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Abstract
Context Robotic systems are known to perform computation-intensive tasks with limited
computational resources and battery life. Such systems might benefit from offloading heavy
workloads to theCloud; however, in somecases, this implies highnetwork traffic that degrades
performance and energy consumption.
Goal In this study, we aim at evaluating the impact of different computation offloading
strategies on performance and energy consumption in the context of autonomous robots.
Method We conduct two controlled experiments involving a robotic mission based on the
Turtlebot3 robot and ROS 1. The mission consists of three tasks that are recurrent in robotics
and good candidates for computation offloading in research, namely, SLAM mapping, navi-
gation stack, and object recognition. Each of the tasks is either executed on board or offloaded
in a full-factorial experiment design. The obtained measures are then statistically analyzed.
Results The results show that offloading the object recognition task causes a more significant
decrease in resource utilization and energy consumption than both SLAM mapping and
navigation. However, object recognition affects the volume of network traffic significantly
to the extent that it can easily cause network congestion.
Conclusions In the context of our experiments (i.e., those involving small-scale ground
ROS-based mobile robots operating under WiFi networks), offloading object recognition
is beneficial in terms of performance and energy consumption. Nevertheless, large network
bandwidth needs to be available for object recognition offloading. While the image resolu-
tion and frame rate have a significant impact on not only the network traffic but also energy
consumption and performance, these parameters need to be carefully set so that the results
of this task can be always received in time, which is particularly crucial in real-time systems.
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1 Introduction

Robotic systems can be resource-constrained in terms of onboard computing and storage
capabilities (Koubaa 2020). Such constraints are typically dictated by robot size, shape,
payload requirements, and working environment, especially for drones and small terrestrial
mobile robots (Doriya et al. 2012). Additionally, mobile robots usually have a limited power
supply (Koubaa 2020) (Doriya et al. 2012), where computation-intensive tasks account for a
substantial part of the total energy consumption (Sarker et al. 2019). To compensate for such
limitations, computation could be offloaded from the robot to the Cloud, in situations where
connectivity is available (Tripathy et al 2022).

Despite overcoming hardware limitations, computation offloading may have downsides.
For instance, some offloaded tasks may process a large amount of sensor data (e.g., laser
scans, camera images) which will need to be exchanged over the network. In such cases,
network latency and variable network bandwidth may have a significant effect on the overall
performance (Kehoe et al. 2015), which may also impact the energy consumption (Gomez
et al. 2011). High latency may also be a constraint for other software quality aspects, such as
safety, where the robot must react quickly to avoid accidents; for example, an autonomous
vehicle must recognize pedestrians and traffic signs on-the-fly. Therefore, fundamentally,
design decisions for offloading must consider the trade-off between performance and other
quality aspects required, and the energy consumed for the task execution (Hu et al. 2012).

The main goal of this study is to perform an exploratory characterization on how compu-
tation offloading strategies affect the performance and energy consumption of ground robotic
systems operating underWiFi networks. Our study focuses on a robotic mission involving an
autonomous driving robot, and relies on three basic tasks: mapping (SLAM), navigation and
object recognition (Doriya et al. 2012; Hu et al. 2012; Koubaa 2020). The robotic system is
implemented on Robot Operating System (ROS), a de-facto standard for both research and
industry, with packages released and recommended by its community.

With the experiment results, we aim at answering a main research question:

– RQ1 –What are the trade-offs between performance and energy consumption for compu-
tation offloading of ground ROS-based systems operating under WiFi networks? Which
is answered after two more specific questions.

– RQ1a – What is the impact of computation offloading on the performance of ground
ROS-based systems operating under WiFi networks?

– RQ1b – What is the impact of computation offloading on the energy consumption of
ground ROS-based systems operating under WiFi networks?

All the tasks of our robotic system are highly configurable, where many of the parameters
may directly influence their respective computation load. Therefore, we perform an additional
set of experiments to determine what is the effect that some of the most common parameters
have on performance and energy consumption. To this aim, we pose an additional research
question:

– RQ2 – How do specific parameter configurations influence the offloading design of
ground ROS-based systems operating under WiFi networks? Which also relies on two
more specific questions.

– RQ2a –What is the impact of parameter configuration on the performance of ground
ROS-based systems operating under WiFi network?

– RQ2b – What is the impact of parameter configuration on the energy consumption
of ground ROS-based systems operating under WiFi networks?
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Among others, the experiments’ results indicate that the most affected task was object
recognition, where its offloading reduces significantly the robot’s resource utilization and
energy consumption. Object recognition also performs more efficiently when offloaded due
to the remote higher computation power (whichmay also be due to the limited resources of the
used robot). On the contrary, mapping and navigation could be executed efficiently on both,
onboard and offloaded. The results also indicate that object recognition parameters should
be carefully configured so that each image frame can be processed at the desired rate. It is
important to note that our experiments have been carried out using a specific type of ground
robot (i.e., a Turtlebot3 Burger1) operating under a continously-available WiFi network. As
such, the reader is invited to consider the following points to better understand the context
and validity of the obtained results: (i) the implemented robotic mission is intended to be
minimalistic (e.g., there are no moving obstacles during the mission) in order to keep control
of the main factors under experimentation; (ii) latency and execution time are measured pri-
marily as a performance metric, we are planning to further explore them as thresholds that
trigger the reconfiguration of offloading strategies at run-time; (iii) we consider a stable and
isolated WiFi network, with sufficient bandwidth, to avoid uncontrollable influences on the
mission execution and to facilitate future replications of the experiment; (iv) the ROS pack-
ages used in this study are based on ROS1, which is being superseded by ROS2 at the time of
writing; nevertheless, the applicability of the results of this study for practitioners/researchers
is still reasonably wide since the ROS1 distribution we used has as a long-term support valid
until 2025 and it currently has a broad documentation and a large ecosystem of third-party
plugins2.

In summary, the main contributions of this paper are:

– an empirical evaluation of the performance and energy trade-offs of computation offload-
ing for ground ROS-based systems operating under WiFi networks;

– directions on how to architect ROS-based systems with regards to offloading common
compute-intensive tasks in the context of ground ROS-based systems operating under
WiFi networks;

– takeaways for future studies on offloading robotic tasks in the context of ground ROS-
based systems operating under WiFi networks;

– an open-source implementation of a robotic system configured via widely used ROS
packages;

– a complete replication package including both raw data and source code related to the
conducted experiment (Dordevic et al. 2022).

The target audience of this work consists of ROS developers and robotics researchers
targeting ground ROS-based systems operating under WiFi networks. Because the imple-
mented robotic system has been developed on top of widely popular ROS packages, it is of
great importance for ROS developers and researchers to understand what are the possible
benefits and downsides of offloading. The experiment design and our analysis of the results
can also guide other research questions and hypotheses for future work, which could benefit
from the publicly-available implementation of the used robotic system. It is important to
note that the robotic system is implemented using ROS1, and the obtained results might not
directly translate to ROS2 systems.

The remainder of this paper is organized as follows. Section 2 presents background infor-
mation for understanding the context of this study. Section 3 defines the goals of the study,

1 https://emanual.robotis.com/docs/en/platform/turtlebot3/overview
2 https://roboticsbackend.com/ros1-vs-ros2-practical-overview/
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its research questions, and used metrics. Section 4 presents the experiment design. Section 5
describes the setup of the hardware and software used in the experiments. Sections 6 and 7
present the results of the first and second experiments, respectively. In Section 8 we elaborate
on the obtained results, contextualize them, and elicit the key takeaway messages. Section 9
presents threats to validity. Section 10 presents related work, and finally Section 11 closes
the paper and provides directions for future work.

2 Background

In this section, we provide a short introduction to the Robot Operating System and briefly
describe tasks that are candidates for computation offloading, namely, SLAM, localization,
navigation, and object recognition. They are common in autonomous robot navigation stacks
and tend to be compute-intensive.

2.1 Robot Operating System

Robot Operating System (ROS) is an open-source, multi-language middleware for robotics
software development that abstracts the underlying hardware (Quigley et al. 2009). A typi-
cal ROS-based system is organized as a component-based set of nodes, i.e., processes that
exchange messages over an abstraction called topic in a publish-subscribe model. However,
ROS also offers a client-server communication model in the form of services. One of the
main reasons for this expansion of ROS is its focus on collaborative robotics software devel-
opment and code reuse. Domain experts can implement tasks organized within a modular
abstraction called package that can be further reused by other community members.

ROS currently has two different versions, ROS version 1 (or simply ROS1) and ROS
version 2 (or simply ROS2). ROS1 has an academic nature (St-Onge and Herath 2022) and
is still largely used in recent studies (Albonico et al. 2023). Since 2017, its core has been
modernized, resulting in the first stable release of ROS2 in 2020 (St-Onge and Herath 2022).
While ROS1 relies on a central component (i.e., the master node), ROS2 distribution relies
on the Data Distribution Service (DDS) framework, which is a better option for scalability
and maintenance. ROS2 also introduces the concept of QoS profiles and security features
such as encryption and authentication. Despite the great difference in their implementations,
both versions have a common ground in terms of packages and philosophy. They can also
work together through a proxy called ROS bridge3.

2.2 Offloadable Tasks

Robotic systems usually consist of computation-intensive tasks with many of them being
good candidates for computation offloading. According to previous research, some of the
most commonly used tasks in robotic systems are SLAM (Doriya et al. 2012; Hu et al. 2012;
Koubaa 2020), localisation (Koubaa 2020), navigation (Doriya et al. 2012; Hu et al. 2012;
Koubaa 2020) and object recognition (Doriya et al. 2012; Koubaa 2020), which are briefly
described below.

3 http://wiki.ros.org/rosbridge_suite
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Fig. 1 Example of map generated by a SLAM algorithm

2.2.1 SLAM

Simultaneous Localization and Mapping (SLAM) is a core task for any robotic system that
performs automatic navigation. Being aware of its own position and surrounding objects is
necessary for planning the robot’s future movement. A robot needs to construct a map of the
unknown environment, such as the one in Fig. 14, and localize itself within that map (the
central black spot in the figure).

There are numerous SLAM algorithms, many of which are available as ROS packages and
thus reusable by ROS community members. According to the findings of Santos et al. (Santos
et al. 2013), Gmapping, KartoSLAM, and HectorSLAM produce the most accurate maps,
while the promising results presented in the work of (Grisetti et al. 2007) indicate that Gmap-
ping can perform well on limited processing power robotic systems. For the aforementioned
reasons, we opt for offloading Gmapping in this work.

Gmapping is a laser-based SLAM, where it is possible to create a 2D grid map and define
the robot’s position in the map from the data acquired from a laser scanner, such as a Light
Detection and Ranging (LIDAR) and odometry. Using the LiDAR scanner, the algorithm
(i) creates a 2D grid map of the environment and (ii) calculates the probability of the robot
position being correct using a Rao-Blackwellized particle filter (RBPF) (Grisetti et al. 2007).
A Particle Filter is a type of localization that chooses to represent individual randomly-
estimated positions on a gridmap as particles, where a gridmap counts on numerous particles.
By matching the particles to the scan data coming from the robot, the algorithm is able to
identifywhich particles aremost likely to occupy the true position of the robot on themap. For
example, once the robot moves within the environment, the sensor captures obstacles (e.g.,
a wall) and certain particles can be ruled out as they do not match the sensor data. However,
imagine the robot in an open area, with no obstacles around; then, it would be difficult to
identify which are the likely particles because the sensing data provides no reference. In this

4 https://msadowski.github.io/hands-on-with-slam_toolbox/
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case, the robot relies on other sensors, such as odometry, which tracks the rotation of each
of the wheels on a wheeled robot.

A commonROSpackage is thegmapping package5,which basicallywraps theOpenSLAM
Gmapping algorithm6 to be transparent to the ROS system.

2.2.2 Localization

When a robot operates in a known working environment (already having its map), it is still
necessary for the robot to localize itself on the map so that it can navigate to other locations.
This task is performed by localization algorithms.

There is a variety of different localization approaches available, but the most commonly
used one in ROS is Adaptive Monte Carlo localization (AMCL). Such algorithms are prob-
abilistic particle filter algorithms used in 2D spaces, which were originally proposed in the
work of (Thrun et al 2001), which work similarly to the SLAM localization explained in
the previous section. Basically, the robot’s location is estimated using a set of particles, i.e.,
weighted samples that represent a probable pose (dos Reis et al. 2019).

A common package is the AMCL ROS7, which implements the adaptive Monte Carlo
localization approach. ACML ROS has an additional adaptive characteristic, meaning that
the number of particles used in the algorithm increases with the uncertainty of the robot’s
pose (dos Reis et al. 2019). On the contrary, when the uncertainty is low, the number of
particles is reduced so that the algorithm performs efficiently.

2.2.3 Navigation

Navigation is a feature where the robot moves autonomously to a goal location on a map.
It depends on multiple sensors and localization algorithms to define which is the best path
for the robot to go through. This takes into account, for example, obstacle avoidance and
behavior recovery (when the robot is unable to perform a goal).

A navigation stack is a set of ROS packages that can be configured together to execute
a complex task of driving a robot to a goal location autonomously (ROS wiki 2021). The
central part of the navigation stack is themove_base package, which provides an interface for
configuration and running. Components that perform specific tasks while interacting with
each other can be configured as plugins to the move_base node. Many of the plugins are
available to the ROS community, but ROS developers can write their own plugins that suit
their needs.

Figure 2 shows a high-level overview of themove_base node, its internal components, and
interactions. At a high level of abstraction, this node receives a goal location as a ROS action
and sends velocity commands to the robot to navigate to the goal. Internally, it consists of
two cost maps that store information about obstacles in the working environment: the global
costmap that is used for global planning and long-term plans, and the local costmap is used for
local planning and obstacle avoidance. The global costmap receives amap of the environment
via map_server, and the local costmap is fed by sensor sources, e.g., laser scans or depth
camera inputs so that dynamic obstacles are taken into account. Another component, the
global planner is in charge of finding the path between the robot’s current position and the

5 http://wiki.ros.org/gmapping
6 https://openslam-org.github.io/gmapping.html
7 http://wiki.ros.org/amcl
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Fig. 2 Navigation stack setup Garro et al. (2014)

goal location. This component is based on one of the path-finding algorithms (e.g., Dijkstra,
A*). Once the path is found, the local planner sends velocity commands to the robot. The
navigation stack can also be configured with recovery behavior that will be triggered when
the robot gets stuck or, for any reason, is unable to reach its goal location. The detailed guide
for configuring the ROS navigation stack is available on the ROSwiki page (ROSwiki 2021).

2.2.4 Object Recognition

Computer vision tasks are used to provide more sophisticated vision in robotic systems.
Robots are equipped with cameras, as well as depth cameras, which take action when the
surrounding environment cannot be deduced by laser scans. This includes object recognition,
face recognition, or even SLAM algorithms that are entirely based on camera images (visual
SLAM or V-SLAM).

