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Abstract

Context Ensuring safety for any sophisticated system is getting more complex due to the
rising number of features and functionalities. This calls for formal methods to entrust confi-
dence in such systems. Nevertheless, using formal methods in industry is demanding because
of their lack of usability and the difficulty of understanding verification results.

Objective We evaluate the acceptance of formal methods by Bosch automotive engineers,
particularly whether the difficulty of understanding verification results can be reduced.
Method We perform two different exploratory studies. First, we conduct a user survey to
explore challenges in identifying inconsistent specifications and using formal methods by
Bosch automotive engineers. Second, we perform a one-group pretest-posttest experiment to
collect impressions from Bosch engineers familiar with formal methods to evaluate whether
understanding verification results is simplified by our counterexample explanation approach.
Results The results from the user survey indicate that identifying refinement inconsistencies,
understanding formal notations, and interpreting verification results are challenging. Nev-
ertheless, engineers are still interested in using formal methods in real-world development
processes because it could reduce the manual effort for verification. Additionally, they also
believe formal methods could make the system safer. Furthermore, the one-group pretest-
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posttest experiment results indicate that engineers are more comfortable understanding the
counterexample explanation than the raw model checker output.

Limitations The main limitation of this study is the generalizability beyond the target group
of Bosch automotive engineers.

Keywords User study - Error comprehension - Counterexample interpretation -
Formal methods - Model checker

1 Introduction

The overarching goal of formal methods is to help engineers construct more reliable
systems. — Clarke and Wing (1996)

Motivation Research on formal methods has been continuing for more than three decades
(Bowen and Breuer 2021). Initial applications of formal methods are introduced by Wing
(1990) and Rushby (1993). In recent years, formal methods have been developed to analyze
and verify complex safety-critical systems (Ferrari and ter Beek 2023; Kaleeswaran et al.
2022). Especially automated verification techniques based on formal methods are promising
candidates (Baier and Katoen 2008; Grumberg and Veith 2008; Clarke et al. 2018a,b) to
ensure the functional safety, for instance, of automotive systems. Even though the use of
formal methods is considered to be a promising solution, industries are still hesitant to use
it for real-world projects due to its complexity (Heitmeyer 1998; Abrial 2006; Bicarregui
et al. 2009; Kossak et al. 2014; Jones and Thomas 2022; Ferrari and ter Beek 2023). To adopt
formal methods in industry, usability and learnability are key factors (ter Beek etal. 2019; Reid
etal. 2020). There exist several approaches that ease the use of formal methods. For example,
property specification patterns (Dwyer et al. 1999; Konrad and Cheng 2005; Grunske 2008;
Post and Hoenicke 2012; Autili et al. 2015) and structured natural language (Giannakopoulou
et al. 2020) are convenient means to specify requirements to be translated into a temporal
logic. Furthermore, the tools by Ratiu et al. (2021), Gerking et al. (2015), and Barbon et al.
(2019) support performing verification in integration with a model checker. In a recent survey,
we provide an overview of the state of the art in research on explaining counterexamples and
how engineers are supported in interpreting counterexamples (Kaleeswaran et al. 2022).

With this work, we want to identify challenges and opinions on using formal methods in a
concrete industrial setting, which is the identification of inconsistent specifications of safety-
critical automotive systems at Bosch. With the rising number of features and functionalities,
ensuring safety of such systems is a complex task that can be supported by formal methods
such as model checking. However, adopting formal methods in industry is demanding because
of lack of usability and the difficulty of understanding verification results obtained by model
checkers. Therefore, we want to investigate whether a concrete approach to counterexample
explanation eases the understanding of verification results, thus helping Bosch engineers
in their daily work to specify and verify their specifications of safety-critical automotive
systems.

Contributions In this work, we present the results obtained from two different user studies
with Bosch automotive engineers: (Part 1) user survey and (Part2) one-group pretest-posttest
experiment. 41 participants had taken part in the user survey and 13 participants in the one-
group pretest-posttest experiment. From the user survey, we first collect challenges on
identifying inconsistent specifications and concrete inconsistencies in a specification, and
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on maintaining refinement consistency between components. We further collect feedback
and opinions in using formal methods. The results of the user survey are analyzed quantita-
tively and qualitatively.

Formal methods are not completely new to Bosch. They are used to define requirements
as pattern-based specifications to support verification during product development (Post
et al. 2012; Post and Hoenicke 2012). Additionally, we have presented a counterexample
explanation approach that attempts to ease the use of formal methods by reducing the man-
ual work and difficulty of interpreting the verification results generated by model checkers
(Kaleeswaran et al. 2020). Thus, the motive of the one-group pretest-posttest experiment is to
evaluate our counterexample explanation approach in an industrial setting at Bosch. Partic-
ularly, we investigate whether explaining a counterexample generated by a model checker in
an understandable format would increase the use of formal methods among Bosch engineers.

We pre-registered our studies (Part 1 and 2) by a report submitted to and accepted by
the Registered Reports Track at the International Conference on Software Maintenance and
Evolution (ICSME) 2021! (Kaleeswaran et al. 2021). Both studies have been conducted
following the same research protocol as described in the registered report (Kaleeswaran et al.
2021) without any modification to the design of the studies.

Outline We introduce the background and terminology in Section 2, and discuss related user
studies concerning formal methods in Section 3. We provide an overview of the counterex-
ample explanation approach in Section 4. In Section 5, we outline the research questions,
the design, execution plan, target participants, and analysis plan of the studies. We present
the results of the user survey and one-group pretest-posttest experiment in Sections 6 and 7,
and discuss and interpret them in Section 8. Threats to validity are discussed in Section 9.
Finally, we conclude and outline the future work in Section 10.

Summary of results From the results of the user survey, we found out that understanding
formal notations (Section 6.2), identifying inconsistent specifications and understanding
inconsistencies (Section 6.3), as well as maintaining the consistency of refined specifica-
tions and verifying the refinement consistency (Section 6.4) to be difficult for engineers.
Further, the majority of participants answered positively that formal verification could sup-
port safety analysis and make a system safer (Section 6.5), formal methods are potential
candidates to use in the real-world development process, and usage of formal methods could
be increased by improving understanding of formal notations (Section 6.6).

From the results of the one-group pretest-posttest experiment, we found that participants
obtain a good understanding of the inconsistencies with our proposed counterexample expla-
nation (Sections 7.4 and 7.5) Further, analyzing the feedback from the participants, the
majority of them find that the counterexample explanation provides a better and quicker
understanding than the counterexample generated by the model checker (Sections 7.6—7.8).

2 Background and Terminology

In this section, we introduce the background and terminology of formal methods, model
checking, and contract-based design, which are relevant for our studies.

Formal methods By formal methods we refer to models, e.g., SysML (Friedenthal et al. 2014),
and Kripke structures used as input to verification tools (McMillan 1999), formal specifi-
cations of requirements, e.g., expressed in natural language-like statements using property

! https://icsme2021.github.io/cfp/RegisteredReportsTrack.html
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specification patterns (Dwyer et al. 1999), or directly in a temporal logic such as Linear
Temporal Logic (LTL) (Pnueli 1977), and to automated tools to perform the verification.
Examples of such tools are model checkers, e.g., NuSMV (Cimatti et al., 2000), theorem
provers, e.g., Isabelle (Paulson 1994), and solvers, e.g., Z3 (de Moura and Bjgrner 2008).

Model checking Considering the verification as a model checking problem, a specification is
expressed in a temporal logic (¢) and a system is modeled as a Kripke structure (K). Both are
the input for a model checker. The model checker verifies whether the given system model
(K) satisfies the given property or specification (¢), that is, K F ¢ (Baier and Katoen 2008;
Clarke et al. 2018a). If ¢ is not satisfied by K, the model checker generates a counterexample
describing an execution path in K that leads from the initial system state to a state that
violates ¢, where each state consists of system variables with their values. Based on the
counterexample, a user can manually localize the fault in K that causes the violation of ¢.

Contract-based design Contract-based design (CBD) (Cimatti and Tonetta 2012; Kaiser et al.
2015) supports the automated verification of refinement consistency and correctness. In
CBD, model checking is used to identify whether the top-level requirements of a system
are consistently refined along the refinement of the system to components. Each component
of a system is associated with a contract that precisely specifies the expected behavior of
the component by assumptions, and the provided behavior by guarantees. If a component is
refined to sub-components, its contract is also refined and assigned to its sub-components.
Thus, all of the sub-components should satisfy the expected behavior of the parent component.
This corresponds to the correctness of the refined contracts and can be verified by model
checking, which is known as the refinement check (Cimatti and Tonetta 2012).

3 Related Work

In the following, we discuss existing user surveys focusing on formal methods. Interviews
with users of formal methods are conducted by Snook and Harrison (2001) to collect the
impact on using formal methods on the company, products, and the development process.
Furthermore, the interviews focus on various software engineering aspects such as scala-
bility, understandability, and tool support. Rodrigues et al. (2018) perform a survey with
20 participants who use formal specifications to solve limitations of informal specifications.
Khazeev et al. (2019) conduct a survey with the students of the Software Engineering pro-
gram to examine the AutoProof tool and highlight the challenges associated with formal
approaches.

There exists several surveys focusing mainly on particular application domains. Davis et al.
(2013) conduct a survey with 31 participants in the aerospace domain. The survey collects
barriers in using formal methods and also propose mitigation measures for the identified
barriers. The studies by Ferrari et al. (2019) and ter Beek et al. (2019) focus on the railway
domain. Ferrari et al. (2019) summarizes results that are suitable for system modelling and
verification from surveying 114 primary studies, 44 participants from academia and industry,
and eightprojects. Similarly, ter Beek et al. (2019) collect the opinion of users on adopting
formal methods in the same domain.

According to the recent user study by Gleirscher and Marmsoler (2020) performed with
216 participants, the participants are inclined to use formal methods when sufficient training
and tool support are available. They also present a systematic map of 35 existing studies that
summarizes the opinions of the studies’ authors on formal methods, as well as the motivation,
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research method, and results of the studies. Similarly, the study performed by Garavel et al.
(2020) with 130 participants focus mainly on the use of formal methods in research, industry,
and education in the past and present. Furthermore, the study summarizes the future direction
of formal methods in industry, future target audience using formal methods, domains in
which formal methods may have an impact, and competitive or alternative methods to formal
methods.

In contrast to these studies, (1) we particularly focus on identifying challenges that engi-
neers face in identifying inconsistent specifications rather than general challenges of using
formal methods, and (2) we conduct the study with engineers who work on real-world projects
in the automotive domain.

4 Counterexample Explanation in a Nutshell

Contract-based design (CBD) (Cimatti and Tonetta 2012) is a scalable solution to overcome
a manual analysis by automatically and compositionally verifying the consistency of system
and requirement refinements using model checking. Thus, CBD provides assurances for con-
sistent refinements early in the development process, which promises to ease corresponding
testing activities at later stages. However, using such a formal method in industry is chal-
lenging due to usability issues, e.g., the difficulty of understanding model checking results.
Thus, we have proposed a counterexample explanation approach that eases the error compre-
hension of engineers—especially of non-experts in formal methods—if the refinement check
fails. The approach generates a user-friendly explanation that localizes the fault at the levels
of requirements and components. Examples of a CBD and explanations of counterexamples
will be given in the context of the study in Section 7.

The counterexample explanation approach comprises six steps illustrated in Fig. 1.
Steps (D and () are performed manually while the other steps are completely automated.
Step (D is the translation of CBD by importing SysML models from Rhapsody and DNG
requirements into FASTEN (Ratiu et al. 2021). FASTEN is an open-source platform to exper-
iment with rigorous modeling of safety-critical systems. Translating the (largely informal)
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Fig.1 Overview of the counterexample explanation approach
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requirements from DNG into contracts is a manual effort, further detailed in the context of
Bosch by Post et al. (2012); Post and Hoenicke (2012). CBD languages provided by FASTEN
allow us to model component-based architectures, requirements as contracts (assumptions
and guarantees), and refinements, hence creating a CBD. After the design, in Step ), FAS-
TEN automatically translates a CBD to a formal system model K and refinement specification
¢ that allows model checking by NuSMV/nuXMYV in Step 3. This refinement specification
follows the scheme by Cimatti and Tonetta (2012) who define a refinement check by a set
of LTL formulae (Kaleeswaran et al. 2020, Section 2). If the model checker identifies any
refinement inconsistency during the verification, it returns the violated LTL refinement spec-
ification and the counterexample.

Taking the violated LTL refinement specification and counterexample as input, the coun-
terexample explanation approach extracts erroneous parts in Step @. To extract such parts,
we identify (i) the inconsistent specifications in the violated LTL refinement specification,
(ii) inconsistent sub-specifications in the inconsistent specifications, (iii) erroneous contracts
and components by using the inconsistent specifications and by referring to the refinement
formula, (iv) erroneous states in the counterexample, and (v) erroneous variables by using
the inconsistent sub-specifications (cf. - in Fig. 1).

Finally in Step (), a statement is generated explaining an inconsistency along with the
counterexample highlighting erroneous states and erroneous variables. The generated state-
ment consists of the erroneous components, violated contract information, and inconsistent
specifications expressed in a pattern-based language referring to requirements and SysML
model being the initial user input of the approach (cf. (D in Fig. 1). Finally, the inconsis-
tent sub-specifications are highlighted in the pattern-based expression. With the statement,
the engineer gets a high-level understanding of the refinement inconsistency. Further, the
counterexample with highlighted erroneous parts supports the engineer in understanding the
erroneous behavior of the system. Finally, the engineer can correct the refinement inconsis-
tencies by remodeling the component model and changing the requirements (cf. ® in Fig.
1). To ensure the correctness of the changes, the engineer re-verifies the changed refinement.

5 Research Method

In this section, we discuss the research questions, design, execution plan, target participants,
and analysis plan of the studies.

5.1 Research Questions

Our study aims to explore and understand the challenges in identifying inconsistent speci-
fications, and the acceptance of formal methods by Bosch automotive engineers. Therefore,
this user study has two significant goals: (G1) to understand challenges faced by Bosch
engineers when identifying inconsistent specifications, and challenges along with their opin-
ions to use formal verification or formal methods in real-world development processes, and
(G2) to explore whether Bosch engineers are interested in using formal methods, particularly
model checking, in real-world development processes if the difficulty of understanding model
checking results is reduced by our counterexample explanation approach. Considering these
two goals, we formulate the following three research questions:

RQ1: To what extent do engineers face challenges in identifying inconsistent specifications
in formal models that are introduced during the refinement of a system?
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With this RQ we want to investigate whether:

(I1) Understanding formal notations is difficult for engineers.
(I2) Identifying inconsistent specifications that are introduced during a refinement of a top-
level specification is difficult.

RQ2: To what extent the identification of inconsistent specifications and usage of formal
methods prove beneficial to a real-world development process?

