable control

P38 academia expert 10+ beginner treatment

P39 academia developer 3-5 beginner control

P40 industry developer 3-5 knowledgeable treatment

123



Empirical Software Engineering (2023) 28 :118 Page 9 of 28 118

time for such tasks, usually between larger tasks or only when they have extra time. The
participant was asked to resolve the finding by stating if the finding is a true positive, false
positive, or the participant cannot decide due to missing expertise or any other reason. We
randomly divided the participants into two groups. The one group, the treatment group, was
able to use the configuration page of our tool freely and run the tool multiple times with
different configurations. They could use two configuration options, i.e., selection of security
rules and selection of classes to be analyzed. Thus, depending on the selection chosen by the
participant, not all possible findings were shown by the tool at once. These two options can
be found in similar form in many tools, in particular commercial tools (e.g., both commercial
tools chosen in Section 4, Fortify and CheckMarx have configuration options that can
limit the analysis scope, as well as options to select the analysis rules).

The control group used only the default configuration, in which all security rules and all
classes are selected. Hence, the control group ran the tool only once and saw all possible
findings at once. Our experience with SAST tools is that most default configurations will
include all of the available security rules andwill analyze the entire project. For simplification
of the task, in our user study we only used taint-style vulnerabilities. Through the program
statements, a taint analysis tracks values from so-called source statements (such as user
input values from Http-request object) making them tainted values, to methods of interest
so-called sink statements, e.g., performing security-relevant operations (such as writing to
file or database). We chose taint analysis because it can be used to detect 17 (Piskachev et al.,
2022) of the top 25 popular vulnerabilities by the SANS institute (Mitre CWE, 2021a).

The session was organized as follows. It starts with short introductions and clarification of
what the study is about and what data is collected. Then, the moderator performs the first two
parts of the interview (part one are general meta-questions and part two are general questions
on SAST experience). Before giving the task, the moderator explains the main concepts of
taint analysis and how it works to find an SQL injection as an example. The moderator also
makes a walkthrough with SecuCheck to demonstrate its features. Then, the participant is
provided with the Eclipse IDE and the project under analysis available in the workspace. The
participant is given time to familiarize herself/himself with the project after which the task is
explained and given 15 minutes to work. After the task, the moderator starts with the second
two parts of the interview: part three is discussion about the task, the strategies and feedback
on the tool and part four is the questionnaire for the configuration options in Fortify and
CheckMarx.

3.2.2 SAST tool

Previous studies have shown that users prefer SAST tools that run within their IDE, using the
existing features such as syntax highlighting, error view, hovermessages, etc. Such integration
enables the users to easily locate and understand the findings in the code. For our user study,
we selected the existing tool,SecuCheck (Piskachev et al., 2021) (version 1.0). It is a research
tool implemented as aMagpieBridge Server (Luo et al., 2019), that uses the Language Server
Protocol (LSP) to run within multiple IDEs, such as Eclipse, Visual Studio Code, IntelliJ
IDEA, and others. SecuCheck detects different taint-style vulnerabilities, which are among
the most popular vulnerabilities, such as SQL injection (CWE-89) and Cross-site scripting
(CWE-79). The taint analysis in SecuCheck can be configured with different security rules
via a Java-internal domain-specific (DSL) language, named FLUENTTQL. Compared to other
existing DSLs which are designed for security and static analysis experts, FLUENTTQL is
developer-centric and simple. We provided the specified rules to the participants in case they
wanted to inspect them to understand the reported findings easier.

123



118 Page 10 of 28 Empirical Software Engineering (2023) 28:118

Fig. 1 IDE view of the workspace in which participants worked on the given task. Below are shown the
findings that the tool reports in default configuration

For this study,we used the Eclipse client inwhich the analysis results are shown in the error
view with click navigation to the relevant file. The standard markers on the sidebar from the
editor mark relevant statements (sources and sinks) for each finding. For the configuration,
SecuCheck has custom page that is shown in the web browser via HTTP. Using this page,
the participants can select the security rules and the classes to be analyzed via check boxes,
and trigger the analysis by clicking a button. Figure 1 shows a screenshot of the view of
the IDE and the project given to the participants while Figure 2 shows a screenshot of the
configuration page. None of the participants have used SecuCheck before the user study.

Fig. 2 Configuration page used in the tool for the user study

123



Empirical Software Engineering (2023) 28 :118 Page 11 of 28 118

Table 3 List of findings reported by the SAST tool on the target project used in the user study

ID CWE Name Location TP/FP

F01 20 Improper input validation LoginController.java TP

F02 22 Path traversal NewTaskController.java TP

F03 311 Missing encryption NewTaskController.java TP

F04 601 Open redirect TaskController.java TP

F05 78 OS command injection NewTaskController.java FP

F06 78 OS command injection NewTaskController.java TP

F07 79 Cross-site scripting LoginController.java TP

F08 89 SQL injection DatabaseController.java TP

F09 89 SQL injection DatabaseController.java FP

3.2.3 Target project and built-in vulnerabilities

We considered several criteria for selecting the target project used in the user study. First, the
project should be realistic such that participants can see clear functionalities and business
logic implemented in the code. Second, it should be relatively small, so that participants
can understand the code in the limited time they are given and be comfortable to resolve
potential security vulnerabilities. Third, there should be multiple security vulnerabilities that
SecuCheck will report including true positives and false positives. These are all taint-style
vulnerabilities as we manually checked that the tool uses the corresponding taint-flow rules.
These vulnerabilities can be detected by taint analysis as shown in previous work (Piskachev
et al., 2014), but not exclusively. We chose to use an existing Java Spring1 project created
earlier in our research group as a demonstrative project that showcases different security
vulnerabilities. The project implements a simple task management tool where users can
create, delete, and edit tasks, which are stored in MySQL database. The application uses
the Spring MVC architecture. It does not contain any obfuscated code because the scenario
considers the user to be familiar with the project, e.g., own project, or from the same team
or organization. It consists of 35 classes and nine findings that SecuCheck reports. The
nine findings correspond to seven unique, real vulnerabilities and two false positives. Table 3
lists the findings reported by the tool when all rules and classes are selected, showing the
vulnerabilities type (common weakness enumeration - CWE2), name of the class in which
the vulnerability is located, and whether it is true or false positive. The taint analysis in
SecuCheck uses rules specified in Java fluent interface form. These files were also available
to the participant for inspection. The participant was not required to do any changes in the
rules or in the code.