OpenCV is a commonly used computer vision library,mostly due to its efficiency. TheROS
packagefind_object_2d (Labbe2021) is basedonOpenCV8,which consists of aROSwrapper
around a FindObject application, a simple Qt interface that can be used for trying OpenCV
implementations of feature detectors and descriptors. Due to its simplicity, maintainability,
and widespread usage within the ROS community, the find_object_2d package will be used
for the object recognition tasks in this work.

3 Experiment Definition

Figure 3 depicts the relationships between the experiment goals, main research questions, and
metrics, as proposed by Basili et al. in theirGoal-Question-Metric (GQM) framework (Basili
et al. 1994), which are further explained in this section. This work aims at two goals, which
are presented in the next two sections as main goal (see Section 3.1) and secondary goal

8 https://opencv.org
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Fig. 3 GQM representation of experiment definition

(see Section 3.2). The main and secondary goals have their own research questions and
both of them consider exactly the same metrics (e.g., CPU usage, navigation time, power
consumption).

3.1 Main Goal And Research Question

By following the goal definition template provided by (Basili et al. 1994), the main goal of
this study can be formulated as: analyze the computation offloading strategies for the purpose
of characterization with respect to performance and energy consumption from the point of
view of robotics software developers and researchers in the context of ground ROS-based
systems operating under WiFi networks.

Based on the goal reported above, we aim at answering the following main research
question (RQ1):
What are the trade-offs between performance and energy consumption for computation
offloading of ground ROS-based systems operating under WiFi networks?

This question is further divided into the following two more specific sub-questions:

– [RQ1a] What is the impact of computation offloading on the performance of ground
ROS-based systems operating under WiFi networks?

– [RQ1b] What is the impact of computation offloading on the energy consumption of
ground ROS-based systems operating under WiFi networks?

The main motivation behind computation offloading is to reduce a heavy workload on the
already limited robotic system’s resources. Therefore, we define the research question RQ1a
to evaluate if computation offloading indeed has a significant impact on resource utilization,
in particular, CPU usage and RAM utilization. Moreover, one of the main drawbacks of
computation offloading lies in the heavy network exchange of sensor data. Thus, we aim to

123

140   Page 8 of 61 Empirical Software Engineering (2023) 28:140



evaluate the number and the size of network packets exchanged between the robot and the
offload target (i.e., remote PC).

The efficiencyof the tasks themselves can be potentially improvedwhen they are offloaded,
because there are more computational resources available within the offload target. However,
ROS1 has already known communication latency, depending on network traffic (Shakhimar-
danov et al. 1985). Therefore, we evaluate if object recognition and navigation perform the
main operations faster when they are offloaded.

Robotic systems are equipped with batteries of a limited lifetime. Particularly for mobile
robots, energy consumption needs to be optimized in such a way that they have enough
power supply to perform the intended mission. The energy consumed for the onboard execu-
tion of computation-intensive tasks can be spared with their offloading to remote machines.
Nevertheless, computation offloading comes with the energy consumption overhead for the
network exchange of sensor data. To that aim, we define research questionRQ1b to evaluate if
the energy savings, accounted for offloading intensive tasks, can compensate for the energy
consumed for the data exchange over the network. The trade-off between the two energy
expenses can be crucial when deciding if a task should be offloaded or not.

3.2 Secondary Goal

The secondary goal of this study is to analyze the parameter configuration of offloaded tasks
for the purpose of characterization with respect to performance and energy consumption
from the point of view of robotics software developers and researchers in the context of
ground ROS-based systems operating under WiFi networks.

The tasks that were subject to computation offloading in the primary experiment are
highly configurable, with many of the parameters having a direct influence on their respective
computation and/or communication workload. Therefore, we might get different results, or
even conclusions, if another parameter configuration is used. For this reason, we aim to
perform an additional set of experiments to answering the following research question (RQ2):
How do specific parameter configurations influence the offloading design of ground ROS-
based systems operating under WiFi networks?

RQ2 is further structured into the following (more specific) sub-questions:

– [RQ2a] What is the impact of parameter configuration on the performance of ground
ROS-based systems operating under WiFi networks?

– [RQ2b] What is the impact of parameter configuration on the energy consumption of
ground ROS-based systems operating under WiFi networks?

It is important to note that during the execution of the experiment we are keeping the
parameter configurations fixed for the whole duration of the mission. This decision stems
from the fact that we aim to (i) isolate their potential impact on the dependent variables of
the study and (ii) facilitate the comparison of the obtained results against those of future
replications of the experiment.

3.3 Metrics

We use ten metrics as dependent variables to evaluate the performance and energy efficiency
of the subjects of our experiment. As illustrated in Fig. 3, these metrics are classified in two
main groups: performance, for answering RQ1a and RQ2a, and energy consumption, for
answering RQ1b and RQ2b.

123

Page 9 of 61    140Empirical Software Engineering (2023) 28:140



The Performance metrics are chosen according to the following rationales. CPU Usage
and RAM Utilization are defined so that the impact of different offloading strategies on
CPU and RAM can be evaluated. CPU and Memory are very common metrics in other
performance studies, as these resources are necessary for running the software under exper-
imentation (Maruyama et al. 2016; Shamshiri et al. 2018; Wienke et al. 2018). Number
and Size of Network Packets are selected for the purpose of evaluating the network over-
head (Profanterb et al. 2019; Maruyama et al. 2016) and latency (Shakhimardanov et al.
1985) that comes with the price of computation offloading. Those metrics also go towards
the evaluation of adequate network transportation, which is a principle of robotic framework
design (Reichardt et al. 2013). We also consider other latency-related metrics, which reflect
task efficiency besides network performance.FeatureExtraction Time,ObjectDetection Time
and Detection Result Delay are defined to compare the efficiency of the object recognition
task within different offloading strategies, whereas Navigation Time is included to assess the
efficiency of the navigation task.

Energy Consumption relies only on the Power Consumption metric, which measures the
total power consumption within a certain period of time (i.e., experiment/mission execution).

All the metrics are described in Table 1, and Section 4.2 provides details on the measure-
ment techniques.

Table 1 Metric descriptions

Name Unit of Measurement Description

CPU Usage percentage(%) The average CPU usage during the entire mission execu-
tion.

RAM utilization megabytes(MB) the average RAM utilization during the entire mission
execution. The memory has the same.

Number of
Network Packets

count(#) The total number of network packets exchanged between
the robot and remote PC during the mission execution.

Size of Network Packets megabytes(MB) The total size of network packets exchanged between the
robot and remote PC during the mission execution.

Feature Extraction Time milliseconds(ms) The average time needed for the features to be extracted
from a received image frame.

Object Detection Time milliseconds(ms) The average time needed for comparing the extracted fea-
tures against images in the database to conclude if any of
the objects in the database are recognized in a received
image frame.

Detection Result Delay milliseconds(ms) The average delay of transferring object detection out-
come from the object recognition node to a node that
logs the recognition result on the robot.

Navigation Time milliseconds(ms) The average time it takes for a robot to navigate from its
current location to a goal location.

Mission Execution Time milliseconds(ms) The total duration of the mission.

Power Consumption milliWatts (mW) The instantaneous power consumption sampled at 200Hz
during the entire mission execution. The energy con-
sumption (in Joules) is then calculated as the integral
of power consumption (mW ) over the mission execution
time.
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3.3.1 Main Factors

In this study, we consider three main factors as offloading candidates, representing the three
main robotic tasks of the mission used in this study (see Section 4.1:

SLAM/localization offloaded: defines if SLAM/localization is executed on-board or
offloaded to a remote PC. This is a nominal variable with possible values false and true.
SLAM/localizationwill be the subjects of offloading in two different setups of the experiment
which will be further elaborated in Section 4;

Navigation offloaded: defines if navigation is executed on-board or offloaded to a remote
PC. This is a nominal variable with possible values false and true;

Object recognition offloaded: defines if object recognition is executed on-board or
offloaded to a remote PC. This is a nominal variable with possible values false and true.

Each robotic task can be operated under different configurations, each with different inter-
nal parameters (e.g., the image frame rate for object recognition, the number of particles used
by the SLAM algorithm). The values of those parameters refer to two main configurations
of the Object Recognition, SLAM, and Navigation factors, namely: (i) the default values of
the involved tasks (e.g., 20fps for the object recognition task) and (ii) the maximum values
supported by the used hardware (e.g., 60fps for the object recognition task). This leads to the
three different configurations shown in Table 2.

Configurations 1 and 2 are the ones used in the first round of experiments (necessary to
answer RQ1). The only difference between them is the value of the map parameter, which
is known for Configuration 1 and unknown for Configuration 2. In Configuration 1, the map
is provided by a map server (which we call known), and therefore we do not run SLAM
to map the environment. Instead, we still run a localization algorithm, which is then the
offloading candidate instead of SLAM. In contrast, in Configuration 2, SLAM is used to
map the environment and is considered as the offloading candidate. Thus, besides evaluating
the impact of offloading each of the tasks, we are also able to evaluate how an environment
mapping approach influences the dependent variables. The other factors are set with minimal
parameter values that allow the robot to perform its tasks in the mission, and the execution
time is fixed with the necessary time for the robot to perform a complete mission.

Configuration 3 has the highest possible values for each parameter. In contrast to previous
configurations, which aim at evaluating the effects of offloading, Configuration 3 aims at
estimating the impact of re-configuring some offloaded task parameters. Configuration 3 is
considered in the second round of experiments (necessary to answer RQ2).

Table 2 Parameters under experimentation and their values

Factor Parameter Conf. 1 Conf. 2 Conf. 3

Object Recognition image resolution 640x480px 640x480px 1280x960px

image frame rate 20fps 20fps 60fps

SLAM number of particles – 5 30

temporal updates – off on

Navigation velocity samples 10x20 10x20 20x40

simulation time 1.5s 1.5s 3s

map known unknown unknown
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The two parameters analyzed with respect to object recognition are image resolution
and image frame rate. The image resolutions correspond to 480p (640x480 pixels) and
960p (1280x960 pixels) in a 4:3 aspect ratio. The 4:3 aspect ratio is known for allowing to
capture more content in a picture/frame 9. On the other hand, 480p is the upper resolution for
standard definition (SD), while 960p is the upper high definition (HD) resolution supported
by the camera device. Despite 20 frames-per-second (FPS) being a bit lower than the 24 FPS
indicated as the lowest level for good realism10, it is still acceptable because in our mission
we only consider static images. With these parameters, we want to inspect the magnitude of
the effect that the increased image resolution and frame rate, respectively, have primarily on
communication intensity11, but also on resource utilization on the robot side.

The parameters under experimentation regarding SLAM are number of particles and
temporal updates. As reported by (Abdelrasoul et al. 2016), the increase in the number of
particles in RBPF filter in gmapping has a significant effect on both CPU usage and RAM
utilization. We want to confirm if this is indeed the case, and thus we increase the number of
particles from 5 (the minimum necessary for an acceptable robot location estimation) to 30
(the value that allows a precise robot location estimation). While (Abdelrasoul et al. 2016;
Putra et al. 2019) report the effect of linear and angular updates, temporal updates remain
unexplored. This is the time interval for laser scan processing in gmapping, regardless of
the robot’s movements. We chose to run our experiment with it turned off (default or value
equals -1) or on (value equals 0.5).

Finally, the number of translation and rotation velocity samples in the DWA approach of
the navigation stack local planner plugin, as well as simulation time, are listed in the tuning
guides as influential with respect to computation intensity (Zheng 2017; ROS wiki 2021). To
confirm this, in Configuration 3, we set them as twice the values of the first configurations.

4 Experiment Setup

In this section we describe the robotic mission performed in this experiment, the metric
measurement process, and the experiment orchestration. We also define the experimental
hypothesis and data analysis procedure. Note that we provide additional details on the hard-
ware and software used in Section 4.5.2.

4.1 Robotic Mission And Laboratory Arena

In this study we consider a single terrestrial robot called Turtlebot3 Burger12. The Turtlebot
robot is awidely-known research and education ground robot and a recent systematicmapping
study on ROS confirmed that Turtlebot is the most used robotic platform for carrying out
software engineering research (Albonico et al. 2023). Moreover, the Turtlebot is open-source
(both hardware and software) and thus highly customizable, affordable, available worldwide,

9 https://www.makeuseof.com/4-3-vs-16-9-aspect-ratio-photos-videos/
10 https://www.redsharknews.com/technology-computing/item/3881-why-24-frames-per-second-is-still-
the-gold-standard-for-film
11 We anticipate that due to technical ROS-specific configurations used in this experiment, the total number
and size of network packets exchanged are not directly impacted by the higher image resolution and image
frame rate (more details about this aspect of our experiment are provided in Sections 7.1 and 7.2).
12 https://www.turtlebot.com

123

140   Page 12 of 61 Empirical Software Engineering (2023) 28:140

https://www.makeuseof.com/4-3-vs-16-9-aspect-ratio-photos-videos/
https://www.redsharknews.com/technology-computing/item/3881-why-24-frames-per-second-is-still-the-gold-standard-for-film
https://www.redsharknews.com/technology-computing/item/3881-why-24-frames-per-second-is-still-the-gold-standard-for-film
https://www.turtlebot.com


Fig. 4 Robot arena where the mission is executed

small-sized, and designed to be fully compatible with ROS; all together those characteristics
allow independent researchers to easily replicate/reproduce our study.

We hypothetically name our robot Sherlock (given its investigative nature), and it is located
in a gallery where some of the most famous paintings in the world are stored. Sherlock
has knowledge about the 50 most famous paintings of all time13 in its database. Three
randomly-chosen paintings are exhibited in separate rooms of the gallery. Sherlock’s task is
to autonomously navigate from its starting position, in the center of the gallery, to each of the
rooms and recognize which painting is exhibited. As we will further report in the remainder
of this paper, such behavior allows the robot to go through different paths, and recognize
distinct paintings.

Despite the hypothetical nature of our mission, our robot uses exactly the same algorithms
and software packages which are widely-used in real-world robotic systems 14, such as the
navigation (Marder-Eppstein et al. 2010),gmapping15, and the find_object_2d16

ROS packages. During its mission, Sherlock is able to map the environment (mapping),
mainly by using its LIDAR sensor, estimate its position on the map (localization), trace a
route, and navigate to various destinations (navigation), while recognizing objects during the
execution of the whole mission (object recognition). To keep the experiment under control
and reduce the number of variables, we choose to avoid dynamic elements, such as other
objects crossing the robot’s way, and use pictures to mimic object recognition.

Figure 4a represents the arena used as a gallery in the experiment. The gallery is a pentagon
whose sides are 3x2x2x2x2m long. Three randomly chosen paintings are printed in high
resolution on A4 size paper and they are all of equal size. Paintings are placed in the corners
of a triangle whose sides are equal (2m) and the robot’s starting position is in the center of
the triangle. From that position, the robot traverses a 0.8m distance to each of the rooms
and inspects the exhibited painting, where it stops for 1s and returns to its starting position.
All three rooms are visited two times each, which yields 2.5 minutes of the total mission
execution time. Because the navigation is performed autonomously, the total duration of the
mission depends on how global and local paths are chosen by the navigation stack. It is

13 https://listsurge.com/top-50-most-famous-paintings
14 https://discourse.ros.org/t/2022-ros-metrics-report/29594
15 http://wiki.ros.org/gmapping
16 http://wiki.ros.org/find_object_2d
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noticed that this time is approximately 2.5 minutes for most of the runs, with some slight
variations. The video of mission execution is also available17.