With this RQ we want to investigate whether:

(I4) Usage of formal verification or formal methods is beneficial in a real-world development
process.
(IS) Identifying inconsistent specifications is beneficial in a real-world development process.

RQ3: To what extent do engineers prefer to use formal methods (model checkers particu-
larly) if the difficulty is reduced for understanding verification results to identify inconsistent
specifications?

With this RQ we want to investigate whether:

(IS) The counterexample explanation approach eases the comprehension when compared
to interpretation of the raw model checker output for engineers with a formal methods
background.

(I6) It is possible for engineers with a background in formal methods to identify and fix
inconsistent specifications based on the counterexample explanation approach.

(I7) The counterexample explanation approach can promote formal verification and usage
of model checking in real-world development processes.

5.2 Variables

To attain the goals G1 and G2, we perform two different types of exploratory user studies as
shown in Fig. 2. The first study is the user survey (Part I), and the second study is a one-group
pretest-posttest experiment (Part2).

5.2.1 Variables of Part 1: User Survey

Our user survey evaluates the research questions RQ1 and RQ2. The independent variables
of Part I are participants’ professional background and experience. The dependent variables
are different for each research questions. For RQ1, the dependent variable is the difficulty
in understanding that infers understanding formal notations and identifying inconsistent
specifications by engineers are difficult. Similarly, the dependent variable for RQ2 is the
increase in confidence in system safety, that is, the identification of inconsistent specifications
and use of formal methods in real-world development processes can make systems safer.

5.2.2 Variables of Part 2: One-Group Pretest-Posttest Design

According to Babbie (2016), an experimental stimulus (also called an intervention) is the
independent variable. In the one-group pretest-posttest design, we use our counterexample
explanation approach as an intervention. Therefore, it serves as the independent variable
of Part2. Further, we evaluate RQ3 based on the following four attributes that serve as
dependent variables for Part2:
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one-group pretest-posttest experiment performed with engineers having knowledge in formal methods. Gray
color boxes indicate the main tasks, i.e., questionnaire survey, pretest and posttest
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1. Better understanding: Does the counterexample explanation approach allow engineers
to understand model checking results and identify inconsistencies more effectively?

2. Quicker understanding: Does the counterexample explanation approach allow engineers
to understand model checking results and identify inconsistencies more efficiently?

3. Confidence: Does the counterexample explanation approach make engineers more con-
fident in their understanding of the system and its inconsistency respective to safety?

4. No value: This attribute is inversely related to the above attributes. Will the counterex-
ample explanation approach provide no or only minimal value to real-world projects?

For each of the four attributes, the participants are asked one question in the pretest and
posttest in order to collect their opinions about the attributes. Table 3 lists the questions asked
to the participants and the scale of possible answers in both tests. Particularly, the questions
PRQI in the pretest and POQI in posttest target the attribute Better understanding, PRQ2
and POQ2 target Quicker understanding, PRQ3 and POQ3 target Confidence, and PRQ4
and POQ4 target No value. Finally, comparing the results gathered from both the pretest
and posttest, we can investigate the participants’ opinions on understanding inconsistencies
using the proposed counterexample explanation and the raw counterexample generated by
the model checker.

5.3 Design of the User Study

In this section, we describe the design, questionnaires, and tools used for the user survey
(Part 1) and the one-group pretest-posttest experiment (Part2).

5.3.1 Part 1: User Survey

For Part 1, we use a cross sectional survey (Kitchenham and Pfleeger 2008) to collect data
from engineers to achieve goal (G1). For planning and conducting this user survey, we follow
the guidelines by Neuman (2014) (majorly Chapter 7), Kitchenham and Pfleeger (2008),
and Fink (2003). In addition, we follow the guidelines by Robson and McCartan (2016)
(Chapter 11), and Babbie (2016) (Chapter 9) for the questionnaire construction. Furthermore,
we also refer to and adapt some of the questionnaires from existing user surveys (Gleirscher
and Marmsoler 2020; Garavel et al. 2020). The questionnaire of our user survey is shown
in Table 1. Responses to each question are either collected as qualitative statements, and/or
they follow predefined eight-point Likert scales shown in Table 2.

5.3.2 Part 2: One-Group Pretest-Posttest Experiment

Part2 of our study is an exploratory pre-experimental study following a one-group pretest-
posttest experiment design to attain goal (G2). We follow the guidelines by Campbell and
Stanley (1963) to conduct this part of our study.

One of the main drawbacks of using a one-group pretest-posttest design is that it does
not meet the scientific standards of an experimental design. The pre-experimental study
designs does not have a control group like a true experiment (Wohlin et al. 2012). Thus,
comparison and generalization of the results based on the provided intervention/stimulus
may not be possible. However, we intend to use this pre-experimental study design because
of the scarcity of participants. To find a considerable number of participants (30 to 40) with
knowledge of formal methods and model checkers inside an industrial organization is way
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too ambitious. Performing a true experiment with a lower number of participants raises
the threat to external validity. Therefore, we intend to perform a one-group pretest-posttest
experiment with Bosch automotive engineers that allows us to capture results from real-world
user behavior, even with a limited number of participants. However, the pre-experimental
study has several internal and external threats to be considered. In Section 9, we discuss
corresponding threats raised by (Campbell and Stanley 1963, Table 1).

Along with the guidelines by Campbell and Stanley (1963), we refer to the protocol
by Zaidman et al. (2013) for a one-group pretest-posttest experiment. They evaluate a tool
called FireDetective that supports understanding of Ajax applications at both the client-
side (browser) and server-side. Their evaluation is performed using two user study variants
(i) pretest-posttest user study, and (ii) a field user study, where the former is performed with
eight participants and the latter is performed with two participants. In our study, we perform
the one-group pretest-posttest experiment with Bosch automotive engineers and discard the
field user study for our evaluation. The questionnaire shown in Table 3 is used for the one-
group pretest-posttest study (Part 2 of our overall study). Similar to Part I, responses to each
question are either qualitative statements, selections of options on predefined eight-point
Likert scales (Table 2), or a combination of both.

5.4 Tools Used for the Study

Both studies are performed remotely due to the COVID-19 pandemic. In such a setting, it
would not be easy to capture the time that participants spent on the study. For example, there
could be a situation where participants could have taken a break or could respond to some
urgent emails during the study. Thus, we asked separately a question for the time taken by
the participants to conduct the pretest and posttest. To perform the studies and collect the
answers by the participants, we use Microsoft Forms for Excel that is easily accessible within
the company and already familiar to the participants. The results are stored in a Microsoft
Excel file, which we use to perform the analysis. All content-wise explanations for this study
are provided as a video that are accessible Bosch internally via an online platform called
BoschTube.

5.5 Participants

Our counterexample explanation approach focuses on enhancing safety analysis for auto-
motive systems (Kaleeswaran et al. 2020). Thus, we are interested in performing this user
study only with automotive engineers who have at least basic knowledge of formal methods,
particularly engineers working on system development, requirement elicitation, and safety
analysis.

The target population for our study is very specific and thus, it is hard to make a finite list
of participants by applying probabilistic sampling. According to Kitchenham and Pfleeger
(2008), when a target population is very specific and limited, non-probabilistic sampling can
be used to identify the participants. Therefore, we intend to use two non-probabilistic sam-
pling methods for Part I of our study, namely, convenience sampling and snowball sampling.
Further, we invite participants with knowledge on formal methods for Part2 of our study by
filtering the participants of Part I based on the responses to the demographic questions Q1
to Q3 listed in Table 1.

First, we start with the convenience sampling for Part 1. We send e-mails with the sur-
vey link to participants collected through department mailing lists and community mailing
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lists of all relevant Bosch business units. We perform snowball sampling with the accepted
participants by asking for further potential participants at the end of the survey. In the e-
mail invitation, we explicitly mention that the anonymity of results will be preserved. So,
while summarizing analysis results, we remove all personal, product- and project-related
information. For both the studies, the reminder mail is sent three times in the interval of one
week.

5.6 Execution Plan

In this section, we describe the execution plan of the user survey (Part 1) and the one-group
pretest-posttest experiment (Part2) depicted in Fig. 2.

5.6.1 Execution Plan of Part 1

The user survey (Part 1) comprises four steps (Fig. 2). First, we notify participants regarding
the data processing agreement. Additionally, we also state explicitly that their names, project-
and product-related information will be removed while results are shared for evaluation. Then
we show a video, welcoming the participant and explaining the background and motivation
of this survey. Then, we ask participant to answer the demographic questions (Q1 to Q6 in
Table 1), and further the main survey questions (Q7 to Q20 in Table 1). Finally we conclude
the survey with a thanks note.

5.6.2 Execution Plan of Part 2

For the one-group pretest-posttest experiment, we invite participants from Part I who have
knowledge in formal methods. Similar to Part I, Part2 starts with a data processing agree-
ment, followed by a background and motivation video. Our one-group pretest-posttest
experiment is executed with the invited participants as follows: a pretest experiment, then
intervention, and finally the posttest experiment.

Pretest The pretest experiment starts with a video demonstrating the experiment with a
simple example of an OR-gate and the behavior of the OR-gate. After that, another video
introduces an airbag system with the corresponding system model and specification, that
serves as a use case for the actual pretest experiment. During the actual experiment, the
participant analyzes the violated specification and the counterexample returned by the model
checker to understand the inconsistent parts of the specification. Furthermore, based on
the understanding, the participant answers the task questions (TQ1 to TQ9 except of TQ4 in
Table 3). Finally, the pretest is concluded by answering the pre-questionnaire survey questions
PRQ1 to PRQ4 listed in Table 3.

Intervention After the pretest experiment, a video introducing the counterexample expla-
nation approach (Kaleeswaran et al. 2020) is shown to the participants. This serves as an
intervention in our study.

Posttest Like the steps followed for the pretest experiment, the posttest experiment starts
with a demonstration video with the same use case of the OR-gate, but this time with the
counterexample explanation approach. This is followed by a video that introduces the elec-
tronic power steering system (EPS), a commercial Bosch product, with the corresponding
system model and specification. Then the participants interpret the explanation provided
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by the counterexample explanation approach to understand the inconsistency. Based on the
explanation, participants answer the task questions (TQ1 to TQ9 except of TQ3 in Table 3).
Subsequently, they answer the post-questionnaire survey questions POQ1 to POQ4 listed
in Table 3. After completing the posttest experiment, participants rate the features (FQI to
FQ6 in Table 3) provided by the counterexample explanation approach and respond to the
feedback questions (FE1 to FE8 in Table 3). Finally, Part2 of our study concludes with a
thanks note to the participants.

5.7 Presentation of the Analysis Results

To obtain the results from the study, we follow the recommendation by Robbins and Heiberger
(2011). We use normal, grouped and stacked bar charts to plot the results. Qualitative state-
ments received from participants are gathered, organized, and summarized individually for
every question. We summarize the qualitative statements through the following three steps:
(i) Microanalysis: The first author goes through the individual answers from the participants
and assigns labels to the statements. The rest of the authors validate the initial labels and
provide feedback for improvement. At the end of this step, all authors come to a mutual
agreement on the initial labels. (ii) Categorization: Based on the feedback for improvement,
the first author performs second iteration. As a result, a set of themes are extracted which
are deemed to be essential. (iii) Saturation: This is the final step where all the authors come
to the final agreement on labels, themes, and summarized statements. Since the qualitative
statement is a medium to express an individual opinion, the categorization of labels are asso-
ciated with the demographic answers. For example: “an engineer who has seven years of
experience states that the counterexample explanation approach can promote the usage of
model checkers among system engineers”.

6 User Survey (Part 1): Results and Analysis

In this section, we present and analyze the results of the user survey (Part I). We gathered
answers to the questionnaire shown in Table 1 from 41 participants.

6.1 Participants

We first present demographic information of the participants that we obtained from the first
six questions of the questionnaire (Q/ to Q6 in Table 1).

6.1.1 Experience in Formal Methods and Safety

The experience of the participants in using formal methods and their experience focusing
on safety are collected through the questions Q3 and Q4 (Table 1), which are answered
in scale LS2 (Table 2). Participants are asked to fill in their experience in formal methods
gained individually in academia, and in industry, and their overall experience in academia
and industry combined together with O3, while Q4 collects industrial experience in safety.
Figure 3 represents the responses for experience in formal methods (FM) and safety.

From Fig. 3, it is clear that all the 41 participants have gained knowledge in formal meth-
ods in academia or industry to some extent. When excluding 13 participants who have no
academic experience in formal methods, the predominant number of participants (82% of all
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Fig. 3 Experience of participants in formal methods (FM) gained in academia, industry, and the overall
experience, along with industrial experience on safety

participants who have academic experience) have experience of <6 years. Likewise, exclud-
ing 6 participants who do not have industrial experience in formal methods, the number of
participants who have experience of <2 years is dominant (40% of all participants who have
industrial experience). 29% of all participants with some experience in industry only have 1
to <2 years of experience.

In summary, 52% of all participants have <2 years, 24% have 2 to <6 years, no participants
with 6 to <8 years, and 24% have >8 years of experience in formal methods. Looking at the
participants’ experience on safety, the results are scattered, with no clear majority. Excluding
the 9participants who do not have any experience in safety, 41% of all participants are
experienced 1 to <4 years, further 41% are experience 4 to <8 years, 9% of participants
have <1 year of experience, and the final 9% have > 10 years of experience.

6.1.2 Knowledge of Formal Methods

Question Q1 (Table 1) asks participants to rate their knowledge in formal methods accord-
ing to the scale LSI (Table 2). Figure 4 shows the results. All participants have rated their
knowledge within the scale novice to expert, while no participant provided a rating of mastery
and practical wisdom. The majority of participants rate their knowledge in formal methods
as advanced beginner and expert with 27% of all participants each. Further, eight partici-
pants (20%) rate themselves as a novice, seven participants (17%) as competent, and four
participants rate themselves to be proficient.

Figure 4 also presents participants’ knowledge together with their years of experience in
formal methods. The majority of participants with an experience of <1 year rated themselves
as novice, with 1 to <2 years of experience as advanced beginner, and those with 8 to <10
years and > 10 years of experience rated themselves as an expert. However, the participants
who have experience of 2 to <4 years and 4 to <6 years have distributed their rating among
various classes. Participants with experience of 2 to <4 years rated themselves from advanced
beginner to expert, participants with 4 to <6 years of experience rated themselves from
competent to expert.
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Fig.4 Knowledge of the participants categorized based on their overall experience in formal methods

6.1.3 Designation

Designations of the participants are collected with a free text field for question Q2 (Table
1), depicted in Fig. 5a. The majority of the participants (11 participants, 27%) consider
themselves as safety manager/engineer, 22% as systems engineer, and 20% as a research
engineer. Further, 11 participants (27%) are either an expert or an architect in either safety,
system, software, or verification.