3.2.4 Semi-structured interview

The interview consisted of four parts, (1) meta-questions, (2) questions on the experience
with SAST tools, (3) discussion and feedback, and (4) a questionnaire. In part one, we
asked three questions (Q1-3) on previous coding experience and security expertise. Part two
comprised 11 questions (Q4-14) about previous experience with SAST tools, e.g. when and

1 https://spring.io/
2 https://cwe.mitre.org/data/index.html

123

https://spring.io/
https://cwe.mitre.org/data/index.html


118 Page 12 of 28 Empirical Software Engineering (2023) 28:118

how tools are used, who configures the tools, which tools are used, and any company-related
regulations for using SAST tools. This part was asked before the task to give the participants
more context and recall their own experience with SAST tools. The data collected in this part
helps us understand the background of our population. Part three consisted of 9 questions
(Q15-23). The moderator asked about the experience with the task and the tool to collect
feedback. Additionally, the participants of the treatment group were asked to explain their
strategies when using the configuration page. Finally, part four included 2 questions (Q24-
25) that listed the configuration options available in two commercial SAST tools, Fortify
and CheckMarx and asked the participant to label each option if it is understandable and
whether it is useful for her role. The questionnaire only listed the option names as they appear
in the tools. The participants were encouraged to ask if they need explanation for that option,
in which case we provided them with further description based on the official documentation
of the tools. We selected all options that are relevant for precision, recall or analysis time.
We went through the official documentation of the tools. The names of the tools were not
revealed. Q24 contains 18 options from Fortify and the Q25 contains 11 options from
CheckMarx.

3.3 Calculating effectiveness

We explain how we calculate the effectiveness in resolving the findings from our SAST tool.
In limited time of 15 minutes the participant was asked to use the tool, look into the findings,
and based on the code, assess if that finding is true positive, false positive, or cannot assess.
The maximum number of findings that the tool reports and each participant can resolve is
nine. We count the ratio of correctly resolved findings out of the total number of findings
that the participant resolved. We refer to this as effectiveness in resolving the findings (do the
right thing). We prioritize quality over quantity. We do not look into the efficiency, i.e., more
number of (correct) resolvings in less time, because security is not a property where users
should compete, neither feel pressure for quantity. In other words, to do the task effectively,
we care about the quality of each resolving. When the participant resolved X findings of
which Y were resolved correctly as true or false positive, we report the effectiveness as the
ratio Y/X , expressed in percent. Moreover, with our study design, calculating efficiency
(resolving more findings in the given time) would give advantage to the control group, since
these participants see all possible findings at the beginning while the treatment group may
choose configurations that will not show all findings in the application.

3.4 Statistical tests

For the reported results in this study, we perform relevant statistical tests. The main treatment
variable is the study group in which the participant was randomly allocated to, i.e., control vs.
treatment group (nominal data). The background variables are: years of coding experience
(ordinal data), role (nominal data), institution (nominal data), and security experience (nomi-
nal data). Finally, we have four effort variables, one for the outcome of each finding (nominal
data), the strategy used during the task (nominal data), number of submitted configurations
(ordinal data), and inspection of the rules (binary data). As most of the data is nominal and
ordinal, we used only non-parametric statistical tests. We report individually each selected
test and the results. We used the significance level α = 0.05 for all tests.

123



Empirical Software Engineering (2023) 28 :118 Page 13 of 28 118

3.5 Data collection

The user study was conducted during December 2020 and January 2021. After the initial
contact with each participant via e-mail, which provided basic information about the study
and the data we plan to collect, we arranged a virtual session over Microsoft Teams. On
average, the sessions took 75 minutes. The participants did not need to prepare or install any
software. All required tools were prepared by the moderator who shared the screen and when
needed gave control to the participant to perform the task. All sessionswere recorded for post-
processing. We invited a researcher with experience in conducting user studies to moderate
all sessions. To adapt and verify our design, we performed four test runs with students from
our group. The recorded videos were analyzed by the first author who documented the raw
data, which was further processed for the results reported in Section 4.

As an IDE, we used Eclipse, in which we installed our MagpieBridge Server (Luo et al.,
2019). For the semi-structured interview, we used Google Forms in which the moderator
collected answers.Most questionswere of closed type. The answers of the few open questions
(Q16-19, 22-23) which were in part three were collected in the post-processing phase.

Our dataset is available as an artifact and includes the questionnaire, the collected
and processed data, the code used for the task, and tool source code and documentation.

3.6 Ethics

The participation in the study was voluntary. The participants in the interviews signed a
consent form. For most questions, we provided an option for participants not wanting to
give any details (i.e., “I don’t know”). We aligned our study to the data protection laws in
Germany and the EU. The user study design has been approved by the corresponding head
of department at Fraunhofer IEM.

4 Results

In the following, we answer our main research questions:

RQ1 Can users resolve findings in SAST tools more effectively by configuring the tools’
analysis scope and rule selection?

RQ2 What strategies do users of static analysis tools in the IDE use to resolve the findings?
RQ3 Which configuration options in the existing tools do users find useful?

4.1 Resolving findings in configurable tools effectively

We asked each participant during the task to clearly state which finding is true positive, false
positive, or if the participant cannot answer (do not know). In Table 4, we summarize the data
per finding and for each study group. The treatment group, which consisted of participants
allowed to configure the tool, resolved 76% of SecuCheck’s findings correctly, while the
control group only resolved 61% correctly (effectiveness as described in Subsection 3.3).