4.1.1 Experiment Orchestration

All the experiment execution is orchestrated by Robot Runner, a tool for setting up the
execution of measurement-based experiments involving robotics software (Swanborn and
Malavolta 2001). Robot Runner executes on a PC and interacts with the ROS system under
experimentation by launching the files that represent the system itself via the roslaunch
command18. As the files need to be launched from the Raspberry Pi, we first establish the
SSH connection between the PC and the Raspberry Pi via the paramiko19 Python library,
upon which the roslaunch commands are executed for the respective launch files.

In addition to relying on the ROS system stack, we also developed six Robot Runner
custom plugins for measurement/profiling, namely profilers:

Resource Profiler: a ROS note for measuring CPU usage and Memory utilization.
Network Profiler: a plugin for measuring network activity.
Time-based Profilers are the two plugins used to measure time-based metrics, namely

move_base profiler which measures navigation and experiment time, and find_object_2D
profiler which measures time-based metrics of the object recognition package/task.

All the profilers are further explained in the next section. In Section 4.3 we also give a
complete overview of the Robot Runner configuration for the experiment executions.

4.2 Profilers

In this section we explain in detail the implementation and execution details of the profilers
we use for collecting the measures in this study (see Table 1).

4.2.1 Resource Profiler

We implemented a dedicated ROS node for profiling CPU usage andmemory utilization. The
ROS node provides dedicated ROS services for starting/stopping the CPU usage and RAM
utilization measurement. These ROS node is booted by a ROS launch file, while the services
are started and stopped remotely by a ROS service client running inside the experiment
orchestrator (i.e., Robot Runner). The whole measurement process is performed without
sending any data throughout the network to avoid extra traffic; the collected measures are
returned to the ROS service client only when the measurement collection is stopped. The
measures are collected via the psutil Python package20, which allowed us to collect measures
at a higher frequency than other tools, such as Linux top. The CPU andMemory measures are
collected with a frequency of 200Hz. The CPU usage and Memory utilization are measured
globally, without monitoring a specific process. The ROS launch file used to bring up the
Resource Profiler ROS node allows the user to programmatically set the sampling frequency
before bringing up its ROS node. The source code of the Resource Profiler is available
online21.

17 https://youtu.be/S5rqGRa1qMQ
18 http://wiki.ros.org/roslaunch
19 http://www.paramiko.org/
20 https://pypi.org/project/psutil/
21 https://github.com/IntelAgir-Research-Group/ros_melodic_profilers
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4.2.2 Power Profiler

The Power Profiler is also implemented as a ROS node, which works similarly to the CPU
and Memory Profiler, being launched remotely and only sending the measurement data to
the ROS service client at the end, with a sampling reate of 200Hz.

The Power Profiler is assembled and programmed on top of the prototyping boardArduino
Nano22. The device is customized for the purpose of the experimentation. All the commu-
nication between the Turtlebot and the device passes through Arduino’s serial port, without
using ROS communication. We use the communication via the serial port in order to do
not interfere with the network conditions during the experiment. Therefore, we count on
an external device that measures all the energy that goes from the battery to the robot. The
device validation is done by comparing its results with the ones from a professional hardware
multimeter and their collected measures are in line with those of the multimeter. The power
consumption measurement is done by the INA219 Adafruit sensor23, the top-ranked power
sensor at TinyTronics24 at the time of writing. More specifically, the INA219 documentation
reports that the device has 99% precision, and can measure potential energy/voltage (V ,
volts), current (A, amperes), and power (mW , milliWatts) at a speed that can reach 400kHz.
We decided to keep our sampling rate at 200Hz since in preliminary runs of the experiment
we noticed that too frequent readings could influence the experiment results. All the mea-
sured data is stored in a local Secure Digital (SD) card, also attached to the Arduino. Despite
the SD card configuring a bottleneck in the measurement rate, it still allows us to write at a
speed of ≈10MBs, which fits our purpose of millisecond-spaced measurement.

4.2.3 Network Profiler

For the network, we first make sure that all ROS-based communication takes place within
an independent WiFi network. Then, we sniffed all the packages between the remote PC and
Turtlebot interfaces.

We instrument the Network Profiler with the pyshark 25 Python package (based on the
Wireshark 26 tool), a well-known package analyzer. This is run as a Robot Runner plugin
because, differently from the Resource and Power Profilers, it runs in the remote PC and does
not need to be isolated. The information about the network protocol, sender and receiver IP
addresses and ports, and the size of packets is recorded when measurement collection is
taking place.

4.2.4 Time-Based Profiler

The Time-based Profiler is run offline, extracting data from log files. It is implemented with a
main component, the Abstract Profiler, which serves as a base for other profilers that process
log files from ROS nodes, i.e., finding and fetching log files of a particular node, either local
or remote. When the node whose log file is requested executes remotely, the file is fetched
via Secure File Transfer Protocol (SFTP).

22 https://docs.arduino.cc/hardware/nano
23 https://www.adafruit.com/product/904
24 https://www.tinytronics.nl/
25 https://github.com/KimiNewt/pyshark
26 https://www.wireshark.org/
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The move_base profiler processes the log files of move_base and sherlock_controller
and parses information regarding navigation times in a single run of the experiment.

The find_object_2D profiler processes the log files of find_object_2d and sher-
lock_obj_recognition and parses information regarding feature extraction times, object
detection times, and detection result delays in a single run of the experiment.

4.3 Experiment Orchestration Setup

Apart from the two nodes that are added for measurement collection, i.e., Resource Profiler
and Power Profiler, the robotic system under experimentation is completely independent of
the Robot Runner. Therefore, these nodes execute on-board the robot, on the Raspberry Pi,
as CPU, RAM, and battery (as the subject of the measurement) are located on the robot
itself. We made the decision to start and stop measurements via service calls, in a client-
server fashion, to avoid transmitting outputs of the measurement collection process during
the mission execution, as that would influence the measured network traffic exchange, but
it would also account for certain CPU, RAM, and energy utilization. With the client-server
communication model, the entire results are transmitted from the robot to the Robot Runner
after the experiment mission ends.

The experiment is orchestrated by Robot Runner events according to the graphical flow
depicted in Fig. 5, where each event and its purpose are:
• Start Run event is called before the measurements are started; thus we use this opportunity
to clean up the environment and launch all the nodes that require a stabilization period. For
instance, it takes 10 seconds to start up and calibrate the laser scanner, and a few seconds
to calibrate the camera. Then, we start these nodes prior to the mission execution and ensure
that calibration is done.
• Start Measurement event is called right beforemission execution to start themeasurement
profilers.
• Launch Mission event launches the files regarding the experiment setup. Further parame-
ters, such as offloading configuration, are passed by the roslaunch command as parameters
(see Section 5.3).
• Stop Measurement event stops measurement profilers. The measurements collected by
each profiler are received and stored in their respective CSV files within the folder of the
current run. We wait until all the data is transferred, which may take 1 minute.
• Stop Run event terminates all the nodes that were launched in start run. This is done to
ensure that no ROS node is running in between the two runs and that the robot’s resources
can cool down before the new run starts.
• Populate Run Data event aggregates or sums the results from theCSVfiles of the respective
profilers, and stores it as a Robot Runner run table row that abstracts the previously executed
run.

4.4 Experiment Execution

As explained in Section 3.3.1, the experiment is full-factorial, which results in multiple
configurations. Each configuration consists of a single execution, where executions are com-
pletely randomized so that we mitigate any potential influence of system conditions that are
out of our control, such as battery level and warm motors. To mitigate any potential voltage
differences due to battery level, after each run, the battery is replaced with a fully charged
one. For that purpose, three batteries were always charging at the station, while the fourth
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Fig. 5 Orchestration flow
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one was used in the current run. We also add a 1-minute delay between run executions so
that system resources can cool down.

The experiment is conducted in two rounds: the first round provides data for RQ1a and
RQ2a observations, while the second round provides extra data that can be used to answer
RQ1b and RQ2b.

While the pure mission execution time is estimated to be 2.5 minutes (see Section 4.1),
with additional time for stabilization and data transfer and processing, we have an estimation
of 5 minutes per run in total, which sums up to 23 hours with the repetitions of the first
and second rounds. We did not opt for longer missions in order to keep feasibility purposes.
Indeed, we had one researcher (i) continuously monitoring the telemetry of the robot and the
behavior of the robot itself during each run of the experiment and (ii) replacing the battery at
the beginning of each run with a fully-charged one (in order to always have a fully-charged
battery during the mission execution – this is relevant for being able to compare the energy
measures collected across runs).

4.4.1 First Round

The experiments for both Unknown map and Known map setups are designed with three
independent variables, each having two possible values (see Configurations 1 and 2 in Sec-
tion 3.3.1). This yields 23 = 8 possible treatments, with each treatment being repeated
10 times, resulting in 80 runs in total. The 80 runs yield 6.5 hours of experimentation for
Unknown map and Known map setup, respectively, for 13 hours in total.

4.4.2 Second Round

We perform the additional round of experiments only with the Unknown map setup, for
keeping the experiment within a reasonable duration (see Configuration 3 in Section 3.3.1).
The decision is justified by the fact that the results for both setups were fairly similar in the
primary experiment. In addition, the primary experiment results have shown that the benefits
of object recognition offloading, with respect to both energy consumption and performance,
are greater when compared to both SLAM and navigation. For that reason, we decided to
perform parameter effect analysis with SLAM and navigation executed onboard and only
object recognition offloaded.

We decided to perform an additional set of experiments, rather than introducing param-
eters as factors in the primary experiment, for three reasons. First, the number of treatment
combinations in full-factorial designwould explode. Second, the data analysis would be cum-
bersome if the experiment has a large number of main factors because the factorial ANOVA
test with more than three factors is rarely performed Kassambara (2021). Third, it would be
unfeasible to conduct the experiment within a reasonable time.

The dependent variables remain the same as those used in the primary experiment. In the
experiments, each of the parameters has two different values and we opt for 10 repetitions
per treatment. This yields six additional experiments, with 2 · 10 = 20 runs per experiment.
The mission, system design, and experiment infrastructure remain the same; the only varying
factor is the configuration of the nodes under experimentation. The duration per run remains
5 minutes, hence the total duration of all six experiments yields 6 · 20 · 5 = 600 minutes or
10 hours of experimentation.
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4.5 Data Analysis

We conduct distinct data analyses according to the specificities of each round of the experi-
ment. Both are explained in sequence.

4.5.1 First Round Analysis

Because there are three independent variables defined in the experiment, we opt for three-way
ANOVA (Lars et al 1989) to compare differences in means as main effects and inspect the
existence of significant two-way and/or three-way interactions.

However, there are three conditions that need to be fulfilled prior to the three-wayANOVA
execution (Kassambara 2021). The first assumption of having independent observations is
met inherently according to the way the experiment itself is conducted. Runs are executed
randomly and without dependencies with previous and upcoming runs. The second assump-
tion states that there should be no extreme outliers, otherwise such observations should be
removed. The third assumption implies normal distribution of observations. In Kassambara’s
guide for ANOVA test (Kassambara 2021), it is stated that the normality assumption can be
checked in two ways: i) normality is satisfied if the residuals are normally distributed, or ii)
check the normal distribution for each of the treatment combination groups. However, it is
stated that the residuals normality approach is more suitable for a relatively low number of
samples per sample group, which is the case in this experiment (10 samples for each treat-
ment combination in both setups). Nevertheless, we opted for both approaches to analyze if
they would lead to different conclusions. In both approaches, the normality assumption is
checked via QQ-plot analysis and complemented with Shapiro-Wilk test. The third and final
assumption refers to homogeneity of variances (i.e., homoscedasticity), which is checked
with Levene’s test (Schultz et al. 1985).

In the data analysis process, wemay get into situations where one or more assumptions for
three-way ANOVA test execution are not fulfilled. In such cases, we turn to a non-parametric
alternative to factorial ANOVA, namely, the permutation test (Anderson and Braak 2023).
However, ANOVA is considered robust to the violation of its assumptions when the sample
sizes per group are all of the equal size, which is indeed the case in this experiment (Ito 1980).
For this reason, we opt to perform both permutation tests and three-way ANOVA when the
assumptions are violated and compare the obtained results. Indeed, the conclusions from
both of the tests performed are always slightly different in the p-values obtained.

We choose the 95% confidence interval and thus we consider the obtained p-values sig-
nificant when they are lower than a 0.05 threshold. This is the default confidence interval in
R, the most widely used by researchers. In cases when three-way interaction is considered
significant, we computed simple two-way interactions with the Bonferroni adjustment (Bon-
ferroni 1963). The significant simple two-way interactions are further analyzed with simple
main effects, followed by the pairwise comparison with estimated marginal means to iden-
tify statistically significant groups. In cases when three-way interaction is insignificant, we
performed pairwise comparisons with the estimated marginal means (EMM) test for any
two-way interaction to compare the means among different groups.

4.5.2 Second Round Analysis

Because each of the experiments has only one independent variable, i.e., the parameter under
experimentation, with two treatments, we opt for Welch’s t-test (Welch 1947) for comparing
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the difference between the means of the two treatments. We choose Welch’s over Student’s
t-test because we do not want to assume anything about the equality of variances of the
samples among the two treatments; hence we selected the more robust test.

However, Welch’s t-test also implies a number of assumptions (Kassambara 2019). The
first assumption of having independent observations, i.e., each subject belongs to only one
group and there are no relationships between observations within the two groups, is satisfied
inherently by the way in which the experiment is conducted. Similar to ANOVA, there should
be no significant outliers and the samples for both treatments should be normally distributed.
Normality is again established with QQ-plot analysis combined with the Shapiro-Wilk test.

5 Hardware And Software Configuration

In this section we provide detail about the hardware used and each software setup for the
experiment.

5.1 Hardware Components

As already anticipated, in this experiment we use a Turtlebot3 Burger, which is a widely-
used robotic platform in robotics software engineering studies Albonico et al. (2023). The
Turtlebot version we use in the experiment has the following configuration:

– 1 sensor LDS-01 (HLS-LFCD2) capable of sensing 360 degrees, attached to the top part
of the robot, as designed by ROBOTIS;

– 1 boardOpenCR1.0 equippedwith the energy-efficient 32-bit ARMCortex-M7processor
with floating point unit, which works as the main controller of the robot;

– 1 Raspberry Pi 4 Model B SBC with 8GB of RAM running Ubuntu 18.04.5, with the
ROS system;

– 1 Raspberry Pi Camera Module v2, with an 8mp camera module capable of taking
3280x2464 pixel static images.

– 1 Arduino Nano Every micro-controller board connected to the Raspberry Pi. It is used
to control and program the current sensor attached to it.

– 1 Adafruit INA219 current sensor connected to the Arduino board that measures high
side voltage and DC current draw.