6.1.4 Industrial Application

Questions Q4 and Q6 in Table 1 assess the industrial applications, to which participants
applied formal methods or worked on safety aspects. Identified clusters of applications
are shown in Fig. 5b. Formal methods are used mostly for automated driving applications
(19 participants) and vehicle computer (9 participants). These are also the most-called applica-

Automated Driving

System/Software
Architect Vehicle Computer
Safety/Security .
Expert Perception System

Power Supply

Verification Expert System

i Driver-assistance
Systems Engineer

Verification Electric Drives

Engineer

Industrial Applications
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(a) Designations of participants. (b) Industrial applications for formal meth-
ods and safety-related activities.

Fig.5 Designations and industrial applications of participants
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tions for safety aspects (9 participants each), followed by power supply system (8 participants)
and driver-assistance system (7 participants).

6.2 Understanding Formal Notations

With question Q7 (Table 1), we collect the participants’ opinions on understanding formal
notations. The possible answers follow the scale LS3 (Table 2) and further allow comments
as free text. Table 4 shows the results according to the scale. The majority (80% of all
participants) is almost equally distributed between answers hard and slightly easy. 44%
find formal notations between slightly hard and extremely hard, 34% find formal notations
between slightly easy and extremely easy. In the received comments, the majority of partici-
pants agree that understanding formal notations gets easier with more usage and experience,
and that it is highly dependent on the focus of the system domain such as automotive and
railway. A supporting statement from a participant answering slightly easy states that “If I am
familiar with the formal language in which the formal notations are written (e.g., first-order
language), typically it is easy."

Figure 6 shows responses for understanding formal notations based on the participants’
knowledge in formal methods (cf. Section 6.1.2) and designation (cf. Section 6.1.3). For the
following discussion, we cluster answers among extremely hard, hard, and slightly hard as
“harder” and the ones among extremely easy, easy, and slightly easy as “easier”.

Understanding of formal notations based on knowledge in formal methods. Looking at
novices and advanced beginners in Fig. 6a, the predominant number of participants perceives
understanding of formal notations as harder. Among the 11 experts, five participants perceive
understanding formal notations to be harder, while three participants perceive understand-
ing formal notation as easier. This is notable because even the majority of experts perceive
understanding of formal notation to be harder. A participant rated as being an expert and
answered hard mentions understanding notations used in logics like LTL, CTL, or TCTL
are pretty straightforward, but using them to formalize real-world requirements is harder.
Another expert who answers extremely easy states that using approaches like pattern-based
languages (Dwyer et al. 1999) helps to ease understanding formal notations.

Understanding of formal notations based on participants’ designation. Participants with des-
ignations of a system/software architect, systems engineer, and verification engineer perceive
formal notations to be harder to understand while the same number of participants from each
of the three mentioned categories vote for formal notations to be easier for understanding. A
verification expert highlights: “In general, formal notations are clear and precise. However,
even for very experienced engineers, some formal notations (for example in temporal logics)
are hard to understand on the semantic level, i.e., really telling what the formula means for
the system at hand.” Considering the designations of a safety/security expert and verification
expert, the majority of the answers (excluding neither hard nor easy) opt for understand-
ing formal notations to be easier with two out of three participants and one participant in

Table 4 Understanding formal notations

Agreement Extremely Hard Slightly ~ Neither Hard ~ Slightly  Easy Extremely No
Hard Hard nor Easy Easy Easy Opinion

Count 2 (4%) 8(20%) 8(20%) 9 (22%) 8(20%) 5(12%) 1(2%) 0
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Fig. 6 Results for understanding formal notations grouped by (a) the knowledge of participants in formal
methods and (b) the designation of participants

each designation. For the remaining designations of a safety manager/engineer and research
engineer, the majority of participants answer that understanding notations are harder with
six out of 11 participants and five out of eight participants, respectively. A systems engineer
state that “I have never really learned formal notation; thus, I learned it on the job. A real
introduction might have turned out helpful.”

Summary. 44% of all participants answer understanding formal notations to be hard, only
34% of participants perceive understanding of formal notations as easy. From the answers
received as free text, it is clear that experience plays a major role in understanding formal
notations.

6.3 Inconsistent Formal Specifications

In this section, we discuss difficulties in identifying inconsistent specifications, understanding
inconsistencies, the time taken to identify inconsistent specifications, as well as challenges
and different methods to identify inconsistent specifications based on the answers to questions
09 to Q13 (Table 1).

6.3.1 Identifying Inconsistent Formal Specification

With question Q9, we assess difficulties of identifying inconsistent formal specifications.
Answers are given according to the scale LS3 (Table 2) and as free text. The results of
the answering 41 participants are shown in Table 5. Notably, a majority (51%) perceive the
identification of inconsistent formal specifications as hard, with a total of 73% perceiving it
as at least slightly hard.

From the free-text responses, 13 participants state that the effort of identifying inconsistent
specifications highly depends on the kind of specification, as well as the complexity of
the specification and system. For example, a verification expert who answers neither hard

Table 5 Results for the difficulty of identifying inconsistent specifications

Agreement Extremely Hard Slightly ~ Neither Hard ~ Slightly Easy Extremely No
Hard Hard nor Easy Easy Easy Opinion
Count 4 (10%) 21 (51%) 5(12%) 7 (17%) 0 3(7%) 1(3%) 0
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nor easy states that identifying inconsistent specification “depends on the size and kind of
specification, e.g., debugging temporal logic is not trivial.” Regarding complexity of the
specification, a systems engineer highlights an example that it “depends on the complexity
of the formal specification itself and how well the inconsistency is hidden, e.g., x < 10 and
x > 20 is easy to stop, but if you replace one x with y and link them somewhere else, it’s already
hardto find.” However, on contrary, an interesting point is highlighted by a verification expert,
stating that one “can’t really say, [as it] highly depends on the complexity of the application.
With respect to model checking activation/deactivation of autonomous driving functions we
realized that even small state machines can contain possibly critical errors. Also, these errors
would have never been identified by classic testing (test runs, simulation).”

Identification of inconsistent formal specifications based on participants knowledge in formal
methods. Figure 7 depicts the responses gathered for identifying inconsistent specifications
together with the participants’ knowledge in formal methods. The count of responses as
harder is dominating all the classes ranging from novice to expert. Among all participants who
answer identifying inconsistent specifications is easier, the majority is either proficient or an
expert in formal methods. An expert safety engineer states that “the degree of difficulty heavily
depends on the nature of the formalism: Spotting an error in a boolean formula is significantly
easier than identifying erroneous temporal specification, which is again significantly easier
compared to spotting erroneous specification for continuous behavior” .

Summary. Predominantly, participants answer that identification of inconsistent specifications
is hard. Free-text answers agree that the effort for identifying inconsistent specifications
highly depends on the complexity of specifications and systems.

6.3.2 Understanding inconsistency in formal specifications

The question Q10 (Table 1) is used to collect whether understanding of the actual inconsis-
tency in the identified inconsistent specifications is easier or harder. The answer scale used

Novice
Advanced Beginner

Competent

Knowledge

Proficient

Expert

Count
B Extremely Hard [ Hard Slightly Hard Neither Hard nor Easy [ Easy
B Extremely Easy

Fig. 7 Results for identifying inconsistent formal specifications grouped by the participants’ knowledge in
formal methods
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to collect the response is again LS3 and a free text field. Responses are aggregated in Table
6, where 39 participants provided a rating, while two participants indicated no opinion.

The result is comparable to the result obtained for identifying inconsistent specification
in Section 6.3.1. The predominant number of 18 participants answers understanding incon-
sistency in the formal specifications is hard. Overall 77% of participants responded at least
slightly hard. 13% answer neither hard nor easy and perceive it easier.

Three participants who answer neither hard nor easy highlight that the effort of under-
standing the inconsistency in formal specifications depends on the complexity of specification
and the system. A verification expert with the response hard states that “the key question
is: whether the model or the specification is wrong i.e., finding inconsistencies can often not
only be done on the level of just the specification”.

Understanding inconsistency in formal specifications based on the participants’ knowledge
in formal methods. Figure 8 depicts the responses gathered for understanding inconsistency
in formal specifications together with the participants knowledge in formal methods (cf:
Section 6.1.2). The majority of participants from novices to experts perceive understanding
of inconsistencies to be harder. Particularly, this view is shared by six of eight novices, seven
of 11 advance beginners, four of seven competents, all four proficients, and seven of 11
experts.

One of the advanced beginners explains acommon industrial issue: “understanding can be
hard especially when the specifications have multiple authors, each holding a slightly different
view on the object to be specified”. A system/software architect who rates their knowledge
in formal methods as expert, states that “formal proofs typically lead to the source of the
error. Counterexamples in model checkers also help a lot”. On contrary to this statement a
systems engineer who rates their knowledge in formal methods as expert highlights that it
depends on the particular inconsistency, e.g., if it is real-time inconsistency that only occurs
after several cycles, then it is difficult to find even with the help of counterexamples.

Summary. Similar to the result of identifying inconsistent specification in Section 6.3.2, a
majority of participants (77%) value understanding of the inconsistency as harder. In the free-
text responses, participants indicate that the effort to understand an inconsistency depends
on the complexity of the specification and system. Further, some of the responses highlight
the use of tools like model checkers to support identification and understanding of inconsis-
tencies.

6.3.3 Time Taken to Identify Inconsistent Formal Specifications

With question QS (Table 1), we consider the time that it takes to identify inconsistent
specifications. The answers follow scale LS4 (Table 2) and allow for a free-text comment.
Table 7 represents the response collected from 37 participants as four participants responded
no opinion.

Table 6 Understanding inconsistent formal specification

Agreement Extremely Hard Slightly ~ Neither Hard ~ Slightly Easy Extremely No
Hard Hard nor Easy Easy Easy Opinion
Count 6 (15%) 18 (44%) 6(15%) 5 (12%) 2(5%) 1Q2%) 1(2%) 2 (5%)
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Fig.8 Results for understanding inconsistency in formal specifications grouped by the participants’ knowledge
in formal methods

A majority of participants, 18 of them (44% of all participants) answer that the time
taken to identify inconsistent specifications is slower (slightly slow, slow, and extremely
slow). Further, 12 participants (29%) answer that the time taken to identify inconsistent
specifications is neither fast nor slow, with six participants stating that it depends on the
complexity and number of specifications.

A system/software architect answering with slightly slow highlights that “the time it takes
is the time taken to understand requirements” . Further, a verification expert states that in one
of their projects it took a couple of hours to formalize the system model and specifications,
but only a few seconds to then run the model checking and perform verification and further
optimization.

Seven participants (17%) answer that the time taken to identify inconsistent specifications
is faster (slightly fast, fast, and extremely fast). Three of them answer that by using a model
checker, the time taken to identify inconsistent specifications is reduced.

Time taken to identify inconsistent formal specifications grouped by the participants’ knowl-
edge in formal methods. Figure 9 presents the results of time taken to identify inconsistent
formal specifications grouped by the participants’ knowledge (¢f. Section 6.1.2). The major-
ity of participants who rate their knowledge as novice, advanced beginner, competent, and
expert answer that the time taken to identify inconsistent specifications is slower or neither
fast nor slow. Five of seven participants who answer faster rated themselves as proficient
and experts. The majority answers of about 37% of all participants respond that using formal
verification makes very probably a system safer while 34% vote for definitely safer.

Table 7 Time taken to identify inconsistent formal specifications

Agreement Extremely Fast Slightly ~ Neither Fast ~ Slightly  Slow Extremely No
Fast Fast nor Slow Slow Slow Opinion
Count 0 3(7%) 4 (10%) 12 (29%) 4(10%) 11 (27%) 3 (7%) 4 (10%)
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Fig. 9 Results for the time taken to identify inconsistent formal specifications grouped by the participants’
knowledge in formal methods

Summary. In total, 44% of the participants answer that identifying inconsistent formal spec-
ifications is slower. In fact, 44% is predominant here because 29% of them have the neutral
response answering neither fast nor slow and only 17% of the participants answer to be faster.
Free-text responses indicate that the time it takes depends on the kind of specifications and
the complexity of the system and specifications. This is similar to the responses received for
identifying inconsistent specifications in Section 6.3.1 and Section 6.3.2.

6.3.4 Challenges to Identify Inconsistent Specifications

With question Q72 (Table 1), we collect challenges in identifying inconsistent specifica-
tion based on free-text responses. The responses are summarized based on the participants’
designations.

Architects and Experts. Most of the system/software architects, safety/security experts, and
verification experts highlight two general challenges: (1) architectural models and system
requirements are often incomplete in industry, and (2) understanding the semantics and formal
notations. A notable statement from a system/software architect is that “if the specification
has many items (which is very common in the industry), checking them one-by-one by human
is time-consuming and error-prone. Furthermore, if the specification is written in natural lan-
guage, how to interpret it in an objective way can also be a question” . Further, a verification
expert states that it is challenge to understand the intended semantics of the specifications at
scale”. Another notable statement from a safety/security expert is that “the prime challenge
is to identify inconsistency and then to get acceptance to the amount of inconsistencies [that
can be tolerated]”.

Safety Managers/Engineers. Two main challenges listed by safety managers and engineer
are: (1) understanding formal specification and (2) understanding verification results. A safety
engineer rated as expert states that “some notions (e.g., LTL formulas) are hard to understand.
Often you just think you understood correctly what they mean while using them the wrong
way. Furthermore, there might be corner cases in the processes to be described which make
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your life particularly hard, e.g., specific startup behavior of systems. Even simple formulas
tend to become huge quickly, which makes it pretty hard to focus”. Furthermore, a statement
from a novice is, that “it is not really intuitive to understand the dependencies between the
formal specifications - especially if you investigate a larger set of specifications”.

Systems Engineers. The main challenge mentioned by systems engineers are formalizing
specifications. A systems engineer rated as expert states that “the main challenge to identify
inconsistent formal specifications is that specifications have to be formalized first. There are
only few engineers at Bosch who want to do that, even semi formal requirements patterns are
seldom used”. Further, a challenge mentioned by a systems engineer rated as competent is
“insufficient granularity of high-level system behavior, thus difficult to perform verification”.
In addition, a general challenge to identify inconsistent specification is that “often hundreds
of cases/situations have to be considered while only a few are inconsistent”.

Research Engineers and Verification Engineers. Two challenges identified by research
engineers and verification engineers are: (1) complexity in using appropriate tools, and
(2) understanding the verification results. A research engineer rated as proficient states that
the “large size and complexity of the specification might not allow one to debug it manually.
When the formal specification is written in an expressive language and is very complex in
general, automatic method for formal analysis might not scale either” . Further, a verification
engineer highlights that even if a model checker supports to identify an inconsistent specifica-
tion, the time taken to perform verification for large system is huge. Regarding explainability,
a research engineer states that inconsistencies detected by the verification tools are cryptic
and thus, require additional support to derive a useful explanation.