123



118 Page 14 of 28 Empirical Software Engineering (2023) 28:118

Table 4 Number of resolved
findings per study group and per
finding (F01-F09). T = true
(correctly resolved), F = false
(incorrectly resolved), DN = do
not know

Control group Treatment group
T F DN T F DN

F01 12 5 2 16 1 0

F02 10 4 5 12 3 0

F03 8 7 3 9 3 2

F04 14 0 2 13 0 0

F05 8 7 1 9 4 0

F06 5 8 1 9 2 1

F07 11 3 1 8 3 3

F08 15 1 0 17 1 0

F09 6 7 0 9 7 1

Furthermore, we considered the participants’ profiles (Table 2) to observe whether spe-
cific group of participants performed better in resolving the findings. We found out that the
participants from academia resolved the findings slightly better than the participants from
industry, 74% versus 68%. With respect to the coding experience, the participants with 3-5
years of experiencewere slightly less effective in resolving than the rest of the participants. To
our surprise, there is no significant different when it comes to the role of the participant, i.e.,
developer versus expert. Finally, the participants labeled as experts with security knowledge,
resolved the findings with 79% effectiveness, compared to the others with 60%. However, in
these findings, we found no statistical significance (Subsection 3.4).

4.2 Strategies that users have when configuring static analysis tools

To answerRQ2, we collected the usage data of the configuration page from the participants in
the treatment group. Additionally, we gathered qualitative data from the answers in the third
part of the interview.We asked two questions about the strategies each participant used. First,
What was your strategy when you used the configuration page? (Q22), and second, Would
you use the same strategy if this was your own project? (Q23). Based on the answers, the
moderator asked further questions to gainmore details. Among all answers, we identified that
there are four different strategies that the participants named. During the task, all participants
used one or two of these strategies, i.e., some of them decided to change their strategy at some
point. The first strategy,AllEntriesSubsetRules, is to use all possible entry points, and for each
run of the analysis to select only a subset of the vulnerability rules. Most of the participants
that used this strategy selected a single vulnerability rule per configuration. When asked why
they decided to do this, there were only two reasons given: first, to avoid being overwhelmed
by a high number of findings, and second, to avoid long running times of the analysis if
everything is selected. One participant said "I get overwhelmed when I get too many results to

123



Empirical Software Engineering (2023) 28 :118 Page 15 of 28 118

resolve" and another said “I was not aware how long would it take to check the vulnerability
so selected incrementally”.

The second strategy, PairingEntryAndRule, is to select a combination of entry points and
vulnerability rules. When asked why, one participant said “I tried to match a vulnerability
with entry point that makes sense based on the name”. The third strategy, SelectAll is to
select everything. The main reason, all participants mentioned, was to make sure that they
do not miss any vulnerability. And the last strategy, AllRulesSubsetEntries, is to select all
vulnerability rules but make different configurations by selecting a subset of the entry points.

Table 5 shows the strategies that each participant used or mentioned during the interview.
The participants applied one or two strategies while solving the given task. With 13 par-
ticipants using it, AllEntriesSubsetRules was the most used strategy among all participants.
With six participants, the second-most used strategy was SelectAll. Based on the interview,
we learned that the participants did not use AllRulesSubsetEntries during the task as most of
them said that they were not familiar with the code given and therefore did now know how to
choose which classes will be relevant as entry points. However, when asked if that was their
own project whether they would use a different strategy, AllRulesSubsetEntries was chosen
by most participants, with 13 answers, followed by PairingEntryAndRule with nine answers.

On average, the participants re-ran the tool, i.e., selected different configurations, 3.4 times
(with σ =1.79), with maximally six times done by four participants. Three participants ran
the tool only once (P26, P31, and P38) and they all used SelectAll. In doing so, these three
participants performed the task the same as the control group, i.e., did not make use of the
configuration option. Interestingly, they resolved 24 findings in total and correctly resolved
14 of them, yielding 58%, which is lowest in the group, and conforming to the result of RQ1.
Participant P31 would always use SelectAll, saying “All at a time all selected! Even if the
analysis was much slower, I would leave it run over the night, and get everything. But I would
like to have a lazy loading. I should see the relevant findings for the file that I open and not
the rest”.

4.3 Configuration options in commercial tools

To answer RQ3, we use the data collected in part four of the questionnaire, i.e. Q24-25,
where the participant was asked to evaluate the undersandability and the usfullness from the
configuration options in Fortify and CheckMarx. Figure 3 shows a screenshot how these
options were presented to the participant. For the options we used the exact formulation as
defined in the user documentation of the tools.We screened all configuration options that these
tools provide and selected the options that impact the precision, recall, or the analysis time.
In total, we selected 18 options from Fortify (F1-F18) and 11 options from CheckMarx
(C1-C11). See Appendix 6 for the full list.