The other hardware used in the experiment are:

• 1 laptop Lenovo Legion Y540 equipped with Intel Core I7-9750H processor, 16GB
of RAM and runs Ubuntu 18.04.5, which works as the remote PC where the tasks are
offloaded, but it is also used for experiment orchestration.

• 1 WiFi router Netgear R6220 used to connect the robot and the remote PC in a local,
isolated network. Its speed goes up to 1.2Gbps and it has a 5GHz channel to which
devices were connected during the experiment.

5.2 Software Design

As mentioned in Section 3.3.1, there are two broad types of navigation approaches, namely,
map-less and map-based (Hu et al. 2012). These two variations of map-based navigation
approaches are the subjects of the experiment.
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Fig. 6 Computation graph of the Unknown map experiment setup

In the first system setup, the offloadable tasks are SLAM, navigation, and object recog-
nition, referred to as Unknown map setup in this study because the map of the environment
is not known in advance, yet constructed simultaneously while the robot navigates through
the unknown environment. In the second system setup, referred to as Known map setup,
the offloadable tasks are localization, navigation, and object recognition, where localization
is necessary for navigation even though the mapping process is already performed. There
are two reasons for considering SLAM/Localization, Navigation, and Object Recognition as
offloadable components in our experiment:

– They implement tasks that are known to be computationally expensive in robotic sys-
tems (Dey and Mukherjee 2016; Lee et al. 2017; Indelman et al. 2012);

– The other potentially-expensive components in terms of computation either cannot be
offloaded to the Cloud since they have a strong dependency to the hardware of the robot
(e.g., the Turtlebot controller or the driver of the camera) or they are meaningful only
when running in the Cloud (e.g., the robot diagnostic receiver, which is used for telemetry
visualization).

In this section, we explain the design of the system from the perspective of the offloadable
tasks and their relationships with the rest of the system. For such a relationship, we consider
computation graphs, common in the ROS environment, which show ROS nodes and their
communication over topics. Figures 6 and 7 depict the computation graphs of the system
under experimentation for both, Unknown map and Known map setup. The images represent
the graphical notation created with rqt 27, a Graphical User Interface (GUI) development
framework in ROS, but with customized colors, where green nodes are offloading candidates.

5.2.1 SLAM (slam_gmapping node)

This node is responsible for the SLAM layer. It processes the incoming laser scans from the
scanROS-topic and, as a result, periodically sends occupancy gridmessages to themapROS-
topic. The occupancy grid is a message format that represents the map of the environment in

27 http://wiki.ros.org/rqt
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Fig. 7 Computation graph of the Unknown map experiment setup

the form of an evenly spaced field of binary variables. While SLAM is indeed a computation-
intensive task, the scans coming from the LiDAR sensor (on the robot) and relatively large
and frequent occupancy grid messages may lead to a high communication load if SLAM is
offloaded.

A robotic system typically consists of many 3D coordinate frames, each referencing dif-
ferent parts of the robot and its sensors. For instance, sensor readings are referenced from
the coordinate frame attached to the sensor itself. If the robot needs to take any action based
on the sensor readings, it is important to know, at all times, the relative position of the frame
attached to the sensor to the frame attached to the robot’s base. In ROS, all transformations
between the coordinate frames are managed via the tf package (Foote et al. 2021). It pro-
vides a dedicated ROS-topic called tf where relative positions, i.e., transformations, between
coordinates frames of the robotic system are periodically published.

5.2.2 Navigation (move_base node)

This node implements the navigation layer in both, Unknown map and Known map setups.
A custom node (sherlock_controller) orchestrates the mission and sends goal locations to
the move_base node. The navigation stack then finds a path to a goal location and publishes
velocity commands over the cmd_vel ROS-topic to the turtlebot3_core node so that the robot
starts moving according to the planned trajectory.

The navigation stack requires laser scan readings over the scanROS-topic so that dynamic
obstacles can be cleared out or added to themap. Furthermore, this task also requires odometry
information, which is transferred over the odom ROS-topic from the turtlebot3_core node.
As both laser scans and odometry are always published from the robot, the network overhead
could be very high when navigation is offloaded.

The map of the environment is provided over the map ROS-topic, either by the
slam_gmapping or map_server node in the Unknown map and Known map setup, respec-
tively. The navigation stack uses the map to find the path with no obstacles between the
robot’s current location and the goal. In the Known map setup, the map is provided only
once, as it will not be changed during the mission. However, in the Unknown map setup,
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the map is periodically published as the output of SLAM, meaning that there is a substan-
tial communication dependency between SLAM and navigation. Therefore, we may expect
reduced network overhead when both SLAM and navigation are offloaded simultaneously,
as the maps will not be exchanged over the network between the two nodes when they run
on the same machine.

Like SLAM and localisation, the navigation stack also heavily uses transformations. In
addition to the two aforementioned transformations required by slam_gmapping and amcl,
it requires the map → odom frame transformation, provided by these two nodes in their
respective setups. As discussed in Section 2.2.3, numerous plugins within the navigation
stack indicate that the move_base node is indeed computation-intensive. While this makes
this task a good candidate for computation offloading, we can conclude that laser scans,
odometry, and frame transformations potentially impose a high communication load when it
is offloaded.

5.2.3 Object Recognition (find_object_2d node)

This node represents the object recognition artifacts and is completely independent of the
other offloadable tasks in both setups. It receives camera images from the raspicam_node
(the driver for the Raspberry Pi CameraModule) over the raspicam_node/image/compressed
ROS-topic. Unfortunately, the driver is not available for the ROSMelodic distribution, which
is used in this experiment, as it depends on the Multimedia Abstraction Layer (mmal) library
that is not available in Ubuntu 18.04 for the amd64 architecture. We solved this issue by
compiling the mmal library from the source and configuring it manually to enable raspi-
cam_node. The latest commits to the library source still break the amd64 support, so we
compiled the library from the commit that is used in Ubuntu 20.04, where the mmal library
for this architecture is available.

As a result of object recognition process, the find_object_2d node publishes messages on
the objects ROS-topic. Such messages contain information regarding the IDs of the objects
that are recognized and their positions within the received image frame. A custom node
(sherlock_object_recognition) receives the messages over this ROS-topic and logs the results
of object recognition. Apart from indisputable computation intensity, image frames that have
to be transferred from the robot’s camera sensor indicate very intense communication if
object recognition is offloaded.

5.2.4 Localisation (amcl andmap_server nodes)

The amcl node encapsulates the localisation task, while themap_server provides the already
known maps, a large difference from the Unknown map graph. The amcl node relationships
with other nodes, as well as required and provided transformations, are almost identical to
the ones of the slam_gmapping. Therefore, the implications of localisation offloading are
fairly similar to those previously discussed for SLAM. The only difference is that the map
of the environment is now the input to the amcl node. Because the map is already created
and it will not be changed during the mission, the map_server node publishes the map over
the map ROS-topic to the amcl node in a one-time communication. The lack of the mapping
process results in a significantly lower exchange of messages over the map ROS-topic with
localisation, as compared to SLAM, which potentially makes this task more suitable for
offloading with respect to network overhead. In case of offloading, both nodes must be on
the same device.
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Fig. 8 Ros Package Organization Of The System

5.3 Additional Software Packages

ROS offers a reusable abstraction called package for the modular organization of the robotic
software. Source code of ROS nodes, parameter configurations structured in Yet Another
Markup Language (YAML) or other file formats, but also message and service definitions,
are contained inside ROS packages.

ROS also offers a powerful launch file mechanism, a file format based on Extensible
Markup Language (XML), that primarily serves for running multiple ROS nodes at once.
BecauseROS-based systems consist ofmanyROSnodes that communicatewith each other, it
is very convenient to configure all nodes in a single place and run them via a single roslaunch
command. Launch files are also contained inside ROS packages. They can be customized
with parameters that are passed in the roslaunch command.

The ROS package organization of the system under experimentation, along with the con-
tained ROS nodes and launch files, is presented in Fig. 8. The notation is an adaption of the
Unified Modeling Language (UML) package diagram, adapted to depict the modular orga-
nization of ROS packages. The organization conforms to the design principle of separation
of concerns (SoC), where each ROS package organizes a dedicated functional unit of the
system. System packages and their purpose are presented in the following:
• sherlock package28 represents the entire system as a whole and it is positioned the highest
in the package hierarchy. It contains the source code of two ROS nodes, namely, sher-
lock_controller and sherlock_obj_recognition. sherlock_controller node orchestrates the
robot’s movements during the mission as it sends goal locations to the move_base node via
the ROS action communication model. sherlock_obj_recognition node receives the results
of object recognition in a publish-subscribe fashion, over the ROS topic, and logs the results.
The package also contains three launch files. The start_up.launch file that initiates other
TutleBot3 specific nodes. The other two launch files, namely, unknown_map.launch and
known_map.launch, include and launch the files that configure and run nodes that are subject

28 https://github.com/IntelAgir-Research-Group/sherlock
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of computation offloading in the Unknown map and Known map setup, respectfully. These
launch files are configured with parameters that indicate if each of the nodes is executed
on-board or offloaded.
• sherlock_bringup package29 contains the sherlock_bringup.launch file that configures
and runs TurtleBot3-specific nodes. These include node turtlobot3_core, which interacts
with the external commands and transmits them to the robot’s firmer, turtlebot3_lds, the
driver for LiDAR sensor, and turtlebot3_diagnostics, a node for the robot’s state diagnostics.
The package contains file, which runs and configures the robot_state_publisher node, which
publishes static frame transformation based on the description of TurtleBot3 robot’s links and
joints, also known as the robot’smodel. The description of the TurtleBot3 model is expressed
in XML-based Unified Robot Description Format (URDF).
• raspicam_node package30 contains the source code of the ROS driver for the Rasp-
berry Pi Camera Module, namely, raspicam_node. The node is configured with a resolution of
640x480px and 20fps frame rate, calibration file, and other parameters, and launched within.
• sherlock_slam package31 contains two launchfiles, namely, and sherlock_slam_remote.launch,
for configuring and running the slam_gmapping node locally and on the remote machine,
respectively. The remotemachine,where the node should be executed, is passed as a parameter
to the machine attribute of the node tag in the sherlock_slam_remote.launch file (ROS wiki
2021). The two files will be launched when SLAM is executed on board and offloaded,
respectively.
• sherlock_navigation package32 contains twolaunchfiles, namely, sherlock_navigation.launch
and sherlock_navigation_remote.launch, for configuring and running the move_base node
locally and on remote machine, respectively. The two files will be launched when navigation
is executed on-board and offloaded, respectively.
• sherlock_obj_recognition package33 contains twolaunchfiles, namely, sherlock_obj_recog-
nition.launch and sherlock_obj_recognition_remote.launch, for configuring and running
find_object_2d node locally and on remote machine, respectively. The two files will be
launched when object recognition is executed on board and offloaded, respectively.
• sherlock_localisation package34 contains two launch files, namely, sherlock_localisation.
launch and sherlock_localisation_remote.launch, for configuring and running amcl node
locally and on remote machine, respectively. The two files will be launched when localisation
is executed on board and offloaded, respectively.
• ros_melodic_profilers package35 contains source code of two nodes that serve for CPU
usage, RAM utilization, and power consumption measurement collection: resource_profiler
and ina219_profiler. Both nodes are configured and launched in the profilers.launch file that
resides in the same package. resource_profiler node exposes two ROS services, namely, for
initiating the CPUusage andRAMutilizationmeasurements, and for termination ofmeasure-
ment collection, where the measurement outputs are returned as a result of the service call.
CPU usage and RAM are sampled with the psutil36 Python library at 50Hz. ina219_profiler
node also exposes two ROS services, for initiating and terminating power consumption mea-

29 https://github.com/minana96/sherlock_bringup
30 https://github.com/minana96/raspicam_node
31 https://github.com/minana96/sherlock_slam
32 https://github.com/minana96/sherlock_navigation
33 https://github.com/minana96/sherlock_obj_recognition
34 https://github.com/minana96/sherlock_localisation
35 https://github.com/IntelAgir-Research-Group/ros_melodic_profilers
36 https://psutil.readthedocs.io/en/latest/
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Fig. 9 Deployment Diagram

surement collection. Upon receiving the service request for measurement initiation, the node
sends a request to the Arduino board over a serial connection to start the power measurement
process.

5.4 Software Deployment

The deployment diagram of the experiment infrastructure is presented in Fig. 9. The system is
deployed on the Raspberry Pi (on board of TurtleBot3 robot) and on the PC. Both devices are
connected to an isolated local network, and they run on the Ubuntu 18.04 operating system.

The time on both machines is synchronized via chrony37, as advised in the network setup
for distributed systems in ROS (ROS wiki 2021). The remote PC is configured as a Network
Time Protocol (NTP) server, while the robot is the NTP client. This decision was made to
ensure that the timestamps for themeasurements on bothmachines are synchronized, but also
to ensure that the current time on the robot will be updated in an isolated network, without
an internet connection. Otherwise, this would not be possible because Raspberry PI does not
possess a real-time clock. The PC also works as our Cloud environment, where candidate
tasks are offloaded.

5.4.1 Ros System

The Raspberry Pi device launches the threemain launch files from the sherlock package. The
nodes started by those launch files are also running on the Raspberry Pi, with the exception
of four tasks (SLAM, localisation, navigation, and object recognition), when they are subject

37 https://chrony.tuxfamily.org/
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to computation offloading. In such scenarios, the respective nodes are deployed on the PC via
the machine attribute mechanism in the node tag of launch files, resulting in an SSH remote
command. We opted for this ROS launch setting, as opposed to the simultaneous launching
of two separate files on the Raspberry Pi and PC, mainly for maintainability. The tasks reside
in a single launch file that is always launched on the Raspberry Pi, as opposed to maintaining
two launch files on two different devices.

ROS needs a master node, called roscore, which orchestrates the other nodes. In this
experiment, the ROS master node is running on the Raspberry Pi. This decision was made
so that the entire system is completely independent of the PC when the offloadable tasks are
executed onboard because only those nodes can be executed on the PC.

6 Results Of The First Round Of Experiments (RQ1)

In this section, wewill present themost important results of the performed statistical analyses
and observations. The complete data analysis process, along with the verified assumptions
for the performed statistical tests, and the obtained test results, are available in the replication
package (Dordevic et al. 2022).

6.1 Mission Execution Time

The results for the total mission execution time are presented in Fig. 10. In theUnknown map
setup results, there were neither significant three-way nor two-way interactions among the
three factors. However, the results yielded a significant main effect of navigation and object
recognition offloading, respectively, on the total mission execution time. When navigation
is offloaded, the mean of mission execution time slightly increases from 148.338 to 151.320
seconds (Fig.10a). In contrast, offloading object recognition causes a decrease in totalmission
execution time, from 151.337 to 148.321 seconds, on average (Fig. 10b).

Very similar results are obtained in the Known map setup, where the mean mission
execution time increased from 141.038 to 143.272 seconds when navigation is offloaded
(Fig. 10c), but decreased from 145.062 to 139.248 seconds when object recognition is
offloaded (Fig. 10d).

