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Abstract

Just-In-Time Software Defect Prediction (JIT-SDP) is concerned with predicting whether
software changes are defect-inducing or clean. It operates in scenarios where labels of soft-
ware changes arrive over time with delay, which in part corresponds to the time we wait
to label software changes as clean (waiting time). However, clean labels decided based on
waiting time may be different from the true labels of software changes, i.e., there may be
label noise. This typically overlooked issue has recently been shown to affect the validity of
continuous performance evaluation procedures used to monitor the predictive performance
of JIT-SDP models during the software development process. It is still unknown whether this
issue could potentially also affect evaluation procedures that rely on retrospective collection
of software changes such as those adopted in JIT-SDP research studies, affecting the validity
of the conclusions of a large body of existing work. We conduct the first investigation of the
extent with which the choice of waiting time and its corresponding label noise would affect the
validity of retrospective performance evaluation procedures. Based on 13 GitHub projects,
we found that the choice of waiting time did not have a significant impact on the validity and
that even small waiting times resulted in high validity. Therefore, (1) the estimated predictive
performances in JIT-SDP studies are likely reliable in view of different waiting times, and
(2) future studies can make use of not only larger (5k+ software changes), but also smaller
(1k software changes) projects for evaluating performance of JIT-SDP models.
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1 Introduction

Just-In-Time Software Defect Prediction (JIT-SDP) is concerned with predicting whether
software changes are defect-inducing or clean upon commit time (i.e., just-in-time) based
on machine learning approaches (Kamei et al. 2013). In practice, JIT-SDP operates in an
online learning scenario, where software changes are produced and labeled over time for
the purpose of training and evaluating JIT-SDP models. In particular, each software change
must be predicted as defect-inducing or clean at commit time. Then, only when the label
(defect-inducing or clean) becomes available, this software change can be used as a data
example to evaluate and update (train) JIT-SDP models.

It takes time for the true labels of software changes to be revealed in the real-world
process of JIT-SDP (Song and Minku 2023; Ditzler et al. 2015; Cabral et al. 2019). As a
result, examples need to be produced based on observed labels rather than the true labels
of software changes. Specifically, a software change is labeled to produce a defect-inducing
example when a defect is found to be induced by it; in contrast, it is labeled as clean when
no defect has yet been found to be induced by it and enough time has passed for one to
be confident that this software change is really clean. Such length of time is referred to as
waiting time (Cabral et al. 2019; Song and Minku 2023) and can be considered as a pre-
defined parameter W of the data collection process. The observed clean label resulting from
such waiting time may or may not be the same as the true label of this software change.
Whenever it is not the same, a noisy example is produced. Such label noise caused by the
waiting time may affect not only the training of JIT-SDP models, but also the validity of
procedures used to evaluate them.

Song and Minku (2023) discussed how to evaluate predictive performance continuously
over time during the software development process. The purpose of the continuous per-
Sformance evaluation procedure is to track the most recent performance status of JIT-SDP
models during the software development. Therefore, in this evaluation procedure, each soft-
ware change is used to update the predictive performance as soon as it can be labeled, given a
waiting time W. This is necessary in practice because the predictive performance of JIT-SDP
models may fluctuate over time as a result of changes in the underlying defect generating
process (MclIntosh and Kamei 2018; Cabral et al. 2019; Tabassum et al. 2020; Cabral and
Minku 2022) and it is important for practitioners to be alerted of any performance deteriora-
tion as early as possible. The study found that waiting time had a significant impact on the
validity of such kind of evaluation procedure. In particular, if inappropriate waiting times are
used, the results of the evaluation procedure become invalid.

Another kind of evaluation procedure is the retrospective performance evaluation pro-
cedure, where software changes are collected and labeled retrospectively rather than
continuously over time. The purpose of this evaluation procedure is to check how well
JIT-SDP models would have performed in practice if they had been predicting (and poten-
tially learning) those labeled software changes over time. Such procedure can be used to help
practitioners to decide which kind of JIT-SDP approach to adopt in their company, rather
than for the purpose of monitoring the performance of a currently adopted JIT-SDP model
during the software development process. For instance, research papers typically collect and
label software changes to retrospectively evaluate how well different JIT-SDP approaches
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would have performed on those past software changes, rather than monitoring the predictive
performance of such models on software changes that are currently being developed in a
project. The results of such evaluation procedure are used to determine which kind of JIT-
SDP approach is more promising to be adopted in practice. Once adopted in practice, the
corresponding JIT-SDP model should then have its predictive performance monitored contin-
uously over time based on continuous evaluation procedures such as the one proposed in Song
and Minku (2023), to alert software engineers if/when its performance start deteriorating.

Retrospective performance evaluation procedures do not need to collect the label of a
software change as soon as possible after this software change is committed. Instead, all
labels can be collected at the same time moment when one decides to trigger this evaluation
procedure. Such labeling process also relies on a waiting time parameter. However, this
waiting time refers to the minimum amount of time we wait to label a software change as being
clean, rather than the exact amount of time used in continuous evaluation procedures. In other
words, it corresponds to the age of the newest software change that can be labeled as clean
to produce an example. All other clean labeled examples are produced with older software
changes. The older the software change, the more time we will have waited to observe its clean
label, potentially leading to a more reliable label. Due to these differences between the waiting
time used in continuous and retrospective performance evaluation procedures, it is unknown
whether the validity issues found to affect continuous performance evaluation procedures
(Song and Minku 2023) also affect retrospective performance evaluation procedures.