123



118 Page 16 of 28 Empirical Software Engineering (2023) 28:118

Ta
bl
e
5

St
ra
te
gi
es

fo
r
us
in
g
th
e
co
nfi

gu
ra
tio

n
pa
ge

St
ra
te
gy

us
ed

du
ri
ng

th
e
ta
sk

St
ra
te
gy

w
ou
ld

us
e
on

ow
n
pr
oj
ec
t

N
um

be
r
of

co
nfi

gu
ra
tio

ns
su
bm

itt
ed

In
sp
ec
te
d
th
e
ru
le
s

P0
2

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
th
en

Se
le

ct
A

ll
Pa

ir
in

gE
nt

ry
A

nd
R

ul
e
th
en

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

6
no

P0
6

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

6
no

P0
7

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
th
en

Se
le

ct
A

ll
Pa

ir
in

gE
nt

ry
A

nd
R

ul
e
th
en

Se
le

ct
A

ll
2

no

P1
0

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
th
en

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
th
en

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

2
ye
s

P1
3

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

th
en

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

4
no

P1
6

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

th
en

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
6

ye
s

P1
8

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

th
en

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
2

no

P1
9

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

th
en

Se
le

ct
A

ll
3

ye
s

P2
1

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

th
en

Se
le

ct
A

ll
A

ll
R

ul
es

Su
bs

et
E

nt
ri

es
2

ye
s

P2
2

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

th
en

Se
le

ct
A

ll
A

ll
R

ul
es

Su
bs

et
E

nt
ri

es
2

ye
s

P2
4

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

th
en

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

3
ye
s

P2
5

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
5

ye
s

P2
6

Se
le

ct
A

ll
A

ll
R

ul
es

Su
bs

et
E

nt
ri

es
1

ye
s

P2
7

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

th
en

Se
le

ct
A

ll
A

ll
R

ul
es

Su
bs

et
E

nt
ri

es
4

ye
s

P3
0

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

th
en

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
5

ye
s

P3
1

Se
le

ct
A

ll
Se

le
ct

A
ll

1
ye
s

P3
3

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

th
en

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
4

ye
s

P3
4

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

Pa
ir

in
gE

nt
ry

A
nd

R
ul

e
th
en

Se
le

ct
A

ll
3

ye
s

P3
8

Se
le

ct
A

ll
A

ll
E

nt
ri

es
Su

bs
et

R
ul

es
th
en

A
ll

R
ul

es
Su

bs
et

E
nt

ri
es

1
ye
s

P4
0

A
ll

E
nt

ri
es

Su
bs

et
R

ul
es

th
en

Se
le

ct
A

ll
Pa

ir
in

gE
nt

ry
A

nd
R

ul
e
th
en

Se
le

ct
A

ll
6

no

123



Empirical Software Engineering (2023) 28 :118 Page 17 of 28 118

Fig. 3 Screenshot of Q25 of the questionnaire

Figure 4 shows four boxplots, two for Fortify and two for CheckMarx. Each Fortify
option is a single data point in the first two boxplots (blue and yellow). Each CheckMarx
option is a single data point in the second two boxplots (green and red). The first boxplot
(blue) shows the understandability of the Fortify options in percent. The mean is 73.53
(σ=19.69), i.e. 73.53% of the options provided to the users are found to be understandable
by the participants. There are four outliers on the upper part, F7 (noDefaultRules), F9 (rules),
F11 (dataflowMaxFunctionTimeMinutes), and F12 (maxFunctionVisits), which are options
that are found understandable bymost participants (over 85%). There are also four outliers on
the lower part, F6 (noDefaultIssueRules), F10 (enableInterproceduralConstantResulution),
F13 (maxTaintDefForVar), and F14 (maxTaintDefForVarAbort), which are options that were
found least understandable (under 63%). The second boxplot (yellow) shows the under-
standability and usefulness of the Fortify options in percent. The mean is 78.12 (σ=13.4).

123



118 Page 18 of 28 Empirical Software Engineering (2023) 28:118

Fig. 4 BoxPlots for percentage of participants that marked each option as understandable and useful for each
tool, Fortify (blue and yellow) and CheckMarx (green and red)

There are four outliers on the upper part (over 85%), F1 (filter), F2 (disableSourceBundling),
F4 (analyzers), and F9 (rules), and four in the lower part (under 70%), F3 (disableLan-
guage), F8 (noDefaultSinkRules), F10 (enableInterproceduralConstantResolution), and F14
(maxTaintDefForVarAbort). The third boxplot (green) shows the understandability of the
CheckMarx options in percent. The mean is 73.86 (σ=17.98). There are three outliers on
the upper part, C2 (maxQueryTime), C6 (scanBinaries), and C11 (maxQueryTimePer100K),
which are options that are found understandable by most participants (over 88%). There are
also three outlies on the lower part, C2 (maxQueryTime), C3 (useRoslynParser), and C11
(maxQueryTimePer100K), which are options that were found least understandable (under
60%). The fourth boxplot (red) shows the understandability and usefulness of the Check-
Marx options in percent. The mean is 78.85 (σ=21.15). There are three outliers on the upper
part (over 95%), C1 (excludePath), C5 (maxQueryTime), and C6 (scanBinaries), and three in
the lower part (under 66%), C4 (languageThreshold), C9 (maxFileSizeKb), and C10 (max-
PathLength). When compared the mean and standard deviation between both tools there are
no significant differences.

Finally, we categorize the options into three categories. Category (1) includes options that
are related to the analysis scope (F1-3, C1, C4-7), Category (2) includes options that impact
the approximations done by the solver or set thresholds for analysis time (F4-5, F10-18,
C2-3, C8-11), and Category (3) includes options that are related to rule selection (F6-9). The
most understandable category is (2) with average score of 32.5, but with least percentage
of usefulness 70%. Category (1) has average score of 29.25 and most usefulness with 85%,
where as (3) has score of 28 and 74% usefulness.

123



Empirical Software Engineering (2023) 28 :118 Page 19 of 28 118

4.4 Recommendations for building the future SAST tools

As introduced in Section 3.2, we used SecuCheck as a SAST tool for our user study.
SecuCheck provides a configuration page with the options we needed for the study. Other
commercial tools have many more configuration options that would have distracted the par-
ticipants. After the participant had experienced the tool, in part three of the interview we also
asked questions about the experiencewith the tool. In particular, we askedwhat features of the
tool the participants liked and disliked, and what other features they would like to have when
working on a similar tool within the IDE. Moreover, in part two we asked questions about
their previous experience with SAST tools. In the following we present the results. Based on
these results and the results from the previous sections we propose a list of recommendations
for future SAST tools.

Twenty four of the 40 participants said that they useSAST tools in their everydayworkflow.
Out of these, 17 use SAST tools within the IDE. The tools that participants named are shown
in Figure 5. When asked if they configure those tools, 30 participants said they do not,
while only 10 said they do. Only 8 participants said that they have used a domain-specific
language to configure the tools. During the task, we also made the vulnerability detection
rules available to the users and let them know that they are available. Then we observed how
many of them will actually open the files and inspect them. As seen in Table 5 most of them
did. However, many said that they would not write the rules on their own but they like to
have them available to help them decide if the findings reported by the tool are true or false
positives. For example, one participant checked the rule to verify if the tool was aware of
potential sanitizers. Another participant said, she prefers writing the rules and never uses
default rules, as only then she is sure that the tool is doing the right job. 27 participants said
there are regulations or policies by the company for using SAST tools. 22 participants said
they are allowed to configure the tools, while 13 answered they are not.

Based on these results, we can make the first recommendation for tool developers and the
future development of SAST tools.

Fig. 5 Tools that participants use or used in the past and number of participants that named each tool

123



118 Page 20 of 28 Empirical Software Engineering (2023) 28:118

Fig. 6 How relevant is the following statement: The issues reported by the tool should be relevant for me (the
context I am currently focused on)?

