Empirical Software Engineering (2023) 28:100
https://doi.org/10.1007/510664-023-10350-7

®

Check for
updates

Improving hardware/software interface management
in systems of systems through documentation as code

Héctor Cadavid'2(® - Vasilios Andrikopoulos’ - Paris Avgeriou’

Accepted: 30 May 2023 / Published online: 6 July 2023
© The Author(s) 2023

Abstract

Context The management of Interface Control Documents (ICDs) has shown to be a major
pain point in the architecting processes of Systems of Systems (SoS).

Objective This work aims to improve on previously identified ICD management issues using
the documentation-as-code philosophy as a potential basis for a treatment, and in collabora-
tion with practitioners.

Method We conducted a Technical Action Research (TAR) study with a group of engineers
at the Netherlands Radio Astronomy Institute (ASTRON), in the context of the LOFAR
radio telescope. An additional research instrument, in the form of an expert panel, was used
to evaluate the transferability of the proposed treatment to alternative domains.

Results In-depth insights on previously identified interface management issues were gained.
Based on these insights a functional proof-of-concept was developed aimed at addressing
these issues following the documentation-as-code principles. In addition to receiving overall
positive reviews from practitioners and experts, further areas of improvement and transfer-
ability considerations for future work were identified.

Conclusions The proposed approach, which to our knowledge has not been explored before
in this context, is promising to address some of the recurring interfacing-related issues with
directed SoS in multiple engineering domains. This could be done mainly by enforcing
consistency and completeness on both text-based and formal elements of the ICDs, and
turning ICDs into single sources of truth for the architecting processes of large scale SoS.

Communicated by: Helene Waeselynck

B Héctor Cadavid
h.f.cadavid.rengifo@rug.nl

Vasilios Andrikopoulos
v.andrikopoulos @rug.nl

Paris Avgeriou

p-avgeriou@rug.nl

Department of Computer Science, Bernoulli Institute for Mathematics, Computer Science and
Artificial Intelligence, University of Groningen, Broerstraat 5, Groningen 9712 CP, Groningen,
Netherlands

Department of Informatics, Universidad Escuela Colombiana de Ingenieria, Ak 45#205-59, Bogota
111166, Cundinamarca, Colombia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10350-7&domain=pdf
http://orcid.org/0000-0003-4965-4243

100 Page2of 35 Empirical Software Engineering (2023) 28:100

Keywords System of systems - Interface control document - Documentation as code -
Technical action research

1 Introduction

A System-of-Systems (SoS) is by definition (Maier 1998; ISO/IEC 2019) a family of indepen-
dent systems that cooperate with each other to fulfill a common goal or provide capabilities
that each system cannot achieve individually. This kind of complex, large-scale systems is
particularly present in domains such as defense, space, aeronautics, and energy. Given the
strategic value of this kind of systems in these domains, a significant body of knowledge on
the SoS architecting processes has accummulated in the past three decades (Cadavid et al.
2020).

However, a series of recent studies have identified a particular aspect of these processes
that, despite having a significant contribution to major integration and operational issues, has
not been adequately explored (Cadavid et al. 2020): the interplay between the disciplines
involved in the architecting. This aspect was highlighted in particular through case studies
in the radio-astronomy domain (Cadavid 2021; Cadavid et al. 2022), where, among others,
the management of interfaces — the element where the various disciplines meet — was
identified as a major pain point in SoS architecting. Particularly, these studies suggest that
the details of these interface specifications, referred to as Interface Control Documents or
ICDs in the systems engineering jargon, when defined by one of the involved disciplines,
are often incomplete or not sufficiently clear for the other disciplines to work with. This, in
addition to the knowledge gap between the involved disciplines, appears to be a common
cause of misunderstandings and wrongful assumptions in the process (Sheard et al. 2018;
Cadavid et al. 2020).

With this motivation, the authors, in cooperation with a group of engineers of the Nether-
lands Institute for Radio Astronomy (ASTRON)!, conducted a technical action research
(TAR) study aimed at exploring alternatives to address these issues (Cadavid et al. 2022).
In particular, the treatment designed and evaluated through this TAR was tailored to the
aforementioned issues in the context of ICD management of hardware/software interfaces in
LOFAR, a large-scale, long-running, directed SoS designed and maintained by ASTRON.
Moreover, the documentation-as-code or docs-as-code (DaC) philosophy (Gentle 2017),
which encourages the creation and maintenance of technical documentation as rigorously as
software, was used as the basis for said treatment. There were two reasons for that. First,
the researchers identified that similar problems of unreliable documentation, in the context
of software systems, have been partially addressed in the past with DaC pipelines®. Second,
ASTRON practitioners had already been experimenting with a limited, ad-hoc version of a
DaC approach to overcome the limitations of human-only readable ICDs (e.g., automating
the generation of error-prone artifacts through an intermediate, machine-readable version of
the ICD’s technical specifications).

The contributions of this TAR study can therefore be summarized as follows. First, more
in-depth insights on the ICD-management related issues as identified in previous stud-
ies (Cadavid et al. 2020; Cadavid 2021; Cadavid et al. 2022) were gathered. Second, an
adaptation of the DaC philosophy, in terms of the features it should provide, is presented

1 https://www.astron.nl/

2 A collection of conferences, video casts and articles from practitioners that support this statement is available
at https://www.writethedocs.org/guide/docs-as-code/

@ Springer

https://www.astron.nl/
https://www.writethedocs.org/guide/docs-as-code/

Empirical Software Engineering (2023) 28:100 Page 30f35 100

as an alternative for managing ICDs in document-centered engineering process, particularly
in SoS. Third, a functional proof-of-concept of these DaC features is implemented, includ-
ing a software baseline for some of the features not supported by a regular DaC pipeline
(e.g., hardware-oriented extensions for markup languages, APIs for tracking dependencies,
etc.). Fourth, evidence of the merit of the proposed approach, together with points for its
improvement, is collected.

Given these encouraging outcomes and considering that these are specific to a sin-
gle domain, this paper reports an extension to the aforementioned TAR, published at the
16th European Conference on Software Architecture (ECSA) (Cadavid et al. 2022). In this
extended version of the paper, we explore (in addition to providing further details on the
original TAR study) their external validity. In other words, we investigate to what extent
the proposed treatment would address the ICD-management issues in application domains
beyond radio-astronomy. To this end, an expert opinion approach was used. The results of
the expert panel not only confirm the applicability of this adaptation of the DaC philosophy
in diverese domains such as aeronautics, space, ground transportation, energy and defense,
but also provide further considerations for its actual implementation. Furthermore, the opin-
ions of ASTRON practitioners and domain experts, when analyzed side by side also provide
valuable insights into the overall concept as an alternative for interface management where
and when pure model-based engineering processes are not convenient or applicable.

The rest of this paper is structured as follows: Section 2 summarizes the background and
the works related to this study. Section 3 presents the study design, and Section 4 answers
the stated research questions. Section 5 discusses the results of the TAR study in light of the
expert panel findings, while Section 6 elaborates on threats to validity and their mitigation.
Section 7 concludes the study and discusses future work.

2 Background and Related Work
2.1 LOFAR as a System-of-Systems - System Overview

Radio telescopes are scientific astronomy instruments used to study the radio frequency
portion of the electromagnetic spectrum emitted by astronomical objects (i.e., frequencies
ranging from 9kHz up to 300GHz). They allow to capture information from astronomical
objects very far away which can not be attained by traditional optical telescopes. However,
unlike optical telescopes, radio telescopes require a much larger area to achieve a usable
resolution.

LOFAR, one of the largest radio telescopes in the world, was created and is currently
maintained by the Netherlands Institute for Radio Astronomy (ASTRON), one of the world’s
leading research institutions in the area. Like other large-scale radio telescopes, LOFAR is
made out of a collection of geographically distributed, independently operated radio stations
that sample, digitize and filter data. Despite the operational independence of the LOFAR
stations, however, they are subordinated to a centrally-managed purpose, that is conduct-
ing large-scale space surveys. These stations, when working together, provide an effective
collecting area equivalent to 300,000 square meters (Beck 2015). Once the stations are coor-
dinated for this common goal, their collected data is processed at a central location and is
subsequently made accessible for use by astronomers.

Given the above, and according to Firesmith’s SoS profiling model (Firesmith 2010),
LOFAR could be classified as an ultra-large-scale, directed SoS with a high level of complex-

@ Springer

100 Page 4 of 35 Empirical Software Engineering (2023) 28:100

ity, made out of globally distributed, independently governed and operationally independent
systems. Furthermore, given the nearly 20 years spent on the architecting, design and devel-
opment of its two phases (LOFAR and LOFAR?2.0), this system could also be described as
a long-running one. Consequently, all the lessons learned in following a document-centered
approach during such a long time-frame, can provide valuable insights in ICDs management
for systems of the scale and complexity of LOFAR.

2.2 DaC—Documentation-as-Code

Inrecent years the software engineering community has been steadily shifting from traditional
documentation approaches using conventional word processors, wikis, or other collaborative
editing system to the DaC philosophy (Gentle 2017). With DaC, where documentation is
managed in the same way as source code in modern software projects, the community has
been aiming at improving well-known issues such as outdated or unreliable technical docu-
mentation. Consequently, DaC implies the use of lightweight text-based markup languages
(instead of proprietary formats and authoring tools) for the documents, so that they can be
managed with modern (and proven) source code-oriented version control systems like Git and
their related collaboration and automation tools. These automation possibilities mean, in turn,
that a DaC documentation pipeline can ensure, to some extent, the quality of the documents by
automatically validating or testing critical elements before their publication (e.g., the validity
of code snippets within the documents, broken links, etc.). Furthermore, a DaC pipeline can
also ensure uniformity and improve maintainability by using vendor-independent text-based
specifications (e.g., for diagrams) that can be automatically transformed into visual elements
that suit the organization’s conventions.

Although the most common target of this documentation philosophy is software artifacts
(e.g., APIs), it has also been adopted for higher-level documentation in industrial settings,
showing to be useful to improve problems of missing or outdated documentation (Thomchick
2018) by reducing the complexity of documentation maintenance (Ozerova et al. 2020).
Examples include the documentation of products in government systems (Lambourne 2017),
architecture documentation in transport systems>, and product engineering documentation®.
Moreover, despite this topic having received little attention by researchers (Rong et al. 2020),
it is worth highlighting the large community of technical writers working on it, with the near
2000 members of the DaC-global network in the Write The Docs® community as a prominent
example.

2.3 ICD Management Approaches

In the context of Systems Engineering, an ICD is a formal description of an agreement for
the interfacing between two or more systems. There are no conventions nor standards to
define these artifacts, as they usually differ from one company to another (Rahmani and
Thomson 2011), even within the same application domain (Louadah et al. 2014). However,
when it comes to the approaches to manage these artifacts, it is fair to say that the existing
ones fall somewhere between the two ends of the spectrum (Harvey et al. 2012): from pure
model-centric, i.e., following a model-based systems engineering process (MBSE), to pure

3 Deutsche Bahn - DB Systel - https://github.com/docToolchain/docToolchain
4 OpenGADES (a work in progress) - https://wiki.eclipse.org/OpenADx

5 https://www.writethedocs.org

@ Springer

https://github.com/docToolchain/docToolchain
https://wiki.eclipse.org/OpenADx
https://www.writethedocs.org

Empirical Software Engineering (2023) 28:100 Page 50f35 100

document-centric ones. On the pure model-based end, the overall process is centered on a
model of the system, from which documents like the ICDs are generated, when required, as a
report. Examples in the context of SoS can be found in industries such as astronomy (Karban
etal. 2018; Chiozzi et al. 2018), space (Di Maio et al. 2018; Vipavetz 2016), and defense(Tsui
et al. 2018). In these cases, with the exception of the defense industry, which has adopted the
Unified Profile for DoODAF/MODAF (UPDM), SysML is seemingly the de facto formalism
in model-based approaches (Japs et al. 2021).