If the impact of waiting time on the validity of retrospective performance evaluation
procedures is significant, it could seriously affect the validity of a large number of existing
research studies in JIT-SDP, especially considering that many of them implicitly assume
that label noise is non-existent for evaluation purposes. If such impact is not significant, it
would mean that the predictive performances obtained in existing research studies are likely
reliable in view of different choices of waiting time, and could potentially be used to inform
practitioners about which kind of JIT-SDP approach is more promising to adopt in practice.

Therefore, the aim of this paper is to systematically investigate whether and to what
extent the conclusions of JIT-SDP retrospective performance evaluation procedures (and
thus also the conclusions of a large body of JIT-SDP research studies) are (in)valid in view
of the fact that observed labels rather than the true labels of software changes are being used
for performance evaluation. This would not only lead to an insight into the validity of the
conclusions drawn in existing work that overlooks the role of waiting time on evaluation
procedures in JIT-SDP, but also inform future JIT-SDP work on how waiting time should be
considered for evaluation purposes.

This study can be seen as a conceptual replication of Song and Minku (2023) aiming to
check whether the findings obtained for continuous evaluation scenarios would also occur
in retrospective evaluation scenarios. For this, some adjustments need to be done in the
methodology that was kept as similar as possible to that of Song and Minku (2023). The
datasets investigated in this work are also the same as Song and Minku (2023), but their
processing also had to be adjusted for the retrospective evaluation scenario. We answer
three of the Research Questions (RQs) from Song and Minku (2023), but in the context
of retrospective performance evaluation procedures rather than in continuous performance
evaluation procedures':

[RQ1] How large is the amount of label noise caused by different waiting times in
retrospective JIT-SDP data collection? The effect of waiting time on label noise may be

! Previous work (Song and Minku 2023) investigated 4 research questions, but the fourth one becomes
irrelevant in the context of our work given the results obtained for the first three research questions.
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reduced when evaluating JIT-SDP through retrospective evaluation procedures compared to
the continuous evaluation procedure required during the software development process. This
is because the waiting time is only used to determine what is the most recent software change
that can be used in the retrospective performance evaluation procedure. All other changes
will be older than this one, such that more time would have passed to detect their true labels,
potentially reducing the amount of label noise. However, it is unknown how large the amount
of label noise caused by different waiting times in retrospective data collection is.

[RQ2] To what extent is the validity of retrospective performance evaluation pro-
cedures impacted by label noise resulting from waiting time? The label noise resulting
from waiting time investigated in RQ1 may or may not be large enough to have a significant
impact on the validity of retrospective performance evaluation procedures. This investigation
will enable us to check how reliable the estimated performance of current JIT-SDP studies is
in view of the label noise caused by waiting time. In other words, it will determine whether
conclusions in terms of how well different JIT-SDP approaches perform (and thus which
ones are recommended for adoption in practice) are reliable in view of the label noise caused
by waiting time.

[RQ3] To what extent is the validity of retrospective performance evaluation proce-
dures impacted by different waiting times? As in Song and Minku (2023), part of RQ3 can
be answered by combining the conclusions of RQ1 and RQ2. If waiting time has significant
impact on label noise (RQ1) and label noise has significant impact on the validity of retro-
spective performance evaluation procedures (RQ2), waiting time may have significant impact
on the validity through the label noise it generates. However, waiting time could potentially
have further impact on the validity of retrospective performance evaluation procedures that
cannot be captured by label noise on its own, possibly intensifying or moderating the impact
mediated by label noise. RQ3 complements the study to check whether the choice of waiting
time as a while does have an impact on the validity.

To answer these RQs, we conduct experimental studies based on the same 13 GitHub
software projects and statistical methodologies in Song and Minku (2023). We find that
different waiting times used in retrospective performance evaluation procedures can cause
significantly different amounts of label noise (RQ1). Similar to Song and Minku (2023)’s
results in the continuous evaluation scenario, we find that such amounts of label noise also
have a statistically significant impact on the validity of retrospective performance evaluation
procedures in JIT-SDP (RQ2). However, the differences between estimated and true predictive
performance are smaller than those found in Song and Minku (2023), being always smaller
than 3% and having a median of less than 1% across datasets. Different from Song and
Minku (2023)’s results on the continuous evaluation scenario, when investigating the direct
impact of waiting time on the validity (RQ3), we found that such impact is moderated
and becomes insignificant for retrospective performance evaluation procedures. Therefore,
different waiting times are unlikely to change the conclusions on whether JIT-SDP is accurate
enough to be worthy of adoption in practice, especially when conducing studies using multiple
datasets.

Our results also show that even waiting times as small as 15 days led to high validity of
retrospective performance evaluation procedures. This is very encouraging, as it means that
research studies can evaluate JIT-SDP models not only on large projects (with more than 5k
software changes) but also with smaller projects (with 1k software changes). Accordingly,
it is not necessary to remove a large portion of the most recent software changes to increase
the validity of retrospective performance evaluation procedures. This result is particularly
relevant given that many software companies develop projects that are much shorter in length
than many of the existing open source projects that have been running for many years.
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The remainder of this paper is organized as follows. Section 2 motivates and briefly
explains two evaluation scenarios of JIT-SDP — a continuous evaluation scenario as in Song
and Minku (2023) and a retrospective evaluation scenario, which will be investigated in this
paper. Section 3 discusses background and related work. Section 4 explains our notation
system and formulates the validity of the retrospective performance evaluation procedures.
Section 5 describes the design of our experiments, and our RQs are answered in Section 6 by
analyzing the results of experiments. Threats to validity is discussed Section 7 and Section 8
concludes the paper.