Summary. From the collected responses, the four different challenges to identify inconsistent
specification are: (1) verification performed with incomplete models, (2) understanding for-
mal semantics, notations, and specifications, (3) complexity in using verification tools, and
(4) understanding of verification results by domain experts.

6.3.5 Methods used for Verification

As discussed in Section 6.3.2, several participants mentioned the use of verification meth-
ods to identify inconsistent specifications and understanding the inconsistencies. With Q73
(Table 1), we collect the used verification methods with a free-text field. Several participants
mentioned multiple methods. All responses are clustered into five different methods shown
in Table 8.

The predominantly used methods are model checking with 18 participants and manual
inspection/review with ten participants. Manual inspection/review is the only purely manual
method, the other methods like model checking, simulation, reasoner, contract-based design
are (semi-)automated methods, supported by appropriate tools. Five participants indicate that
model checkers support overcoming the manual inspection to find inconsistency.

Table 8 Results for the used verification methods

Methods ~ Model Manual Inspection/  Simulation  Reasoner  Contract-Based  No
Checking ~ Review Design Opinion
Count 18 (32%) 10 (18%) 6 (11%) 5 (9%) 4 (7%) 13 (23%)
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Methods used for verification based on designation. Figure 10 represents the different veri-
fication methods together with participants’ designation. Model checking is used by at least
one participant of each designation. Manual inspection/review is mostly mentioned by sys-
tems engineers and safety managers/engineers, simulation mostly by systems engineers and
verification experts, reasoners by research engineers, and contract-based design mostly by
safety managers/engineers.

Verification methods and the complexity of identifying inconsistent specifications. Figure 11
depicts the different verification methods together with the results obtained for identifying
inconsistent formal specifications in Section 6.3.1. Since the results for both identifying
inconsistent specification (cf. Section 6.3.1) and understanding inconsistent specification (cf.
Section 6.3.2) are similar, we choose to discuss the relation only with results of identifying
inconsistent specification.

As a majority of the participants (21 of 41 participants) have answered that identifying
inconsistent formal specifications is hard, they mentioned each of the listed methods at
least once. To be more precise, among 21 participants who answer hard for identifying
inconsistent specification, eight participants use manual inspection/review while seven of
them use model checking. Additionally, participants who answer extremely hard are found
to use model checking and contract-based design. A participant who rated herself/himself
as proficient and classify the problem as hard state that the correct usage of verification
tools is mostly an error-prone way. Furthermore, an expert states: “If you see UML Models
Rhapsody/EA as formal models: typically, they are not complete and therefore model checker
do not support well”. On other hand, participants classifying the problem as easier are found
to use model checking and manual inspection/review. An advanced beginner classifying the
problem as easy by using manual inspection/review highlights that “by using the modern
requirement engineering tools traceability can be maintained within dependent specification
and corresponding architectural model” .

Summary. From the collected responses, five different verification methods are used to
identify inconsistent specifications: model checking, manual inspection/review, simulation,
reasoner, and contract-based design. Among these, the predominantly used methods are
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Fig. 10 Methods used by participants to identify inconsistent formal specifications grouped by designation
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Fig. 11 Methods used to identify inconsistent formal specifications along with complexity of identifying
inconsistent specifications

model checking and manual inspection/review, mentioned by 18 participants and ten partici-
pants respectively.

6.4 Refinement of Specifications

The early stages in the V-model (Weber 2009) are about refining the top-level requirements
and associate them to system components and sub-components. With questions Q74 and Q15
(Table 1), we investigate whether maintaining the consistency of refined specifications with
a system architecture and verifying the refinement consistency are harder or easier.

6.4.1 Consistency of Refined Specifications and System Architectures

With question Q74 (Table 1), we collects the responses whether maintaining consistency of
the refined specifications is harder or easier following the answer scale LS13 in Table 2.
Twelve out of 41 participants state that they have no opinion and thus, the responses received
from 29 participants are shown in Table 9. The predominant number of participants answer
that maintaining consistency is hard and slightly hard, with an exact count of nine participants
(31% of responded participants) each. Overall, most participants (20 participants, 69% of
responded participants) answer that maintaining consistency is harder, eight participants
(28% of responded participants) answer with easier, and one participant (3% of responded
participants) with neither hard nor easy.

Table 9 Results for the difficulty of maintaining the consistency when refining formal requirements for sub-
components of a system architecture

Agreement Extremely Hard Slightly  Neither Hard ~ Slightly  Easy Extremely No
Hard Hard nor Easy Easy Easy Opinion

Count 2 (5%) 9(22%) 9(22%) 1(2%) S(13%) 2(5%) 1(2%) 12 (29%)
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Maintaining refinement consistency grouped by the participants’ experience in formal
methods. Figure 12 depicts the results of maintaining refinement consistency between the
specifications and architecture considering the participants’ knowledge in formal methods
(cf. Section 6.1.2). Participants who rate the difficulty as extremely hard are novices and
advanced beginners while those who answer extremely easy are designated as an expert.
Since the majority of participants rate the difficulty as harder (cf. Table 9), all the categories
from novice to expert have higher count for harder than easier. An advance beginner who
rates the problem as hard highlights: “It depends on the size and complexity of the System-
Architecture; in L4 Sensor-set architectures it[’]s hard”. Additionally, an expert states that
performing a manual review with natural language requirements against the requirements
of the higher abstraction level in a contract-based design is hard. From all of the categories
except of proficient, at least one participant answers that maintaining inconsistent specifica-
tions is easier. An advanced beginner whose rates the problem as easy mentions: “I assume
I formulated a formal requirement for the parent component, and I have to define formal
requirements for sub-components, I think that is straight forward. If somebody else wrote the
Sformal requirement of the parent component, it becomes harder since I need to understand
what is expressed there first”.

Maintaining refinement consistency grouped by the participants’ designations. Figure
13 depicts the results for the difficulty of maintaining refinement consistency between
the specifications and architecture grouped by the participants’ designations (cf. Section
6.1.3). Focusing on valid responses (excluding no opinion) from system/software architects,
safety/security expert, and verification expert, four participants answer harder and three
participants answer easier. Notably, among two system/software architects, one answers
extremely easy and the another one answers extremely hard. The participants who answer
extremely easy state that using model-based development it is easy to maintain the consistency
with natural language requirements. Additionally, according to a system/software architect
who answers slightly hard, maintaining refinement consistency “[s]cales with number of
requirements. With graphical models like state machines one can keep complexity under
control”. Participants from the remaining designations like systems engineer, verification
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Fig. 12 Results for the difficulty of maintaining refinement consistency grouped by the participants’ knowledge
in formal methods
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Fig. 13 Results for the difficulty of maintaining refinement consistency grouped by the designations of the
participants

engineer, safety manager/engineer, and research engineer, predominantly rated the problem
as harder. A safety manager/engineer classifying the problem as slightly hard states: “To
maintain the consistency, we need to refine all software development phases results from
requirements till test”.

Summary. Among all of the 29 participants who answered this question, 20 participants (69%)
vote that maintaining consistency is harder. From the free-text field responses, the majority
of the participants finds that maintaining consistency is harder when the system gets com-
plex. Furthermore, a notable response is that model-based system development could ease
maintaining consistency.

6.4.2 Verification of the Refinement Consistency

With question Q15 (Table 1), we collect the responses whether verifying refined specifications
is harder or easier. Possible responses follow answer scale LS3 in Table 2. Among the
41 participants, eleven answer show no opinion while the remaining 30 participants rate the
difficulty of the verification problem. The overall result shown in Table 10 is similar to the
responses of Q14 about maintaining consistency discussed in Section 6.4.1. The majority of
24 participants (80% of responded participants) answer that verifying refined specifications
is harder. Further four participants answer it to be easier and two participants answer, neither
hard nor easy. Notably, among the 24 participants who answer harder, 16 (66%) answer hard
which takes the predominant count of all the given options.

Table 10 Difficulty of checking consistency when refining formal requirements for sub-components of a
system architecture

Agreement Extremely Hard Slightly ~ Neither Hard ~ Slightly Easy Extremely No
Hard Hard nor Easy Easy Easy Opinion
Count 2 (5%) 16 39%) 6(15%) 2 (5%) 2(5%) 1Q2%) 1(2%) 11 (27%)
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Fig. 14 Results for the difficulty of verifying refinement consistency grouped by the participants’ experience
in formal methods

Verifying refinement consistency grouped by the participants’ knowledge in formal meth-
ods. Figure 14 depicts the results of rating the difficulty of verifying refinement consistency
grouped by the participants’ knowledge in formal methods (Section 6.1.2). None of the novice
and proficient participants rate the problem of verifying refinement consistency as easier. A
proficient participant mentions: “You can only rely on provisioned tools (model checker)”.
Among the rest, at least one participant answers that verifying refinement consistency is
easier, however, the majority of the answers rate it to be harder. According to an advanced
beginner rating the problem as hard, the difficulty depends on the formalization of require-
ments: “If you mean non-formal requirements, I think checking the consistency is extremely
hard. If you mean formal requirements but linked to components, I think it is slightly hard.
However, links to components help to understand the relationship between variables” .

Verifying refinement consistency grouped by the participants’ designations. Figure 15 depicts
the results of rating the difficulty of verifying refinement consistency grouped by participants’
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Fig. 15 Results for the difficulty of verifying refinement consistency grouped by the participants’ designations
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designations (Section 6.1.3). Focusing on the designation of a safety/security expert, one
participant answers that verifying refinement consistency is extremely hard while another
participant answers it to be extremely easy. One of the safety/security expert states that
“[e]specially when the requirements to be checked are distributed, without tool support,
checking can be extremely tedious”. With the designations of a verification engineer, safety
manager/engineer, and research engineer as exceptions, all other designations have at least
one participant rating the difficulty as easier. A verification engineer rating the problem as
neither hard nor easy mentions: “Ideally, the formal requirements should be specified in a
way that they can be automatically checked by some tool - then it is easy”. Additionally, a
systems engineer rating the problem as easy states that “[i]tis easy as long as the requirements
can be functionally separated. If different requirements have impact on a state behavior or
contradicting safety goals, it is hard”.

Summary. Among the 30 participants who provide a response other than having no opinion,
80% perceive the verification of refinement consistency as a harder problem. Furthermore,
most participants who rated the problem as easier highlight that the effort of verifying refine-
ment consistency could be reduced by using well-formalized specifications and verification
tools.

6.5 Formal Verification Focusing on Safety

With questions Q16 to Q18, we collect the participants’ opinion on weather formal verifica-
tion could support safety analysis and make a system safer.

6.5.1 Using Formal Verification to Make Systems Safer

Particularly, with question Q76 we investigate the opinion of participants on whether using
formal verification could make a system safer (response according to scale LS5 in Table 2 plus
free-text comments). Aggregated responses are shown in Table 11. A predominant number
of participants answers definitely (14 participants, 34%) and very probably (15 participants,
37%).

Most free-text comments collected by participants who answer definitely, very probably,
or probably highlight that formal verification is required to tackle the increasing system
complexity and shorten development time. A research engineer, whose answer is definitely,
states that “it can provide yet another level of surety about the safety of systems. The more
sure we are the better it is. The human brain tries to save energy. As a human, we may
overlook a lot of details when it comes to habitual/routine work. This is where formal methods
can provide further surety about safer systems.” A safety engineer, whose answer is very
probably, highlights a further challenge in industry: “Personally, I think it is useful if the
environment is open to this (e.g., interested in the results and willing to spend resources on
it) and you have the right well-trained people working on it. However, I've seen these ideas

Table 11 Results on whether using formal verification makes systems safer

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion
Count 14 (34%) 1537%) 6 (15%) 1(12%) 4 (10%) 0 1 (2%) 0
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failing too many times in industry. I conclude that in most cases using formal verification is
not yet ready for production.”

Relation to participants’ experience in safety. Figure 16 depicts the results of using formal
verification to make systems safer based on the participants’ industrial experience in safety.
Nine participants with no experience present their view that using formal verification makes
definitely, very probably, or probably the systems safer. All of the participants with <1 year
experience answer that using formal verification could make the system definitely safer. An
example statement by a systems engineer without safety experience states that “/gJaps and
errors can be found earlier, easier and with higher reliability.” Considering the experience
levels from 1 to <2 years and up to >10 years, the majority of participants answer with
very probably. A safety manager/engineer with 2 to <4 years of experience who answered
with very probably mentions that formal verification “can help to make system consistent
and reduce the human error.” Furthermore, another safety manager/engineer strengthens this
view: “With higher system and organizational complexity combined with shorter development
time, the need for more formal methods is increasing.”

Focusing on the answers possibly and definitely not, two participants either with 1 to <2
or 4 to <6 years of experience answer possibly while one participant with 6 to <8 years of
experience answers definitely not. A safety manager/engineer, whose answer is definitely not,
states the following: “We need to distinguish between two terms: Reliability and Safety. The
formal verification are used to define the failures /Errors in software but not necessary that
the all errors are safety-critical”. Finally, a verification engineer, whose answer is possibly,
highlights that formal verification “could potentially make them safer, but I think the effort
is probably too high in relation to the benefit.”

Summary. The majority answers of about 37% of all participants respond that using formal
verification makes very probably a system safer while 34% vote for definitely safer. Most of
the participants highlight that using automated formal verification methods could reduce a lot
of manual work. However, a considerable number of participants also highlight that without
proper training it is hard to imagine using formal verification in industry.
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Fig. 16 Results on whether using formal verification makes systems safer grouped by the participants’ indus-
trial experience in safety
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6.5.2 Formal Verification as an Add-on

With question Q17, we collect the participants’ opinion whether formal verification could
be a meaningful addition to the functional safety methods to ensure safety (possible answers
follow scale LS5 in Table 2 and allow free-text comments). Among the 41 participants, 39
have answered this question. Results are shown in Table 12.

From these 39 participants, 19 (49%) answer that formal verification could definitely be
an add-on to functional safety methods, and eleven participants (28%) consider this as very
probably. A safety manager/engineer, whose answer is very probably, states that “formal
verification methods probably can [be ] used to specify and verify the functional safety related
properties of the system e.g., time related issues such as Fault-Tolerance Time Intervals etc.”
The answers to question Q16 (cf. Section 6.5.1) correlates with the results shown in Table
12.