Because the total mission execution time is mostly dependent on how the navigation
package finds and executes paths, it is expected that navigation offloading has an effect on
this variable. Network delay in laser scan and command velocity message exchange between

Fig. 10 The effect of computation offloading strategies on the total mission execution time
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the robot and remote PC prolongs mission execution time when navigation is offloaded
and the potential of more efficient remote execution does not compensate for the network
delay. The effect of object recognition is, however, surprising at first, given that the object
recognition task is completely independent of navigation. The vast amount of resources that
object recognition utilizes when executed on-board slows down the execution of command
velocities received from the navigation stack, thus the total mission execution time increases.

6.2 Cpu Usage

The results for the averageCPUusage are presented in Fig. 11. The test results in theUnknown
map setup yielded significant main effects for all three tasks, but there was also a significant
two-way interaction between SLAM and object recognition. The pairwise comparisons have
shown that offloading SLAM causes a statistical decrease in average CPU load when object
recognition is both executed on-board (from 78.197% to 75.746%) and offloaded (from
30.176% to24.933%) (Fig.11a).However, the estimates of effect size in pairwise comparisons
show that the magnitude of the SLAM offloading effect is more than two times greater when
object recognition is offloaded (2.451% difference in EMM, compared to 5.243%). This is
expected, given that most of the CPU usage is used for object recognition when executed
onboard. This is quite evident when we compare the two groups on the left and right of
Fig. 11a.

Very similar results are obtained in the Known map setup, with all three main effects
being significant, but with two significant two-way interactions. When we performed a
pairwise comparison for significant two-way interaction between localization and object
recognition, we confirmed that the effect of localization offloading is significant when object
recognition is both executed on-board and offloaded (Fig. 11b). However, the decrease in
CPU usage caused by localization offloading is slightly larger when object recognition is
offloaded (from 26.708% to 25.281%, and from 76.772% to 75.874%, when object recog-
nition is offloaded and not, respectively). Similar results are confirmed for significant two
way-interaction between navigation and object recognition (Fig. 11c), where the decrease
from 26.713% to 25.276% when object recognition is offloaded is slightly greater when
compared with 76.886% to 75.760% decrease when object recognition is executed on-board
(estimates of 1.127% and 1.437% differences in EMM, respectively). Even though both,

Fig. 11 The effect of computation offloading strategies on average CPU usage
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offloading localization and navigation, cause a statistically significant decrease in CPU load,
we can conclude from both Figs. 11b and 11c that this decrease is almost insignificant when
compared to the decrease caused by object recognition offloading.

We can conclude that object recognition accounts for much more significant CPU usage,
as compared to other tasks. Therefore, offloading object recognition significantly reduces the
CPU workload. Even though the results show that offloading other tasks, namely, SLAM,
localization, and navigation, also results in more optimal CPU usage, the gains are negligible
when compared to offloading object recognition. In fact, object recognition is so computa-
tionally intensive that the benefits of offloading localization and navigation in the Known
map setup are not even statistically significant when object recognition runs on board. This
is because object recognition reclaims the computation power that was used for localization
and navigation once they are offloaded.

6.3 Memory Utilization

The results for the average RAM utilization are presented in Fig. 12. The test results in
the Unknown map setup yielded significant main effects for all three tasks, but there were
also two significant two-way interactions. The pairwise comparisons for significant two-way
interaction between SLAM and navigation have shown that offloading SLAM causes a statis-
tically significant decrease in average RAM utilization when object recognition is offloaded
(from 868.939 MB to 857.226 MB), but not when object recognition is executed on-board
(Fig. 12a). Similar results are obtained for significant two-way interaction between naviga-
tion and object recognition, yielding a statistically significant decrease when navigation is
offloaded (from 870.495 MB to 855.670 MB) only when object recognition is offloaded, but
not when it is executed on-board (Fig. 12b). When we compare the two groups on the left
and right in both Figs. 12a and 12b, we can see that the decrease in RAM utilization caused
by object recognition offloading is indisputable.

The results obtained in Known map setup are quite similar, with all three main effects
being significant, but with one significant two-way interaction between navigation and object
recognition. When we performed a pairwise comparison, we confirmed that the effect of
navigation offloading is significant when object recognition is both executed on-board and
offloaded (Fig. 12c). However, the the decrease in RAM utilization caused by navigation

Fig. 12 The effect of computation offloading strategies on average RAM utilization
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offloading is almost two times larger when object recognition is offloaded (from 880.225
MB to 865.590 MB, and from 1073.734 MB to 1066.304 MB, when object recognition is
offloaded and not, respectively). Even though the test yielded a significant main effect of
localization offloading on RAM utilization, the resulting effect size of only η2 = 0.003
shows a slight decrease in RAM utilization. On the other hand, object recognition has an
indisputable effect on RAM utilization, which is evident in Fig. 12c.

Similar to CPU usage, it is evident that object recognition accounts for much more signifi-
cant RAM utilization when compared to other tasks. Therefore, offloading object recognition
significantly reduces RAM utilization. Even though the results show that offloading other
tasks, namely, SLAM, localization, and navigation, also results in a more optimal RAM uti-
lization, the gains are negligible when compared to offloading object recognition. In fact,
object recognition is so intensive that the benefits of offloading SLAM and navigation in
Unknown map setup are not even statistically significant when object recognition runs on
board. This is because object recognition reclaims the parts of the RAM that were utilized
by SLAM and navigation once they are offloaded.

6.4 Number Of Packets

The results for the total number of network packets exchanged between the robot and the
PC are presented in Fig. 13. The test results in the Unknown map setup yielded significant
main effects for all three tasks, but there was also a significant two-way interaction between
navigation and object recognition. The pairwise comparisons have shown that offloading
navigation causes a statistically significant increase in the total number of packets when
navigation is both executed on-board (from 10823.45 to 37365.30 packets) and offloaded
(from 68487.55 to 75142.85 packets) (Fig. 13a). However, the estimates of effect size in
pairwise comparisons show that themagnitude of the navigation offloading effect ismore than
four times greater when object recognition is executed onboard (26541.85 packets difference

Fig. 13 The effect of computation offloading strategies on the total number of network packets exchanged
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in EMM, compared to 6655.30). This result indicates that network congestion happens when
both navigation and object recognition are offloaded and some network packets are lost.
Nevertheless, object recognition accounts for the greatest volume of packet exchange, which
is evident when we compare the two groups on the left and right of Fig. 13a.

However, the results in the Known map setup are more complex, with all three main
effects being statistically significant, but also all two-way and three-way interactions sig-
nificant as well. The significant three-way interaction is stemming from the left part of the
Fig. 13b. The results, in this case, have shown that when both object recognition and nav-
igation are offloaded, offloading localization actually causes a slight decrease in the total
number of network packets exchanged. The most significant increase in the total number
of packets transferred definitely stems from object recognition offloading. However, we can
notice in Fig. 13b that the traffic exchanged by only simultaneous localization and navigation
offloading is almost as high as the one caused by object recognition offloading alone.

Unlike the CPU usage and RAM utilization results, where the effect of object recognition
is the dominant compared to other tasks, we can see that navigation and localization account
for a number of network packets that is more comparable to those exchanged by object
recognition, but still lower. It is surprising that the magnitude of network exchange caused
by SLAM is not as significant as for localization, given that these two tasks require and send
almost the same data. In fact, SLAM should be even more communication-intensive, because
it periodically produces maps as a result of the mapping process. The relatively high map
update interval of 5 seconds, but also the relatively small arena, which is very accurately
mapped early in the mission, definitely accounts for a lower exchange of maps.

Themost important finding is the network congestion that happens when both localization
and navigation are offloaded together with object recognition. Because all three tasks account
for a large number of packets exchanged over the network, the network bandwidth is not large
enough the handle the volume of network traffic when all tasks are simultaneously offloaded.

6.5 Size Of Packets

The results for the total size of network packets exchanged between the robot and the PC are
presented inFig. 14.The test results in theUnknownmap setupyielded significantmain effects
only for object recognition, but there was also one significant two-way interaction between

Fig. 14 The effect of computation offloading on total size of network traffic exchanged
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navigation and object recognition. The pairwise comparisons have shown that offloading
navigation has no significant effect on the total size of network packets exchanged when
object recognition is executed on-board, but it causes a statistically significant decrease in
the total size of packets when object recognition is offloaded (from 302.442 MB to 273.076
MB) (Fig. 14a). Nevertheless, it is evident in Fig. 14a that object recognition exchanges a
very large volume of data over the network.

The results in the Known map setup are quite different, yielding a significant main effect
for all three independent variables and two significant two-way interactions. The pairwise
comparisons for significant two-way interaction between localization and object recogni-
tion have shown that offloading localization causes a statistically significant decrease in the
total size of packets exchanges when object recognition is offloaded (from 304.646 MB to
270.872MB), but notwhen object recognition is executed on-board (Fig. 14b). Similar results
are obtained for significant two-way interaction between navigation and object recognition,
yielding a statistically significant decreasewhen navigation is offloaded (from 302.442MB to
273.076MB) only when object recognition is offloaded, but not when it is executed on-board
(Fig. 14c). Unlike the Unknown map setup, the main effects of localization and navigation
on the overall size of packets exchanged are yielded as statistically significant. However, the
magnitude of the effect for localization and navigation, respectively, is larger than that caused
by object recognition offloading. The magnitude of the increase in the total size of network
traffic exchanged due to object recognition offloading is indeed evident in Figs. 14b and 14c.

Despite the more significant effect that both localization and navigation offloading have
on the total number of packets, their effect on the total size is not as significant. This is
expected because the size of laser scans, odometry, and other data that these tasks exchange,
is indeed incomparable to the size of images that object recognition receives when offloaded,
even though the images are sent over the network as compressed. The decrease in the total
size of network packets when either navigation or localization are offloaded simultaneously
with object recognition indeed confirms that there is network congestion in such strategies.
As a result, some images are lost during the exchange, as was also confirmed in the results
for the total number of packets in Section 6.4.

6.6 Energy Consumption

The results for total energy consumption are presented in Fig. 15. In theUnknown map setup
results, there were neither significant three-way nor two-way interactions among the three
factors. However, the results yielded a significant main effect of navigation and object recog-

Fig. 15 The effect of computation offloading strategies on total energy consumption
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nition offloading, respectively, on total energy consumption. When navigation is offloaded,
the mean of energy consumption slightly increases from 4725.150 J to 4815.433 J (Fig. 15a).
On the contrary, offloading object recognition causes a significant decrease in total energy
consumption, from 5132.966 J to 4407.616 J, on average (Fig. 15b).

Very similar results are obtained in the Known map setup, where the mean energy con-
sumption slightly increased from 4441.430 J to 4513.235 J when navigation is offloaded
(Fig. 10c), but significantly decreased from 4876.787 J to 4077.878 J when object recogni-
tion is offloaded (Fig. 10d).

The results for energy consumption are fairly similar to those obtained for mission execu-
tion time (see Section 6.1) because energy consumption is measured over the entire execution
time. This result can be seen as an indication that the differences in the energy consumption
is primarily due to a shorter mission execution time. Nevertheless, the magnitudes of the
impact are much larger for object recognition yet smaller for navigation when compared to
those obtained for mission execution time. This is noticeable for both setups, but especially in
the Known map setup. Therefore, we can conclude that the energy consumption for network
exchange when navigation is offloaded is greater when compared to the energy consumed
when this task is executed onboard. On the contrary, offloading object recognition does yield
a significant reduction of the total energy consumption, despite the very high volume of
network traffic exchanged when this task is offloaded.

6.7 Feature Extraction Time

The results for average feature extraction time are presented in Fig. 16. The results for average
feature extraction time are almost identical for both setups. The only significant main effect
is object recognition, with neither significant two-way nor three-way interactions. In the
Unknown map setup, the average feature extraction time when object recognition is executed
on-board is 36.986 ms and only 6.365 ms when it is offloaded. Similarly, the average feature

Fig. 16 The effect of computation offloading strategies on average feature extraction time
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extraction time in the Known map setup is 36.233 ms when object recognition is executed
on-board and 5.791 ms when it is offloaded (Fig. 16b).

We can conclude that features are extracted much faster when object recognition is
offloaded because there are more computation resources available on the PC as compared to
the Raspberry Pi running onboard the robot.

6.8 Object Detection Time

The results for average object detection time are presented in Fig. 17. The results in the
Unknown map setup yield a significant main effect for all three independent variables, but
also a significant two-way interaction between SLAM navigation. The pairwise comparisons
for significant two-way interaction between SLAM and object recognition have shown that
offloading SLAM causes a statistically significant decrease in object detection time when
object recognition is executed on-board (from 141.398 ms to 130.215 ms), but not when
object recognition is offloaded. The main improvements in the object detection time stem
from object recognition offloading, which is evident in Fig. 17a.

The results in theKnownmap setup are slightly more complex because apart from all three
significant main effects, a significant three-way interaction emerged. With further analysis of
significant three-way interaction, it is established that both localization and navigation yield
statistically significant improvements in average object detection time when object recogni-
tion is executed onboard. This is evident in the left part of Fig. 17b, but it is also noticeable
that these improvements are of small magnitude. The significant three-way interaction was
traced to the fact that when both object recognition and navigation are offloaded, the average
extraction time actually increases when localization is offloaded as compared to its onboard
execution. This is caused by network congestion, where due to the packet loss, it takes more
time for incoming image frames to arrive at the remote PC, thus the object detection time

Fig. 17 The effect of computation offloading strategies on average object detection time
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Fig. 18 The effect of computation offloading strategies on average detection result delay

is prolonged. The speed up in object detection is mainly the result of object recognition
offloading, as evident in Fig. 17b.

It is evident in both setups that object detection is performed more efficiently when
object recognition is offloaded, as there are more computation resources available on the
remote PC. However, when object recognition runs on board, the object detection time is
slightly improved when SLAM and localization are offloaded, as there are more computation
resources available for object recognition in these offloading strategies. Such improvements
are still insignificant as compared to the efficiency caused by object recognition offloading.

6.9 Detection Result Delay

The results for average detection result delay are presented in Fig. 18. The results for the
average detection result delay are almost identical for both setups. The only significant
main effect is the one of object recognition, with neither significant two-way nor three-way
interactions. In theUnknown map setup, the average detection result delay is prolonged from

Fig. 19 The effect of computation offloading strategies on average navigation time
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0.904 ms to 2.899 ms when object recognition is offloaded (Fig. 18a). Similarly, the average
detection result delay time in Known map setup is prolonged from 1.012 ms to 3.605 ms
when object recognition is offloaded (Fig. 18b).

We can conclude that the average detection result delay is higher when object recognition
is offloaded because the results have to be exchanged over the network, from the remote PC
to the node running onboard the robot. Nevertheless, the delay of around 3 ms when object
recognition is offloaded is not substantially larger when compared to around 1 ms delay,
when the results are not transmitted over the network.

6.10 Navigation Time

The results for average navigation time are presented in Fig. 19. The results in the Unknown
map setup show that offloading object recognition has a significant main effect on average
navigation time, but there is also a significant two-way interaction between SLAM and
navigation. The pairwise comparisons for significant two-way interaction have shown that
offloading object recognition only causes a statistically significant decrease in the average
navigation time when SLAM is executed onboard (from 10.606 seconds to 10.107 seconds),
but not when it is offloaded.