2 Continuous and Retrospective Performance Evaluation Scenarios

This section provides motivating scenarios for using continuous and retrospective perfor-
mance evaluation procedures and discusses the general differences between these two kinds
of procedure. Figures 1 and 2 give illustrative examples of the continuous and the retrospec-
tive performance evaluation scenarios to facilitate such distinctions. As will be explained in
Sections 2.1 and 2.2, the different purposes of these two evaluation procedures result in the
labels of their evaluation examples to be collected at different moments in time, potentially
resulting in different levels of label noise and validity issues. A more detailed mathematical
formulation of the continuous and retrospective predictive performance evaluation proce-
dures can be found in Song and Minku (2023) and in Section 4, respectively.

2.1 Continuous Performance Evaluation Scenario

As a software project is developed, new software changes are produced over time. JIT-
SDP models are used to predict these incoming software changes as being clean or

training wating time W'
training wating time' W’

(X1, Y{.T{) (X3, }’;,Tgr) (X2, y;.Té)

1 2 3 training time steps
evaluation watingtime W evaluation watingtime W

X1, y11, )' (st}’3:,'r3)' '(Xz:}’z',rz) continuous evaluation time steps
1 23

Xy X X3

1 2 3 commit time steps

Fig.1 Illustration of labeled examples used for training and the continuous performance evaluation investigated
in Song and Minku (2023). Examples (X, y:’Tu) used in the continuous performance evaluation scenario
have their labels collected individually at Unix timestamp 7, each of which would be W days after the
commit time or when a defect is found to be associated to it. Training examples (X, y T,) have their labels

individually collected at Unix timestamp 7,,/. This timestamp corresponds to the time When X, is labeled for
training purposes. Especially, evaluation waiting time W should be no larger than training waiting time W',

guaranteeing the online learning principle that each example should be first used for evaluation and then used
for training (Gama et al. 2013)
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Fig.2 TIllustration of data streams I, ]D)* and T* W in the retrospective performance evaluation scenario. Unix
timestamp 7" corresponds to the time of the retro%pective data collection, leading to the labels yl’f  used for
the retrospective evaluation data stream. Examples (X, y;‘ ) used for evaluation can only be collected up to

Unix time stamp 7 — W, where W is the waiting time used for the retrospective data collection. Examples
(Xu, y; Tu) used for training have their labels collected at Unix timestamp 7y,. This timestamp corresponds

to the time when a software change X, is labeled for training purposes (W’ days after the commit or when a
defect is found, where W’ is the training waiting time)

defect-inducting. However, it has been shown that variations in the underlying data-generating
process (i.e., concept drifts (Ditzler et al. 2015)) can cause the predictive performance of JIT-
SDP models to fluctuate over time (McIntosh and Kamei 2018; Cabral et al. 2019; Tabassum
et al. 2020; Cabral and Minku 2022). Therefore, it is important for practitioners to con-
tinuously monitor such predictive performance over time during the software development
process. Continuous monitoring enables practitioners to identify any time periods when the
JIT-SDP model becomes unreliable and should not be trusted.

To continuously evaluate the predictive performance of a given JIT-SDP model during
the software development process, as soon as a past software change becomes labeled, it
should be immediately used to update the estimate of the current predictive performance of
the JIT-SDP model. Therefore, the evaluation process is triggered at several different Unix
timestamps 7, during software development, each of which corresponding to the moment
when a software change is labeled as clean or defect-inducing. The middle timeline of Fig. 1
gives an illustrative example of such continuous labeling process. Examples (X, y;‘yTu)
are produced individually and continuously over time throughout the evaluation process.
In particular, each software change X, is labeled at Unix timestamp T, (annotated by the
inverted red triangles on the timeline), leading to an observed label y’* T This timestamp is
either W days after the commit time of X, (e.g., (X1, y1 T ) and (X7, y2 T ) in the figure), or
when a defect is found to be associated to it (e.g., (X3, y3,T3) in the ﬁgure) As such, commit
and evaluation time steps may differ in the continuous performance evaluation scenario. For
instance, (X3, y3 T;) comes prior to (X2, y2 T ) in this illustrative example because a defect
was found to be induced by X3 at an earlier moment in time.

The value chosen for the waiting time parameter W affects both the amount of label noise
generated when producing labeled examples and the obsolescence of the examples used to
estimate the current predictive performance of a model. In particular, a too long waiting
time means that the example is already old by the time it is used to update the estimation of
the current predictive performance, as it may not reflect well the current defect generating
process anymore. Waiting too little means that not enough time is used to find defects that are
potentially associated to the software change, leading to more label noise (examples labeled
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as clean when they are actually defect-inducing). Song and Minku (2023) found that the
choice of waiting time has a significant impact on the validity of continuous performance
evaluation procedures, and that smaller waiting times should typically be preferred to obtain
a better validity of such evaluation procedure.

2.2 Retrospective Performance Evaluation Scenario

Many machine learning algorithms can potentially be used for creating JIT-SDP models.
Consider a practitioner who does not yet use JIT-SDP in their software company, but is
interested in starting to use. This practitioner needs to decide which algorithm to adopt
to build a JIT-SDP model for their company. For that, they can potentially use historical
software changes that have already been produced in their software projects to investigate
which machine learning algorithm would likely lead to the best predictive performance
in the context of their software development company. These historical software changes
can be collected retrospectively and used to evaluate the predictive performance that a JIT-
SDP model would have achieved if it had been used for predicting those changes when
they were produced. Similarly, a researcher who is interested in evaluating and comparing
several machine learning algorithms for JIT-SDP would also retrospectively collect soft-
ware changes that have already been produced in a software project. Therefore, at the
moment of the retrospective data collection, labels of software changes can be assigned
based on the most up-to-date knowledge about defects in the software. In other words,
the practitioner could simulate the exact online learning process that would have been
used to create and update predictive models in practice based on historical data, but eval-
uate these predictive models using the most current knowledge about defects on such
data.