Relation to participants’ safety experience. Figure 17 depicts the results grouped by the par-
ticipants’ experience in safety (cf. Section 6.1.1). The predominant number of participants
having an experience of 6 to <8 years and >10 years answer definitely. A safety man-
ager/engineer with 6 to <8 years of experience states: “7To me, formal verification is already
a method to achieve functional safety. It’s just not applied widely. Formal verification itself
cannot ensure safety, it can just contribute.” Furthermore, a system/software architect with
>10 years of experience mentions the challenge that mostly formal verification is not scal-
able, and very costly. Notably, among all participants, only one participant who answers with
probably not and having between six and eight years of experience states the following: “We
have two terms: functional safety addresses E/E failures in the systems and SOTIF (safety of
intended functionality) addresses the safety issues in absence of E/E failures. Therefore, to
ensure safety, we need to reduce the hazards which are related to E/E failures + Performance

”»

limitations.

Summary. 19 participants (49% of the responding participants) deem formal verification def-
initely to be an add-on to classical functional safety methods. From the free-text responses,
most participants state that formal verification together with functional safety methods could
address more system safety issues.

6.5.3 Benefit of Identifying Inconsistent Specifications

With question Q18, we collect the participants’ opinion whether identifying inconsistent
formal specifications is beneficial for a safety analysis (possible answers are defined by
scale LS5 in Table 2 and allow free-text comments). Forty participants provided answers
and one participant had no opinion (Table 13). The majority of 21 participants (53%) rates
identifying inconsistent formal specifications definitely beneficial for a safety analysis. The
second most-called answer with 15 votes (38%) is very probably. A system/software architect
answering definitely states that “it is beneficial because: (1) it saves time and effort trying

Table 12 Results for whether using formal verification could be a meaningful add-on to functional safety
methods to ensure safety

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion
Count 19 (46%) 11(27%) 6 (15%) O 2(5%) 12%) O 2 (5%)
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Fig. 17 Results for whether using formal verification could be a meaningful add-on to the functional safety
methods grouped by the participants’ experience in safety

to resolve the inconsistencies in the future, and (2) avoids possible security threat due to
the vagueness in the specification.” A research engineer highlights that “naturally, safety
critical application which rely on inconsistent formal specifications can never be guaranteed
to function reliably.”

Relation to participants’ experience in safety. Figure 18 depicts the results in relation to the
participants’ experience in safety. A majority of participants between O to 8 years and >10
years vote for definitely. A research engineer answering definitely and with 2 to <4 years
of experience states that “if formal methods were to be used extensively in the production
domain, it would be very important because it is the starting point of the analysis and will
have great influence on the results.” Further, a safety manager/engineer with 6 to <8 years
experience mentions that “[identifying | inconsistent specification is definitely beneficial, not
so much for the safety analysis but for the safety of the product itself. Also, it is not limited
to the safety but general performance of the product.” Looking at all benefits, a safety
manager/engineer answering definitely and with 4 to <6 years experience mentions that “it
is indeed very helpful. However, the harder part is to write correct (partial) specifications in
the first place. If you fail to do so, there is no benefit from making your (flawed) specification
consistent.”

Summary. 53% of the participants who provided responses see that identifying inconsistent
formal specifications could definitely be beneficial for a safety analysis. Most of the free-text
comments highlight that identifying inconsistencies could save time and effort very early and
improve system safety.

Table 13 Results for whether identifying inconsistent specifications is beneficial for a safety analysis

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion
Count 21 (51%) 15(37%) 3@8%) O 12%) 0 0 1 (2%)
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Fig. 18 Results for whether identifying inconsistent specifications is beneficial for a safety analysis, grouped
by the participants’ experience in safety

6.6 Using Formal Verification

The questions 018, 019, and Q20 (Table 1) collect the participants’ opinions on using formal
verification in general, imagining using formal methods if understanding formal notations is
eased, and using formal methods in real-world development. The responses to these questions
are discussed in the following.

6.6.1 Opinions on Using Formal Verification in General

Question Q8 collects opinions of the participants on using formal verification with a free-text
field. The responses are categorized based on the participants’ designations.

System/Software Architects and Safety/Security Experts. A system/software architect with
their knowledge rated as expert advises to “not try to model your whole system with formal
methods. Model relevant aspects and check them.” In addition, a system/software architect
as an advanced beginner states, that “[formal methods] are helpful and can bring great
help if used properly. However, there could be some effort initially for translating existing
specifications into the representation or notation used by formal verification tools.” Further
two system/software architects mention that with the required knowledge it is easy to use
formal tools but still the question remains whether it scales to industrial systems.

Responses from safety/security experts show that they are interested in different perspec-
tives. For example, a safety/security expert who is an advanced beginner states the expectation
that “one very promising solution is needed to compose/decompose safety requirements for
component based development.” Further, an expert highlights that they only “see rare use
cases, since the benefit most often does not outweigh the costs (yet). This is, however, dif-
ferent when the formal verification is practically hidden and specification is intuitive. See
for example type systems for programming languages checked by compilers without support
from the user.”

Verification Experts and Verification Engineers. The responses received by verification
experts and engineers indicate that they are mainly interested in verifying system archi-
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tectures and requirements. A verification expert highlights that “if hard statements about
correctness are required, [formal methods] are inevitable if they can be used. In addition,
they are very good at finding corner cases that are hard to find (e.g., transient errors resulting
from concurrency).” Further, a verification engineer states that formal methods “should be
used for highly critical parts (only). I'm not sure if it is useful to apply it on higher levels
(e.g. system architecture). That might help to get a consistent picture on that level, but will
probably not help to ultimately build a safe system, as the properties can usually not be
checked on implementation level.”

Safety Managers/Engineers, Systems Engineers, and Research Engineers. Most of the safety
managers/engineer and systems engineer are interested to use formal methods, but the com-
plexity of using and understanding formal tools stands as a barrier. For example, a safety
engineer states that formal methods “can bring a huge benefit to safety engineering, but
some fundamental challenges remain (competency of engineers applying formal methods
and tools).” Furthermore, according to the statement by a systems engineer, “formal veri-
fication is powerful, but to get the acceptance we have to keep the formal stuff away from
the users. E.g., Astree, Polyspace, QA-C all find defects, that are nearly impossible to detect
by hand written tests. Astree and Polyspace find more than QA-C, still, many projects use
QA-C, as it is extremely easy to use even for people without knowledge in formal meth-
ods.” In addition, a research engineer highlights a crucial challenge: “I do think it makes
sense to apply formal verification especially on highly complex and safety-critical system,
but the hurdle might be very high for its wide application. We will require not only safety
engineers to understand the method, notation, syntax, etc. but also e.g., system designers,
software developers. If external certification authority is involved in the certification process,
it might be an additional challenge to present the safety case (unless they are experts in formal
verification).”

Summary. The majority of collected responses are very positive in using formal verification
to improve the system safety and design. But, on other hand understanding and scalability
of verification (tools) remain as obstacles.

6.6.2 Opinions on Using Formal Verification if Understanding of Formal Notations
is Eased

Question Q79 collects the opinion of participants on whether making formal notations more
understandable could improve the usage of formal methods. The possible answers follow
scale LS5 in Table 2 and can be extended with free-text comments. All of the 41 participants
provided responses, which are shown in Table 14. The majority of participants (23, i.e.,
57%) answer that making formal notations more understandable could definitely improve
the usage of formal methods. Eleven participants (27%) estimate that it will very probably
provide an improvement. A verification expert answering definitely highlights that increasing

Table 14 Results of using formal methods if understanding of formal notations is made easier

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion
Count 23 (57%) 11(27%) 4 (10%) 1(2%) 12%) 12%) 0 0

@ Springer



Empirical Software Engineering (2023) 28:125 Page390f67 125

understandability of formal specifications is key to bringing them into a more wide-spread use.
See for example (Gladisch et al. 2019) lessons learned on SBT and the STL specifications.”
Finally, four participants expect that easing understanding of notations will probably improve
the usage of formal verification while and one participant each votes for neither probably
nor possibly, possibly, and probably not.

Understanding of formal notations is made easier based on formal methods knowledge. Fig-
ure 19 depicts the results of whether making formal notations more understandable could
improve the usage of formal methods considering the participants’ knowledge in formal meth-
ods (cf. Section 6.1.2). Except of novices, the majority of participants rated from advanced
beginners to experts expect a definite improvement. A highlighting statement from a safety
engineer with knowledge rated as an advanced beginner states that, however, “it is not just
the decision of the safety team, also the System, SW and maybe the HW experts and also
testers needs to understand it to make the investment in formal methods reasonable.” In
addition, a safety engineer states the following: “To me, understandability is one of the main
reasons that it [formal verification] is not applied, besides the huge initial effort (modeling
and specifying a system formally).”

From participants with expert knowledge in formal methods, one participant each answers
with neither probably nor possibly, possibly, and probably not. From the collected free-text
comments, most participants consider the formalization of system models and specifications
from informal systems descriptions and requirements as challenging. For example, a partici-
pant answering with neither probably nor possibly highlights that “the problem is not related
to method itself but it is related to how you use the method and what are the inputs, and how
you understand the system architecture and artifacts. Also, how you apply the method and
so on.” A further participant answering with possibly mentions that “the formal notation
has to be very simple, it has to [be] comprehensible including small details, and it has to be
sufficiently flexible so it can be used in unforeseeable use cases.” A participant answering
with probably not states that “specifying a formal model is hard. If you can manage that,
you can also manage the notation.”

Novice

Advanced Beginner

)

® Competent
2
°
C
X

Proficient

Expert

Count
B Definitely [ Very Probably Probably Neither Probably nor Possibly Possibly

I Probably Not

Fig. 19 Results for using formal methods if understanding of formal notations is made easier, grouped by the
participants knowledge in formal methods
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Summary. 57% of all participants think that making formal notations more understandable
could definitely improve the usage of formal methods. However, understanding and formal-
izing systems and requirements in the first place remains still a barrier to use formal methods.

6.6.3 Opinions on Using Formal Methods in Real-World Development

With question 020, we collect the opinions of participants on whether formal methods are
usable in real-world development processes. Possible response follow scale LS5 in Table 2
and could be extended by free-text comments. While one participant has no opinion, the
remaining 40 participants provide responses shown in Table 15. Predominantly, the answers
are positive with most participants (13, 33% of responded participants) answering with prob-
ably, 11 participants (28%) with definitely, and ten participants (25%) with very probably.
Only one participant each answers with neither probably nor possibly and definitely not.

Usability in real-world development processes based on formal methods knowledge. Figure
20 depicts the results of whether formal methods are usable in real-world development pro-
cesses considering the participants’ knowledge in formal methods (cf. Section 6.1.2). Most
answers received as free-text comments highlight the interest to use formal methods, however,
understanding and familiarizing with the notations and tools still need to be improved. From
the majority of 13 answers selecting probably, seven participants rated their knowledge as
an advanced beginner. Such a participant highlights that “the huge WHY NOT in my opinion
is the frontloading/enabling. Application of formal methods usually requires more time in
the beginning to become familiar with the formalization method (and maybe tools). Often,
representation is not intuitive on the first glance and requires a few people who actually ‘dig
themselves into the problem’. This makes it unattractive for fast applications/scouting. As
soon as you started with another type of analysis in the beginning, the technical debt still
changing to a more formal method becomes higher and higher. Thus, in my opinion, formal
methods can be very helpful but require a good visualization and explanation as - in the
beginning - these methods are often an investment of time for a later quality return.” Further-
more, notably, six of the 11 participants answering with definitely rated their knowledge as
an expert. For instance, such participants see the benefits but also the prerequisites of using
formal methods: “[Formal methods] are usable and can provide a huge benefit. However,
the necessary competences have to be created, the management has to support this.”

Usability in real-world development processes based on designations. Figure 21 depicts the
results of whether formal methods are usable in real-world development processes grouped by
participants’ designations (Section 6.1.3). Among 11 participants answering with definitely,
eight participants are system/software architects, systems engineers, and research engineers.
An example statement from a systems engineer is that formal methods are already in use, e.g.,
in tools like Astree, Polyspace, etc. This only works, if we try to make it as easy for the user as
possible. I don’t see people formalizing requirements but, I think if we lower the hurdle this
might also change on the left side of the V. Similarly, eight of ten participants answering with

Table 15 Results of using formal methods in real-world development

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion
Count 11 (27%) 10(25%) 13 (32%) 1 (2%) 4(10%) O 1 (2%) 1 (2%)

@ Springer



Empirical Software Engineering (2023) 28:125 Page410f67 125

Novice 1 8
Advanced Beginner 7 "
[
o
K Competent 1 7
2
°
C
X
Proficient
Expert 1 1 1 11
7 8 9 10 M1 12
Count
B Definitely [ Very Probably Probably Neither Probably nor Possibly Possibly

B Definitely Not B No Opinion

Fig. 20 Results of whether formal methods are usable in real-world development processes grouped by the
participants’” knowledge in formal methods

very probably are systems engineers, safety manager/engineers, and research engineers. A
verification engineer highlights the necessity of easing the semantics: “An engineer can make
use of such tools only if it serves a user base. Formal methods offer great metrics to assert real-
world processes, however it is limited today by its very semantic nature. One needs something
on top to make this human understandable.” Further, 11 of 13 participants answering with
probably are systems engineers and safety manager/engineers. A system engineer states that
“it is necessary to integrate currently used/recommended methods. Changes from well known
methods at software engineering team must be as easy as possible.”

Apart from the positive opinions, a safety/security expert highlights that it “depends on
what you consider formal methods. Type systems and similar methods are used heavily by
compilers in the background already. Formal specifications in the form of LTL formulas for
complex systems seem extremely challenging from a cost/benefit point of view”. All of the
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Fig. 21 Results of whether formal methods are usable in real-world development processes grouped by the
participants’ designations
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participants answering with possibly consider scalability as the major barrier. For example,
a verification expert states that “scalability, time cost and, required technical knowledge
constitute a barrier to usability.” Finally, the only participant answering with definitely not
is a safety/security expert who states that “only a small amount of people will accept it, as
too many people are not able to understand notations used.”

Summary. To sum up, 34 out of all 41 participants (83%) have positive opinions regarding the
use of formal methods in real-world development processes (formal methods are definitely,
very probably, and probably usable in such a context). According to the free-text comments,
the main barriers for the application of formal methods in the real world are that they are
not scalable, not suitable for all kinds of engineers, not easily understandable, and not in the
state of “plug and play”, yet.

7 One-Group Pretest-Posttest Experiment (Part 2): Results and Analysis

The questionnaire listed in Table 3, gathered from 13 participants, corresponds to Part2
of our study, the one-group pretest-posttest experiment. The results of this experiment are
summarized in the following.

7.1 Participants

We collected demographic information about the participants using the questions DQ1 and
DQ2.

7.1.1 Participants’ Experience in Formal Methods

The experience of participants in using formal methods is collected through question DQ?2
(Table 3). Possible answers correspond to scale LS2 (Table 2). Likewise to DQ3 in Table 1
(cf. Section 6.1.1), the participants are asked to fill-in their experience in formal methods
gained individually in academia and industry as well as their overall experience. Figure 22
shows the responses.