Similar results are obtained in the Known map setup, with the only significant main
effect being the one of object recognition, with neither significant two-way nor three-way
interactions. The average navigation time is reduced from 9.920 seconds to 9.448 seconds
when object recognition is offloaded.

It is quite surprising that navigation offloading has no significant effect on the average
navigation time in either of the setups, yet it is faster when object recognition is offloaded.
As we also concluded in the case of mission execution time, the availability of resources
when object recognition is offloaded is the reason why navigation performs more efficiently
in such cases.

7 Results Of The Second Round Of Experiments (RQ2)

In this section, we present the most important results of the performed statistical analyses
and observations. The complete data analysis process, along with the assumptions analysis
of the performed statistical tests and the obtained test results, are available in the replication
package.

7.1 Image Resolution

Addendum –We anticipate that, for technical reasons (explained below), the results obtained
for network-relatedmetrics (i.e., total number of packets and total size of network packets) are
not directly related to the change in the image resolution used in our experiment. Specifically,
in Figs. 20c and in 20dwe observe that the total number of packets exchanged is unexpectedly
lower for images with higher resolution, while the total size of network packets remains sim-
ilar to those with low-resolution images. In the following, we explain why this phenomenon
is happening. By referring to Figs. 6 and 7, the raspicam_node sends compressed images
to the find_object_2d node for both image resolutions. Indeed, the message definition
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Fig. 20 The effect of image resolution parameter on system resources and network traffic

of the ROS topic we use for such communication is sensor_msgs/CompressedImage38; in
our system, the compression is based on the JPEG algorithm and it is done consistently with
the same degree of compression, independently of the resolution of the produced images.
We also manually analyzed the source code of all the ROS nodes involved in the object
recognition task and confirm that image compression is not happening in other ROS nodes
or in message exchanges within our system. Because the size of images compressed using
the JPEG algorithm is not necessarily linear with respect to the size of the input image, we
speculate that this indeed might be a possible explanation for the fact that we do not observe
the size of network packets doubling when using 1280x960 images. Nevertheless, despite
the technical limitation of this experiment with respect to network-related metrics, in the
remainder of this section the reader will see that using images with higher resolution lead to
higher resource utilization and energy consumption.

While analyzing Figs.20 and 21, we identify that the magnitude of the image resolution
effect on the utilization of system resources is still significant. In Fig. 20a, we can see that
the higher resolution causes a significant increase in average CPU usage, from 30.774% for
640x480px to 41.497% for 1280x960px, with the resulting effect size of d = -30.006. The
effect on RAM utilization is similar; higher resolution causes an increase from 875.567 MB
to 882.260 MB on average, with d = -13.118 effect size (Fig. 20b). The mean of total energy
consumption also increased from 4342.202 J to 4841.340 J, with an effect size of d = -4.077
(Fig. 20a), even though the resolution increase has no significant effect on total mission
execution time.

As anticipated at the beginning of this section, the total number of packets decreased,
from 51974.4 to 37486.1 packets, with an effect size of d = 4.181. Even though the number
of packets has decreased, the tests show that the total size of network traffic has not changed
significantly with the resolution improvement (Fig. 20d). The slight increase from 364.473
MB to 366.913 MB in total is not statistically significant.

High resolution also has a significant effect on object recognition performance. As we can
see in Fig. 21b, the average feature extraction time has increased from 5.402ms to 14.859ms,
with an effect size of d = -83.838. This result is not surprising, since more significant features
can be extracted from a high-resolution image frame as compared to the lower resolution
one. Similarly, the average object detection time has increased from 56.450 ms to 65.872
ms on average, with the effect size of d = -13.339 (Fig. 21c). Finally, high resolution has a
significant effect on the average delay for detection result message transfer. The delay has
increased from only 3.254 ms to 37.189 ms on average, which could cause issues in real-

38 http://docs.ros.org/en/api/sensor_msgs/html/msg/CompressedImage.html
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Fig. 21 The effect of image resolution parameter on energy consumption and object recognition performance

time applications, where the deadline for receiving object detection results may be of great
importance (Fig. 21d). The effect size of this increase is d = -10.003.

Regardless of whether object recognition is offloaded or not, the images are captured on
board the robot because the camera module is attached to the robot itself. This is why the
higher image resolution results comewith the price of increasedCPUusage, RAMutilization,
and energy consumption. Moreover, there are more significant features in images of better
quality, thus it takes longer to perform feature extraction and object detection.

However, the lower number of network packets exchanged is rather surprising because the
image rate remains the same for both resolution treatments. With the inspection of log files
and find_object_2d source code, we conclude that this ROS package is not multi-threaded,
thus the newly received image frame are not be processed until the previous one has finished.
With the input frame rate for object recognition set to 10fps, this means that it should take
no more than 100ms to process each received image frame to keep up with the desired frame
rate. As the results show, feature extraction and object detection are performed in 14.859 ms
and 65.872 ms on average, respectively, with 1280x960px image resolution, which is already
more than 80 ms of the average image processing time. For those image frames that take
more than 100 ms to be processed, the next frame will not be received, which, in fact, causes
package loss.

7.2 Image Frame Rate

Addendum – We anticipate that, due to technical reasons specific to this experiment, our
results for network-related metrics are not directly related to the change in the frame rate
as well. Indeed, as shown in Figs. 22c and in 22d, the total number of exchanged packets
and their total size are unexpectedly lower when adopting a frame rate of 60fps. In order to
better understand this phenomenon, we first closely inspected the raspicam_node node and
we confirm that it produces images at the defined rates (i.e., 20fps and 60fps). However, we
also observed that (i) the raspicam_node node is configured to publish the latest produced
frame only if the previous one is already sent through the network and (ii) the default size
of the queue of the find_object_2d ROS node is only 10. It is important to note that for each
topic the ROS communication mechanism has two queues (one for the publisher and one
for the subscriber) and internally the ROS communication mechanism prevents messages
from traveling across the network if one of those two queues is filled39; in our system, this
mechanism results in both queues being filled by the higher number of input images in the

39 http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers
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Fig. 22 The effect of image frame rate parameter on system resources and network traffic

case of 60fps, thus leading to lower network traffic (in terms of both number and total size
of the exchanged network packets).

The effect of the image frame rate parameter is presented in Fig. 22 and 23. The test
shows that image frame rate has a significant effect on the utilization of system resources.
In Fig. 22a, we can see that CPU usage increased from 30.745% to 39.020%, on average,
when the frame rate was increased from 20fps to 60fps, with the resulting effect size of r =
0.846. The effect on RAM utilization is similar; a higher frame rate causes an increase from
876.487 MB to 877.536 MB on average, with d = -1.478 effect size (fig. 22b). The mean
total energy consumption also increased from 4274.945 J to 4689.950 J, with an effect size
of r = 0.846 (Fig.23a), even though the increase in image frame rate has no significant effect
on total mission execution time.

As depicted in Fig. 22c, the total number of packets decreased from 51786.3 to 30397.2
packets with the higher image frame rate. As discussed above, this is due to the filling
of the ROS messages queues being filled prematurely in the specific configuration of our
experiment. The magnitude of this decrease is d = 7.544 effect size. Because the resolution
remains the same for both frame rate treatments, the size per packet does not change, thus
the total size of all exchanged packets also decreased from 363.838 MB to 306.942 MB on
average (Fig. 22d). The effect size of the total packet size change is d = 5.092.

However, the effects that increased frame rate has on object recognition performance are
completely opposite of those caused by resolution increase. As we can see in Fig. 23b, the
average feature extraction time has decreased from 5.445 ms to 5.318 ms. The size of this
effect is d = 0.507. Similarly, the average object detection time has decreased from 55.899
ms to 44.053 ms on average, with the effect size of d = 13.572 (Fig. 23c). In contrast, we can
conclude that image transfer at the high frame rate causes a significant increase in the average

Fig. 23 The effect of image frame rate parameter on energy consumption and object recognition performance
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Fig. 24 The effect of number of particles parameter on system resource and energy consumption

delay for detection result messages, from only 2.850 ms to 11.802 ms on average (Fig. 23d).
The effect size of this increase is r = 0.845. Regardless of whether object recognition is
offloaded or not, the images are captured on board the robot; thus sampling more images
per second comes with the price of increased CPU usage, RAM utilization, and energy
consumption.

7.3 Number of Particles

The effect of the number of RBPF particles in gmapping is presented in Fig. 24. The increased
number of particles causes a significant increase in system resource utilization. In Fig. 24a,
we can see that CPU usage has increased from 30.783% to 43.671%, on average, when the
number of particles is increased from 5 to 30, with the resulting effect size of d = -29.562.
The effect on RAM utilization is similar; a higher number of particles cause an increase from
877.375 MB to 881.817 MB on average, with r = 0.845 effect size (Fig. 24b). The mean of
total energy consumption also increased from 4329.966 J to 4541.058 J, with an effect size of
d = -1.709 (Fig. 24c), even though the increase in the number of particles has no significant
effect on total mission execution time.

Each particle in the RBPF algorithm carries a piece of information about a single part
of the environment, thus higher number of particles entails more computation effort. The
results presented in the work of (Abdelrasoul et al. 2016) have shown that CPU usage and
RAM utilization indeed increase with more particles. The results of this study thus confirm
these findings. However, the authors do not consider the energy consumption of the robotic
system, whereas we can conclude that it also increases with the number of particles.

7.4 Temporal Updates

The effect of temporal map updates, with periodical laser scan processing regardless of the
robot’s movements, is presented in Fig. 25. The results show that map updates caused by laser
scan processing every 0.5 seconds do not have a significant effect on any of the parameters
but the average CPU usage. As we can see in Fig. 25, CPU usage slightly increased from
30.734% to 31.824%, on average. While this increase does not seem that significant at first
glance, its effect size is d = -3.030.
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Fig. 25 The effect of temporal updates on average CPU usage

The results presented in the work of Abdelrasoul et al. Abdelrasoul et al. (2016) show that
the map updates triggered when the robot traverses a certain distance, either with translation
or rotation, cause an increase in CPU usage and RAM utilization when the distance is set
to lower values. However, the authors do not consider periodical updates at regular time
intervals. We can conclude that temporal map updates cause a significant increase in CPU
usage, yet they do not have a significant effect on RAM utilization.

7.5 Velocity Samples

The effect of the number of velocity samples parameter is presented in Fig. 26.
The increase in the number of translation and rotation velocity samples in the local planner

from 10 and 20 to 20 and 40, respectively, causes a significant increase in CPU usage and
RAMutilization. In Fig. 26a, we can see that the CPU usage slightly increased from 30.919%
to 31.269%, on average, with the resulting effect size of d = -0.957. The effect on RAM
utilization is similar; a higher number of velocity samples causes a bit more significant
increase from 875.484 MB to 876.318 MB on average, with d = -1.581 effect size (Fig. 26b).

In theDWAalgorithm, the larger sample of velocitiesmeans thatmore possible trajectories
will be simulated when choosing the next one for the robot to follow. The results confirm
that the sampling process requires large computation effort, as both CPU usage and RAM
utilization increase with the higher number of velocity samples.

7.6 Simulation Time

The effect of the simulation time parameter is presented in Figs. 27 and 28. The increase in
simulation time in the DWA algorithm from 1.5 to 3 seconds causes a significant change in
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Fig. 26 The effect of number of velocity samples parameter on system resources

CPU usage and RAM utilization. In Fig. 27a, we can see that the CPU usage decreased from
30.886% to 30.183%, on average, contrary to intuition. While this change does not seem that
significant, the resulting effect size of d = 1.580. In contrast, simulation time increase does
cause a statistically significant increase in RAM utilization, from 876.383 MB to 878.560
MB on average, with r = 0.845 effect size (Fig. 27b).

As shown Fig. 27c, the average navigation time increased from 9.960 to 13.556 seconds,
with the effect size of d = -6.557. As a result, the total mission execution time increased from
144.488 to 187.716 seconds, with an effect size of d = -6.543 (Fig. 28a). Consequently, the
increased mission execution time triggered an increase in total energy consumption, as well
as in the total number and size of network packets exchanged. The total energy consumption
increased from 4277.45 J to 5461.64 J, on average, with an effect size of d = -6.143 (Fig. 28b).
The total number of network packets increased from 44863.6 to 56137.1 (Fig. 28c), whereas
the total size of packets increased from 318.425 MB to 435.180 MB (Fig. 28d), with effect
sizes of d = -2.527 and r = 0.845.

The navigation tuning guides claim that the increase in simulation time requires higher
computation load (Zheng 2017; ROS wiki 2021). The principle of the DWA algorithm goes
in hand with these claims, as the simulation of longer trajectories implies more computation
power. However, the results show only a significant increase in RAM utilization for longer

Fig. 27 The effect of simulation time parameter on system resources and navigation time
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Fig. 28 The effect of simulation time parameter on mission execution time, energy consumption, network
packets, and size of network packets

simulation time, whereas CPU usage is slightly decreased. This may be due to the small
environment in which the experiment is run, which has no obstacles and only the map
boundaries.

The most important observation is the increased navigation time for longer simulation
time, as it takes around 40 seconds longer for the robot to traverse the same trajectory. The
way in which the robot navigates to its goal location has completely changed and we notice
that the robot approaches the goal slowly as compared to the original simulation time of 1.5
seconds40. Consequently, the change of this single parameter triggered the increase in energy
consumption, but also network traffic exchange.

8 Discussion

In this section, we provide an overview of the main findings emerging from our experiments
that can be of use to both practitioners and researchers. It is important to highlight the fact that
the findings reported in this section are emerging from our specific Turtlebot-based experi-
ments and are valid within the scope of similar software stacks and robotics configurations
(e.g., ground robots running the gmapping, move_base, and find_object_2d ROS packages
and offloading their computation via a WiFI network). Further research (and experiments
replications) is needed to provide evidence that the emerging findings apply also in the con-
text of our types of robots and configurations (e.g., manufacturing robots, flying robots,
ROS2-based robots, etc). In the remainder of this section we firstly discuss the main findings
for RQ1 (see Section 8.1), then we discuss those for RQ2 (see Section 8.2), and finally we
provide more detailed reflection points for each considered robotic task (see Section 8.3.

For the sake of readability, we give a unique identifier to each of the most actionable
findings, where the ones targeting researchers are marked as Rx , and the ones targeting
practitioners are marked as Px .