In particular, if the moment when we run the evaluation procedure is depicted by Unix
timestamp 7', all labels will have been collected with the most up-to-date knowledge available
at T. The middle timeline of Fig. 2 gives an illustrative example of the retrospective labeling
process. All examples (X, y;’"T) have their labels collected at Unix timestamp 7 (annotated
by an inverted red triangle). Each clean labeled example was committed at some timestamp up
to Unix timestamp 7' — W. Even though one clean labeled example can possibly correspond
to a software change committed exactly at Unix timestamp 7 — W, all other clean labeled
examples correspond to software changes committed at Unix timestamps U < T — W. As
more than W days would have passed since the commit of the software changes that are
being labeled as clean, such labels used for retrospective evaluation procedures may be less
noisy than the labels used for continuous evaluation procedures.

It is also worth noting that commit and evaluation time steps are equivalent in the ret-
rospective performance evaluation scenario. The order with which examples are used for
evaluation is the same as the order with which they were committed. This is because the
model that would have been available at Unix timestamp 7}, can be evaluated with the soft-
ware change that was committed exactly at Unix timestamp 7,,. This is different from the
continuous evaluation procedure, where a model available at time 7, needs to be evaluated
with older software changes (produced earlier than T},).

Due to such differences, the impact of waiting time on retrospective evaluation procedures
may be different from that on continuous performance evaluation procedures. Our work
investigates what this impact is.
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. 2
Summary of Differences Between Continuous and Retro-

spective Evaluation Procedures

In continuous predictive performance evaluation procedures, we use the
most recently labeled past software change to immediately update the
estimation of the current predictive performance of a JIT-SDP model
during the software development process. At the time of the estima-
tion, a clean software change is exactly W days (waiting time) old. In
retrospective predictive performance evaluation procedures, we use his-
torical software changes to estimate the predictive performance that a
JIT-SDP model would have achieved in past moments in time. At the
time of the estimation, a clean software change may be more than W
days old, meaning that more time is used to collect its label.

By knowing the predictive performance that JIT-SDP approaches
would have obtained through a retrospective performance evaluation
procedure, a practitioner could make a decision on which kind of JIT-
SDP models to start adopting in their company. Once they start adopt-
ing a model, they should monitor its predictive performance based on
a continuous performance evaluation procedure to detect any potential
performance deterioration over time.

3 Related Work
3.1 Software Defect Prediction

Software defect prediction (SDP) can be used to identify code modules that are likely to be
defective (i.e., defect-prone modules). Based on that, quality assurance teams can effectively
focus their limited resources on testing, reviewing or debugging such defect-prone modules,
reducing the time required to find defects. Most existing work has investigated SDP models
that are created using a fixed and pre-existing dataset (Hassan 2009; Wang and Yao 2013;
Nam and Kim 2015), but some studies have also investigated the effect of learning additional
data received over time (Kabir et al. 2019; Ekanayake et al. 2012; Harman et al. 2014).

However, conventional SDP usually predicts bugs at the module level. Such coarse gran-
ularity can cause disadvantages as it may be difficult for practitioners to find where exactly
the defect is. Such disadvantage can be alleviated by defect prediction in a finer granularity,
such as software defect prediction at the software change level (Hassan 2009).

3.2 Just-In-Time Software Defect Prediction (JIT-SDP)

Software defect prediction at the change level, a.k.a., Just-in-Time SDP (JIT-SDP), aims to
predict whether software changes are likely to induce defects (Shihab et al. 2012; Mockus
and Weiss 2000). JIT-SDP can be considered as a binary classification task, where a JIT-SDP
model is constructed based on training examples of software changes that are labeled as
defect-inducing or clean. Several studies have investigated different input features that can
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be used to describe software changes (Sliwerski et al. 2005; Kim et al. 2008; Eyolfson et al.
2011; Shihab et al. 2012; Misirli et al. 2016). Kamei et al. (2013) conducted a large-scale
empirical study to investigate 14 features extracted from commits and bug reports for JIT-SDP
models, which can be grouped into five dimensions of diffusion, size, purpose, history and
experience. They showed these features to be good indicators for achieving high predictive
performance. Many subsequent studies have been conducted based on these features (Kamei
et al. 2016; Misirli et al. 2016; MclIntosh and Kamei 2018; Cabral et al. 2019).

Different machine learning algorithms have been used to build JIT-SDP models, e.g.,
logistic regression (Kamei et al. 2013; McIntosh and Kamei 2018), random forests (Kamei
et al. 2016), support vector machines (Kim et al. 2008), and deep learning (Hoang et al.
2019, 2020). Tree-based and logistic regression-based methods are among the most popular
and have shown potential in yielding good performance for JIT-SDP. Some studies (Kamei
et al. 2013; Tan et al. 2015; Kamei et al. 2016) have adopted techniques such as random
under-sampling, random over-sampling (Nguyen et al. 2011) and SMOTE (Chawla et al.
2002) to help JIT-SDP in identifying defect-inducing software changes despite the relatively
small number of defect-inducing training examples compared to the number of clean ones.