All of the 13 participants have gained experience in formal methods in academia, industry,
or both. Particularly, all participants have academic experience. Six participants have <1
year and four participants have 4 to <6 years of experience gained in academia. Concerning
industrial experience, four participants have no experience and five participants have <1
year of experience. Finally, focusing on the overall experience, four participants have 1 to
<2 years of experience, and three participants have 2 to <4 years of experience. Furthermore,
two participants each have <1, 4 to <6, and > 10 years of experience.

7.1.2 Participants’ Knowledge in Formal Methods

Question DQ]I (Table 3) asks the 13 participants to rate their knowledge in formal methods
(answer according to scale LS/ in Table 2). The responses of the participants are shown in
Fig. 23. Similar to the result of Q2 in Part 1 (cf. Section 6.1.2), all participants have rated
their knowledge within the scale novice to expert while no answers are received for the scale
mastery and practical wisdom. Thus, both mastery and practical wisdom scales will not be
considered for the rest of the discussion. Among the 13 participants, three participants each
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Fig.22 Experience of the participants in formal methods gained in academia, industry, and overall/in total

rated themselves as novices, advanced beginners, competent, and experts while only one
participant is rated as proficient. Figure 23 depicts the participants’ knowledge together with
their total experience in formal methods. All participants having <2 years of experience are
rated as novice and advanced beginners, 2 to <4 years as competent, and 4 to <6 as well as
> 10 years as proficient and experts.

7.2 Use Case for the Pretest

In this section, we discuss the use case for the pretest, a formally specified airbag system,
that has been presented to the participants, as well as the collected responses for questions
TQI and TQ2 (cf. Table 3).
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Fig. 23 Participants’ knowledge in formal methods, along with their total experience in formal methods in
terms of years
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7.2.1 Airbag System

The component model and specifications of the airbag system used in the pretest are shown
in Fig. 24. An explanation of the component model and their corresponding specifications
were provided in-detail in a video to the participants. The airbag system consists of one
parent component and two sub-components, CollisionPlausibilation and AirbagController.
The behavior of the parent component is to activate the airbag system via the exploded
signal whenever any of the sensor signals (sen_front, sen_right, sen_left, or sen_back) holds.
To achieve this, the sub-component CollisionPlausibilation processes the sensor signals
and provides the detection signal collision_detected as output. Finally, the sub-component
AirbagController takes the signal collision_detected as input and provides the exploded
signal to activate the actuator of the airbag system.

No Assumptions

Guarantees:

RQ1: Globally, if sen_front, sen_left and sen_right has occurred then in response exploded holds on next step.

RQ2: Globally, if sen_back has occurred then in response exploded holds eventually.

sen_front sen_front

sen_left sen_left

collision_detected exploded exploded

sen_right sen_right CollisionPlausibilation i AirBagController
——>l—

sen_back sen_back

No Assumptions

Guarantees:

RQ3: Globally, if collision_detected has occurred then in response collision_detected holds continually.

RQ4: Globally, if sen_front, sen_left, sen_right, or sen_back has occurred then in response collision_detected
holds continually.

Assumption (RQ5): Globally, if collision_detected has occurred then in response collision_detected holds
continually. -

Guarantees:

RQ6: Globally, if exploded has occurred then in past response collision_detected holds for once.

RQ7: Globally, if collision_detected has occurred then in response exploded eventually holds.

Fig. 24 The component model and specifications of the airbag system
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7.2.2 Difficulty of the Use Case and Understanding it

Questions TQ1 and TQ1 (Table 3) assess the participants’ difficulty and understanding of the
airbag system use case. The participants’ responses are shown in Fig. 25 (responses follow
scale LS5 in Table 2).

Difficulty of the use case. Among 13 participants, 11 participants perceive the airbag system
use case as not difficult by answering within the scale possibly, probably not, or definitely
not. Figure 26a shows responses for the difficulty of the airbag system use case based on the
participants’ knowledge in formal methods (¢f. Section 7.1.2).

Difficulty in understanding the use case. The responses to question 7Q2 is almost similar to
those for 7Q1 (cf. Fig. 25). A majority of participants (9 of 13) rate their understanding of
the airbag system use case as not difficult by answering within the scale possibly, probably
not, or definitely not. Figure 26b shows the responses for the difficulty of understanding the
use case based on the participants’ knowledge in formal methods. Among three participants
as advanced beginners, one participant each answers very probably and probably. One par-
ticipant each answering very probably and definitely not (two extreme ends) are an advanced
beginner and a competent person in formal methods.

Summary. The answers show that most of the participants (11 of 13) perceive the airbag
system as not being a difficult use case. Similarly, understanding the airbag system use case
is also not rated as difficult (9 of 13).

7.3 Use Case for the Posttest

For the posttest, we use a more complex use case, an electronic power steering systems. As
for the use case in the pretest, we ask the participants questions 7Q1 and TQ2 (cf. Table 3).

7.3.1 Electronic Power Steering System

The Electronic Power Steering (EPS) (Bozzano et al. 2020) system is a Bosch product
designed for highly-automated driving vehicles. It steers either based on input from the driver
or commands from the vehicle bus. The ECU component of the EPS system, shown in Fig.
27 and used for the posttest, has two redundant channels: a primary and a secondary channel.

Definitely ~ VeryProbably — Probably Neither Possibly ProbablyNot  DefinitelyNot  No Opinion
Probably nor
Possibly
Likelihood

M Difficulty of use-case [l Difficultyin understanding of use-case

Fig. 25 Difficulty of the airbag system use case and of understanding it
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Fig. 26 Difficulty of (a) the use case and (b) of understanding it grouped by the participants’ knowledge in
formal methods

Each channel consists of three modes: master, slave, and passive. The nominal behavior is that
one channel is master and the other one is slave. This synchronization is taken care of by the
sub-component interComDevice in between the primary and secondary devices. As shown
in Fig. 27, if torque_request_from_pd does not hold and torque_request_to_pd holds, then
the sub-component primary_device is in master mode. Similarly, if torque_request_from_sd
holds and forque_request_to_pd does not hold, then the sub-component secondary_device
is in slave mode. In these two cases, forque is given to the system actuator.

7.3.2 Difficulty of the Use Case and Understanding it

As mentioned previously, the same questions 7Q/ and 7Q2 in Table 3 used in the pretest
are again used in the posttest to collect the participants’ opinions in assessing the difficulty
of the electronic power steering system use case and of understanding it. The participants’
responses are shown in Fig. 28 (answers follow scale LS5 in Table 2). To avoid any bias, we
have used a less complex system for the pretest and more complex real-world project for the

EPS_system
pd_state
torque_request_from_sd
has_dat: —————— has_data
e i . sd_bus BN - =
has_power . torque_request_fro "ynter device_com has_power, )
primary_device [ m_pd e sd_energy R secondary_devicell®— Ly
- 2
‘ - [ torque_request_to_sd— il e
|
torque_request_to_pd torque_sd_in K
]
i pd_energy 1
torque
¥ pd_bus axis [
torque_pd_in

Secondary Device

torque_request_ | torque_re: torque_reque: torque_requ
rom_pd est_to_pd om_sd est_to_sd

FALSE TRUE Master FALSE TRUE Master
TRUE FALSE Slave TRUE FALSE Slave

TRUE TRUE Passive TRUE TRUE Passive
FALSE FALSE Passive FALSE FALSE Passive

Fig. 27 The component model and specifications of the electronic power steering (EPS) system
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Fig. 28 Difficulty of the EPS use case and of understanding it

posttest. Thus, our early hypothesis is that a majority of participants perceives the use case
and its understanding of the posttest as more complex. This is confirmed by the results shown
in Fig. 28. Overall, the motive of using the EPS use case for the posttest is to identify whether
the proposed counterexample explanation approach is suitable for real-world systems with
the use of formal methods.

Difficulty of the use case. Figure 28 shows that seven out of 13 participants perceive the EPS
use case as difficult by answering with very probably or probably. One further participant
answers with neither probably nor possibly and the remaining five participants perceive it as
not difficult (possibly, probably not, and definitely not). Figure 29a groups the responses by
the participants’ knowledge in formal methods. Except for the knowledge level competent,
all other knowledge levels predominantly perceive the use case as difficult.

Difficulty in understanding the use case. The results for TQ2 on the difficulty of understanding
the use case are similar to 7Q1. Seven of 13 participants perceive understanding the EPS
system as difficult, one participant answers with neither probably nor possibly, and the
remaining five participants perceive it as not difficult. The results are also similar to 7Q1
taking the participants’ knowledge levels into account (Fig. 29b).

Summary. The results for both the difficulty of the EPS use case and of understanding it
are quite similar. The majority of participants (7 of 13) perceive both the EPS use case and
understanding it as difficult.

Novice 1 1 3 Novice 3
Advanced ] _ 5 Advanced B
Beginner Beginner
& Competent 3 & C tent 3
k. P 1 1 S Competen
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£ Proficient 1 1 £ Proficient
Expert 1 1 3 Expert 3
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M VeryProbably Probably [l Neither Probably nor Possibly Possibly M VeryProbably Probably [l Neither Probably nor Possibly Possibly
W ProbablyNot [l Definitely Not I ProbablyNot [l Definitely Not
(a) (b)

Fig. 29 Difficulty of (a) the EPS use case and of (b) understanding it grouped by the participants’ knowledge
in formal methods
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7.4 Results of the Model Checker and Counterexample Explanation,
and Understanding it

We use questions 7Q3 and TQ4 (Table 3) to collect the participants’ responses on under-
standing the model checker and counterexample explanation results shown during the pretest
and protest to the participants. These results and responses are discussed in the following.

Model checker output. Figure 30 is the result generated by the model checker for the airbag
system use case described in Section 7.2.1. This result is used during the pretest. If an
inconsistency is identified by the model checker, the whole violated refinement specification
and the counterexample to illustrate the erroneous behavior are shown to the participant. We
have highlighted the inconsistent specifications in the whole violated refinement specification
to avoid any bias. For example, the model checker output could be hard to interpret on first
glance, which is not necessarily the case for our counterexample explanation approach since
the relevant information is highlighted explicitly. This could mislead the participant at first
glance in deciding the model checker output to be too difficult. Thus, to avoid this bias,
highlighting the inconsistent specification in the model checker output would trigger the
participant to understand and identify the inconsistency.

Counterexample explanation. The counterexample explanation shown in Fig. 31 is used for
the posttest. This explanation is the result of verifying a refinement and explaining a refine-
ment inconsistency of the EPS use case (cf. Section 7.3.1). Instead of showing the complete
violated refinement specification, the explanation presents the type of violation, list of incon-
sistent specifications, and their corresponding components. Further, instead of a concrete
counterexample, highlighting of erroneous states and variables in the counterexample as

Violated Specifications

Note: Highlighting is not provided by the model checker. We highlighted the inconsistent specification to ease the error
comprehension of raw model checker results.

TRUE & (TRUE -> G(CollisionPlausibilation.collision_detected -> G CollisionPlausibilation.collision_detected) &
G((CollisionPlausibilation.sen_front | CollisionPlausibilation.sen_right | CollisionPlausibilation.sen_left |
CollisionPlausibilation.sen_back) -> G CollisionPlausibilation.collision_detected)) & (G(AirBagController.collision -> G
AirBagController.collision) -> (G(AirBagController.exploded -> O AirBagController.collision) &

)) & G(wire) -> G(((sen_right & sen_left) & sen_front) -> X exploded) & G(sen_back -> F exploded)

Counterexample

-> State: 1.1 <- -- Loop starts here

sen_front = TRUE -> State: 1.2 <-

sen_left = TRUE AirBagController.exploded = FALSE
sen_right = TRUE exploded = FALSE

sen_back = TRUE -> State: 1.3 <-
CollisionPlausibilation. sen_front = TRUE AirBagController.exploded = TRUE
CollisionPlausibilation. sen_left = TRUE exploded = TRUE
CollisionPlausibilation. sen_right = FALSE -> State: 1.4 <-
CollisionPlausibilation. sen_back = FALSE AirBagController.exploded = FALSE
CollisionPlausibilation.collision_detected = TRUE exploded = FALSE

AirBagController.collision_detected = TRUE
AirBagController.exploded = TRUE
exploded = TRUE

wire = TRUE

Fig. 30 Result of the model checker when verifying a refinement of the airbag system
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Refinement Violation Explanation

Inconsistency in the decomposition of guarantee of parent-component EPS System. The guarantee “Globally, it is
always the case that pd_state = Master and sd_state = Slave holds” of parent-component EPS System is inconsistent
with the guarantee “Globally, it is always the case that if pd_state = Master and torque_request_from_pd=FALSE and
torque_request_to_pd = TRUE holds, then pd_state = Master and torque_request from_pd = FALSE and
torque_request_to_pd = FALSE holds in next transition” of its sub-component primary _device.

Counterexample Explanation

The variable EPS_system.pd_state holds Passive in State: 1.3.
But EPS_system.pd_state is expected to be Master in State: 1.3.

-> State: 1.1 <- -- Loop starts here

primary_device.pd_state = Master ->State: 1.2 <-

secondary_device.sd_state = Slave primary_device.torque_request_to_pd = FALSE
EPS_system.pd_state = Master inter_device_communication.torque_request_from_sd = FALSE
EPS_system.sd_state = Slave

primary_device.has_data = TRUE -> State: 1.3 <- (Erroneous State)
primary_device.torque_request_from_pd = FALSE primary_device.pd_state = Passive

primary_device.has_power = TRUE EPS_system.pd_state = Passive (erroneous variable)
primary_device.torque_pd_in = TRUE primary_device.torque_out = FALSE
primary_device.torque_request_to_pd = TRUE primary_device.torque_request_to_pd = TRUE (erroneous
secondary_device.has_data = TRUE variable)

secondary_device.torque_request_from_sd = TRUE inter_device_communication.torque_request_from_sd = TRUE
secondary_device.has_power = TRUE axis.torque_pd_in = FALSE

secondary_device.torque_sd_in = TRUE

secondary_device.torque_request_to_sd = FALSE ->State: 1.4 <-

inter_device_communication.torque_request_from_sd=TRUE  primary_device.pd_state = Master
inter_device_communication.torque_request_from_pd=FALSE  EPS_system.pd_state = Master
inter_device_communication.torque_request_to_sd = FALSE primary_device.torque_out = TRUE

inter_device_communication.torque_request_to_pd = TRUE primary_device.torque_request_to_pd = FALSE
axis.torque_pd_in = TRUE inter_device_communication.torque_request_from_sd = FALSE
axis.torque_sd_in = TRUE axis.torque_pd_in = TRUE

axis.torque = TRUE
EPS_system.torque = TRUE
wire = TRUE

Fig. 31 Result of the counterexample explanation approach when verifying a refinement of the EPS system

well as explanations of the erroneous and expected nominal behavior are shown to ease the
error comprehension for the participants.