In part three of the interview, we asked the participants to name the things they liked,
disliked, andmissed about the tool they used to perform the given task.Most of the participants
liked the integration of the analysis within the standard features of the IDE, such as error
view list, error markers, clicking links to the findings, etc. The most disliked feature of the
tool was that the configuration page was in the web-browser and not within the IDE. This
was perceived as a usability issue due to context-switching. We have contacted the authors of
MagpieBridge, whichwe used to build our tool, and they extended the framework to allow the
page to be opened also within the IDE if the respective IDE supports this. Additionally, we
pointed out some few other usability issues and cooperated with them to make the framework
support moreUI elements for the configuration page. Among the features that the participants
missed, there were two which were mentioned frequently. First, the participants wanted to
see a better visualization of the data-flow path between the source and the sink. Second,
participants said that our tool had a limited description of the vulnerability reported in the
error view. They prefer to see a feature where the description can be expanded to show further
details, examples and possible fixes or proposals which validation libraries to use. Based on
this data, we make the second recommendation for tool vendors.

123



Empirical Software Engineering (2023) 28 :118 Page 21 of 28 118

In Section 4.2, based on the questions after the task we learned that many participants
would use the entry points selection if they worked on their own project (Table 5). Addition-
ally, in part two of the interview we asked the participants to rank the following statement
"The issues reported by the tool should be relevant for me, i.e., the context I am currently
working on.". Figure 6 shows the distribution of the responses showing that for most partic-
ipants the reported issues should be relevant for the context. We also asked the participants
about the granularity level of the entry points. In our study, we chose entry points to be on the
class level. As answers, we offered method level, class level, package level, or other. Figure 7
shows the distributions of the answers. Under Other, we received 2 answers "all", 2 answers
combination of two of the given options, 1 answer "annotations" and 1 answer "hierarchical
starting at package level". Based on this data, we make the next recommendation. Related to
the entry point granularity, we can make the next rexommendation.

Finally, we refer to the results from our user study where we learned that the participants
from the treatment group were able to resolve the findings more effectively than participants
from the control group. From the data, we learned thatmost participants used the vulnerability
rules as main selection criterion. They did not use the entry points as they were not very
familiar with the code. This is a realistic scenario where security teams or quality assurance
teams are performing the analysis for code that they have not written themselves. We also
observed that all participants started with resolving the SQL injection (Mitre CWE, 2021b)
findings. This is one of the most popular vulnerability nowadays. This shows that the users
of SAST tools will probably focus on the vulnerabilities that they know and are more likely
to solve. Finally, we make our fourth recommendation.

123



118 Page 22 of 28 Empirical Software Engineering (2023) 28:118

Fig. 7 On what level would you prefer the entry points selection option to be?

5 Threats to validity

We next discuss the most relevant threats to the validity of our study design and evaluation
based on the threat types by (Cook and Campbell, 1979).

Construct validity A possible threat to the validity of the user study relates to its setup. All
participants performed the study remotely by sharing voice, video, and screen. During the
task, the moderator noted the outcome of the findings that the respective participant resolved.
To mitigate the risk of human mistake, in the post-study processing phase the first author
watched all videos to collect and confirm the results. We had a 100% inter-rater reliability
score. Additionally, we collected notes of each session from which we created an artifact
from our study.

Internal validity To avoid any random answers to the questionnaire, we asked the participant
to share the screen and give further comments to some questions while guided by the moder-
ator in an interview style. To confirm the clarity of the questions and the timing of our study,
we ran four tests with students from our research department.

External validity The participation in the study was voluntary and without compensation.
We asked our contacts from industry to invite their software developers and additionally, we
invited researchers and students from Paderborn University. The invitation explained that the
user will evaluate the configuration capabilities of SAST tools. Having this information, it is
more likely that the participants have some interest security and static analysis. This might
make our population biased towards SAST tools.

We consciously chose a study design that would yield high internal validity, at the necessary
cost of limiting external validity (Siegmund et al., 2015). This is limited by the tool we used
for the study and the choice of example project. The tool is limited to taint analysis, while
other SAST tools also include other types of analyses. However, most popular vulnerabilities

123



Empirical Software Engineering (2023) 28 :118 Page 23 of 28 118

are of taint-style and the core of most SAST tools is a taint analysis (Piskachev et al., 2014).
The project we used is artificially created but it includes different components that modern
web application would have. The vulnerabilities within the application are inserted based
on existing vulnerabilities that we found in OWASP benchmark (Benchmark O, 2021) and
OWASP Webgoat (WebGoat, 2021). We decided to use our own tool as this gave us control
over what features to include and exclude.

The fact that several participants noted that the analysis was fast compared to what they
expect from a SAST tool, is due to the reason that our example project is relative small
compared to most real-world projects in industry. Since this may impact the strategies that
the participants used and discussed in Q22, we additionally asked Q23, i.e., how they would
have used the tool if that was their own project where the analysis time would be an important
factor. This question allowed us to gain further insights relating to more real-world situations,
strengthening external validity.

6 Conclusion

Static analysis’ trade-off for precision, recall, and runtime is addressed through a large con-
figuration space of SAST tools. However, many of the configuration options are made for
static analysis experts. In this paper, we studied how the users of SAST tools, including
developers, static analysis experts, and security experts, are able to use a subset of the con-
figuration space. We focused on two configuration options that largely impact the precision,
recall, and runtime: the selection of security rules and of the analysis scope (via selection of
entry points). It proved that users exploiting these configuration options resolve the findings
from the tool more effectively. From the quantitative and qualitative data we were able to
identify the strategies that the users apply while using the configuration options. For projects
that they are not familiar with, in each new configuration most participants would iteratively
select a subset of the security rules. For their own projects which they are familiar with,
they would use a subset of the entry points, fine-tuning the analysis scope. Additionally, we
asked the participants to evaluate the usability of the related configuration options from two
popular commercial SAST tools. We found out that the options need improved descriptions
since quarter of the participants do not understand them. Moreover, the most useful options
found by the participants are related to the analysis scope.

Finally, based on our results, we created a list of recommendations that SAST tools
creators should consider for the future tool in order to address the expectations and needs of
the different users.

Appendix

List of configuration options from Fortify used in the user study.