Most studies overlooked the chronology of software changes, where software changes
arrive sequentially in order over time. Overlooking the chronology was shown to lead to defect
prediction models with deceptively better predictive performance than they could achieve
in practice when chronology must be respected (Tan et al. 2015). Other studies have also
reported that predictive performance of JIT-SDP models can deteriorate over time (McIntosh
and Kamei 2018), possibly as a result of concept drift. Therefore, online learning algorithms
able to update JIT-SDP models with new examples over time have been recommended (Tan
et al. 2015; Cabral et al. 2019; Tabassum et al. 2020).

3.3 Verification Latency in SDP

When respecting the chronology of JIT-SDP, one needs to take into account the fact that labels
of software changes only become available long after the software changes are committed,
an issue referred to as verification latency in machine learning (Ditzler et al. 2015). As the
bug-fix software change or bug issue report required to identify a bug-introducing software
change (Sliwerski et al. 2005) comes after this software change, it by nature takes time for
the true label of a software change to be revealed. Therefore, the labels of software changes
are typically revealed months or even years after their commit time (Cabral et al. 2019).
Consequently, people would have to wait enough time to confidently label a given software
change as clean.

A similar study in module-based SDP is discussed by Chen et al. (2014). They use the
term dormant bugs to refer to defects introduced in a version of the software system that
are found only in later versions. Based on 20 open-source software projects from Apache
Software Foundation, they found that typically 33% of the defects introduced in a version
were reported in future versions as dormant bugs and performance evaluation that ignored
dormant bugs could be misleading. Even though this study was in the context of module-based
SDP, it has ramifications on JIT-SDP, as it indicates that defects induced by software changes
may take time to be revealed. Later, based on 10 open-source software projects, Cabral et al.
(2019) found in the context of JIT-SDP that the time it took to find defects induced by
software changes varied from 1 to 4,210 days after their commit time, with a median of 90
days. Pornprasit and Tantithamthavorn (2021) corroborated this by also mentioning that the
true labels of defect-inducing software changes can only be collected with a delay.
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However, most existing JIT-SDP studies overlook the fact that such label delay happens
not only in the training process of JIT-SDP but also in the evaluation process. Many studies
implicitly assume that true labels of software changes are available in their retrospective
performance evaluation procedures. So far, there have been very few related studies that
proposed to delete a good portion of the end of a data stream of software changes (e.g., those
committed in the last three months of the developing process) (Tan et al. 2015; McIntosh and
Kamei 2018; Cabral et al. 2019; Tabassum et al. 2020) in an attempt to reduce label noise.
However, no one really knows how large this portion should be in order to avoid problems
in the validity of retrospective performance evaluation procedures. Therefore, it is desirable
to know to what extent different waiting times and their resulting label noise would impact
the validity of retrospective performance evaluation procedures.

A previous study (Song and Minku 2023) has investigated whether and to what extent
waiting time can affect the validity of continuous performance procedures of JIT-SDP models.
Our study can be considered as a conceptual replication of Song and Minku (2023) to check
whether the findings obtained for continuous performance evaluation scenarios would also
occur in retrospective performance evaluation scenarios.

The smaller the waiting time, the more label noise is likely to be produced, as there would
be less time to find defects associated to software changes before producing corresponding
examples. So far, no existing study has investigated how to choose an adequate waiting time
value automatically, while making remaining software changes not to be too obsolescent for
the purposes of model training and evaluation. The amount of label noise produced as a result
of different waiting times is also unknown, as well as the impact that waiting time may have
on the validity of retrospective performance evaluation procedures in JIT-SDP. This work is
the first to provide such analyses.

3.4 Label Noise in SDP

As explained in Section 1, this paper is related to the label noise that results from waiting
time (Song and Minku 2023). Some studies have investigated label noise resulting from other
aspects of the data collection process that are unrelated to the waiting time (Antoniol et al.
2008; Bird et al. 2009; Aranda and Venolia 2009; Kim et al. 2011). They found that issue
reports can often be mislabeled. For instance, reports describing defects can be mislabeled
as “enhancements” and such mislabeling can influence the issue tracking system and version
control system records based on which source code modules are labeled as defective or clean.
Some studies reported that such mislabeling can lead to a negative impact on predictive
performance (Herzig et al. 2013; Yatish et al. 2019), while others concluded that this rarely
causes a severe problem to SDP (Tantithamthavorn et al. 2015).

Yatish et al. (2019) investigated the label noise arising from post-release window periods
through a case study with 32 releases and found that such post-release label noise had large
impact on the model-based SDP performance, leading to misleading predictive accuracy of
many studies that were based on such labeling of post-release window periods.

Related literature in JIT-SDP usually focused on the mislabeling resulting from the orig-
inal SZZ algorithm (Sliwerski et al. 2005) and its variants (Kim et al. 2006; Da Costa et al.
2017; Neto et al. 2018), which were designed for the identification of defect-inducing soft-
ware changes. Sliwerski et al. (2005) proposed B-SZZ (Basic SZZ) based on the built-in
annotation command from the version control system. Kim et al. (2006) replaced the
annotate command used in B-SZZ with the annotation graph — a tool for tracing change
history, forming the variant AG-SZZ (Annotation Graph SZZ). To mitigate the noise caused
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by branch / merge changes and property changes of AG-SZZ, Da Costa et al. (2017) proposed
the variant MA-SZZ (Meta-change Aware SZZ). Built upon MA-SZZ, Neto et al. (2018) pro-
posed RA-SZZ (Refactoring Aware SZZ) to further deal with the refactoring modifications
in software changes.

These algorithms are typically used in the literature for the collection of datasets for
training and evaluating JIT-SDP models. Herbold et al. (2022) found that among studies that
adopted SZZ algorithms, B-SZZ is the most popular variant with 38% identified literature;
only 14% of the literature specified their adoption of other SZZ variants; the remaining 40%
literature did not specify which SZZ algorithms they have adopted.