On the other extreme, the document-centric one, ICDs are mostly textual documents cre-
ated with propietary word processing and diagramming tools, which evolve as interfaces are
identified, defined, documented, and modified over time (Wheatcraft 2010). This approach,
despite the growing popularity of model-based ones as a response to its limitations, is still
widely used in industry (Broy et al. 2021). This is evidenced not only by examples in the
literature in the aeronautics industry (Guo et al. 2020) and radio-astronomy (the LOFAR
case) (van Haarlem et al. 2013), but in the many ICDs publicly available online for other
domains®. Between these two extremes, there are approaches that neither follow an MBSE
process nor use text-based documents for the ICDs. Instead, these make use of computer
aided tools to model only the relationships between the parties involved in the described
interface (rather than the overall system), so that computations (e.g., evaluating the impact
of a change of a parameter) can be performed. Examples in the literature include the use of
spreadsheets to model ICDs in subsea production (Yasseri and Bahai 2019) and astronomy
systems (Borrowman and Taylor 2016); and UML for modelling the interfaces of cyber-
physical systems Rahmani and Thomson (2011).

3 Study Design

In this section we discuss the goals of this work and the methods adopted to achieve these
goals.

3.1 Study Goal and Research Questions

The goal of this study can be described following the design problem structure proposed by
Wieringa Wieringa (2014), Chapter 19:

Improve the ICD management practices

By adapting the DaC philosophy to this context,

Such that the managed ICDs lead to fewer erroneous assumptions and misunder-
standings while engineers from different disciplines work with them,

In order to reduce potential integration and operational issues caused by these
occurrences.

J

Addressing this design problem involves identifying a set of documentation-management
features (inspired by the DaC philosophy) that would deal with the issues that cause the said

6 Particular examples are available in domains like https://www.hhs.gov/guidance/sites/default/files/
hhs-guidance-documents/DDC_ICD_V020117_041019_v1_5CR_040919_RETIRED_2.pdf Healthcare,
http://www.in2rail.eu/download.aspx?id=40938a15-24c4-427a-9¢29-681 1fabebaef Transport systems,
http://www.h2020-ergo.eu/wp-content/uploads/ERGO_D1_3_InterfaceControlDocument_V2.2.
pdfAerospace/robotics, and https://eoepca.github.io/master-system-icd/current/#mainOIDCAstronomy

@ Springer

https://www.hhs.gov/guidance/sites/default/files/hhs-guidance-documents/DDC_ICD_V020117_041019_v1_5CR_040919_RETIRED_2.pdf
https://www.hhs.gov/guidance/sites/default/files/hhs-guidance-documents/DDC_ICD_V020117_041019_v1_5CR_040919_RETIRED_2.pdf
http://www.in2rail.eu/download.aspx?id=40938a15-24c4-427a-9e29-6811fabebaef
http://www.h2020-ergo.eu/wp-content/uploads/ERGO_D1_3_InterfaceControlDocument_V2.2.pdf
http://www.h2020-ergo.eu/wp-content/uploads/ERGO_D1_3_InterfaceControlDocument_V2.2.pdf
https://eoepca.github.io/master-system-icd/current/#mainOIDC

100 Page 6 of 35 Empirical Software Engineering (2023) 28:100

assumptions/misunderstandings. In addition to a general description of these issues, concrete
instances of them, i.e., specific symptoms within actual ICDs, are necessary in order to elicit
requirements of these features. Given this, the following research questions are proposed as
the means to address the design problem:

RQ1 What are the issues with ICDs management that cause erroneous assumptions and
misunderstandings when working with these documents in SoS?

RQ2 What are the symptoms of the previously identified ICD-management issues within
a typical hardware/software-oriented ICD?

RQ3 What are the features required for a DaC-based ICD management approach given
the identified ICD elements and management issues?

RQ4 What is the design of an ICD management pipeline that provides such features?

RQ5 To whatextent can the designed ICD management pipeline address the identified [CD
management-related issues in the context of radio-astronomy scientific instruments?

RQ6 To what extent can the proposed ICD management approach be transferred beyond
the radio-astronomy domain, to other application domains?

As described in the introduction, the ICD-management related issues identified in pre-
ceding studies (Cadavid et al. 2020; Cadavid 2021) are among the main motivations for this
study. However, as said studies had a broad scope, i.e. they looked at cross-disciplinary issues
in general, the first research question (RQ1) is aimed at gaining more details on issues related
to ICD-management. The second research question (RQ2) is aimed at identifying specific
symptoms of the issues identified by RQ1 (i.e., what these issues look like in actual ICDs)
as the base for eliciting requirements for the features that would address them. As hard-
ware/software interfaces are among the most prominent (and critical) ones in systems like
LOFAR, this question is focused on ICDs with this kind of interface definitions. The third
research question, in turn, aims to define a set of features for an [ICD-management pipeline that
would prevent the identified issues to occur by addressing their related symptoms. Research
questions four (RQ4) and five (RQS5), on the other hand, are aimed at creating a design for
the proposed features and at evaluating its applicability in the LOFAR system, respectively.
Finally, research question six (RQ6) seeks to evaluate to what extent the identified features
could be transferred to domains beyond LOFAR’s radio-astronomy.

3.2 Research Methods

The following elaborates on the two main research methods adopted in this study, namely
Technical Action Research and Expert Panel, to address the six research questions previously
described.

3.2.1 Technical Action Research

The first five research questions are addressed through the TAR method (Wieringa 2014,
Chapter 19), as these require to investigate an experimental treatment (a DaC approach for
ICDs management), to help a client with previously identified problems (ASTRON) and learn
about its effects in practice. In particular, these questions were addressed through the phases
of diagnosing, action planning, action taking, and evaluation of the TAR. In the last phase of
the TAR, namely the specifying learning phase, the lessons learned from this study (which
reflects on the first cycle of the action research), and their implications in future iterations of
the study and the proposed documentation pipeline, were collected and are reported in the
Discussion section of the paper.

@ Springer

Empirical Software Engineering (2023) 28:100 Page 7 of 35 100

The following elaborates on how the first four activities of the TAR addressed RQ1 to
RQ5 and the participants involved in them.

Diagnosing

This phase of TAR is focused on exploring and extending the current understanding of ICD
documentation problems identified in Cadavid (2021). Previous to this phase, the general idea
of adopting DaC for ICD management was pitched to the potential participants. Subsequently,
this phase used a virtual focus group with the ASTRON practitioners; a focus group is a qual-
itative research method to collect data on a given topic through a group interaction (Kontio
et al. 2008). The discussion points for the focus group were derived from the relevant find-
ings of the aforementioned previous study (Cadavid 2021). The actual focus group session
was geared toward the collection of more context and details on ICD-management issues
experienced in the LOFAR/LOFAR2.0 project in order to answer RQ1.

Action planning

This phase was focused on identifying, discussing, and choosing solutions to improve
ICD-management related issues experienced by ASTRON practitioners. Exploring and dis-
cussing alternative solutions required, in the first place, understanding how the identified
ICD-management related problems are manifested within an actual ICD, i.e., what are the
symptoms of said problems (RQ2). As a guideline for ASTRON practitioners to properly
identify said symptoms, and towards avoiding e.g., open-ended questions without enough
context or exhibiting bias towards the particularities of a specific ICD, a generic ICD template
with the most representative elements of a hardware/software oriented ICD was created. This
template was annotated collaboratively by one of the researchers and a group of practition-
ers (see Table 1) to highlight specific symptoms of the issues identified in the diagnosing
phase, e.g., particular elements of a given type of hardware elements that are often missed
despite being key (RQ2). It is worth noting that this template was created by identifying the
common elements between the ICDs provided by ASTRON engineers and a curated set of
publicly available ICDs (available in the replication package’) that were (1) created under a
document-centered process, and (2) focused on hardware-software interfacing descriptions.
Finally, to address RQ3, researchers, in cooperation with one of the practitioners, defined a
set of features that the DaC pipeline should provide in order to address the identified issues,
using their particular issue symptoms to gauge their applicability in the process.

Action taking

Here the solutions selected to improve the identified issues are implemented. Therefore, in
this phase the features identified in the previous phase were turned into an actual design that
integrates existing DaC tools with any additional custom artifacts required by said features.
This design is the answer to RQ4, and was implemented as a functional proof-of-concept
that practitioners can try out and evaluate.

Evaluation

In this phase, the effects of the action are captured through different data collection meth-
ods (Petersen et al. 2014). This phase addressed RQS by exploring the efficacy and fitness
for purpose of the proposed documentation management approach to address the identified
issues during the diagnosing phase. We chose to perform a single case mechanism experi-
ment, an evaluation approach that involves testing the effectiveness of a treatment on a single
case by examining the interaction between a designed artifact (such as a new product or

7 https://figshare.com/s/671cc7450d82a6b8e2987

@ Springer

https://figshare.com/s/671cc7450d8a6b8e2987

100 Page 8 of 35 Empirical Software Engineering (2023) 28:100

intervention) and the specific problem context that it is intended to address (Wieringa 2014,
Chapter 18). That is to say, the experiment involves evaluating the impact of the treatment
on a single individual or group, and examining the mechanisms through which it produces
its effects. In our case, the experiment was conducted with the group of ASTRON engineers
described in Table 1, and was used to evaluate the impact of the proposed ICD-mangement
features on the issues identified in RQ1.

To this end, practitioners were asked to carry out a number of ICD management activities
using an online instance of the functional proof-of-concept created in the action taking phase.
In the process, one of the researchers provided help with the process through Slack. Once
the activities have been performed, practitioners were asked to make an assessment of the
applicability of the treatment to address the identified ICD-management related issues, and to
ellaborate on it. This assessment, along with the observations or issues that emerged through
the Slack interaction, were analyzed to answer RQS5 and followed through in the consequent
learning specification phase. As the single-case experiment was tailored to the results of the
first four research questions, the scenarios used for this evaluation will be further explored
in the results section.

Participants and timeline

A total of ten people participated on the TAR part of the study, which took place between May
2021 and the beginning of May 2022: two researchers and eight ASTRON practitioners. One
of the researchers actively participated in the design and development activities during the
action planning and action taking phases; both researchers took part in the research activities,
designing the research instruments, and drawing lessons from the action evaluation phase.
The eight participants on the ASTRON side, on the other hand, were free to decide in which
phase of the study they will participate. As a result, they participated in different phases of
the study, as described in Table 1.

3.2.2 Expert Panel

The sixth research question (RQ6) was addressed through the expert opinion instru-
ment (Wieringa 2014, Chapter 5). This instrument entails a panel of experts evaluating the
design of an artifact by predicting the effects it would have, and how it would interact with
potential problematic scenarios imagined by them. In our case, the functional description
of the proposed features for the ICD management approach was used as the design to be
evaluated. Moreover, the panel was organized by focusing the experts’ predictions on the
transferability of the TAR findings to other application domains.

In addition to ensuring that panel members have ample experience with ICDs and are thus
fit-for-purpose for this panel, multiple resources were provided to them as the means to allow
them to develop a proper understanding of this functional description. More specifically, in
addition to making available our previous work (Cadavid et al. 2022), a series of introductory
videos for the proposed features were produced; these videos included a series of screencasts
of the functional prototype, using the features defined in RQ3 for creating and manipulating
a fictional ICD that included hardware/software interfaces. Furthermore, the experts were
given access to the ICD management platform developed in the TAR study to further explore

the source documents and ICDs generated in the fictional case®.