F1 filter - Apply a filter using a filter file
F2 disablesource-bundling - Exclude source files from the FPR file
F3 disable-language - To disable specific languages
F4 analyzers - To disable specific analyzers, include this option at scan time with a colon-

or comma-separated list of analyzers you want to enable. The full list of analyzers is:
buffer, content, configuration, control-flow, data-flow, findbugs, nullptr, semantic, and
structural

123



118 Page 24 of 28 Empirical Software Engineering (2023) 28:118

F5 incremental-base - Specifies that this is the initial full scan of a project for which you
plan to run subsequent incremental scans. Use this option for the first scan when you
plan to run subsequent scans on the same project with the incremental option

F6 no-default-issue-rules - Disables rules in default Rulepacks that lead directly to issues.
Still loads rules that characterize the behavior of functions. Note: This is equivalent to
disabling the following rule types: Data-flow Sink, Semantic, Control-flow, Structural,
Configuration, Content, Statistical, Internal, and Characterization:Issue

F7 no-default-rules - Specifies not to load rules from the default Rulepacks
F8 no-default-sink-rules - Disables sink rules in the default Rulepacks
F9 rules - Specifies a customRulepack or directory. You can use this option multiple times

to specify multiple Rulepack files. If you specify a directory, includes all of the files
in the directory with the .bin and .xml extensions

F10 enableInterproceduralConstantResolution - Use constant resolution
F11 dataflowMaxFunctionTimeMinutes - Set a threshold to limit the data-flow analysis

time of a single function
F12 maxFunctionVisits - Set a threshold for the number of times a function is analyzed
F13 maxTaintDefForVar - Dimensionless value expressing the complexity of a function
F14 maxTaintDefForVarAbort- The upper bound for MaxTaintDefForVar
F15 maxChainDepth - Set a threshold for depth of functions chain
F16 alias.EnableInterprocedural - Enable interprocedural alias analysis.
F17 maxFieldDepth Set a threshold for the depth of the analyzed fields.
F18 maxPaths - Set a threshold for the number of analyzed paths

List of configuration options from CheckMarx used in the user study.

C1 EXCLUDE_PATH - Semicolon separated list of file names to exclude from the scan
(e.g. file1;file2;file3). Include only file names, not paths

C2 MAX_QUERY_TIME- Defines part of a formula to calculate the maximum execution
time allowed for a single query. After the set time, the query execution is terminated,
the result is empty and the log indicates that its execution failed

C3 USE_ROSLYN_PARSER - Enable the use of Roslyn parser to scan C# files
C4 LANGUAGE_THRESHOLD - Sub-setting of MULTI_LANGUAGE_MODE. The

minimal percentage of complete number of files required to scan a language. Should be
set to 0.0 (andMULTI_LANGUAGE_MODE=2) tomatch the Portal_sMulti-language
mode. See MULTI_LANGUAGE_MODE parameter for more details

C5 MULTI_LANGUAGE_MODE -Defineswhich languages the application should scan.
1 = One Primary Language, 2 = All Languages, 3 = Matching Sets, 4 = Selected
Languages

C6 SCAN_BINARIES - Whether or not to scan binary files (only available for .jar files -
Java - and for .dll files - C#). *Note*: Requires Java to be installed on the machine

C7 SUPPORTED_LANGUAGES - Sub-setting of MULTI_LANGUAGE_MODE. If
MULTI_LANGUAGE_MODE=1or2 ignore/meaningless. IfMULTI_LANGUAGE_
MODE=4 then languagesare separatedby commas. SeeMULTI_LANGUAGE_MODE
parameter for more details

C8 TYPES_TO_DECOMPILE -WhenSCAN_BINARIES is set to true, this flag should be
used to specifywhich packages/namespaces should be decompiled and then included in
the scan. Format x.y.* can be used to specify that all the types under package/namespace
x.y should be decompiled and scanned. The list of packages/namespaces should be
separated by a semicolon (;).

C9 MAXFILESIZEKB - Files exceeding the set size (in KB) will not be scanned

123



Empirical Software Engineering (2023) 28 :118 Page 25 of 28 118

C10 MAX_PATH_LENGTH - Defines the maximum amount of flow elements allowed in
an influence flow calculation. Paths with length exceeding this number are ignored

C11 MAX_QUERY_TIME_PER_100K - Sub setting of MAX_QUERY_TIME. Defines
part of formula to calculate the maximum execution time allowed for a single query.
See MAX_QUERY_TIME parameter for more details

Acknowledgements We gratefully acknowledge the funding by the project “AppSecure.nrw - Security-by-
Design of Java-basedApplications” of the European Regional Development Fund (ERDF-0801379).We thank
Ranjith Krishnamurthy and Oshando Johnson for their work on the user study

Author Contributions The first author is the main contributor to this research. The second and third author
contributed with conceptual ideas and feedback

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability https://research-sast-config.github.io/

Code Availability https://github.com/secure-software-engineering/secucheck

Declarations

Funding and/or Conflicts of interests/Competing interests Not applicable

Ethics approval The user study design has been approved for ethical correctness by one of the companies
participated in the study as well as by the corresponding head of department at Fraunhofer IEM

Consent to participate and publication For the user study, all 40 participants signed a written consent form in
which they agreed to participate voluntarily in the study. They also agreed that the collected data can be used
for research publication. The written consent form was obtained from all participants before the study

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le TraonY, OcteauD,McDaniel P (2014) Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices 49(6):259–269

Benchmark O (2021) Owasp. https://owasp.org/www-project-benchmark/, online; Accessed January 2021
Charness G, Gneezy U, Kuhn MA (2012) Experimental methods: Between-subject and within-subject design.

J Econ Behav Organ 81(1):1–8. https://doi.org/10.1016/j.jebo.2011.08.00, https://ideas.repec.org/a/eee/
jeborg/v81y2012i1p1-8.html

Checkmarx (2021) Checkmarx. Online; Accessed January 2021
Christakis M, Bird C (2016) What developers want and need from program analysis: An empirical study.