Fan et al. (2019) investigated the impact of label noise arising from the SZZ labeling
process on predictive performance of JIT-SDP models based on four popular SZZ variants.
RA-SZZ was the most recent SZZ algorithm and thus JIT-SDP models that were trained on
examples labeled by RA-SZZ was used as the baseline. They found that the SZZ-related label
noise caused by AG-SZZ can cause a significant performance reduction; in contrast, label
noise caused by B-SZZ and MA-SZZ were unlikely to cause a severe problem to JIT-SDP. A
more recent study was conducted by Herbold et al. (2022) to investigate the severe problem
of the data labeling process using SZZ based on a dataset that was constructed under manual
inspection. They concluded that a large amount of noise was produced by SZZ when labeling
software changes, and manual work was recommended to inspect the quality of the data.

However, these studies focused on the impact of label noise on predictive performance of
module-based SDP or JIT-SDP models, rather than on the validity of performance evaluation
procedures as will be done in this work. Moreover, label noise caused by waiting time was
not investigated in these studies, which is the main focus of this work. The only previous
work investigating the impact of label noise resulting from waiting time on the validity of
performance evaluation procedures was Song and Minku (2023), but it did not consider
retrospective evaluation procedures. Hereafter, whenever we refer to label noise, we mean
the label noise associated to waiting time, unless otherwise specified.

4 Problem Formulation

This section mathematically formulates the retrospective performance evaluation procedures
for JIT-SDP. Notations used in the formulation are summarized in Table 1, and we invite
readers to refer to this table for the explanations.

4.1 True and Observed Evaluation Data Streams

Given a Unix timestamp 7, it would be ideal to evaluate the predictive performance of JIT-
SDP based on the predicted and true (not observed) labels of the evaluation examples up to
this Unix timestamp. The true evaluation data stream consists of all software changes with
their true labels until 7', where 7 is the Unix timestamp when the retrospective data collection
is conducted. These software changes are ordered based on their commit Unix timestamp.
We refer to the natural number representing the order of commit as an evaluation or commit
time step 2,

2 Song and Minku (2023) made a distinction between commit and evaluation time steps. However, commit
and evaluation time steps are equivalent in this paper.
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Table 1 Summary of notations used in the problem formulation of the validity of retrospective performance
evaluation procedures in JIT-SDP

Notation Description

T,.U uppercase letters used to represent Unix timestamps

tu lowercase letters used to represent time steps corresponding to the Unix timestamps above,
respectively™

Xu the input features describing the software change produced at commit (also evaluation) time
step u

Yu the true label of software change X, being 1 for a defect-inducing software change and 0 for

a clean software change

v 4! yl’f’ 7 the observed label for X, decided at time step ¢ / Unix timestamp 7

Yu a predicted label of X, at evaluation time step ¢

D the true evaluation data stream that is produced based on true labels

]D)"‘jv the observed evaluation data stream that is collected based on observed labels retrospectively
given waiting time W

E the true predictive performance based on the true evaluation data stream

E X‘:V the estimated predictive performance based on the observed evaluation data stream ]E*‘jv

A the validity of retrospective performance evaluation procedures

nw the amount of label noise of the observed evaluation data stream given a waiting time W in

the retrospective performance evaluation scenario

Note that in the formulations used in this paper, we will frequently need to convert between time steps and
actual Unix timestamps. Uppercase letters such as 7" are used to indicate Unix timestamps, and corresponding
lowercase letters such as ¢ are used to indicate the corresponding time steps in a data stream. Lowercase and
uppercase letters will be used interchangeably whenever we need to emphasize time steps or Unix timestamps

The true evaluation data stream can be formulated as

D= {(X,, )’u)}f,:1 s

where the mathematical bold ID denotes a data stream used for evaluation, X,, denotes the
features describing the software change produced at commit time step u, y,, denotes the true
label of X, (1 for defect-inducing and O for clean), and ¢ denotes the time step corresponding
to the Unix timestamp T 3.

However, the true labels y, are unknown when collecting the data stream. In reality,
given a waiting time W, the data stream is collected based on observed labels, which can be
formulated as

W =X v Pl UK, DYy 41

where the superscript * is used to indicate that this is a data stream produced with observed
(rather than the true) labels of software changes, y;‘,T denotes an observed label for X,
decided at Unix timestamp 7', and tw is the time step corresponding to the Unix timestamp
Tw = T — W. The time step tw corresponds to the number of evaluation time steps of
this data stream up to the last moment when a clean software change can be labeled given
waiting time W. No clean software change can be labeled after 7y because we would not
have waited enough time to be confident that this software change is really clean. Examples
{(Xy, 1)}f¢=ZW 41 correspond to software changes found to be defect-inducing between Unix
timestamps 7w and T'.

3 Lowercase and uppercase letters will be used interchangeably in our notation system to represent a time
step and its corresponding Unix timestamp, respectively, as explained in the note of Table 1.
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The two bottom timelines of Fig. 2 give an illustrative example of observed and true
evaluation data streams for a software project. The observed evaluation data stream Dy, has
software changes X, whose labels have been collected as y* T whereas the true evaluatlon
data stream D has software changes X, with their true labels y, . D}, has only three examples
in this illustration, whereas ID has four. This is because labels for D can only be collected
until Tw = T — W (except for software changes found to be defect—inducing within the
waiting time), whereas X4 is a clean change that was committed after Ty . D includes the
additional X4 committed after Ty and its true label y4. This is because ID is an ideal (though
impractical) data stream that does not require to wait for labeling the examples. It is worth
noting that the observed evaluation data stream D7, used for retrospective evaluation is
different from the one used in continuous performance evaluation procedures (Song and
Minku 2023). In continuous performance evaluation, the observed label for a given software
change X, would be y; 1, y, rather than yj ;.