Understanding the results. With questions 7Q3 and TQ4, we assess the understanding of the
model checker output and counterexample explanation approach. Only a minority (6 of 13)
of participants perceives the model checker output as easy to understand (these participants
answer with definitely, very probably, and probably), while a clear majority participants (12
of 13) perceives understanding of the counterexample explanation approach as easy (Fig.
32). Notably, no participant answers that understanding the results of the counterexample
explanation approach is hard, while six of 13 participants still find the model checker output
to be hard to understand (corresponding responses are possibly and probably not), even with
the less complex use case (airbag system) and additional highlighting of the inconsistent
specifications in the model checker output.

Understanding the results grouped by the participants’ knowledge in formal methods. Figures
33a and 33b show how the participants understand the model checker output and counterex-
ample explanation based on their knowledge in formal methods. The understanding of the
model checker output (Fig. 33a) aligns with the participants’ knowledge. For example, a
majority of the participants answering that understanding is hard (possibly and probably
not) are either novice or advanced beginners. On other hand, a majority of the participants
answering that understanding is easy (definitely, very probably, and probably) belongs to the
competent, proficient, or expert groups. However, as shown in Fig. 33b, a majority of the par-
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Fig.32 Results for understanding the results generated by the model checker and counterexample explanation
approach

ticipants belonging to the novice and advanced beginner groups perceive that understanding
the counterexample explanation is definitely easy.

Summary. The raw output generated by the model checker contains the whole violated
refinement specification and the counterexample to illustrate the erroneous behavior. The
counterexample explanation approach, however, generates an explanation containing the
type of violation, the inconsistent specification, and their corresponding components. Addi-
tionally, erroneous states and erroneous variables are highlighted in the counterexample.
From the collected responses, 12 out of 13 participants perceive the understanding of the
counterexample explanation result as easy, which contrasts the six out of the 13 participants
who perceive the model checker output to be easy to understand.

7.5 Participants Responses for Task-Related Questions

Questions from TQ5 to TQ9 are task-related, in which participants answer based on their
understanding of the model checker and counterexample explanation results. For these
questions during the pretest and posttest, the participants should identify the inconsistent
components (7Q5) and specifications (7Q6), the reason for the inconsistency (7Q7), a solu-
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Beginner
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W oefinitely [ Very mba:o‘;s\bly r;ba:ovbabw;' er Probably nor Possibly B Definitely [ VeryProbably [ Probably [ Neither Probably nor Possibly
(a) (b)

Fig.33 Responses for understanding the results generated (a) by the model checker and (b) by the counterex-
ample explanation approach grouped by the participants” knowledge in formal methods
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tion to fix the inconsistency (7Q8), and a nominal behavior of the system in terms of a correct
state transition in place of the erroneous state transition (7Q9).

Identifying inconsistent components. Figure 34a shows the responses to 7Q5, which requires
from the participants to identify the inconsistent components based on the model checker
result during the pretest and counterexample explanation during the posttest. Eight out of
13 participants identify both the inconsistent parent and sub-components during the pretest
and ten participants during the posttest. Further three participants each identify either the
sub-component or parent component correctly during both the pretest and posttest. Notably,
no participant completely identifies the incorrect components based on the counterexample
explanation.

Identifying inconsistent specifications. Figure 34b shows responses to TQ6, for which par-
ticipants should identify the inconsistent specification from the model checker output and
based on the counterexample explanation. Among the 13 participants, four participants have
no opinion from the model checker output. From the remaining nine participants, four par-
ticipants each identify the inconsistent specifications fully correct and completely incorrect,
and one participant identifies parts of the inconsistent specification correctly. Concerning the
responses of identifying the inconsistent specifications using the counterexample explana-
tion, nine of 13 participants identify all inconsistent specifications correctly. The remaining
four participants identify parts of specifications correctly.

Among the five participants who identify the inconsistent specifications fully or partially
based on the model checker output, the responses by four participants are fully correct in
terms of the reason for the inconsistency (7Q7) and the appropriate fix (7Q8). On other hand,
among 13 participants who identify the inconsistent specifications fully or partially using the
counterexample explanation, the responses by 11 participants correctly identify the reason
(TQ7) and by nine participants correctly identify the fix (7Q8).

Nominal system behavior in the counterexample. Among the 13 participants, six participants
attempt to answer 7Q9 in the pretest and nine participants in the posttest to identify the
expected system behavior in the counterexample, that is, to name a correct state transition
in place of the erroneous state transition. Among the six participants in the pretest, four
participants correctly name the expected behavior based on the model checker output, while
seven of the nine participants in the posttest correctly name the expected behavior based on
the counterexample explanation.

1 10 10 9
10

Count

Count

O RN WAV N®

Fully Correct  Partially Correct Not Correct No Opinion Fully Correct  Partially Correct Not Correct No Opinion
Response Response
W Pretest [l Posttest W Pretest [ Posttest

(a) (b)

Fig. 34 Results of identifying (a) inconsistent components and (b) inconsistent specifications from the model
checker output (pretest) and counterexample explanation (posttest)
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Summary. A majority of participants identifies both the inconsistent components and spec-
ifications correctly based on the counterexample explanation approach in the posttest,
significantly more than based on the model checker output in the pretest. This shows that the
counterexample explanation is well suited to identify inconsistent components and specifi-
cations, and that participants are able to explain the reason for and to fix the inconsistencies.

7.6 Participants’ Opinion on Understanding the Model Checker Output
and Counterexample Explanation

Questions PRQ1 to PRQ4 are used to collect the participants’ opinions on understanding the
model checker output during the pretest (LS6 scale). Similarly, questions POQ1 to POQ4
are used to collect opinions on understanding the counterexample explanation during the
posttest. Each group of four questions (PRQ1 to PRQ4 and POQ1 to POQ4) mainly focus
on four aspects: (1) better understanding, (2) quicker understanding, (3) confidence, and
(4) added value. The responses for these four aspects are shown in Figs. 35, 36, 37 and 38.

Better understanding. Figure 35 shows the results whether the participants think that the
model checker output resp. the counterexample explanation helps understanding refinement
inconsistencies. Nine out of 13 participants answer this question positive (strongly agree,
agree, and somewhat agree) with respect to the model checker output in the pretest. On other
hand, all of the 13 participants answer the question positive with respect to the counterexam-
ple explanation in the posttest. Out of these 13 participants, five participants each strongly
agree and agree, proving that the counterexample explanation allows participants to better
understand inconsistencies of refinements.

Quicker understanding. Figure 36 shows the participants’ responses regarding time saved
based on the model checker output in the pretest resp. the counterexample explanation in
the posttest. Regarding the model checker output (pretest), most participants neither agree
nor disagree (5 participants). Among the remaining eight participants, six participants answer

Count

Strongly Agree Agree SomewhatAgree Neither Agree nor  Somewhat Disagree  Strongly Disagree  No Opinion
Disagree Disagree

Agreement

W Pretest [ Posttest

Fig.35 Better understanding
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Fig.36 Quicker understanding

positively (strongly agree, agree, and somewhat agree) and two participants answer negatively
(somewhat disagree).

Based on the counterexample explanation (posttest), a majority of the participants agree
that this can save time (7 participants). From the remaining participants, three participants
each answer with strongly agree and somewhat agree. No participants answers negatively,
which strongly indicates that the provided counterexample explanation does indeed support
a quicker understanding of inconsistencies.

Confidence of understanding. Figure 37 shows the participants’ responses and depicts
whether the output from the model checker or the counterexample explanation makes partic-
ipants confident in their understanding of inconsistencies. An equal number of participants
(6 participants each) answer either positively (agree and somewhat disagree) or negatively
(somewhat disagree, disagree, and strongly disagree) for the pretest. For the posttest, how-
ever, all participants agree that the counterexample explanation helps to gain confidence with

~
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Strongly Agree Agree Somewhat  NeitherAgree  Somewhat Disagree Strongly No Opinion
Agree nor Disagree Disagree Disagree
Agreement
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Fig.37 Confidence of understanding
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Fig. 38 Minimal added value

five participants responding strongly agree, five participants answering somewhat agree, and
the remaining three participants responding agree.

Minimal added value. Figure 38 shows whether participants believe in an added value of the
model checker output resp. the counterexample explanation by asking whether they think
that the added value is minimal. Seven out of 13 participants answer with disagree for the
statement that the model checker output provides only the minimal added value. Further, only
one participant each answers agree and somewhat agree. For the counterexample explanation,
the largest share of participants (5 participants) disagrees that the explanation only adds
minimal value to real-world projects. Further three participants each somewhat disagree and
strongly disagree, two participants neither agree nor disagree. No participant agrees that the
counterexample explanation does only provide a minimal added value.

Summary. Figures 35-38 show that the participants think that the counterexample approach
helps in (1) better and (2) quicker understanding of inconsistencies, that it (3) raises their
confidence in the analysis, and that (4) the provided value is not minimal. For all four aspects,
answers were positive for the counterexample explanation in the posttest than for the model
checker output in the pretest.

7.7 Rating of Counterexample Explanation Features

Questions FQI to FQ6 are designed to collect the participants’ opinions on the different
features of the counterexample explanation approach (possible responses follow scale LS7).
The responses are shown in Fig. 39. Notably, all provided features are rated positively ranging
from good to exceptional. No participant rated any feature negatively, that is, to be fair,
poor, or very poor. In Fig. 39, the first four features correspond to explaining the violated
specification. The last two features correspond to explaining the counterexample.

The three features regarding highlighting the erroneous sub-parts in the inconsistent spec-
ification (feature #3 in Fig. 39), listing the component name of the corresponding inconsistent
specifications (feature #4), and highlighting the erroneous state in the counterexample (feature
#6) were rated particularly helpful, each with eight participants answering either exceptional
or excellent.
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7.8 Feedback

Questions FEI to FES are used to collect feedback from the participants on the counterexam-
ple explanation approach and using formal methods. Suggestions and responses are discussed
in the following.

7.8.1 Comparison of Understanding Inconsistencies

With question FEI, we asked the participants for feedback according to scale LS5 whether
it is easier to understand the inconsistencies with the counterexample explanation approach
than based on the original model checker output. From the 13 participants, the largest share
with six participants answer with definitely, further five participants with probably (Table
16). Figure 40 shows the results grouped by the participants’ knowledge in formal methods.

A majority of participants answer that understanding inconsistencies is easier with the
counterexample explanation than with the original model checker output. Only one participant
answers slightly hesitant (possibly).

7.8.2 Challenges in Analyzing Inconsistencies

With question FE2, we want to identify challenges that participants see in analyzing inconsis-
tencies based on the counterexample explanation approach (answers as free-text comments).
Nine out of 13 participants provided responses. Among them, four participants state that the
main challenge in understanding stems from the complexity of the EPS system specifications
and components. Further three participants state that the main challenge stems from not using
formal methods frequently in their daily work. An example statement from a participant is
the following: “I think, the second example is much more complicated. As I did not work
with formal specifications within the last 5 years, it was hard to get into the topic.”. The
remaining two participants highlight that it is still hard to fix the issues despite the counterex-
ample explanation: Highlights and explanation do not provide a solution to the issue so the
challenge to identify the root cause in the specification and removing it in a way to expresses
the intended behavior still remains a challenge. But the approach helps to identify the root
cause.”

Translation of specifications from
formal temporal format to natural 7 2 13
language-like format.

Listing inconsistent specification 2 5 13

Highlighting sub-parts of the
inconsistent specifications that leads 3 2 13
to an inconsistency.

Providing the component name that
belongs to the inconsistent 4 1 13
specifications.

Usefulness

Providing an expected nominal
behaviorin the explanation for the 5 2 13
corresponding erroneous states and

Highlighting the erroneous states and
variables in the counterexample.

0 1 2 3 4 s 6 7 8 9 10 11 12 13 14
Count
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Fig. 39 Participants’ rating of counterexample explanation features

@ Springer



125 Page 56 of 67 Empirical Software Engineering (2023) 28:125

Table 16 Participants’ opinions on the ease of understanding inconsistencies with a counterexample explana-
tion in contrast to a model checker output

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion

Count 6(46%) 108%) 5(38%) 0 18%) O 0 0

7.8.3 Maintaining Refinement Consistency

With question FE3, we collect feedback according to scale LS3 on whether it is easier
to maintain the refinement consistency during a refinement step with the counterexample
explanation approach. A majority of the participants answers positively (Table 17). Two
participants answer with extremely easy, six with easy, four with slightly easy, and one with
neither hard nor easy. Figure 41 shows the results based on participants’ knowledge in formal
methods.

7.8.4 Counterexample Explanation in Real-world Development

With question FE4, we collect feedback according to scale LS5 from the participants on
whether the proposed counterexample explanation approach is usable in the real-world devel-
opment processes. Twelve participants provided responses. According to Table 18, a majority
of participants (5) vote for probably, with ten participants in total answering positively (defi-
nitely, very probably, and probably). Figure 42 shows the participants’ opinions on using the
counterexample explanation approach in real-world development based on their knowledge
in formal methods.

7.8.5 Counterexample Explanation with Formal Methods in Real-World Development

With question FES, we collect feedback from participants according to answer scale LS5 on
whether engineers prefer to use the proposed counterexample explanation while using formal
methods. Among 13 participants, 12 have responded (Table 19). Among these 12 participants,
the largest share of seven participants answer with probably. One further participant each
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Begi 1 1 3
eginner
W
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ECompetent 1 3
H
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0 1 2 3 4
Count
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Fig.40 Participants’ opinions on the ease of understanding inconsistencies with a counterexample explanation
in contrast to a model checker output, grouped by the participants’ knowledge in formal methods
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Table 17 Participants’ opinions on the ease of maintaining refinement consistency during a refinement step
with the counterexample explanation approach

Agreement Extremely Hard Slightly Neither Hard  Slightly  Easy Extremely No
Hard Hard nor Easy Easy Easy Opinion
Count 0 0 0 1 (8%) 4(31%) 646%) 2 (15%) 0

Novice

|

Advanced
. 1 3
Beginner
o |
-1
g |
<
Proficient 1 1
|
0 1 2 3 4
Count
Neither Hard nor Easy SlightlyEasy [l Easy [l ExtremelyEasy

Fig.41 Participants’ opinions on the ease of maintaining refinement consistency during a refinement step with
the counterexample explanation approach, grouped by the participants’ knowledge in formal methods

Table 18 Participants’ opinions on using the counterexample explanation approach in real-world development

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No

Probably nor Possibly Not Not Opinion

Count

2(15%) 3(23%) 5(38%) O 2(15%) O 0 1 (8%)

[N
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Fig.42 Participants’ opinions on using the counterexample explanation approach in real-world development,
grouped by the participants’ knowledge in formal methods
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Table 19 Participants’ opinions on using the counterexample explanation approach while using formal meth-
ods in real-world development

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion

Count 1 (8%) 18%) 7(54%) O 3(23%) 0 0 1 (8%)

answers with definitely and very probably, the remaining three participants answer with
possibly.