8 Both introductory material and case sources are included in the replication package available at https://
figshare.com/s/671cc7450d8a6b8e2987

@ Springer

https://figshare.com/s/671cc7450d8a6b8e2987
https://figshare.com/s/671cc7450d8a6b8e2987

Empirical Software Engineering (2023) 28:100 Page 9of 35 100

Table 1 Practitioners involved in the different phases of the TAR study, and when such phases took place

ID Rolein LOFAR D AP AT EV SL
project
Pl Researcher v
P2 Software Engineer v v v
P3 RF Electronics v v
Engineer
P4 Senior Software v v v
Engineer
P5 Head of Software v
Development
P6 Senior Software v
Engineer
P7 Software Engineer v v
P8 System Engineer v v
Rl N/A v v v v v
R2 N/A v v v
May 2021- Jun Aug 2021- Jan 2022- Mar 2022- Apr 2022-
2021 Jan 2022 Mar 2022 May 2022 May 2022

P1, P2 ... PS: practitioners on the ASTRON side. R/, R2: external researchers. Phases: (D) Diagnosing, (AP)
Action Planning, (AT) Action Taking, (E) Evaluation, (SL) Specifying Learning

In terms of data collection, we created a questionnaire in order to get the experts’ views
about the applicability of the proposed documentation management approach in domains
beyond radio-astronomy. The questionnaire included a section for each proposed feature
with the aforementioned introductory material referenced from it, two likert-scale questions,
and one open-ended one, as follows:

Q1 To what extent could [this feature] for ICDs management be transferred to one or
more of the application domains/industries you have experienced? [A six-point likert
scale]

(2 In your opinion, to what extent [this feature] for ICDs management would improve:
[A six-point likert-scale for each related issue to be improved]

03 Please elaborate on your answer to the questions above. [An open-ended response]

The selection process of potential candidates for the panel was two-fold. First, we sent
invitation letters through email and LinkedIn to the authors of the publicly available ICDs
used in the Diagnosing Phase of the TAR study (when these were disclosed in said docu-
ments). A total of twelve invitations were sent to this group, from which we got four positive
responses. Second, we sent invitation letters to the participants of our previous practitioners
survey (Cadavid et al. 2020); these participants were already identified as engineers with
experience in the architecting of cross-disciplinary Systems-of-Systems. In this case, 50
invitations were sent and we received 8 positive responses; thus we reached an overall total
of 12 experts. As illustrated in Table 2 and Fig. 1, the 12 panel participants include staff
members of governmental and intergovernmental organizations, research and development
centers, and the private sector. Together, they represent significant experience (a mean of
23.4 years) in the domains of space, defense, ground transportation (e.g, railway systems),
energy, aeronautics, logistics and business. All of them reported experience with ICDs by

@ Springer

100 Page 10 of 35 Empirical Software Engineering (2023) 28:100

Table 2 Current affiliation and years of experience in the industry of the panel participants

ID Current affiliation Qualifications Experience (years)
El Software Engineering Institute (USA) Bachelor 19
E2 DEMCON (NL) Bachelor 23
E3 European Space Agency - ESA (EU) PhD 20
E4 Independent consultant (USA) Master (multiple) 50
E5 Webasto Group (DE) Master 9
E6 Software Engineering Institute (USA) PhD 39
E7 Chartered engineer (UK) Master 30
E8 European Space Agency - ESA (EU) PhD 15
E9 Software Engineering Institute (USA) Master 36
E10 NASA (USA) PhD 15
Ell Warsaw University of Technology (PL) Master 5
E12 Software Engineering Institute (USA) Bachelor 20

creating/maintaining them (11 out of 12) or using them as a reference (8 out of 12), or even
reverse-engineering them when no ICDs were available (1 out of 12).

4 Results

The findings of both the TAR and the expert panel studies are presented in the following,
organized by the research question that they are addressing.

3

Intersection

size
0

Space I L]

Defense
Ground_transportation I -
Energy
Healthcare I
Aeronautics

Logistics

Business

) |

0

Se“i sizqe
Fig. 1 UpSet diagram of the application-domain expertise as declared by the panel participants. On the
horizontal axis, the areas of expertise of each participant. Multiple participants with the same areas of expertise
are shown in a single column (where intersection size > 1). On the vertical axis, a representation of each
application domain within the expert panel

@ Springer

Empirical Software Engineering (2023) 28:100 Page 11 0f 35 100

4.1 RQ1: What are the issues with ICDs management that cause assumptions and
misunderstandings when working with these documents in SoS?

The analysis of the results of the virtual focus group, conducted for the Diagnosing phase
of the study (as described in Section 3.2), led to a wide variety of interface-management
related issues described below. However, although said focus group discussion was geared
specifically towards this kind of issues, a number of issues not directly related to interfacing,
but to the design decisions of the systems behind the interfaces, emerged from it. These may
be out of the scope of the TAR study (and hence will not be considered in the following TAR
phases), but they are important for the results discussion; so, they are also described below.

4.1.1 Issues Related to ICD Management

Lack of clarity and cross-domain understandability (CLA) an ICD often contains terminology
that may be clear for the people involved in its original version, but years later it could be
interpreted differently. This is also the case when multiple disciplines are involved in the
process (e.g., hardware and software engineering), as in many cases there are similar terms
between these disciplines with a different meaning.

Incompleteness (COM) Some critical details, particularly in the description of the hardware-
side of the interfaces, are often omitted in the ICDs. This could lead to risky assumptions, or to
error-prone informal information exchange. Additionally, time-behavioral and state-related
aspects of the interfaces are rarely included in the ICDs. In particular, scenarios that lead to
a failure state are important to include, although it is not always feasible to describe all of
them in an ICD.

Lack of uniformity (UNI) The lack of uniformity between ICDs, in the context of an SoS
where many interfaces are usually involved, lead to confusion and misinterpretation.

Lack of timely update notifications (UPN) Changes in ICDs are not announced but rather
discovered by people while working with them.

Duplicated efforts (NDE) Interfacing-related information is duplicated across ICDs and the
artifacts derived from it, e.g., intermediate ad hoc machine-readable formats and other tools
created to support the development process. The time and effort required to keep in sync
all these information sources is substantial and it could instead be invested in the actual
engineering/development activities of the interfaces.

4.1.2 Issues Related to Subsystem Design Decisions

Incomplete designs the physical/logical interfaces sometimes lack elements required by one
of the involved parties. A prominent example of this, is the lack of key monitoring points
(memory locations where specific hardware values can be monitored) on the hardware side,
required on the software for proper control of the system state.

Difficult-to-use design some of the interfacing elements required by one of the parties, partic-
ularly to access hardware at a low level, are designed in a way that makes their use difficult.
For instance, when the hardware design defines multiple monitoring points covering the
same area. This can be particularly difficult to handle on the software side given the potential
contradicting values due to e.g., timing issues when checking these points.

Unbalanced abstraction levels the software (or firmware) layer that provides access to the
hardware at a low level (e.g., at a register level) does not always have the right level of
abstraction. On the one hand, too little abstraction leads to software tightly coupled with the

@ Springer

100 Page 12 of 35 Empirical Software Engineering (2023) 28:100

hardware, with most of the complexity pushed out to the software side. On the other hand,
too high-level abstraction could negatively impact the flexibility that the software can give
to the hardware.

4.2 RQ2: What are the Symptoms of the Previously Identified ICD-Management
Issues within a Typical Hardware/Software-Oriented ICD?

The following sub-sections describe the particular symptoms identified through the collab-
orative annotation of a generic ICD template distilled from real hardware/software-oriented
ICDs to be used further in the TAR, as described in the Action Planning phase in Section 3.2.
These symptoms can be categorized in three types: general ones, specific to a given ICD
section, and specific to a given kind of hardware/software interface; the types are elaborated
in the following sub-sections.

4.2.1 General Symptoms

The ‘general symptoms’, identified through the ICD template, correspond to those that do not
make reference to a particular section of an ICD, but to the overall document or management
process. As a symptom of the lack of timely notifications (UPN), it was pointed out that
some people held the naive belief that once an ICD has been written, it is done. Therefore,
as ICDs are in fact living documents, they need to be kept under document control, amended
when references change, amended or modified when referred implementations change and
so on. As a symptom of the duplicate efforts (NDE) on ICDs maintenance, it was mentioned
that there seems to be a tendency of reiterating information that is written elsewhere. As
this is something that is both cumbersome and error-prone, there is the need for a central
knowledge system, (e.g., a lexicon shared throughout the entire organization) that can be
queried to supply information that could otherwise be redundant or outdated.

4.2.2 Symptoms Specific to ICD Sections

The following lists the sections commonly included on ICDs, and the symptoms specific to
them, as identified by the participants, and mapped to the issues identified in Section 4.1.1.

Purpose/scope, Audience One-sided description of the interface, which leads to unbalanced
views, or to the use of language that is too specific for one of the involved disciplines (CLA).
Referenced documents This section, when not omitted, lacks ready-to-open links to the spe-
cific documents referenced (NDE).

Abbreviations This section is often omitted (COM). Abbreviations often overlap with ones
from other disciplines, or even change overtime (CLA).

System overview/global description Too much boilerplate content instead of references to
relevant program-specific ICDs and documents where deviations from standards are to be
expected or where special implementations of protocols are used NDE).

Related requirements Lack of integration with requirements management platforms (COM).

4.2.3 Symptoms Specific to Particular Kinds of Interfaces

The following describe the symptoms identified by the participants along three kinds of
hardware/software interfaces that they focused on:

@ Springer

Empirical Software Engineering (2023) 28:100 Page 130f35 100

Interfaces between embedded software/firmware and hardware through direct access to
peripheral registers

In this kind of interface the software performs operations on the hardware by modifying some
of the peripheral’s registers values. Likewise, the status can be evaluated by reading other
registers values. These registers, consequently, are known as the control and monitoring points
of the hardware. The participants emphasized that the ICD user on the software/firmware side
needs a register map describing the bitfields (groups of bits with meaning on the hardware
side). For this type of interface, participants enumerated the symptoms described in Table 3.

Interfaces between software/firmware and hardware, through physical, low-level data links
In this kind of interfaces, hardware and software components are connected through a datalink
bus. In this way, the hardware is operated and its status is evaluated by sending and receiving
messages encoded in the ‘payload’ segments of the data frames defined by the datalink
protocol, as illustrated in Fig. 2. Therefore, the ICD user on the software/firmware side needs
to know (1) which values should be given for the datalink protocol parameters to send the
payload to the hardware end, (2) the possible values sent from the hardware side, and (3)
their meaning. For these elements, the internal structure of the payload should be defined
using bitfields or textual values depending on the selected encoding. Prominent examples
of datalink protocols include asynchronous ones like UART and Ethernet, and synchronous
ones like I2C, SPI, and CAN. Table 4 lists the symptoms pointed out by the participants as
common when working with this kind of hardware/software specifications.

Interfaces between hardware and software, through higher-level Network and Transport
protocols

In this kind of interfaces, hardware is accessible through protocols defined on top of layers
of higher-level network and transport control, such as TCP/IP or UDP/IP. As these base
protocols require less custom configuration, and most platforms already support them, the
information provided to the ICD user on the software side is limited to the payload structure,
as shown in Fig. 3. Examples of this kind of interface include protocols that work on top
of TCP/IP like OPC-UA, MQTT, CoAP. Table 5 lists the symptoms as identified by the
participants.