When all defect-inducing software changes are found before Unix timestamp 7w
(X, DY =ty +1 = ), time step ty is actually the last evaluation time step in the observed
data stream. When there are defect-inducing software changes found between Ty and T
{(X,, 1)}tu=zw +1 7~ V), the last time step where a defect-inducing software change is found
is the last evaluation time step in Dy, . Without loss of generality and for the sake of simplicity,
we will assume that ty is the last evaluation time step of the observed evaluation data stream
when writing formulas in the remaining of this section. For this reason, we can also use fy to
denote the number of evaluation time steps used by the retrospective performance evaluation
procedure.

4.2 Computing Label Noise

For RQ1, we need to determine the impact of waiting time on the level of label noise. We
formulate the amount of label noise of the evaluation data stream Dy, given a waiting time
W as
w *
1 ly T Yul
nw = = ———, ey

Zu 1 yu

where T is the Unix timestamp when the observed evaluation data stream was retrospectively
collected and time step ty corresponds to the Unix timestamp 7w = T — W, denoting the
number of evaluation time steps (see the last paragraph of Section 4.1). Please refer to Table 1
for other notations.

As the investigated label noise in JIT-SDP can only happen to defect-inducing software
changes, the numerator of Eq. (1) is not influenced by the status of examples that are truly
clean. As a clean software change is labeled “0”, the denominator actually counts the total
number of defect-inducing software changes in the data stream. Therefore, the label noise
n(W) measures the proportion of noisy examples over the total number of defect-inducing
software changes. A large n(W) shows a more severe level of label noise induced by waiting
time in the retrospective data collection process. We can also see that examples at the tail
(end) of the evaluation data stream are more likely to suffer from label noise because they
are closer to the last Unix timestamp 7', so that there is less time for defects induced by them
to be found.
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4.3 True and Estimated Performance

In retrospective evaluation, one is typically interested in determining how well JIT-SDP per-
forms on each and every software change that has been labeled up to a given Unix timestamp
T, where T represents the moment of data collection. The true predictive performance can
be computed based on all examples in the true evaluation data stream [D. We define it as the
average predictive performance across all examples produced up to time step ¢ based on the
true labels of the evaluation examples as

| R
E=—% 15—yl @)

u=1

where 7 is the corresponding time step of T that also represents the number of evaluation
time steps and || - ||g represents some performance metric.

However, as explained previously, the true performance is not accessible in reality as D is
actually absent due to verification latency. One has to wait a certain amount of time to produce
observed labels of software changes and estimate the predictive performance accordingly.
In a retrospective performance evaluation procedure, the estimated performance that can be
computed in reality is formulated based on the observed labels of software changes in the
evaluation data stream D}, as

tw
L&
Ej = gDm —yirlle, 3)

u=1

where the superscript * is used to indicate that this is the estimated performance based on
observed (not the true) labels and ty is the time step corresponding to the Unix timestamp
Tw = T — W that also denotes the number of evaluation time steps of this data stream.

4.4 Validity of Retrospective Performance Evaluation Procedures

For RQ2 and RQ3, we need to determine the impact of label noise and waiting time on
the validity of retrospective performance evaluation procedures, respectively. The validity at
Unix timestamp 7 given a waiting time W (and an amount of label noise) can be measured
based on the difference between the true and estimated predictive performance, which can
be formulated as

A=1-|E— Eyl, 4)

where E and E7j, denote the true performance and the performance estimated retrospectively
as defined in Eqgs. (2) and (3), respectively. A larger value for A indicates a better validity of
retrospective performance evaluation procedures.

4.5 Training Process

The retrospective evaluation procedure described in Sections 4.1 and 4.3 can be used to
evaluate any JIT-SDP model. To avoid analyzing this procedure with JIT-SDP models that
would not have been possible to produce in practice, we adopt online JIT-SDP (Cabral et al.
2019) to fully respect the chronology of the training data in this study.

The training data stream used to build our online JIT-SDP models consists of all software
changes labeled until 7. The software changes are labeled following the procedure proposed
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by Cabral et al. (2019). A software change X, committed at Unix timestamp U is labeled
as clean at Unix timestamp U + W' if no defect was found to be associated to it until this
timestamp, where W’ is the waiting time used for the collection of training examples *. It is
labeled as defect-inducing at the Unix timestamp corresponding to the first defect found to
be associated to it. Whenever a software change is labeled, it becomes a training example in
the training data stream. The training examples in the training data stream are ordered based
on the Unix timestamp when they were labeled. We refer to the natural number representing
the order with which training examples are produced as training time step.
In particular, a training data stream T7,, can be formulated as

tyr
W = A v g UK DYy, 11

where the mathematical bold T is used to denote a data stream used for training committed,
W’ is a waiting time used to produce training examples, and fy, is the time step corresponding
to the Unix timestamp Ty = T — W’ denoting the number of training time steps up to the last
moment when a clean software change can be labeled based on waiting time W'. Examples
{(Xu, 1)}L:lw/ 41 correspond to software changes found to be defect-inducing between Unix
timestamps Ty and T'.