8.1 Offloading Impact on Performance and Energy Consumption (RQ1)

The obtained results show that object recognition is a greedy resource consumer and, when
associated with SLAM, they consume together about 80% of available CPU (Fig. 11), and
the memory utilization is also about 25% higher when running onboard (Fig. 12). In such a
configuration, SLAM seems to have a lower impact, whereas object recognition is the most

40 https://youtu.be/hVS775ITt4o
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computing-intensive task. Object recognition is also the task that results in higher network
traffic, when offloaded (Fig. 13). The execution time is not considerably affected by any
of the offloading configurations (Fig. 10), which might be seen also as an indication of
the stable WiFi network used in our experiments. Finally, the object recognition task is the
one influencing the most the energy consumption of the robot (Fig. 15). This behavior is
understandable if we look at Fig. 16, which shows the object recognition feature extraction
is about four times faster when running remotely, and object detection time almost doubles
when running onboard. We checked all the data, and the CPU usage was not exhausted at any
moment, which indicates that this phenomenon is not due to a lack of available resources.
RQ1a Answer: The computing-intensive task, i.e., object recognition, had its processing
time reduced when offloaded to the Cloud, mainly thanks to the higher processing power
available. For the other tasks, there was no considerable performance difference. The only
critical aspect of offloading was the network delay in responding after a task/processing is
completed, which may be an impediment for time-sensitive tasks.
RQ1b Answer: Offloading did not affect the energy consumption negatively and should
not be considered a constraint. The main source of energy consumption is the already well-
known CPU usage (followed by memory utilization), and as expected computing-intensive
tasks exhibited more consistent energy savings when offloaded.
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8.2 The Influence of Parameter Configuration (RQ2)

Different from offloading tasks, we see that changing parameter configuration is way more
critical, reflecting different levels of resource utilization in all cases. While a higher image
resolution in object recognition results in more CPU usage (increasing by ≈ 25%), memory
utilization only increases by≈ 1%, the size of network packets remains constant, and the total
of exchanged network packets is decreased by ≈ 37%. On the other hand, other parameters,
such as the number of particles for Gmapping, result in a more predictable performance
and resource consumption. In the object recognition case, it was concluded that most of
the unpredictable behaviors are due to a lack of synchronization between the robot output
(such as video frames per second) and the task input setup. This reflects the particularities of
each task and its algorithms and goes back to one of the ROS facilitators, also a vision for
robotic future41: building technologies that combine knowledge across previously unrelated
disciplines.
RQ2a Answer: Performance is directly impacted by parameter configuration, which is a
critical factor. The impact is not straightforward either; this is expected since tasks have their
own loading or warming-up costs. We also observe an unexpected reduction in the number
and size of exchanged packets when increasing the frame rate of the camera node from
20fps to 60fps; this is mainly due to the queue of the find_object_2d ROS node being filled
by the higher number of input images. This experiment provides evidence that queue sizes
and publishing/subscribing rates of ROS nodes must be properly considered by practitioners
since they might lead to severe consequences in terms of system’s behaviour.
RQ2b Answer: Since parameter configuration affects resource usage in most of the per-
formed trials, it also leads to considerable variations in terms of energy consumption.
Therefore, choosing the tuning of ROS tasks seems to be a critical design choice in case
energy is a scarse resource.

8.3 Considerations For The Specific Robotic Tasks

8.3.1 Object Recognition

Despite the fact that this task was highly optimized for low-processing-power devices, with
a relatively low image frame rate, image resolution, and a maximum number of features, the
results still show that the benefits of offloading object recognition outweigh on-board execu-
tion. Feature extraction and object detection are also much faster when they are offloaded,
possibly given the onboard GPU of the used laptop model (Rad et al. 2021). Unfortunately,
the amount of network traffic exchanged is also significant due to the large volume of image
frames exchanged, evenwhen they are compressed, as is the case in the experiment setup. The
results, however, indicate that the trade-off between energy consumed due to network transfer
and onboard execution still leans toward offloading because the total energy consumption is
significantly decreased.

41 https://foxglove.dev/blog/the-future-of-robotics
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One of the most important observations in the performed experiments is network conges-
tion. When only navigation is additionally offloaded along with object recognition, there is
already packet loss, even in a completely isolated local network, without an Internet con-
nection. This is why it is important for practitioners to ensure that the available network
bandwidth can handle such a large volume of exchanged image frames, especially if addi-
tional tasks are offloaded together with object recognition. This is a significant improvement
opportunity for researchers, as there is a need for network protocols that can enable efficient
real-time exchange of such large volumes of data as images. Some improvements towards
this goal are already reported in research in robotics (Wu et al. 2012).

Another important observation for practitioners and researchers using the find_object_2d
task is that the combination of three parameters, namely, image resolution, input frame rate,
and a maximum number of features, has a significant effect on how efficiently an object
recognition is executed. Image resolution and a maximum number of features should be
carefully chosen so that all image frames are processed at the desired input frame rate.
Otherwise, as we witness in the parameter effects experiments (RQ2), some images will
not be transmitted to the object recognition node at all. In the context of this experiment, a
resolution of 640x480px, an input frame rate of 10fps, and amaximumnumber of 500 features
give promising results as all images are processed at the set rate. However, increasing either
resolution or frame rate to two times higher values already causes image losses. An interesting
behavior is observed when the input frame rate is increased to 30fps (with two times higher
output frame rate), where the find_object_2d node, in the beginning, tries to speed up the
image processing to keep up with the set input rate by extracting a lower number of features
from the image frame. However, the node gives up on this optimization very soon and it
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starts extracting a higher number of features, but at the cost of losing some images. This is
an opportunity for researchers to improve the find_object_2d task so that the parameters are
automatically configured, with the main goal of meeting set user requirements during the
entire mission execution. For instance, if a user wants to achieve a maximum processing time
for all image frames, the system should configure the set of parameters, and automatically
adapt themduringmission execution, so that the desired time is alwaysmet. The automation of
parameter configuration can be also generalized for other robotics tasks, without restrictions
to object recognition only.

The choice of the frame rate is not straightforward, as it is not only guided by the effi-
ciency of the object recognition process, but rather practitioners should choose the frame
rate depending on the speed at which the robot operates and the dynamism of the working
environment. If the captured part of the working environment significantly changes with each
image frame, the frame rate should be increased. In our experiment, since we operate the
TurtleBot3 at a relatively low speed, we found 20fps satisfactory. If the nature of the mission
requires a higher frame rate, it must be ensured that the available network bandwidth is high
enough to handle the increased network traffic exchange.

While we find the resolution of 640x480px to be satisfactory in our experiment, practition-
ers should choose the resolution with many other factors in mind. The choice depends on the
size of the objects that should be recognized and the robot’s distance from them. The lighting
in the working environment is an important factor, which can be especially problematic in
outdoor missions, but also the vibrancy of the background around the objects that should be
detected. Our experiment was performed with closed curtains, so the lighting effect was not
problematic. However, we notice during the experiment trials, that lighting and distinctive
background behind the objects indeed caused for some pictures to be detected better than
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others. Finally, during experiment execution, we noticed that some of the three pictures can
be recognized already from the robot’s starting position, at 0.8m distance, while the others
have to be approached more closely to be successfully detected. The choice of resolution
should also be driven by the number of features that can be extracted from an object. Color-
ful pictures with distinctive elements are recognized more accurately than those containing
just a couple of plain geometric shapes. If the object has no significant features that are
easy to extract and detect, a higher resolution is necessary. Alternatively, practitioners may
turn to sophisticated reinforcement learning algorithms, which can give good results in such
cases. Algorithms based on Deep Neural Networks (DNNs) may perform object recognition
efficiently, even at low resolution. Even though object recognition based on DNNs is not a
subject of this study, it would be an interesting point for future research to evaluate its effects
on performance and energy consumption in robotic systems.

A possibility for research includes splitting DNNs between the robot and the remote
machine so that some part of the image processing can be efficiently performed onboard.
This can result in reduced network exchange between the robot and the remote machine, as
there would be no need to transfer the entire image over the network.

Finally, it should be noted that in the system used in the experiments, object recognition
results are only logged. If practitioners need to make further decisions based on object
recognition results, the network delay for sending the image and receiving the result back
should be taken into account. Unfortunately, we were not able to calculate the delay for
image sending based on the logs of the camera driver and object recognition nodes, but we
do report the average delay between the moment when the object is detected in the Cloud
and the result received on the robot’s side (3 ms). This delay becomes 1 ms when the object
recognition task is executed onboard. However, this delay increased to 37ms and 12ms when
resolution and frame rate are higher, respectively. It should also be noted that the experiment
was performed in an isolated network, with no Internet connection. The experiment trials,
performed with the router connected to the University’s WLAN, showmuch more variability
in object recognition delay, ranging from 3ms to 300ms. This effect would be even more
amplified if the tasks were offloaded to the cloud, where the distance to the servers and
variability of network conditions may play a much more significant role.
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8.3.2 SLAM and Localization

Because SLAMwas a subject of computation offloading in several research studies, we were
surprised to see that there are no significant benefits of its offloading. In fact, according to our
experiment, practitioners can execute either localization or SLAMonboard efficientlywithout
utilizing vast amounts of energy and resources. We did not observe significant improvements
in map accuracy when we increased the number of particles from 5 to 30, which is indeed
aligned with the results reported in the work of (Abdelrasoul et al. 2016, This can be the case
because we use an environment of a similar size as Abdelrasoul et al., yet the implications
may be different for larger andmore dynamic environments. Researchers have an opportunity
to evaluate the effects of the number of filter particles in the gmapping SLAM algorithm with
respect to map accuracy in the context of environments of different sizes and shapes.

Since no study performed in the context of gmapping configuration evaluation is focused
on the temporal updates parameter, we were interested to evaluate if it had any effect on
resource utilization.As it turns out, that effect is not significant, yetwe do notice that the edges
of the map tend to be smoother with periodical temporal updates and the overall accuracy
of the map is marginally better. With no significant effect on resource utilization, we can
conclude that gmapping can benefit from temporal updates when it is executed onboard the
robot.

8.3.3 Navigation

Given the complexity of the navigation stack, where several plugins are in charge of different
computation-intensive tasks (see Section 2.2.3), we expected that its offloading would lead to
significant benefits. Surprisingly, navigation offloading lead only to longer mission execution
time and caused an increase in the total energy consumption, whereas there was no significant
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reduction in CPU usage and RAM utilization. Those results lead to the observation that the
navigation task performs more efficiently onboard the robot.

We could observe also interesting results when looking at the configuration parameters of
the navigation task. The navigation tuning problem is widely known in the ROS community,
as confirmed by the guides particularly focused on navigation tuning (Zheng 2017; ROSwiki
2021. Our experience confirms that navigation tuning is not a straightforward task in practice,
as single localized changes to only one of many parameters can completely change the way
in which the robot navigates. We witnessed this effect in the parameter effect analysis, where
the average navigation time increased by around 40 seconds when the simulation time is
increased from 1.5s to 3s. What we expected was only the increase in CPU usage and RAM
utilization, as it stated in the guides that longer simulation time requires more computation
power.

The reconfigurability of the Navigation task is a double-edged sword. While practitioners
havemore control, it is not easy to configure diverse parameters. Even experiencedROSdevel-
opers struggle with grasping what each of the many parameters is for, but more importantly,
how their values may affect the robot’s behavior at runtime (Zheng 2017). This introduces the
need for a ROS Navigation task that is more usable for ROS developers, allowing seamless
control over the desired navigation behavior in the form of less, but more comprehensive
parameters.
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Finally, even though the Navigation task performs efficiently on-board, without utilizing
large amounts of system resources and energy, a higher number of translation and rotation
velocity samples in the DWA algorithm cause a significant increase in CPU usage and RAM
utilization. The onboard execution can be potentially improvedwithmore efficient algorithms
for local path planning, as it may not be needed to simulate the full trajectories for numer-
ous velocity samples when choosing the next local path. Optimizations in local planning
algorithms are a good point for further research.

9 Threats To Validity

This section provides an overviewof themain threats to validity, as defined in the classification
framework proposed by (Wohlin et al. 2012).

9.1 Internal Validity

The experiment is conducted in a controlled environmentwith a completely randomized order
of execution, which mitigates the effect of particular execution time for different treatments.
Each run is executed independently from any previous or following run executions, with a
one-minute break between runs. Because all nodes running on either the robot or the remote
PC are terminated at the end of each run, this gives enough time for the system resources to
stabilize before the next run execution begins.

Our choice of keeping the duration of each run of the experiment to 5 minutes (including
the time to swap the batteries and the idle waiting time) might be an internal threat to the
validity of the experiment, especially for what concerns the energy consumption of the robot.
As discussed in Section 4.4, we did not opt for longer missions in order to keep feasibility
purposes since the experiment required to have at least one researcher always present during
themissions execution. Replications of the experiment involving longer missions are planned
for future work.

Detection result delay is calculated as the difference between the timestamp when the
object detectionprocess is completed and the timestampwhen the result of the object detection
result is received at the robot’s side. When object recognition is offloaded, the differences
in time synchronization between the remote PC and the robot can have an effect on the
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obtained result. This effect is mitigated with time synchronization of the PC and the robot
in the distributed system via chrony, with the remote PC being the NTP server. The max
delay configuration parameter on the client’s side, i.e., the robot, is set to 0.03, indicating
that all measurements with a round-trip delay of 0.03 seconds or more will be ignored.
This configuration should provide quite high accuracy regarding time synchronization in a
distributed system.

Dedicated nodes run onboard the robot for sampling CPU usage, RAM utilization,
and energy consumption, namely, resource_profiler and ina219_pro-filer. While they also
account for certain utilization of CPU, RAM, and energy, there is no other way to sample
the required metric without performing the sampling process onboard the robot. Whereas the
frequency at which the INA219 current sensor sends the measurements is fixed to 200Hz, we
opted for keeping the frequency of CPU usage and RAM utilization sampling at 50Hz. This
frequency provides a fair amount of samples per second to accurately estimate the effect of
offloading strategies on both CPU usage and RAM utilization, whereas it does not account
for large resource consumption with the higher frequencies.

Finally, wemeasured all packets exchanged between the robot and the remote PC, without
restriction. In this way, the SSH messages exchanged between the PC and the robot for
the purpose of automated mission launching from Robot Runner are also included in the
measurements. These SSHmessages, where the PC is an SSH client and the root SSH server,
are not excluded from the measurements, as the SSH connection and the remote commands
for mission automation remain the same for all treatments. This is the reason why there is a
number of network messages exchanged between the robot and PC in the obtained results for
the treatment in which all tasks are running onboard. Moreover, there is an SSH connection
in the opposite direction, with the robot being an SSH client and the PC an SSH server when
tasks need to be offloaded to the remote PC. Such SSH messages are also not excluded from
the measurement data, as they can be considered as an overhead that comes as a consequence
of computation offloading.