Table 3 Particular symptoms of the ICD-management related issues, identified by ASTRON engineers, for
interfaces between software/firmware and hardware through registers

Issue(s) Symptom

COM, UNI Missing hardware-related details:
e values (registers’ default value)
e Operations atomicity
e Need for bit alignment
o Atomicity of byte writings
e Mandatory timeouts for hardware operations
o Registers’ signedness
o Filler bits/bytes purpose

NDE Register offsets scattered cross ICDs and source code

@ Springer

100 Page 14 of 35 Empirical Software Engineering (2023) 28:100

s N N

HARDWARE MCU/PLC/SoC
UART,

I

J CAN,
ETHERNET (RAW)

Data-link
interface/
bus

Data-link protocol

Payload field

Fig.2 Typical hardware/software interface through a data-link bus. Input and output operations on the hardware
are performed by sending commands and parameters (which follow a custom, commonly agreed format and
semantics) through a physical hardware communication protocol

4.3 RQ3: What are the Features Rrequired for a DaC-Based ICD Management
Approach to Address such Issues?

In the Action Planning phase, four features were defined addressing the issues identified in
the previous phase:

Documentation-oriented quality gates QC enforcing certain minimum quality criteria for the
ICDs through centrally-managed rules. This involves automating the publication process of
the ICDs through a CI/CD platform, with publication rules (i.e., quality gates) tailored to the
context of technical documentation.

Embedded machine-readable-formalisms F integrating existing formalisms for the descrip-
tion of technical elements within ICDs, particularly hardware-oriented ones. Such for-
malisms, when embedded in an ICD, can be automatically transformed into human-readable
content (e.g., sections within the generated documents) and other artifacts (e.g., libraries).

Table 4 Particular symptoms of the ICD-management related issues, identified by ASTRON engineers, for
interfaces based on low-level data links

Issue Symptom

COM Missing protocol/encoding related details:
e Endianness
o Filler bits/bytes specification
e Signedness
e Presence or absence of acknowledge (ACK) messages
e Time to completion
CLA Text that contradicts information on tables (single source of truth)

NDE Command descriptions that require a manual (error prone) mapping of each parameter index
into a certain byte/bit position when working on the software side. Error-prone re-mapping
when a parameter update takes place.

@ Springer

Empirical Software Engineering (2023) 28:100 Page 150f35 100

s s 2

HARDWARE MCU/PLC/SoC

IP-BASED

L A J

Data-link protocol (e.g., Ethernet)

Network protocol (IP)

Payload field

Transport protocol (TPC/UDP) |

Fig. 3 Hardware/software interface through a higher-level communication protocol. In this interface, input
and output operations are performed by encoding commands and parameters on an existing communications
protocol (in the example, TCP/UDP)

Document macros for automatic content generation M providing custom extensions for
the selected lightweight markup language used for ICD definition allowing engineers and
technical writers to define where and how content will be automatically generated within an
ICD.

Centralized-documents tracking DT keeping track of the publication status of the ICDs within
the project/organization and of the dependencies between them. As this feature cannot be
fully implemented through the version-control system (e.g., Git) itself, it entails creating a
custom platform that would work in tandem with/on top of the CI/CD platform.

Table 5 Particular symptoms of the ICD-management related issues, identified by ASTRON engineers, for
interfaces based on high-level network and transport protocols

Issue Symptom

COM Missing protocol/encoding related details:

e [s timing relevant

o Signedness

o Endianness

e Lack of communication examples

o Timeouts on the hardware side

e Undocumented incompatibility with higher-level protocol
NDE

e Like in the monitoring and control registers described in the previous section, network and
transport protocols also involve the mapping of byte/bit positions, but in this case, within
the protocol payload. Consequently, re-mapping when a parameter update takes place is an
error-prone process.

e Restating information within the ICDs that is available somewhere else (and that should be
referenced instead).

@ Springer

100 Page 16 of 35 Empirical Software Engineering (2023) 28:100

Table 6 describes particular symptoms of the issues identified through RQ1 and RQ2 and
how the proposed features plan to address them.

4.4 RQ4: What is the Design of an ICD Management Pipeline that Provides the
Identified Features?

In the Action Taking phase, a solution was implemented as a functional proof of concept
of a DaC pipeline instantiating the features identified in the previous phase. The pipeline is
depicted in Fig. 4, and is described as follows. First, the writing/editing process of an ICD
source document (1) is supported by any text editor since a text-based lightweight markup
language is being used. For the proof of concept, Asciidoc was chosen as the lightweight
markup language considering (in addition to its extensibility through custom macros) the
variety of environments it can be interpreted on” and the flexibility this could provide to
the solution on this, or follow-up cycles of the study. The collaboration between writers is
consequently mediated through a version management system like Git. Once a new ICD is
ready for publication, the authors tag it as an official version. When such a tag is set, a CI/CD
platform, linked to the ICD repository (2), launches the publication process using a centrally
managed (at the project/organization level) building environment (3) that validates the min-
imum quality criteria in the process through Documentation-oriented quality gates (QC).
This building environment, in turn, includes a number of custom extensions to enable the
ICD-related Document macros (M) and in particular the ones that deal with the Embedded
machine-readable formalisms (F). The events generated by the previous steps are reported
to an API (4) as the means to have Centralized document tracking (DT) of the overall
documentation status, and to provide context information to the building process of other
documents (e.g., when dependencies between documents are involved).

Finally, the documentation and other generated artifacts are kept as the single source of
truth for each interface by storing them in a canonical location (i.e., a URL accepted as
the official one). With these locations the documentation users (e.g., software developers),
besides accessing the latest version of an ICD, can integrate automated checks in their devel-
opment environment (5) to verify that software artifacts are up-to-date with respect to the
documentation they were generated from. The documentation management platform (6), on
the other hand, has two purposes in the above process. On the one hand, for engineers or
technical writers to have access to easy-to-read information about errors or failed quality
gates during the ICD publication process. On the other hand, to serve as a dashboard that
provides an overview of the overall documentation status.

In the following, the elements of the ICD-management pipeline that needed custom tools,
tailored to suit the features identified in the previous section (RQ2), are described.

4.4.1 Quality-Gates and Markup Language Extensions

There are many tools that can perform a wide variety of quality checks in software source code
within a CI/CD platform. However, when it comes to the source code of documentation, that
is, markup language documents, quality criteria like the one defined in the Action Planning
phase (RQ2) require extending the interpreter of such a markup language so that the criteria
are evaluated while the document is being processed. These extensions (e.g., the custom
macros (M)) need not only to properly report their status during the building process (e.g.,

9 For example, in front-end or backend, using https://github.com/asciidoctor/asciidoctor.jsAsciidoctor.js and
https://github.com/asciidoctor/asciidoctorjAsciidoctorJ respectively.

@ Springer

https://github.com/asciidoctor/asciidoctor.js
https://github.com/asciidoctor/asciidoctorj

Empirical Software Engineering (2023) 28:100

Page 17 of 35 100

Table 6 ICD-management issues, their observed symptoms, and the identified associated features

Issue Symptom DaC feature
CLA Overlapping/colliding abbreviations and (M) macros to (1) insert references to a
terms. centralized glossary, and (2) to generate a

Unclear language.

Broken links.

COM Missing details: on specifications for

UNI reading/writing from/to a peripheral (e.g.,
endianness, R/W rights, update rates,
etc.).; on atomicity (e.g., which operations
are atomic); on timing (e.g., commands
timeout, ack signals timeout, etc.)

UPN ICDs should be amended when referenced
documents are updated.

Changes are discovered rather than
announced; outdated documentation.

NDE Error-prone process of building a
command’s payload, (e.g., mapping
parameter bits within a given index).

Information replicated over multiple ICDs
(no need to reiterate what is written
elsewhere).

Need for the right balance between
documentation maintenance efforts and
actual engineering/development ones.

glossary section within the document
accordingly. (QG) for undefined
abbreviations

(QG) number of violations to the writing
style rules defined by the organization

(QC) Broken links metric.

(F)(M) Support for hardware-oriented
formalisms and (QG) to validate the
completeness of instances of such
formalisms

(DT) Identify and notify when a document
has a more recent timestamp than the ones
that referenced it

(F) Support for hardware-oriented
formalisms and (M) macros for the
generation of software artifacts (e.g.,
headers) and human-readable sections
from the machine-readable formalisms.
Based on this, and the (DT) platform, the
artifacts’ checksum (e.g., headers)
previously generated by the documentation
pipeline, and currently used in the
development environment, could be
automatically compared, during the
(software) building process, against the
most recent one (available online)

(F) Support for hardware-oriented
formalisms and (M) macros for the
automatic generation of software artifacts
(e.g., library headers) and human-readable
sections from the machine-readable
formalisms

(DT) tracking of the multiple versions of an
ICD (sources and published builds) and
(M) for referencing versions of other ICDs,
reliably, through the centralized document
tracking platform, and generating
references section automatically

(F) Support for hardware-oriented
formalisms and (M)macros for the
generation of software artifacts (e.g.,
headers) and human-readable sections
from the machine-readable formalisms.

@ Springer

100 Page 18 of 35 Empirical Software Engineering (2023) 28:100

‘J Define conventions/quality gates
D B 4
vl |
Checkdoc. -----oooooo [T - ,
Managers/ status. : v '
Architects .
—> [7 b L.
®e i Po v
L —use- = S=———
— _Custom Asciidoc custom
Docume%nion bu”dltrc]gllll?i?gmg extensions
Get info on management
documentation platform
depe.nden(:les, Building/validation /\
versions, tools
glossaries, etc. PuIIs
Generated ICDs/

@ artlfacls
v aﬁ—»

\
-
Tec‘ucal ICD ICD reflositary | Documentation ~ Quality gates y
wrifers building assessment
I:al CIICD platform
AccessICDs | 5
Local
writing/editing
process
Pull artifacts/

§ Check artifacts status
Developer

Fig.4 General overview of the ICD management pipeline

distinguishing between failed quality criteria and syntax errors) but also to work in tandem
with the API ((4) in Fig. 4). For this reason, a toolkit for building extensions with such
features was created on top of the AsciidoctorJ!? platform, and used to build the artifacts
depicted in Fig. 4 (3). More details are reported in the project repository!!

4.4.2 Centralized Document Tracking

For the proposed DaC-based ICD pipeline, the generated documents are expected to become
the single source of truth for all the development and testing tasks conducted on the inter-
faces described by it. Therefore, keeping track of the official documents and the sources
from which they were generated is key to their proper evolution over time. On top of that,
an ICD is often dependent on a specific version of other ICDs it is based on, and hence
the validity or consistency of the former could be affected by changes in the latter. Given
this, a documentation-status tracking API was implemented for the proposed documentation
pipeline. This API, working in tandem with the aforementioned building components, keeps
track of the locations of the documents and artifacts generated from each ICD, their depen-
dencies, and their corresponding sources. Furthermore, it updates the status of the documents
given the events captured by it as illustrated in Fig. 5, which, in turn, can be accessed through
its front-end application ((6) in Fig. 4). More details are reported in the project repository'?