7.8.6 Counterexample Explanation in Your Project

With question FE6, we collect feedback from the participants according to answer scale LS5
on whether engineers prefer to use the proposed counterexample explanation approach in
their real-world projects. Four participants have no opinion and the remaining nine partici-
pants provided feedback (Table 20). Among these nine participants, five participants answer
negatively (possibly, probably not, and definitely not), and four participants answer positively
(definitely, very probably, and probably). These answers contrast the previously discussed
feedback questions FEI, to FE5 where responses are more positive while for FE6, the major-
ity of participants answer negatively. The reason for this negative rating as mentioned by the
majority of participants are the currently used development processes and tools that do not
fit well with formal methods or the counterexample explanation approach.

7.8.7 Further Improvements

The motive of questions FE7 and FES are to collect suggestions for further improvement
of the counterexample explanation approach. Question FE7 mainly focuses on collecting
participants’ feedback on whether providing a list of possible solutions/fixes would be helpful
for engineers. This feedback is collected according to answer scale LS5. FES is an open
question that allows participants to suggest further improvements as free-text comments.
The responses to FE7 are shown in Table 21. Most of the answers are positive, meaning that
providing a list of possible solutions/fixes would be helpful to participants.

With question FES , we collected general suggestions from the participants. We
received eight responses that suggest improvement for using the counterexample explanation
approach. A majority suggests to provide training to use formal methods, and improve or
develop the visualization of the explanation by associating and integrating it with the tools
used within Bosch, e.g., IBM Rhapsody and DOORS Next Generation (DNG).

Table 20 Participants’ opinions on using the counterexample explanation approach in the participants’ projects

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion

Count 2(15%) 0O 2(15%) O 1(8%) 3(23%) 1(8%) 4 (31%)
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Table 21 Participants’ opinions on the usefulness of providing a list of possible solutions/fixes to a refinement
inconsistency

Likelihood Definitely Very Probably Neither Probably Possibly Probably Definitely No
Probably nor Possibly Not Not Opinion

Count 5038%) 431%) 2(15%) 1(8%) 18%) O 0 0

8 Discussion

In this section, we discuss the findings of the two user study phases following the research
questions and points to be investigated (cf. Section 5.1).

8.1 RQ1 - Challenges in Identifying Inconsistent Specifications

Research question RQ/ gathers challenges in identifying inconsistent formal specifications
that are introduced during the refinement of a system.

Understanding formal notations is difficult for engineers. Formal methods may play a crucial
role on the left-hand side of the V-model (Weber 2009), where systems engineers and safety
manager/engineers are mainly involved, to avoid major flaws in early design decisions. In our
user survey Phase 1, 20 of 41 participants are system engineers and safety managers/engineers
(Section 6.1.3). The majority of them perceives understanding of formal notations as hard to
some degree (cf. Section 6.2). Additionally, we noticed that the complexity of understanding
depends on years of experience in using formal methods. Results further show that introducing
formal methods to engineering teams with little experience in formal methods is challenging.

Identifying inconsistent specifications is difficult for engineers. Results in Section 6.3 clearly
show that a majority of Phase 1 participants perceive the identification and understanding
of inconsistent specifications as hard to some degree and that it consumes significant time.
Results are similar for maintaining and verifying the refinement consistency (Section 6.4).

Qualitative statements by the participants note that identifying and understanding of
inconsistent specifications highly depends on the size of the system and the number of its
requirements. These statements emphasize the question whether the usage of formal methods
for industrial system and at industrial scale is possible. For example, the automobile sector
is now developing systems that are quickly expanding in size and complexity as a result of
highly automated driving. System and requirements are not only complex but also frequently
changing, for instance, due to security demands.

Our initial expectation was that more of our participants perform manual inspec-
tions/reviews rather than using automated tools like model checker, simulators, and reasoners
in their development projects. Thus, our hypothesis is that a majority of participants will
answer that identifying inconsistent specifications and understanding is very complex. How-
ever, on the contrary, a majority of participants use model checkers (Section 6.3.5). Even
though a majority uses automated tools like model checkers, a majority still answers that
the identification and understanding of inconsistent specifications are hard. A reason for this
might be the complexity of verification tools and their generated results, raising the need to
make them more user-friendly to be used by engineers without having in-depth knowledge
of formal methods.
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8.2 RQ2 - Benefit of Formal Methods to Development Processes

RQ?2 gathers insights on whether the identification of inconsistent specifications and usage
of formal methods are beneficial to real-world development processes.

Using formal methods can make the system safer. Functionalities of automotive systems
increase expeditiously, resulting in more (safety) requirements to avoid any unintended behav-
ior. Thus, performing safety analysis early on the left-hand side of the V-model (Weber 2009)
is crucial to help reducing the number of errors identified later during the validation. A major-
ity of participants agrees that formal verification can make the system safer and be a benefit
to the functional safety (cf. Sections 6.5 and 6.6). Although a majority of the participants
have a positive opinion on using formal verification, based on the qualitative answers from
the participants, there is a discussion whether formal verification is usable and scalable to
real-world systems. Specifically, a majority participants indicate that the usage of formal
methods could be improved by making formal notations easier to understand (cf. Section
6.6.2).

Identifying inconsistent specifications is beneficial in real-world development processes.
Eliciting requirements, refining requirements, and developing system architectures are the
initial steps in the V-model (Weber 2009). Thus, requirement elicitation and refinement of
those requirements are crucial as they serve as a basis for further system development and
safety analysis. Errors and inconsistencies introduced in these early phases, identified only
in later development stages, become costly and may lead to catastrophic events. There is a
high possibility that most safety-critical errors are identified late during the validation phase
in industry (Pohl and Rupp 2011). Therefore, to identify errors in the requirements during the
initial stages performing manual reviews (e.g., inspections) does not seem to be sufficient or an
efficient approach. This motivates the usage of automated methods like formal verification
and simulation to help identifying errors in requirements and overcoming challenges of
manual reviews. Although a majority of participants answers that using and understanding
formal verification are complex, the majority agrees that identifying inconsistent formal
specifications is beneficial for safety analysis and makes a system safer (c¢f. Section 6.5.3).

8.3 RQ3 - Easing the Use of Formal Methods

Insights for RQ3 are drawn from Phase 2, the one-group pretest-posttest experiment. RQ3
gathers insights whether engineers prefer to use formal methods (model checkers particularly)
if the difficulty for understanding verification results to identify inconsistent specifications
is reduced, in particular with the counterexample explanation approach.

The counterexample explanation approach eases the comprehension when compared to the
interpretation of the raw model checker output. Six of 13 participants of the one-group pretest-
posttest experiment answer that they understand the verification result generated by the model
checker for the airbag system (Section 7.4). Our initial hypothesis was that by proving an
additional user-friendly counterexample explanation, it would be easier for engineers to
understand the error as well as that it can ease the usage of formal methods among engineers.
Indications for this are already drawn from Part I, where a majority answers that making
formal notations easier to understand can improve the usage of formal methods (Section
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6.6.2). Finally, the results discussed in Section 7.4 support this hypothesis, as a stark majority
of 12 of 13 participants prefer the counterexample explanation compared to understanding
the model checker output. In summary, improving the usability and understandability aspects
of formal notations can promote the use of formal methods.

Additionally, the results collected for the four aspects of a better understanding, quicker
understanding, confidence of understanding, and added value (cf. Section 7.6) validate this
hypothesis, as the counterexample explanation improves all four aspects compared to the raw
model checker output presented otherwise to engineers.

It is possible for engineers to identify and fix inconsistent specifications based on the coun-
terexample explanation approach. Apart from collecting the participants’ opinions, we can
also rely on the experiment, which let participants perform tasks for the provided use cases.
The results presented in Section 7.8.1 evaluate the difference of correct and incorrect answers
in finding inconsistent components between pretest and posttest and shows only a minor dif-
ference between working with raw results and the counterexample explanation.

However, this is not the case for the identification of inconsistent specifications. With
the raw model checker output, only five of 13 participants identify either fully or partially
correct the inconsistent specifications. While with the counterexample explanation, nine of
13 participants were able to identify the complete set of inconsistent specifications and also
correctly explained the reason of the inconsistency by understanding the explanation. This
strongly shows that a counterexample explanation can indeed improve the error compre-
hension and providing such an explanation can promote the use of formal methods among
engineers.

The counterexample explanation approach can promote formal verification and usage of
model checking in real-world development processes. From the collected responses, a major-
ity of participants have a positive opinion as a counterexample explanation could support
maintaining refinement consistency, could be usable in real-world development process, and
could be used while using formal methods (cf. Section 7.8). These results clearly indicate
that a counterexample explanation approach could be one possible way along with other
possible options like property specification patters to improve the usability aspects of for-
mal methods. However, for the question whether the participants are interested to use the
counterexample explanation approach in their project, the response is contradictory where
only a minimal number of participants are interested to use it. A major challenge mentioned
by the participants is that tools currently used in their projects do not support integrating
the proposed counterexample explanation approach. This shows that integrating the existing
verification tools with industrial tools needs to be one of the prime focus to improve the
usage of formal methods. Nevertheless, such an integration cannot be achieved easily since
larger organizations such as Bosch typically use different tools for different projects. Thus,
focusing on adaption and integration of each tool individually is not a trivial task.

9 Threats to Validity

In this section, we discuss threats that might jeopardize the validity of our study results as well
as on measures we take to reduce these threats. We consider threats to validity as discussed
by Wohlin et al. (2012), Kitchenham and Pfleeger (2008), and Campbell and Stanley (1963).
In the following, we structure them according to construct, internal, and external validity.
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Construct validity. The prime threats to construct validity are related to the completeness of
the questionnaire and in phrasing questions in a way that is understood by all participants
in the same way. To mitigate these threats, we have considered the following steps in our
research method: (i) we incorporated feedback from two senior engineers having background
in formal methods and model checking, (ii) we incorporated feedback regarding unbiased
questions from a psychologist, and (iii) we performed a pilot test with five research engineers
to check for completeness and understandability.

Internal validity. The critical internal threat to be considered for the user survey is the selection
of participants. Since we followed snowball sampling for the participant selection, there could
be a possibility of several participants working in the same project, which could bias the final
result. Therefore, we considered at most first four participants from each project and neglected
further project members.

We consider threats to internal validity listed by Campbell and Stanley (1963) for the
pretest-posttest experiment. To mitigate the history and maturation threats, we performed the
posttest experiment within fifteen days following the pretest experiment. The most severe
threats to be considered in this experimental design are festing and instrumentation. Those
threats arise because participants get overwhelmed with the intervention including the fact
that we have developed the counterexample explanation approach. Consequently, participants
could answer more positively in the posttest experiment than the actual value due to the
intervention. To mitigate these threats, participants conduct the study anonymously and we
explicitly emphasized to the participants that the obtained study results would serve as a
reference in the future to use our counterexample explanation approach for real-world projects
at Bosch. Additionally, to avoid overwhelmed responses and accept only valid responses, we
have added the task questions 7Q1-TQ9 (Table 3); And the response is accepted as valid only
if the participant attempted to answer at least some part of these questions. Further, to reduce
biasing between the pretest and posttest experiment, the use case of an airbag system (a toy
example) used in the pretest is significantly less complex than the use case of the Bosch EPS
system used in the posttest. However, to adjust the difficulty level of the systems used for the
experiment, we used feedback from the pilot study with five research engineers. Basically,
adjustment of difficulty is done by increasing or decreasing the number of components and
size of the specifications which have to be understood by the participants.

Finally, another internal threat is to present the model checker’s raw output with the
inconsistent specification highlighted by us to the participants in the pretest. This could bias
the participants’ opinions that the model checker’s output included the highlighted parts is
easier to interpret than it actually is in practice where the highlighted parts are not available.
As such, we can rather expect larger benefits of our counterexample explanation approach in
practice than we observed it in the one-group pretest-posttest experiment.

External validity. To avoid polluting results, we do not force the participants to select an
option from an answer scale for every question. For example, the participants could choose
the option No Opinion, which supports in achieving actual results. However, the participants
have the choice to enter a reason as a qualitative statement if they do not want to select
any option. One of the severe drawbacks of the one-group pretest-posttest experiment is its
generalization. However, the benefit of our study is that we used a real-world EPS system
for the posttest experiment, and the participants are professional engineers who work on
real-world automotive projects at Bosch.
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10 Conclusion

Our user study was designed to i) identify the motivation, challenges, and applicability of
formal methods in industry and ii) evaluate if the proposed counterexample explanation
approach matches the identified challenges.

To identify the motivation, challenges, and applicability of formal methods in industry,
we conducted an extensive survey with 41 participants of various business units and disci-
plines within Bosch as a first phase of the user study. Responses show that the majority of
the participants is positive regarding the use of formal methods in real-world development
processes. However, participants identify that incomplete formal models in industry, under-
standing formal notations, as well as understanding verification results, e.g., produced by a
model checker, still remain a challenge for adoption of formal methods in practice. Identify-
ing refinement inconsistencies gets more complex with the system getting more complex and
the number of requirements increasing. Apart from understanding and scalability challenges,
one of the major challenge in using verification tools is a lack of training for engineers.

As a second part of the user study, we performed a one group pretest-posttest study with
13 participants of various Bosch business units to evaluate if the proposed counterexample
explanation approach is capable of supporting the use of formal methods in industry. Results
from the experiments as well as collected opinions from participants prove that the approach
helps in 1) better understanding and ii) quicker understanding inconsistencies, that it iii) raises
their confidence in the analysis, and that iv) it provide value for the development of safety-
critical projects in industry.

As researchers and educators in formal methods, we should strive to make our notations
and tools accessible to non-experts. — Clarke and Wing (1996)

Future directions. To leverage formal methods in real-world development processes, one of
the most suitable means is to provide education and training in formal methods. On the one
hand, universities can teach the foundations of formal methods to students (e.g., temporal
logics). On the other hand, companies can teach the skills required in the specific industrial
context (e.g., considering the domain and tooling) to people entering industry as well as
upskill existing employees to understand the foundations of formal methods. By providing
education structured training in formal methods either in universities or companies, hesitancy
in using formal methods could be reduced and the benefits of formal methods could be reaped.
Looking at the results of evaluating our counterexample explanation approach, it is clear
that understanding of verification results is easier with a counterexample explanation than
with the direct output of model checker. In future, similar explanations need to be generated
for different model checkers, domain-specific system models and requirements, as well as
integrated with project-specific tool chains. Furthermore, instead of only providing explana-
tions that illustrate the error, providing suggestion to fix those errors could help to improve
the agility to perform verification iteratively and thus, to support round-trip engineering.
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