In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering,
ACM, New York, NY, USA, ASE 2016, pp 332–343

Cook TD, Campbell DT (1979) Quasi-Experimentation: Design and Analysis Issues for Field Settings.
Houghton Mifflin, Boston, USA, Boston

Facebook (2021) Infer. Online; Accessed January 2021

123

https://research-sast-config.github.io/
https://github.com/secure-software-engineering/secucheck
http://creativecommons.org/licenses/by/4.0/
https://owasp.org/www-project-benchmark/
https://doi.org/10.1016/j.jebo.2011.08.00
https://ideas.repec.org/a/eee/jeborg/v81y2012i1p1-8.html
https://ideas.repec.org/a/eee/jeborg/v81y2012i1p1-8.html


118 Page 26 of 28 Empirical Software Engineering (2023) 28:118

Github S (2021) Lgtm. Online; Accessed January 2021
Gordon M, deokhwan K, Perkins J, Gilham L, Nguyen N, Rinard M (2015) Information-flow analysis

of android applications in droidsafe. In: Network and Distributed System Security Symposium 2015,
10.14722/ndss.2015.23089

Grammatech (2021) Codesonar. Online; Accessed January 2021
Habib A, Pradel M (2018) How many of all bugs do we find? a study of static bug detectors. In: Proceedings

of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Association for
Computing Machinery, New York, NY, USA, ASE 2018, p 317–328, https://doi.org/10.1145/3238147.
3238213

Johnson B, Song Y, Murphy-Hill E, Bowdidge R (2013) Why don’t software developers use static analysis
tools to find bugs? In: Proceedings of the 2013 International Conference on Software Engineering, IEEE
Press, ICSE ’13, p 672–681

Krüger S, Späth J, AliK, BoddenE,MeziniM (2018)CrySL:AnExtensibleApproach toValidating theCorrect
Usage of Cryptographic APIs. In: European Conference on Object-Oriented Programming (ECOOP), pp
10:1–10:27, https://bodden.de/pubs/ksa+18crysl.pdf

Lee W, Lee W, Kang D, Heo K, Oh H, Yi K (2017) Sound non-statistical clustering of static analysis alarms.
ACM Trans Program Lang Syst 39(4), https://doi.org/10.1145/3095021

Luo L, Bodden E, Späth J (2019) A qualitative analysis of android taint-analysis results. In: 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp 102–114,
10.1109/ASE.2019.00020

Luo L, Dolby J, Bodden E (2019)MagpieBridge: AGeneral Approach to Integrating Static Analyses into IDEs
and Editors (Tool Insights Paper). In: Donaldson AF (ed) 33rd European Conference on Object-Oriented
Programming (ECOOP 2019), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
Leibniz International Proceedings in Informatics (LIPIcs), vol 134, pp 21:1–21:25, https://doi.org/10.
4230/LIPIcs.ECOOP.2019.21,http://drops.dagstuhl.de/opus/volltexte/2019/10813

of Maryland U (2021) Findbugs. Online; Accessed January 2021
Microfocus (2021) Fortify. Online; Accessed January 2021
Mitre CWE (2021a) 2011 cwe/sans top 25most dangerous software errors. http://cwe.mitre.org/top25/, online;

Accessed January 2021
Mitre CWE (2021b) Improper neutralization of special elements used in an sql command. https://cwe.mitre.

org/data/definitions/89.html, online; Accessed January 2021
Naiakshina A, Danilova A, Tiefenau C, Herzog M, Dechand S, Smith M (2017) Why do developers get

password storage wrong? a qualitative usability study. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, Association for Computing Machinery, New York,
NY, USA, CCS 17, pp 311–328, https://doi.org/10.1145/3133956.3134082

Naiakshina A, Danilova A, Tiefenau C, Smith M (2018) Deception task design in developer password studies:
Exploring a student sample. Proceedings of the Fourteenth USENIX Conference on Usable Privacy and
Security, USENIX Association, USA, SOUPS 18:297–313

Naiakshina A, Danilova A, Gerlitz E, von Zezschwitz E, Smith M (2019) If you want, i can store the encrypted
password: A password-storage field study with freelance developers. In: Proceedings of the 2019 CHI
Conference onHuman Factors in Computing Systems, Association for ComputingMachinery, NewYork,
NY, USA, CHI 19, pp 1–12

Naiakshina A, Danilova A, Gerlitz E, Smith M (2020) On conducting security developer studies with cs
students: Examining a password-storage study with cs students, freelancers, and company developers.
In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Association for
Computing Machinery, New York, NY, USA, CHI 20, pp 1–13

Nguyen Quang Do L, Bodden E (2020) Explaining static analysis with rule graphs. IEEE Transactions on
Software Engineering pp 1–1, 10.1109/TSE.2020.3004525

Nguyen Quang Do L, Ali K, Livshits B, Bodden E, Smith J, Murphy-Hill E (2017) Just-in-time static analysis.
In: Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ACM, New York, NY, USA, ISSTA 2017, pp 307–317, https://doi.org/10.1145/3092703.3092705

Nguyen Quang Do L, Wright JR, Ali K (2020) Why do software developers use static analysis tools? a user-
centered study of developer needs and motivations. In: Proceedings of the Sixteenth Symposium on
Usable Privacy and Security, 10.1109/TSE.2020.3004525

PatnaikN,Hallett J, RashidA (2019)Usability smells: An analysis of developers’ strugglewith crypto libraries.
In: Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019), USENIX Association, Santa
Clara, CA, https://www.usenix.org/conference/soups2019/presentation/patnaik

Piskachev G, Do LNQ, Bodden E (2019) Codebase-adaptive detection of security-relevant methods. In:
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
Association for Computing Machinery, New York, NY, USA, ISSTA 2019, pp 181–191

123

https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://bodden.de/pubs/ksa+18crysl.pdf
https://doi.org/10.1145/3095021
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
http://drops.dagstuhl.de/opus/volltexte/2019/10813
http://cwe.mitre.org/top25/
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3092703.3092705
https://www.usenix.org/conference/soups2019/presentation/patnaik


Empirical Software Engineering (2023) 28 :118 Page 27 of 28 118

Piskachev G, Krishnamurthy R, Bodden E (2021) Secucheck: Engineering configurable taint analysis for
software developers. In: 21st IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2021), IEEE, Luxembourg