10 https://docs.asciidoctor.org/asciidoctorj/latest/
I hitps://github.com/hcadavid/asciidoc-icd-extensions
12 https://github.com/hcadavid/documentation-dashboard

@ Springer

https://docs.asciidoctor.org/asciidoctorj/latest/
https://github.com/hcadavid/asciidoc-icd-extensions
https://github.com/hcadavid/documentation-dashboard

Empirical Software Engineering (2023) 28:100 Page 19 0f 35 100

0,; ﬁl[ﬁ%mgm'l) Published ICDs
r Tag(v1.5)

icd-a — ...ficd-a/vl.1

Document status tracking API
N
(7N:) il h H Q‘R
(\icd-a ‘ {oifoioil
_/ J
vil O O O—h
sr¢) refs. build | Jicd-alvl5
J :
“»ovl5 O 0O OHh
r src refs. buil}d_w A h
g e h H A0
N) 10101011
(icd-b 1 ‘
-7 J {

1

»on.s sfc rgs. bﬁ]d—ﬂ ...Jicd-b/v0.5
— N 5 h
| 7 % foof
fofotolt
Q—JT%Tag(vO.S)

icd-b

Document states transition J

. submission failed

T
successful update
successful update

submission successful

dependent document
updated.

Published

successful update

Revision A
required
successful update failed update
Pending updates
updated with the same

referenced doc. version

Fig.5 The diagram of the bottom depicts the status transitions of the ICDs indexed in the centralized document
tracking API. On the top left, the information indexed for each ICD is shown: (src) sources code, (refs)
references to other ICDs, (build) canonical location of each version’s generated document. Each published
ICD (on the top right), contains the generated documents, artifacts, and their corresponding unique checksum.
In this particular case, document ‘icd-b’ has a status of REVISION-REQUIRED, as it is based on version 1.1
of ‘icd-a’, which is no longer the most recent one

4.4.3 Macros for Content Generation & Embedded Machine-Readable Formalism

SystemRDL!3, a widely adopted hardware description language was chosen to explore the
use of a machine-readable formalism embedded in ICDs to describe hardware elements of
interfaces (F). This involved the creation of a SystemRDL macro for Asciidoc that performs
validations according to the defined completeness quality-gates, and generates a human-
readable representation of the hardware along with base software artifacts (as depicted in
Fig. 6). With the automatic generation of check-sums of the said generated artifacts imple-

13 https://www.accellera.org/activities/working- groups/systemrdl

@ Springer

https://www.accellera.org/activities/working-groups/systemrdl

100 Page 20 of 35 Empirical Software Engineering (2023) 28:100

XK25 FPGA register maps #ifndef __TINY_REGISTER_MAP__
#define __TINY_MAP_REGISTER_MAP__
This register references acr:INAF[context=LOFAR] in a lot of places since enum TINY_ADDR_MAP_REGS {
they are responsible for code that creates the bit-identical copy of the REGL = 8x2d
input frame.

Note that the register map of the fpllow-up prject XK26 is not different.

1 register

(- ——————————————————] B
|
I

e T | H re v:m;,‘ r, Software right
{Faddmmapit iyl 10 #define REG_AA GENMASK(0,15)
| bigendian; | | #define REG_AA_RESET_VALUE 256
| reg { | | Hardware rights: w, Software rights: r
| £ | | #define REG_BB GENMASK(16,31)
| ield { Lo S EICTAE ARG
| name="reg aa"ui{
| Sw=r; | | This register map references INAF in a lot of places since they are responsible for code that
: hw=r; ; | creates the bit-identical copy of the input frame
| } f1[16] = o; !
| | | Note that the register map of the follow-up prject XK26 is not different.

|
| field { 1
| name="reg _bb1; | Register name Offset Fields
| Swej] Goooooe > reat ox2d
! (e ! h < Bits Field HW SW size(bytes)
; } fz[lﬁ]: 1 name rights rights value
I ,' I
| JREGIEAX2D; | [15:0] REGAA r r 0 16
Ik I
o __ J [31:16] REG_BB w T undefined 16

Copy header's checksum file location || Copy header's file location

Fig.6 Excerpt from the source of a document created during an evaluation exercise (left), the generated source
code headers (top-right), and the human-readable section expanded in the generated document (bottom-right)

mented in the extension, developers can check whether their local copy is up to date, as
previously described.

Additional content generation extensions, based on the results of the Action Planning phase
of the study, include: automatic generation/validation of the document log section (based on
Git history), references, and glossary. The source of a sample ICD written in Asciidoc, using
the above extensions, and its corresponding output, is included in the replication package'*.

4.5 RQ5: To what Extent can the Designed ICD Management Pipeline Improve the
Identified ICD Management-Related Issues?

This research question deals with the efficacy and fitness for purpose of the features identified
in the Action Planning phase and implemented in the Action Taking phase. As the evaluation
instrument used for answering this research question was derived from the results of RQI,
this Section elaborates on the said instrument details (Section 4.5.1), before introducing the
analysis of the results obtained from it per feature (Sections 4.5.2, 4.5.3,4.5.4 and 4.5.5.)

4.5.1 Evaluation Instrument

The purpose of the single-case mechanism experiment (as described in Section 3.2.1) was to
assess to what extent, according to the ASTRON engineers’ viewpoint, the proposed features
(RQ3), and the way they were implemented (RQ4) would deal with the ICD-management
related issues (RQ1) and their particular symptoms (RQ?2). To this end, the functional proof-
of-concept of the implemented features was configured to work with an infrastructure similar
to the one used by ASTRON engineers: GitLab for version control system, GitLab CI/CD

14 https://figshare.com/s/671cc7450d8a6b8¢2987

@ Springer

https://figshare.com/s/671cc7450d8a6b8e2987

Empirical Software Engineering (2023) 28:100 Page 21 0f 35 100

for creating documentation pipelines, and GitLab pages for publishing the generated ICDs.
An instance of the platform that keeps track of the published ICDs was deployed and made
available on the Internet, while the building/validation tools and extensions were published
as a Docker container so these could used by the documentation pipeline anywhere. In order
for the participants not only to understand but also to experience the four proposed features,
they were asked to carry three hands-on tasks assuming different roles, as they would do in
areal setting.

In the first scenario, participants were introduced, hands-on, to the required configuration
activities, the editing with a lightweight markup language, and the basics of ICDs versioning.
In particular, they were asked to setup a documentation pipeline for a new ICD in the CI/CD
platform, and to set up and generate two sequential versions of it: the ‘staging’ version (to
be shared and reviewed) and the ‘canonical’ one, which would be indexed by the platform
as such.

In the second scenario, the participants were asked to include on the previously registered
ICD: (1) the specification of a low-level hardware interface (i.e., a register map) which
includes a memory address inconsistency; and (2) a paragraph that violates a hypothetical
writing style rule. While dealing with the errors reported by the pipeline (unfulfilled ‘quality
gates’) using the details provided by them, the participants experienced: (1) what kind of
quality criteria can be enforced for both formal and text-based elements; (2) how these
embedded formal elements could reduce redundant and error-prone writing/transcription
efforts through content/code generation.

In the third scenario, participants were asked first to: (1) create new ICDs and add them as
references (dependencies) to the one created in the previous scenarios; and (2) use the soft-
ware headers generation feature from such ICDs, and by assuming a developer role to create
a basic development environment with it. Afterwards, they were asked to make changes on
the hardware specification within the ICD (created in scenario two), and on the new ICDs
referenced by it. Then they were asked to deal with the warnings generated by the platform
(about the need for revisiting an ICD with outdated dependencies) and in the development
environment (about the use of headers generated from an outdated specification). This sce-
nario is aimed at illustrating how the ICDs, by becoming the actual ‘single source of truth’
through the centralized index, could be used to foresee potential issues as interfaces evolve
over time. In particular, how keeping track of the documents’ life-cycle and dependencies
between them, would enable the timely notification of changes.

Once the practitioners completed the exercise!?, they took an online survey where they
evaluated the efficacy and fitness for purpose of the proposed features. The analysis of said
evaluations is described in the following sub-sections.

4.5.2 Documentation-Oriented Quality Gates

The practitioners’ perception on enforcing minimum quality criteria by means of quality
gates was in general positive, as shown by questions Q1 and Q2 in Table 7. However, the
Disagreement and Neutral responses in Q1, about the enforcement of the style of the ICD
elements described in natural language, were justified with doubts about its applicability in
a more realistic setting. More specifically, two of the participants pointed out that (1) some
text-based descriptions could be very hard to validate, if such validation is at a technical
level, and (2) that writing styles are hard to impose and writers could find workarounds to
avoid them. The enforcement of technical elements of the ICDs like forgotten keywords and

15 Available at https://github.com/search-rug/doc-as-code-single-case-experiment

@ Springer

https://github.com/search-rug/doc-as-code-single-case-experiment

100 Page 22 of 35 Empirical Software Engineering (2023) 28:100

Table 7 Perceived applicability of the DaC features after using them in the proof-of-concept

Participants
Question P1 P2 P3 P4 P5

Q1 (QG) I believe that enforcing the expected minimum quality A D SA SA N
criteria of the texts within the ICDs, by means of auto-
mated ‘quality gates’, would improve their clarity and
understandability.

Q2 (QG) Ibelieve that enforcing the expected minimum quality cri- A A SA SA N
teria of the technical details included on the ICDs (e.g.,
hardware-level details), by means of automated ‘quality
gates’, would reduce the documentation-related integra-
tion/operational issues experienced in the past.

Q3 (M) I think that having part of the documentation (e.g., glos- A N SA SA SA
saries, hardware description, etc) and other artifacts (e.g.,
software components) generated from models embedded
in the ICDs would reduce the documentation maintenance
efforts when compared with the existing approach.

Q4 (F) I think the automatic generation of human-readable con- A A A SA SA
tent and software artifacts from formal models embedded
in the ICDs (e.g., SystemRDL, ARGS, etc.), would
improve the data-transcription-related issues experienced
in the past.

Q5 (DT) I think that having centrally managed ICDs, with their dif- A A A SA SA
ferent versions/dependencies tracked, and status changes
reported to relevant roles, would be helpful to mitigate
the issues related to outdated documentation experienced
in the past.

Q6 (DT) I think that integrating the information provided by the A N A SA A
centrally-managed ICDs into the software development
process, in a realistic setting, would be useful to avoid
shipping software based on ICDs that could be outdated
or that need to be revisited.

Grades: (SA) Strongly Agree, (A) Agree, (N) Neigher agree nor disagree, (D) Disagree, (SD) Strongly disagree

wrong ranges, on the other hand, was seen in general as useful, although some interfacing
parameters could be too difficult to validate automatically, especially the ones related to
dynamic behavior, time dependencies and performance limitations. Overall, with the ICDs
seen as the single source of truth and reference for engineers to work on an interface, the
need for these automated quality gates would decrease in the long run, as will the time spent
on resolving inconsistencies during development and testing.

4.5.3 Document Macros for Automatic Content Generation

According to the justifications for the grades given in Q3, having macros for content genera-
tion would help ICDs to become the single source of truth that can be referenced throughout
the process. This would help, in turn, in identifying incorrect assumptions in the early stages
of the process. On the other hand, the elements automatically generated through macros tai-
lored for ICDs (content, artifacts, etc.), as long as they are reliable and reproducible, would
not only improve their consistency but also free time to work on the content that cannot be
automatically generated. However, although the above would improve the overall quality of
the documentation, that would not necessarily be the case for its maintainability. In this regard,

@ Springer

Empirical Software Engineering (2023) 28:100 Page 23 0f 35 100

the analysis of Slack conversations during the evaluation exercise highlighted two areas of
improvement. First, as a means to improve the workflow speed, an editing tool tailored to
the proposed features, that is to say, that allows technical writers to identify errors or unful-
filled quality criteria before submitting changes to the documentation pipeline was deemed
necessary. Second, the pipeline should support allowing locally-defined, document-specific
glossary entries, in addition to the ones defined at project/organization level.