9.2 External Validity

The mission we implemented for this study might not be representative of all possible real-
world robotic missions. For example, the networking conditions of real-world mobile robotic
missions are not always as performant and stable as the one we had during our experiments
(e.g.,in the case of outdoor search-and-rescue missions). Nevertheless, there are several cases
where it can be relatively safely assumed to have a stable network connection with large
bandwidth and speed. Examples of such cases include: robots used asmuseumguides (Hellou
et al. 2007;Webster and Ivanov 2022) (this is the casewe are reproducing in our experiments),
warehouse automation, service robots at home, in hospitals, or in the workplace, etc So,
despite the relatively strong assumption of having a fast and stableWiFi network, the network
conditions of our experiment can still be considered as representative of a large number of
robotic systems used in production. Moreover, we are aware that operating robotic systems
in real museums is a more nuanced and complex endeavor than the missions performed in
our experiment (Hellou et al. 2007; Webster and Ivanov 2022). The mission performed by
the robot in our experiment is a reduced representation of real-world robotic systems used in
actualmuseums; this is by design sincewe (i) needed to be in full control of all relevant aspects
of the system being measured and (ii) want to allow third-party researchers to independently
verify and replicate our experiment with relatively low effort.
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Moreover, despite the Turtlebot is one of the most used robots within the robotics software
engineering scientific community (Albonico et al. 2023), we are aware that its hardware specs
can be different from those of robots used in the wild (Macenski et al. 2022). This threat is
mainly due to the feasibility of the performed experiment and we mitigated it by performing
tasks that are common in the robotics domain, such as navigating within an environment,
recognizing objects, avoiding obstacles, etc This threat is further mitigated by having a
complete replication package with all the details and code related to the experiment, thus
allowing future replications to use different robots, missions, and configurations.

Theoffloadable tasks that are subjects of offloading are selected according to thefindings of
previous research studies. To that end, we reuse some of the most popular ROS packages that
encapsulate the defined tasks. Thismeans that the obtained results are relevant for themajority
of ROS community members as good representatives of computation and communication
load. The reuse also mitigates possible biases that our own implementation of the tasks would
have on the obtained results. The three offloadable tasks have been implemented in such a
way as to have little to no dependencies on each other. Such architecture was chosen for the
sake of better evaluation of the effects that each of the tasks has on the various collected
measures (e.g., mission completion time, energy consumption).

While the Known map setup of the experiment is a very typical setup in which the nav-
igation stack is used (with the already constructed map of the environment), the Unknown
map setup involves an additional frontier exploration step. In such scenarios, the navigation
stack does not receive hard-coded coordinates of the goal location, yet they are sent by the
exploration package as a result of map processing. Such a setup was not used in the experi-
ment for several reasons. First, it would create a dependency between SLAM and navigation
nodes that is undesirable, as explained in the previous paragraph. More importantly, it would
include an exploration node in the system design, which could highly influence the measured
performance and energy consumption due to its inevitable computation intensity.

The mission considered in this study is executed on ROS1, which is in line with recent
work in academia (Albonico et al. 2023; Reichardt et al. 2013). Despite its widespread use in
academia, the documentation of ROS1 is also vaster at the time of this study. ROS2 has been
largely adopted in recent years (St-Onge and Herath 2022); however, ROS1 is still largely
used even in recent projects42 and will be supported until 2025. It is also reasonable to believe
that ROS1 will be active even longer than that (St-Onge and Herath 2022). Furthermore, the
studied algorithms are still used in ROS2, and their provided features have not changed. We
are aware that ROS2 counts on a more sophisticated network layer with built-in Quality of
Service (QoS)43, which could impact our results, especially those related to network traffic.
A replication of this study in the context of ROS2 is considered for future work.

In this studywe represent the Cloud towherewe do offloading via a laptopwithin the same
WiFI network of the robot. This may affect both the network-dependent and the time-based
metrics. A different network configuration, with a real Cloud service, relying on authen-
tication and packet routing could compromise the number and size of packets, and as a
consequence, the delay in receiving package responses. Additionally, the real-world network
can not be as stable as in the controlled environment of the experiments. This is a requirement
for a completely new experiment and should be addressed in future work. In this experiment,
we explicitly consider the measurements of the robot, which would not be directly affected
bywhere offloaded computation is executed, and the network latency has already been shown
as a critical factor.

42 https://dev.to/admantium/robotic-projects-reasons-for-switching-from-ros2-to-ros1-4ka9
43 https://design.ros2.org/articles/ros_on_dds.html
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Finally, we are aware that the specific configuration of theDWAalgorithm (i.e., the number
of velocity samples and the simulation time – see Table 2) might not be fully transferrable
to other conditions/setups than those used in this study. We partially mitigated this threat by
setting their values to the default ones of the gmapping ROS package (which in principles
should be covering themost recurrent needs) and to twice the default values (in order to collect
evidence about their influence on the dependent variables of this study). Experimenting with
additional configurations of the DWA algorithm is planned for future work.

9.3 Construct Validity

It can be noticed in the replication package that, even when all three tasks are executed on
board, there are still packages exchanged between the PC and the robot. These are the SSH
messages stemming from the automated execution of the mission launch file from the Robot
Runner. While their effect on the total number of network packets exists, it should be of equal
magnitude for all treatments and hence SSH messages were not filtered out during network
traffic measurements. Simultaneously, the offloading process also causes the exchange of
SSH messages because the machine tag in the launch file opens an SSH connection from the
robot to the PC. Such SSH messages were also not filtered out since they can be considered
as an overhead that the computation offloading process implies.

While the metrics regarding object recognition performance are divided into three parts,
namely, feature extraction, object detection, and transfer of results, in that order, there is an
image transfer prior to all these operations. Unfortunately, the metric expressing the delay
for image-receiving could not be extracted from the processed log files, yet it is important
and it should be taken into account, especially in real-time systems.

Navigation time is calculated as the delay between the moment when the navigation goal
is sent from the controller node, always executed on the robot, until the moment when the
same node receives the result from the navigation stack that the goal has been reached. The
initial idea was to break this metric into three parts, expressed as delay for goal sending, pure
navigation processing time, and delay for receiving results. However, the navigation stack
does not log the moment when the navigation goal is received, yet it logs the moment when
the first global path is found. For this reason, we decided to express total navigation time
as one metric, which does include the navigation delay that is undoubtedly more significant
when the navigation stack is offloaded.

The effects that a particular parameter configuration used in the primary experiment may
have on the obtained results and conclusions drawn are mitigated in the second round of
experiments, where the evaluation of parameter effects is performed.

Finally, object recognition CPU usage is higher when it runs locally, even though we con-
firm that the resources were never exhausted. Experiment results showed that when running
in hardware with more processing power and GPU, the package was able to extract image
features faster. This may be due to the package features being aligned to the GPU nature, or
even due to CPU multithreading. Therefore, other hardware configurations, such as onboard
GPU or a more powerful SBC could have a direct impact on the results. However, the results
are still sound for small and resource-limited robots, which are considered in this study.

9.4 ConclusionValidity

Themost severe threat regarding conclusion validity is the application of the parametric three-
way ANOVA test even when assumptions are not fulfilled. However, its non-parametric
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alternative, i.e., permutation test, is applied first and considered as ground truth, yet only
complemented with the three-way ANOVA execution for the sake of comparison. Despite
the violation of assumptions, three-way ANOVA always led to the same conclusions as the
permutation test, with differences in obtained values mostly seen in the second or third
significant digit. The non-parametric alternative to Welch’s t-test is always applied when
either of its assumptions is not fulfilled in the parameter effects evaluation. Significant two-
way and three-way interactions analysis in posthoc test of three-way ANOVA is always
performed with Bonfferoni adjustment.

Alternately, theMANOVA test (French et al. 2008) could be performed instead ofANOVA
for additional inspection of the effects that dependent variables have on each other. Due
to the very large number of 10 dependent variables, it would be very difficult to perform
MANOVA, thus we decided to perform a separate ANOVA test for each dependent variable
to only compare differences in means of different treatments of the main factors.

10 RelatedWork

In this section, we give a brief overview of prominent work in computation offloading in the
context of robotic systems. All work presented in this section focuses on cloud offloading,
in particular, as opposed to this study, where tasks are offloaded to a remote PC.

One of the first works to explore the benefits of computation offloading for robotic sys-
tems is by (Arumugam et al. 2010). The main motivation behind the proposed DAvinCI
framework is to facilitate the handling of a large environment, particularly for teams of het-
erogeneous robots, by dividing tasks among robots in multi-robot environments. The authors
provide only a proof of concept by offloading the FastSLAMalgorithmwhich they implement
as a map/reduce task in Hadoop. They do not provide details regarding the experiment per-
formed to prove their concept, and the onlymetric considered is execution time. The potential
effect of computation offloading on network latency and energy is not reported. (Shakhimar-
danov et al. 1985) conducted experiments to compare the ROS1 communication layer to the
ZeroMQmessaging library. In their study, theymeasure the communication latency on a pub-
lisher/subscriber pattern by changing parameters like the message size, message frequency,
and the number of subscribers. However, the study only considers message latency and does
not further investigate neither how this impacts the execution time of the ROS tasks nor how
this can reflect on the energy consumption of the robot.

(Wendt et al. 2018) study the communication protocol of ROS 1 among Edge containers.
They employ different container network modes and analyze their implications on ROS
deployments. The authors also propose a proxy server architecture for resolving the identified
problems, such as port assignment and bidirectional connection establishment over a bridged
container network. Despite the broad approach to the network layer, the study does not
consider any ROS packages specifically.

(Parra et al. 2021) propose a domain-specific language to facilitate a model-driven
approach to set up QoS profiles in the context of ROS-based systems. The authors also adapt
an existing framework to ROS2, enabling QoSmonitoring and constraints check. While their
work allows the authors to set up QoS profiles at design time, they do not perform QoS
measurements.

Themain task in thework of (Mukhandi et al. 2010) is real-timemoving object recognition
and tracking. Three modules in their system, namely, motion detection, object recognition,
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and stereo-vision, are offloaded to the server or computed locally, depending on the estimated
computation and communication, so that the real-time constraints are always satisfied. Vari-
ability of network conditions is a huge problem in real-time systems and it must be taken into
account when deciding whether to offload a module or not. The authors choose to offload
three tasks, as in this study, yet the tasks they offload are all concerned with computer vision.
Interestingly, the path planning model was not a subject of computation offloading and it
is always executed on board the robot in their system. However, the authors do not provide
details about this module whatsoever, thus it is not known why navigation is not a subject of
offloading.

Computer vision tasks are a very common subject of computation offloading. (Bistry
and Zhang 2010) propose a system where part of the image processing is executed on a
smart camera while the other part is offloaded to the cloud. They chose the SIFT algorithm
for object detection due to its efficiency, but its high computational effort is the motivation
for proposing a distributed architecture where the computation effort is shared between a
smart camera and the cloud. While sharing computation effort between the robot and the
remote machine can have potential benefits on resource and energy utilization, the approach
presented in this work requires the installation of a smart camera. Such a sophisticated sensor
most likely accounts for additional energy consumption overhead when attached to the robot,
which is not evaluated by the authors.

(Wu et al. 2012) have chosen another computer vision algorithm, SURF, to prove the
proposed concept. The main contributions of their work consist of a real-time transport
protocol intended for transmitting a large volume of image data to the cloud, as well as a
control law and scheduling strategy that can reduce the network communication overhead.

V-SLAM represents a combination of two commonly offloaded tasks: SLAM and com-
puter vision. This taskwas a subject of research conducted by (Basili et al. 2015). InV-SLAM,
themap is constructed according to camera images that the robot recordswhilemoving around
the environment. For precisemaps, these images have to be recorded at a very high frequency,
which also means that a large amount of data would be transmitted over the network if this
task is offloaded. At the same time, feature detection algorithms extract key features that need
to be compared with images in the database in real time, which requires high computation
power, but also large storage for the images. The conflicting requirements make the decision
to offload V-SLAM very difficult. The authors use the Oriented FAST and Rotated BRIEF
(ORB) algorithm for feature detection and the brute force matching algorithm to search the
images and construct the map, particularly optimized for the purpose of V-SLAM.

Researchers in the field of Cloud computing carried out studies related to ours. (Mukhandi
et al. 2019) propose an approach for securing ROS-based systems using MQTT communi-
cation. This allows the integration of robotic systems with other types of systems, such
as Internet of Things (IoT) devices/systems. The authors also perform real-world experi-
ments on the performance of the additional security layer. Despite a security layer being
a basic requirement in any system and is a strong candidate for further experiments, their
work branches ROS, while we seek to analyze a more transparent/non-invasive deployment
focussing on the official ROS distributions. (Masaba et al. 2019) propose the ROSCommuni-
cation Benchmarking Tool (ROS-CBT), a tool that simulates communication amongmultiple
robots. Their tool allows testing a multi-robot system before real-world deployment, and can
specifically evaluate communication link performance at run time. However, they do not con-
duct an empirical evaluation of their proposed tool via real robots. (Fukui et al. 2022) study
a multi-SLAM deployment with ROS working as a middleware. They also use Turtlebot3
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as the robotic platform in their experiments. Their work has a different purpose, considering
the communication among multiple SLAM nodes, instead of offloading the SLAM node into
the Cloud.

While cloud computing has been exploited in the robotics field for a decade now,
researchers are turning to other paradigms as well, such as Edge and Fog computing. The
main idea in thework of (Sarker et al. 2019) is to add Edge and Fog computing layers between
the robot and the cloud because these layers can provide the computation power of the cloud
yet theywould be located closer to the robot, thusminimizing network latency and variability.
Their motivation is to enhance the energy efficiency and operational performance of small
indoor robots with limited processing power. This is one of the few works that is centered
around power consumption and reports the power measurements in the experiment.

In very recent and cutting-edge work, (Chinchali et al. 2021) advocate that the process
of deciding when to offload a task and when not, given current network conditions, can be
modeled as a sequential decision-making problem. The decision problem is thus based on
the learning approach, using deep reinforcement learning. As a proof-of-concept, the authors
have used state-of-the-art DNNs to implement the offloading strategy for a computer vision
task and they report a performance improvement of up to 2.6 times.

11 Conclusion

In this study, we empirically characterized the impact of computation offloading strategies
on the performance and energy consumption of ROS-based systems. To this aim, we devel-
oped a robotic system that consists of three tasks that are considered good candidates for
computation offloading, namely: SLAM/localization, navigation, and object recognition. The
offloading strategies consist of offloading each of those tasks to a remotemachine. The exper-
iment is automated and orchestrated independently from the mission itself via a dedicated
experimental infrastructure. We complemented the main finding with an additional set of
experiments to evaluate the effect of different parameter configurations on the performance
and energy consumption of the measured robot.

The experiment results show that offloading object recognition significantly reduces the
resource utilization and energy consumption of the robot. Additionally, object recognition
is also more efficient when offloaded due to the availability of higher computation power
on the remote machine. However, the large volume of images exchanged over the network
when offloading object recognition requires compatible network bandwidth. The additional
experiment shows that the choice of image resolution and image frame is a sensible one.
Differently from object recognition, SLAM/localization and navigation can be executed effi-
ciently on board, as they do not utilize as many resources and energy as compared to object
recognition.

Several future research directions are reported in the Discussion section of this paper.
Other possible directions for future work include a replication of this study for comparing
the current results with the ones on ROS2. It is also important to evaluate further image
processing techniques, including those based on reinforcement learning and DNN would
also lead us to a deeper understanding of the current results. Object recognition could be
potentially performed more efficiently with other techniques. New hardware configurations
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are also important, for which we highlight the NVIDIA Jetson44 as the main SBC, which
might impact the results because a more significant workload could be run onboard.

Data Availibility Statement The datasets generated and analysed during the current study are available in the
following GitHub repository: https://github.com/S2-group/EMSE-2023-ros-offloading-tradeoffs-rep-pkg.
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