PiskachevG, Späth J, Budde I, BoddenE (2022) Fluently specifying taint-flowquerieswith fluenttql. Empirical
Softw Eng 27(5), https://doi.org/10.1007/s10664-022-10165-y

Qiu L, Wang Y, Rubin J (2018) Analyzing the analyzers: Flowdroid/iccta, amandroid, and droidsafe. In:
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
Association for Computing Machinery, New York, NY, USA, ISSTA 2018, pp 176–186, https://doi.org/
10.1145/3213846.3213873

Sadowski C, van Gogh J, Jaspan C, Söderberg E, Winter C (2015) Tricorder: Building a program analysis
ecosystem. In: Proceedings of the 37th International Conference on Software Engineering - Volume 1,
IEEE Press, ICSE ’15, pp 598–608

Siegmund J, Siegmund N, Apel S (2015) Views on internal and external validity in empirical software engi-
neering. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, IEEE, vol 1,
pp 9–19

Smith J, Johnson B, Murphy-Hill E, Chu B, Lipford H (2015) Questions developers ask while diagnosing
potential security vulnerabilities with static analysis. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ACM, New York, NY, USA, ESEC/FSE 2015, pp 248–259

Smith J, Nguyen Quang Do L, Murphy-Hill E (2020) Why can’t johnny fix vulnerabilities: A usability evalu-
ation of static analysis tools for security. In: Proceedings of the Sixteenth Symposium on Usable Privacy
and Security, SOUPS 2020

Snyk (2021) Deepcode. Online; Accessed January 2021
SonarSource (2021) Sonarqube. Online; Accessed January 2021
Thomas TW, Lipford H, Chu B, Smith J, Murphy-Hill E (2016) What questions remain? an examination of

how developers understand an interactive static analysis tool. In: Twelfth Symposium on Usable Privacy
and Security (SOUPS 2016), USENIX Association, Denver, CO, https://www.usenix.org/conference/
soups2016/workshop-program/wsiw16/presentation/thomas

Vassallo C, Panichella S, Palomba F, Proksch S, Zaidman A, Gall HC (2018) Context is king: The developer
perspective on the usage of static analysis tools. In: 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp 38–49

Veracode (2021) Veracode. Online; accessed January 2021
WebGoat (2021) Owasp webgoat. https://owasp.org/www-project-webgoat/, online; Accessed January 2021
Wei F, Roy S, Ou X, Robby (2018) Amandroid: A precise and general inter-component data flow analysis

framework for security vetting of android apps. ACM Trans Priv Secur 21(3),https://doi.org/10.1145/
3183575

Witschey J, Zielinska O, Welk A, Murphy-Hill E, Mayhorn C, Zimmermann T (2015) Quantifying devel-
opers’ adoption of security tools. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ACM, New York, NY, USA, ESEC/FSE 2015, pp 260–271, https://doi.org/10.
1145/2786805.2786816

Zampetti F, Scalabrino S, Oliveto R, Canfora G, Di Penta M (2017) How open source projects use static code
analysis tools in continuous integration pipelines. In: 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pp 334–344

Zhang X, Grigore R, Si X, Naik M (2017) Effective interactive resolution of static analysis alarms. Proc ACM
Program Lang 1(OOPSLA), https://doi.org/10.1145/3133881

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10664-022-10165-y
https://doi.org/10.1145/3213846.3213873
https://doi.org/10.1145/3213846.3213873
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://owasp.org/www-project-webgoat/
https://doi.org/10.1145/3183575
https://doi.org/10.1145/3183575
https://doi.org/10.1145/2786805.2786816
https://doi.org/10.1145/2786805.2786816
https://doi.org/10.1145/3133881


118 Page 28 of 28 Empirical Software Engineering (2023) 28:118

Goran Piskachev (Ph.D. 2022) is an applied scientist in the Privacy
Engineering Team at Amazon Web Services in Berlin. Previously, he
was a team manager for development tools for secure services and
apps as well as a research associate in the same team at Fraunhofer
IEM in Paderborn. He received his doctoral and master degree in
computer science at Paderborn University. He completed an engineer-
ing degree at the Ss. Cyril and Methodius University in Skopje. His
research interests include static code analysis, security testing, pri-
vacy engineering, domain specific languages, and machine learning
for code analysis

Matthias Becker (Ph.D 2017) is head of the department Secure Ser-
vices and Apps at the Fraunhofer IEM in Paderborn, Germany. He
received his doctoral degree in 2017 in the area of software quality
with a dissertation about scalability prediction of large-scale software
systems. His research interests include software quality, especially
software security, static code analysis, machine learning, and model-
driven engineering. Dr. Becker received a postgraduate diploma in
management at the European School of Management and Technology
(ESMT), Berlin in 2022 and is member of the Bitkom Management
Club

Eric Bodden is a full professor for Secure Software Engineering at the
Heinz Nixdorf Institute of Paderborn University, Germany. He is further
the director for Software Engineering and IT Security at the Fraunhofer
Institute for Engineering Mechatronic Systems Design. Prof. Bodden
has been recognized several times for his research on program anal-
ysis and software security, most notably with the German IT-Security
Price and the Heinz Maier-Leibnitz Price of the German Research Foun-
dation, as well as with several distinguished paper and distinguished
reviewer awards. He is an ACM Distinguished Member

123


	Can the configuration of static analyses make resolving security vulnerabilities more effective? - A user study
	Abstract
	1 Introduction
	2 Related work
	2.1 Usability of static analysis
	2.2 Studies on adaption of security tools
	2.3 Taint analysis results and comparison

	3 Methodology
	3.1 Participants
	3.2 Design
	3.2.1 Lab study
	3.2.2 SAST tool
	3.2.3 Target project and built-in vulnerabilities
	3.2.4 Semi-structured interview

	3.3 Calculating effectiveness
	3.4 Statistical tests
	3.5 Data collection
	3.6 Ethics

	4 Results
	4.1 Resolving findings in configurable tools effectively
	4.2 Strategies that users have when configuring static analysis tools
	4.3 Configuration options in commercial tools
	4.4 Recommendations for building the future SAST tools

	5 Threats to validity
	6 Conclusion
	Appendix
	Acknowledgements
	References