4.5.4 Embedded Machine-Readable Formalisms

Question Q4 (see Table 7) and the corresponding open-ended responses also showed an
overall positive perception on the applicability of an embedded formalism within the ICDs
as a means to remove ambiguity through the uniformity and standardization of the artifacts
automatically derived from it. This is seen as a must-have to prevent issues in different
engineering groups. Furthermore, this feature was perceived as something that would save
a considerable amount of time normally spent writing boilerplate ICD parts, and reduce the
human factor that often causes issues when translating from ICD to source code.

4.5.5 Centralized-Documents Tracking

According to the practitioners’ views on Q5 and Q6, a centralized platform makes sense if
ICDs are expected to be the single source of truth within a project/organization. Moreover,
adopting this systematic approach for managing ICDs implies that now it would be necessary
to decide, at a higher level within the project/organization, when to go from one version
to another across the whole product. Although this would add complexity to the overall
process, it would be a positive change. On the other hand, the generation of artifacts with
version matching as supported by such a platform would prevent developers from using
an outdated version when implementing parts of an interface. However, as pointed out by
the participants, to properly close the loop failed version test results should be reported
to the central ICD hub so that action can be taken. Furthermore, the tooling should also
allow the interfaces to be round-trip converted from source-code back to the model. On
top of these observations, practitioners emphasized that although the documentation pipeline
tooling itself would prevent small but annoying mistakes, most of the success of the interfacing
process would still lie on the communication and cooperation between engineers. Moreover,
it would also be important to ensure that engineering and maintenance teams also keep this
documentation up-to-date during operations.

4.6 RQ6: To what Extent can the Proposed ICD Management Approach be
Transferred from the Radio-Astronomy Domain to other Application Domains?

This section elaborates on the evaluation performed through the expert panel described in
Section 3.2 and is presented in terms of the proposed features: Embedded machine-readable
formalisms (F), Document macros for automatic content generation (M), Documentation-
oriented quality gates (QG), and Centralized-documents tracking (DT). As the feature of
automated content generation depends on embedded formalisms (something that can be
specified with these formalisms, can also be automatically generated), they are discussed
together.

@ Springer

100 Page 24 of 35 Empirical Software Engineering (2023) 28:100

4.6.1 Embedded Machine-Readable Formalisms and Document Macros for Automatic
Content Generation

The features of embedded formalisms and automated content generation for ICDs manage-
ment, were deemed as transferable, albeit to a different extent, ranging from ‘a little’ to ‘a
greatextent’ (Question 2.1). As seen in the top of Fig. 7, in the applicability scale the opinions
are equally divided between ‘a lot’/‘to a great extent” and ‘a little’/‘to a moderate amount’.
This is for the most part also the case when looking at each application domain individually,
as seen at the bottom part of Fig. 7.

As described on Fig. 8, experts ranked uniformity as the aspect that would be improved
the most, out of these features, followed by completeness (Question 2.2). The foreseen
improvements on duplicate efforts were also ranked high, although three respondents selected
the ‘do not know’ option as according to the responses to Question 2.3 they had no elements
to assess it.

By analyzing the open-ended responses that experts gave to Question 2.3, three themes
emerged: (1) arguments for why it would make sense to adopt the two proposed features
in the domains they have experience on, (2) what should be considered before adopting
these features, regardless of the application domain, and (3) potential limitations upon their
adoption. These three themes are elaborated in the following paragraphs.

First, experts pointed out that the one of the premises of the proposed approach, namely
the fact that interface descriptions tend to be defective is correct (E4). These defects seem to
be prominent when dealing with system-level interfacing elements, as any change always has
cascading effects on related subsystems (E1). Specific examples of these cascading effects
were given, such as the ICDs with UDP!¢ specifications (E1): when the bitfield defined for
the payload is modified, it requires updating offset values all over the place (source code,
documents, etc.). Moreover, experts already had the perception that versioned databases of
interface definitions would improve completeness, reduce human errors, and ease the re-
generation of documents upon updates (E3) as well as the system verification (E9).

Second, other experts indicated that the applicability of the features would be subject to a
number of factors. These factors include the availability of DSLs for the particular elements
considered in the interface, the expertise of the ICD designer on them (E6), and an agreement
between the stakeholders involved in the system on adopting this approach (E10). For the
latter, it was highlighted that having different documentation approaches, or using them with
different levels of effort would lead to further issues in the architecting process. Furthermore,
in the end, the applicability of embedded formalism/content generation would also depend
on the level of formalism required by the project (E10).

Finally, from the comments focused on the limitations of these two features, the experts
pointed out that the scenario used in the evaluation is focused on what is transferred through
the interface, but not how it is done (ES), e.g., re-negotiating hand-shakes when a message
exchange fails. That is to say, the lack of dynamic behavior specifications becomes an issue
here. On the other hand, in many cases, particularly in the avionics and automotive industry,
it is common to maintain interface information in databases. Therefore, rather than the pro-
posed embedded text-based formalisms, this approach would be applicable only by enabling
references to said databases within the ICDs (ES). It is also worth noting that a number of
experts (E8, E11, E12), indicated that these features would improve correctness (by provid-
ing formal elements, complementary to the natural language), uniformity, and completeness,
but they may not guarantee the latter by default. Human intervention would be needed,

16 User Datagram Protocol

@ Springer

Empirical Software Engineering (2023) 28:100 Page 25 of 35 100

0 2 4 6 8 10
6 B To agreat extent
I Alot
4 A moderate amount
[Alittle

2 - B Notatall

B Do not know

& & & S &
N 4 & & i~
g R &

N

9
& N
¢ ¢ & S
h ®

Fig. 7 Distribution of the responses of Q2.1: To what extent could the features of embedded formalisms
and automated content generation for ICDs management be transferred to one or more of the application
domains/industries you have experienced?. Top: responses per expert. Bottom: responses distributed across
experts’ application domains

Do not know

Not at all

Alittle

A moderate amount

To a great extent

1'0 11 12
I ICDs uniformity? B ICDs completeness? B The amount of duplicate maintenance efforts?

S
-
~
w
IS
o
ES
-
@
©

Fig. 8 Distribution of the responses of Q2.2: In your opinion, to what extent the features of embedded for-
malisms and automated content generation for ICDs management would improve ICDs uniformity, ICDs
completeness, and reduce the need for Duplicate efforts?

@ Springer

100 Page 26 of 35 Empirical Software Engineering (2023) 28:100

for instance, by distilling guidelines or checklists (and feeding them to the platform) from
previous experiences creating similar interfaces in the given context/domain.

4.6.2 Documentation-Oriented Quality Gates

The feature of enforced quality criteria through quality gates was also seen as transferable
to other domains by all the experts (Question 3.1), but to a larger extent (per participant and
per area), as seen on Fig. 9. In this case, given the responses to Question 3.2, incomplete
specifications is seemingly the problem that this feature would improve the most, as shown
in Fig. 10.

The analysis to the open-ended question related to this feature (Question 3.3) also leads
to the three themes identified for the previous two features, namely the arguments about
why it makes sense to adopt the features, considerations for its applicability, and potential
limitations. However, consistently with the results of Question 3.1, the first two themes (which
are positive in general) are the most prominent ones. We elaborate on these three themes in
the following paragraphs.

First, the experts highlighted the need for quality rules defined up-front for this kind of
electronic documents (E4, ES), particularly given the variability on their quality (E2) — across
engineers and disciplines — and level of detail (E3). This would be particularly important at
the last stage of the ICDs formal update processes (E12). Furthermore, bringing these ‘quality
gates’ from the software domain to the other ones, e.g., systems engineering, could help all the
disciplines involved to speak the same language (E10). It is also worth noting that a number
of experts expressed the same opinion on the importance of the quality gates and artifacts
included for ensuring proper acronyms definition and allowing the automatic generation
of glossaries. In particular, they mentioned that this terminology-related inconsistencies are
common (E3) specially when there is no central authority that manages them (E6); hence,
just quality-checking them would improve many of the ICDs they have worked on (E10).

0 2 4 6 8 10

B Toagreatexent
4 l Alot
A moderate amount
! l - Alittle
2 l W Notatall
B Do not know
3 B

Fig. 9 Distribution of the responses of Q3.1: To what extent could the enforcement of the expected quality
criteria of ICDs by means of Go/No go Quality gates be transferred to one or more of the application
domains/industries you have experienced?. Top: responses per expert. Bottom: responses distributed across
experts’ application domains

@ Springer

Empirical Software Engineering (2023) 28:100 Page 27 of 35 100

Do not know
Not at al

- ICDs clarity?
ICDs completeness?

A moderate amount

Fig. 10 Distribution of the responses of Q3.2: In your opinion, to what extent enforcing the expected quality
criteria of ICDs by means of Go/No go Quality gates would improve their clarity and completeness?

Second, regarding the considerations for the applicability of these documentation-oriented
quality gates, interface requirements were mentioned as an ambiguity-prone, commonly used,
ICD element in multiple domains. Therefore, the quality of said requirements should also
be enforced through quality gates using, for instance, existing rule-based NLP tools that
assess their quality (E4). Furthermore, in concordance with one of the comments about the
embedded models and content generation features, the quality gates should also be able to
check naming consistency within the documents against the parameter-databases commonly
used in avionics and automotive industries (ES).

Third, as potential limitations, the experts indicated that adopting this automated validation
process in any domain could lead to wrong assumptions about the reliability of the document,
which would not be necessarily guaranteed by the enabled gates (E9). To avoid this, manual
quality processes should still be in place as part of the documentation life cycle. Finally, one
of the experts (E11) was of the opinion that selecting the criteria for the quality gates, could
be impossible in complex ICDs, particularly when clarity (beyond terminology consistency)
is what needs to be enforced.

4.6.3 Centralized-Documents Tracking

According to the experts’ viewpoints on Question 4.1, the feature of Centralized-documents
tracking is, in comparison to the previous ones, the more transferable one, as seen in Fig. 11
(with 10 out of 12 scores betwen ‘alot’ and ‘to a great extent’). According to Fig. 12, however,
the experts were almost evenly divided between its applicability as the single source of truth
and as a means to reduce duplicate maintenance efforts. Nevertheless, from the analysis of
Question 4.3 (Please elaborate on your answer to the questions above) a prominent theme
emerged from the comments of seven out of the 12 experts that would explain most of the
aforementioned positive views on transferability: the dependency-tracking capabilities this
feature enables between documents. In particular, two of them (ES, E8) mentioned that said

@ Springer

100 Page 28 of 35 Empirical Software Engineering (2023) 28:100

0 2 4 6 8 10

6 - B To agreat extent
Alot

4 A moderate amount
A little
2 I Notatall
B Do not know
- B s B 5N
23 @ N @ & @ 3
& o & 'S & & & &
N of o (é\@ e\é\ & \@o @
< Q NY &2 N~
2
¥ RS

Fig. 11 Distribution of the responses of Q4.1: To what extent could the centralized ICDs index/tracking feature
(including the ability to make references between documents) be transferred to one or more of the application
domains/industries you have experienced?

capabilities are promising for ICDs as similar capabilities have shown their value in the
context of requirements management tools like DOORS'”. The other five pointed out that
keeping track of specific definitions within the ICDs and not just the whole ICD, and in
addition to the quality check (E6), would be of great value to improve traceability and to
ensure proper actions are taken when a change is made. These definitions include interface
requirements, diagrams and data schemas (E4, E10, E12). Furthermore, tracking the changes
on these definitions by the subsystem/capability they belong to would be key in keeping said
systems up to date (E1).

Two remaining (and less prominent) themes were identified from the experts’ viewpoints
on Question 4.3, namely applicability benefits and applicability considerations. The former
corresponds to three viewpoints that highlight the centralized index feature as useful to make
sure that changes will not go by unnoticed (E9, E11), particularly in cases where there are
different versions of a platform for which the interfaces are defined (E2). The latter includes
remarks from two experts: first, in some cases the process of updating an ICD is very formal,
and hence there is no actual risk of having multiple versions of ICDs (E12). Second, a
centrally managed ICD cannot be, strictly speaking, considered as a single source of truth
given the numerous (and independently developed) models or views it puts together, but
rather an ‘authoritative’ source of truth.

5 Discussion

In this work first a technical action research study was conducted with a group of ASTRON
engineers in the context of the LOFAR project, aimed at designing and evaluating a potential
treatment for the ICD-management issues identified in previous studies(Cadavid et al. 2020;
Cadavid 2021). During the diagnosing phases of the TAR we identified uniformity, timely

17 1BM Engineering Requirements Management tool https://www.ibm.com/docs/en/ermd/9.7.0?
topic=overview-doors

@ Springer

https://www.ibm.com/docs/en/ermd/9.7.0?topic=overview-doors
https://www.ibm.com/docs/en/ermd/9.7.0?topic=overview-doors

Empirical Software Engineering (2023) 28:100 Page 29 of 35 100

Do not know

- The need for a single source of truth?
The amount of duplicate maintenance efforts?

A moderate amount

Fig. 12 Distribution of the responses of Q4.2: In your opinion, to what extent the centralized 1CDs
index/tracking feature would improve the need for a single source of truth and the amount of duplicate
maintenance efforts?

update notifications, and duplicate maintenance efforts, as important issues to be addressed
in addition to the ones unveiled by said studies (RQ1), namely the lack of completeness and
clarity. Furthermore, in the action planning phase, we gathered insights on the particular
symptoms that these issues are commonly exhibiting on ICDs (RQ2). These symptoms
guided the identification of four features aimed at improving the aforementioned issues
(RQ3), which were then translated into a ICD management platform design and a functional
proof-of-concept (RQ4).

The efficacy and fitness for purpose evaluation of these features by ASTRON participants
(RQ5) suggest that, by enabling an ICD to be the actual single source of truth, they can indeed
prevent wrong assumptions early in the ICD creation process, ensure its uniformity, and
improve its overall quality. Furthermore, these features are seemingly capable of addressing
similar issues in domains beyond ASTRON’s radio astronomy one —in systems whose
engineering processes are already partially or fully document-centered— as suggested from
the insights collected from a panel of experts (RQ6). In particular, according to the areas of
expertise of this panel members, this seems to be the case across domains where actual SoS
are created (as identified in Cadavid et al. (2020)), such as ground transportation, robotics,
aerospace and aeronautics.

The following sub-sections elaborate on the implications of these results, for both practi-
tioners and researchers.

5.1 Human Factors in Interface Management
Human factors were a prominent element across the TAR and expert panel evaluations (sum-

marized in Fig. 13), as they were seen as key to ensure reliable interface specifications,
regardless of the approach used for managing them. One of these factors was the design

@ Springer

100 Page 30 of 35 Empirical Software Engineering (2023) 28:100

Manual quality& Interface
assessment

documentation

7

DaC pipeline/
tools

Interface <:::> Interface
design management

Team & Embedded ﬁ Organization & Quality criteriaﬁ

systems design L M
culture practices policies definition

Fig. 13 Context in which the documentation management approach takes place, and the human factors to be
considered for it to have the expected impact on the identified issues. The arrow colors indicate from which
part of the study the given factors where identified: the technical action research (TAR), or the expert panel
(EP)

practices followed by engineers working on the hardware side, as they are often inconsistent
or difficult to understand. Therefore, identifying and encouraging best design practices, e.g.,
having ‘balanced’ abstraction levels as discussed in Section 4.1.2, could prevent potential
misinterpretation of interface specifications. Likewise, promoting team culture, by encour-
aging collaboration and communication between the involved parties (as already highlighted
by previous studies (Cadavid et al. 2020; Fairley 2019) would improve the quality of the
designs and the clarity of the documentation of their related interfaces, by providing a proper
two-sided description of them. In this sense, this ICD management approach would provide
a solid foundation for such a collaboration, particularly by releasing the tension between
the need to be flexible in terms of writing specifications and the need to create consistent and
verifiable documentation.

The quality assessment of the ICDs seems to be another element that, regardless of any
automation features that exist for this purpose, should also consider the human factor. Given
the concern among some practitioners of the risky sense of confidence these automated pro-
cedures would create, this calls for the inclusion of the human-in-the loop elements in this
kind of documentation pipelines. Furthermore, as criteria like ‘completeness’ would be con-
text dependant, human intervention is required in extracting the required knowledge from the
existing ICDs and documentation processes to configure the ‘quality gates’ (quality criteria
defintion) properly. Finally, organization policies are key for the success of approaches like
the one discussed here, by ensuring agreements about not only its adoption, but also the rigor
with which the involved stakeholders will make use of it — something the feature of enforced
quality criteria would contribute to.

5.2 Text-Based Descriptions withn ICDs

Unlike some of the related computer-aided approaches discussed in Section 2.3, the proposed
approach combines the best of model-centered and document-centered ICD management:

@ Springer

Empirical Software Engineering (2023) 28:100 Page 310f35 100

the formality of models to describe critical, error-prone elements, with the flexibility of using
natural language for all the other elements that such models could not describe.

In this context, it is worth discussing the viewpoints of both the TAR participants and the
panel experts on the ‘enforced quality’ of natural language elements. On the one hand, the
enforcement of writing styles is something practitioners do not feel, in principle, viable to
be enforced in practice given all the workarounds that could be used to avoid it. Hence, more
research would be needed on the applicability of automated style checking in the context of
systems like LOFAR. This could be done by eliciting and including more tailored, domain-
specific writing style rules extracted from existing documentation and practitioners’ input in
future cycles of the study.

On the other hand, enforcing the definition of acronyms, in addition to the integration with
centralized domain/project-specific glossaries, seem to be promising. These two elements, in
particular, were considered key to avoiding terminology consistency issues, which according
to the expert panel are seemingly common in ICDs in multiple application domains. However,
this is something worth exploring further on a study on its own, in order to improve usability
for end-users, and to make proper use of this knowledge at organizational level in the same

line as initiatives like shareable glossaries'S.

5.3 ICDs as the Single Source of Truth

The high scores on applicability and transferrability given to the centralized index feature
highlights the importance of enabling the ICDs as the single source of truth. In particular,
these evaluations show that this feature, according to practitioners and experts, is key to ensure
consistency and traceability between ICDs and all the artifacts derived from them, particularly
thanks to the version matching mechanism described in Section 4.4.2. However, to achieve
its real potential, this feature should be adapted in a way that dependencies are tracked also
at a document-element level (e.g., a particular diagram, data schemes, etc.). Furthermore, by
closing the loop of this feature, that is, reporting the failed version matches back to the central
hub, the organization would be able to know when outdated references are being used and
take timely actions. Overall, this feature would likely help the organization decide when to
move from one interface version to another, which according to the practitioners is an overall
positive development.

5.4 User Experience

Finally, it is worth highlighting that the feedback given by the TAR participants on the
treatment’s proof-of-concept includes usability limitations. In particular, it was pointed out
that setting up the writing environment was a complex process (e.g., version control system
clients, CI/CD platforms, text editors, etc.). The participants mentioned that in some cases
the time imposed by said limitations could exceed the time saved by its features. This, in
addition to the increasing number of applications of the DaC philosophy beyond the context
of software systems as described in Section 2.2, calls for further work on overcoming these
user experience limitations. For instance, a fully fledged editing environment with the same
extensions used by the CI/CD platform would be a valuable addition. Furthermore, in the

18 https://thegooddocsproject.dev/docs/glossaries/

@ Springer

https://thegooddocsproject.dev/docs/glossaries/

100 Page 32 of 35 Empirical Software Engineering (2023) 28:100

same line to the shared-glossaries initiative discussed above, more glossary management tools
that allow for consistently combining and merging local glossaries with organization-level
ones are worth pursuing.

6 Threats to Validity

In this section, we discuss potential threats to the validity and the actions performed to
mitigate them in the study.

Construct validity deals with the degree to which the operational measures, i.e., scales,
metrics and instruments, actually measure the properties under investigation, according to
the research questions (Ralph and Tempero 2018). The use of two different instruments
to measure the applicability of a DaC-based ICD management approach in SoS domains
were deemed necessary to improve the validity of the study. However, each one of these
instruments (action research and expert panel) are prone to threats to validity on their own.
For instance, as pointed out by Petersen et al. (2014), action research — by being highly
context dependent — is prone to generalizability issues. In particular, the results of the
TAR conducted to address the first five research questions, as originally reported in Cadavid
et al. (2022), were specific to ASTRON and the radio-astronomy application domain. As a
means of addressing this limitation of external validity, this extended version of the study
includes a new research question to explore the transferability of the result to other application
domains. As described in Section 3.2.2 this research question was addressed, through the
aforementioned expert panel instrument, which concluded on the generalizability of the
results and identified its precise limitations. However, as LOFAR —the underlying subject of
the TAR- is characterized as a directed SoS, it is worth noting that these results would only
be generalizable to SoS with the same characteristics.

When it comes to the expert panel instrument, there is the risk that expert panel members
have biases that influence their evaluation of the research. For example, they may be biased
in favor of certain theories or methods. On the other hand, panel members may not have the
necessary expertise to accurately evaluate the research, in this case, its transferability to other
application domains. To address these limitations, the panel was made up of experts with
no vested interest in the outcome of the study, and in any case participating as individuals
and not as representatives of their employing organizations. Furthermore, the panel includes
a group of experts which, in addition to having experience creating or working with ICDs,
are diverse in terms of their respective SoS application domains and viewpoints (given their
roles within said domains).

Furthermore, researcher bias and selection bias are threats to validity that any TAR study
is also prone to, given particularly the involvement of the researchers in the design of the
treatment under evaluation. To mitigate both, a replication package!? is provided, includ-
ing the (anonymized) qualitative data collected throughout the phases of diagnosing, action
planning, and the evaluation. Likewise, the material provided to the panel members (screen
casts and survey) and the qualitative data collected through the expert panel are available for
scrutiny, within the same replication package.

19" Available at https://figshare.com/s/671cc7450d8a6b8e2987

@ Springer

https://figshare.com/s/671cc7450d8a6b8e2987

Empirical Software Engineering (2023) 28:100 Page 330f35 100

7 Conclusion

Interface management in large-scale SoS, despite being a key element in the cooperation
between the disciplines involved in a SoS architecting process, has been found to also be a
major pain point associated to said process (Cadavid 2021; Cadavid et al. 2022). Motivated
by the potential integration and operational problems this particular pain point has been
associated to, this study aimed at: (1) exploring these interface-management related issues
in more depth; and (2) designing and evaluating alternative ICD management approaches to
address them. To this end, in the first part of this work a technical action research (TAR) was
conducted as a means to gather further insights on said issues, and to design and evaluate a
treatment to address them, in cooperation with practitioners.

Given the document-centered engineering process used in the context in which the TAR
was conducted (the LOFAR system), this treatment was based on existing approaches used
in the context of software systems documentation management. In particular, the docs-as-
code philosophy was adopted as its core, given the efficacy it has shown to address outdated
or unreliable technical documentation issues in said context. This is, to the best of our
understanding, the first time this philosophy has been evaluated for interface management in
SoS and in complex, large systems in general. Its evaluation was twofold: a) its efficacy and
fitness were evaluated by ASTRON practitioners in a single-case mechanism experiment; b)
its transferability to other application domains was evaluated by a panel of experts.

Overall, the results suggest that this approach could prevent common ICD management
issues in systems that already follow a document-centered approach. This is done by 1)
enforcing consistency and completeness on both text-based and formal elements within the
documents, and 2) turning these documents (which tend to be outdated) into an actual,
traceable, single source of truth. However, like any other approach, it is not meant to be a
‘silver bullet’, and human factors are still key for its effectiveness.

Regarding its transferability, and according to the expert panel results, this approach is, in
principle, found to be applicable across multiple domains as long as they follow a partially
or fully document-centered process. The collected ICDs and the experts’ viewpoint suggest
that nowadays a significant number of domains follows this kind of processes over pure
model-based ones — hence the importance of approaches like the one described here. This
seems to be particularly the case in domains where the concept of SoS has been applied the
most, arguably due to challenges and limitations of working around a single central model
when the system constituents are independently developed and managed.

As future work, some areas for improvement are planned to be addressed through addi-
tional cycles in the TAR. In particular, a formalism for defining dynamic aspects of the
system, an element often overlooked on the interface specifications (Cadavid 2021; Cadavid
et al. 2022), would be required to also ensure that these aspects are properly incorporated on
the ICDs. Furthermore, usability elements would be improved, so that the overall pipeline is
easier to set up, ideally by non-developers. Finally, although the proposed approach would
technically be able to manage the ICDs of SoS whose constituents have different degrees
of independence (i.e., documentation distributed across multiple organizations), the TAR
discussed here was focused on a directed SoS. More case studies on SoS with alternative
authority relationships (collaborative, acknowledged, etc.). are deemed necessary to identify
other potential limitation factors, such as political or privacy issues. In the same line, the
generalizability of the proposed approach is expected to be further explored by conducting
these studies on alternative application domains.

@ Springer

100 Page 34 of 35 Empirical Software Engineering (2023) 28:100

Data Availibility The data that support the findings of this study (referred to as replication package in the
paper) are available in https://figshare.com/s/671cc7450d8a6b8e2987

Declarations

Conflicts of interest the authors declared that they have no conflict of interest

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Maier MW (1998) Architecting principles for systems-of-systems. Syst Eng J Int Council Syst Eng 1(4):
267-284

ISO, IEC, (2019) 21839 information technology - systems and software engineering - system of systems (sos)
considerations in life cycle stages of a system. Standard, International Organization for Standardization,
Geneva, CH

Cadavid H, Andrikopoulos V, Avgeriou P (2020) Architecting systems of systems: A tertiary study. Inf Softw
Technol 118:106202

Cadavid H, Andrikopoulos V, Avgeriou P, Klein J (2020) A survey on the interplay between software engineer-
ing and systems engineering during sos architecting. In Proceedings of the 14th ACM /IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). ESEM ’20. Association for
Computing Machinery, New York, NY USA

Cadavid H, Andrikopoulos V, Avgeriou P, Broekema PC (2021) System- and software-level architecting
harmonization practices for systems-of-systems : An exploratory case study on a long-running large-scale
scientific instrument. In 2021 IEEE 18th International Conference on Software Architecture (ICSA), pp
13-24

Cadavid H, Andrikopoulos V, Avgeriou P, Broekema PC (2022) System and software architecting harmo-
nization practices in ultra-large-scale systems of systems: A confirmatory case study. Inf Softw Technol
150:106984

Sheard S, Creel R, Cadigan J, Marvin J, Chim L, Pafford ME (2018) Incose working group addresses system
and software interfaces. INSIGHT 21(3):62-71

Cadavid H, Andrikopoulos V, Avgeriou P (2022) Documentation-as-code for interface control document
management in systems of systems: A technical action research study. In European Conference on
Software Architecture, pp 19-37 Springer

Gentle A (2017) Docs Like Code. Lulu Press, Inc Morrisville, North Carolina

Beck R (2015) In Lazarian A, de Gouveia Dal Pino EM. In: Melioli C (ed) Future Observations of Cosmic
Magnetic Fields with LOFAR, SKA and Its Precursors. Springer, Berlin, Heidelberg, pp 3-17

Firesmith D (2010) Profiling systems using the defining characteristics of systems of systems (sos)

Thomchick R (2018) Improving access to api documentation for developers with docs-as-code-as-a-service.
Proceedings of the association for information science and technology 55(1):908-910

Ozerova MI, Zhigalov IE, Vershinin VV (2020) Comparison of document generation algorithms using the
docs-as-code approach and using a text editor. In Proceedings of the computational methods in systems
and software, pp 315-326 Springer

Lambourne J (2017) Why we use a "docs as code’ approach for technical documentation. https://technology.
blog.gov.uk/2017/08/25/why-we-use-a-docs-as-code-approach-for-technical-documentation/

Rong G, Jin Z, Zhang H, Zhang Y, Ye W, Shao D (2020) Devdocops: Enabling continuous documentation in
alignment with devops. Softw Practice Exp 50(3):210-226

Rahmani K, Thomson V (2011) Managing subsystem interfaces of complex products. Int J Product Lifecycle
Management 5(1):73

@ Springer

https://figshare.com/s/671cc7450d8a6b8e2987
http://creativecommons.org/licenses/by/4.0/
https://technology.blog.gov.uk/2017/08/25/why-we-use-a-docs-as-code-approach-for-technical-documentation/
https://technology.blog.gov.uk/2017/08/25/why-we-use-a-docs-as-code-approach-for-technical-documentation/

Empirical Software Engineering (2023) 28:100 Page 350f35 100

Louadah H, Champagne R (2014) Labiche Y. Towards automating interface control documents elaboration
and management 1250:26-33

Harvey D, Waite M, Logan P, Liddy T (2012) Document the model, don’t model the document. In Proc Syst
Eng/Test Eval Conf 6th Asia Pac Conf Syst Eng

Karban R, Troy M, Brack GL, Dekens FG, Michaels SB, Herzig S (2018) Verifying Interfaces and generating
interface control documents for the alignment and phasing subsystem of the Thirty Meter Telescope from
a system model in SysML. In: Angeli GZ, Dierickx P (eds) Modeling, systems engineering, and project
management for astronomy VIII, pp 29 SPIE. Austin United States

Chiozzi G, Andolfato L, Kiekebusch MJ, Kornweibel N, Schilling M, Zamparelli M (2018) Designing and
managing software interfaces for the ELT. In: Guzman JC, Ibsen J (eds) Software and Cyberinfrastructure
for Astronomy V, pp 78 SPIE. Austin United States

Di Maio M, Atorf L, Dahmen U, Schluse M, Rossmann J, Hoppe M, Kapos G-D (2018) Interface manage-
ment with closed-loop systems engineering (CLOSE). In 2018 IEEE international systems engineering
symposium (ISSE), pp 1-8

Vipavetz K, Shull TA, Infeld S, Price J (2016) Interface management for a NASA flight project using model-
based systems engineering (MBSE). INCOSE Int Symposium 26(1):1129-1144

Tsui R, Davis D, Sahlin J (2018) Digital engineering models of complex systems using model-based systems
engineering (mbse) from enterprise architecture (ea) to systems of systems (sos) architectures & systems
development life cycle (sdlc). In INCOSE international symposium, vol 28, pp 760-776 Wiley Online
Library

Japs S, Anacker H, Dumitrescu R (2021) Save: Security & safety by model-based systems engineering on the
example of automotive industry. Procedia CIRP 100:187-192

Wheatcraft LS (2010) 9.2. 2 everything you wanted to know about interfaces, but were afraid to ask. In INCOSE
international symposium, vol 20, pp 1132-1149 Wiley Online Library

Broy M, Bohm W, Rumpe B (2021) Advanced systems engineering. Model-Based Engineering of Collaborative
Embedded Systems. Springer, New York, NY, pp 353-364

Guo D, Zhang X, Zhang J, Li H (2020) An interface management approach for civil aircraft design. In
International Conference on Aerospace System Science and Engineering, pp 435-446 Springer

van Haarlem MP, Wise MW, Gunst A, Heald G, McKean JP, Hessels JW, de Bruyn AG, Nijboer R, Swinbank
J, Fallows R et al (2013) Lofar: The low-frequency array. Astronomy & Astrophysics 556:2

Yasseri SF, Bahai H (2019) Interface and integration management for FPSOs. Ocean Eng 191:106441

Borrowman AJ, Taylor P (2016) Can your software engineer program your PLC? In: Chiozzi G, Guzman JC
(eds) Software and Cyberinfrastructure for Astronomy IV, vol 9913, pp 99131. WA International Society
for Optics and Photonics, SPIE, Bellingham

Wieringa RJ (2014) Design science methodology for information systems and software engineering. Springer,
New York, NY

Kontio J, Bragge J, Lehtola L (2008) In Shull F. In: Singer J, Sjgberg DIK (eds) The Focus group method as
an Empirical tool in software engineering. Springer, London, pp 93-116

Petersen K, Gencel C, Asghari N, Baca D, Betz S (2014) Action research as a model for industry-academia
collaboration in the software engineering context. In Proceedings of the 2014 international workshop on
long-term industrial collaboration on software engineering, pp 55-62

Fairley RE (2019) Systems engineering of software-enabled systems. Wiley Online Library, River Street
Hoboken, NJ

Ralph P, Tempero E (2018) Construct validity in software engineering research and software metrics. In
Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering
2018, pp 13-23

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

	Improving hardware/software interface management in systems of systems through documentation as code
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 LOFAR as a System-of-Systems - System Overview
	2.2 DaC—Documentation-as-Code
	2.3 ICD Management Approaches

	3 Study Design
	3.1 Study Goal and Research Questions
	3.2 Research Methods
	3.2.1 Technical Action Research
	3.2.2 Expert Panel

	4 Results
	4.1 RQ1: What are the issues with ICDs management that cause assumptions and misunderstandings when working with these documents in SoS?
	4.1.1 Issues Related to ICD Management
	4.1.2 Issues Related to Subsystem Design Decisions

	4.2 RQ2: What are the Symptoms of the Previously Identified ICD-Management Issues within a Typical Hardware/Software-Oriented ICD?
	4.2.1 General Symptoms
	4.2.2 Symptoms Specific to ICD Sections
	4.2.3 Symptoms Specific to Particular Kinds of Interfaces

	4.3 RQ3: What are the Features Rrequired for a DaC-Based ICD Management Approach to Address such Issues?
	4.4 RQ4: What is the Design of an ICD Management Pipeline that Provides the Identified Features?
	4.4.1 Quality-Gates and Markup Language Extensions
	4.4.2 Centralized Document Tracking
	4.4.3 Macros for Content Generation & Embedded Machine-Readable Formalism

	4.5 RQ5: To what Extent can the Designed ICD Management Pipeline Improve the Identified ICD Management-Related Issues?
	4.5.1 Evaluation Instrument
	4.5.2 Documentation-Oriented Quality Gates
	4.5.3 Document Macros for Automatic Content Generation
	4.5.4 Embedded Machine-Readable Formalisms
	4.5.5 Centralized-Documents Tracking

	4.6 RQ6: To what Extent can the Proposed ICD Management Approach be Transferred from the Radio-Astronomy Domain to other Application Domains?
	4.6.1 Embedded Machine-Readable Formalisms and Document Macros for Automatic Content Generation
	4.6.2 Documentation-Oriented Quality Gates
	4.6.3 Centralized-Documents Tracking

	5 Discussion
	5.1 Human Factors in Interface Management
	5.2 Text-Based Descriptions withn ICDs
	5.3 ICDs as the Single Source of Truth
	5.4 User Experience

	6 Threats to Validity
	7 Conclusion
	References