The top timeline in Fig. 2 shows an illustrative example of a training data stream T, .
Software change X is labeled at Unix timestamp 77 = U; + W/, where U is the Unix
timestamp of its commit. Similarly, software change X» is labeled at Unix timestamp 7> =
U, +W'. However, software change X3 is labeled at Unix timestamp 73 < Usz+W’, as adefect
was found to be induced by it before the end of the training waiting time W’. As a result, the
training example corresponding to software change X3 appears before the one corresponding
to X» in the training data stream. Therefore, the training time step corresponding to each
software change are not the same as its commit / evaluation time step.

To build JIT-SDP models, we simulate a scenario where, whenever a training example is
produced, it is immediately used for updating the JIT-SDP model. This scenario is consistent
with the online learning scenario that one would be able to adopt in practice. In particular,
as training examples are produced W' days after the commit and the retrospective evaluation
procedure uses software changes to evaluate predictive models at their commit time, no
software change is ever used for training before it is used for evaluation. No data from the
future is used to train / update JIT-SDP models at present either. Specifically, whenever a
software change is produced at commit timestamp U, it is predicted by the most up-to-date
available JIT-SDP model that has been trained on all (and only) training examples that could
be labeled before U . This software change becomes a training example and is used for training
only some time after its commit.

One can refer to Song and Minku (2023) for a more thorough mathematical formulation
of the online learning process for JIT-SDP.

5 Experimental Setup

Being a conceptual replication of Song and Minku (2023), we adopt the same 13 GitHub open
source projects as that work to investigate the three research questions of this paper. These
projects were chosen for having more than 4 years of duration (most with more than 8 years
duration), rich history (>10k commits) and a wide range of defect-inducing changes ratios

4 The training waiting time W’ may or may not have the same value as the evaluation waiting time W discussed
in Section 4.1.
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(from 2% to 45%). The datasets were collected using Commit Guru (Rosen et al. 2015),
which implements the original and most popular B-SZZ algorithm (Sliwerski et al. 2005)
when an issue tracking system is available and its approximation otherwise. The statistic
summary of the projects is shown in Table 2. We will investigate each research question by
the corresponding statistical analysis performed across these 13 datasets in Table 2.

The large duration enables us to calculate a measure of predictive performance which
reflects the true performance with high confidence, so that we can compute Egs. (2) and (4).
Following Song and Minku (2023), the 99%-quantile of the time it takes to find the labels
of defect-inducing software changes is calculated, and software changes committed more
recently than this 99%-quantile would be eliminated. For instance, if this quantile is two
years, all software changes committed within the past two years were eliminated. As a result,
the remaining software changes were committed for at least more than two years, having at
least 99% confidence that they are really clean if no defect has been found to be induced
by them so far. Defect-inducing labels are always noise-free in this study, as they cannot
involve label noise due to inadequate waiting time. As discussed in Section 3.4, the main
aim of this paper is to systematically investigate whether and to what extent waiting time and
the label noise resulting it can have on the validity of retrospective performance evaluation
procedures. Label noise that is not induced by waiting time is out of the scope of this study,
which may have different effects on the validity of performance evaluation procedures and
could be investigated as a future work.

All projects have at least 5,000 software changes for which we are confident of their
labeling. As in Song and Minku (2023), we retain the first 5,000 time steps of each project
to answer our research questions, so that all projects investigated in this paper would have
the same data stream length. This is because the impact of the data stream length will also
be investigated in our analyses. Since most projects actually contain considerably more than
5,000 software changes in reality, the confidence in their true labels is higher than 99%.
When computing the predictive performance using the retrospective evaluation procedure,
we consider the moment of the data collection T to be the Unix timestamp of the 5,000th
example. We then contrast the performance estimated based on the labels obtained through
this procedure against the true performance by calculating the validity of the retrospective
performance evaluation procedure using Eq. (4).

Asin Song and Minku (2023), G-mean is adopted to implement performance metric ||- || .
However, the equations to evaluate the predictive performance based on the G-mean (Eqs. (2)
and (3)) are different from those in Song and Minku (2023), as our paper analyzes the validity
of retrospective rather than continuous evaluation procedures. G-mean is the geometric mean
between sensitivity (a.k.a. recall) and specificity (one minus the false positive rate) (Kubat
et al. 1997). Unlike performance metrics such as F-measure (Yao and Shepperd 2021), G-
mean was adopted for being robust against class imbalance, being particularly important for
JIT-SDP where class imbalance often takes place (Cabral et al. 2019; Wang et al. 2018; He
and Garcia 2009). Larger G-mean values represent better predictive performance.

Being a conceptual replication of Song and Minku (2023), we adopt the same machine
learning algorithm. Oversampling Online Bagging (OOB) with Hoeffding trees (Wang et al.
2015) to update / train the JIT-SDP model whenever a training example is produced, without
requiring retraining on past examples. This machine learning algorithm has been shown to
work well for JIT-SDP due to its ability to tackle class imbalance evolution (Cabral et al.
2019; Tabassum et al. 2020). We conducted a grid search based on the first 500 (out of the
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total 5,000) software changes in the data stream of a software project for parameter tuning
based on G-mean. As in Song and Minku (2023), the parameters consisted of the decay factor
€ {0.9,0.99} and the ensemble size € {5, 10, 20}. Given a software project, the parameter
setting achieving the best G-mean (calculated in Eq. (2)) at the first 500 time steps across
30 runs was chosen. The predictive performance of the JIT-SDP model was then calculated
based on the whole data stream using the best parameter setting. Hoeffding trees adopted
the default parameter settings provided by the Python package scikit-multiflow (Yao and
Shepperd 2021), following previous studies in JIT-SDP (Song and Minku 2023; Cabral et al.
2019; Tabassum et al. 2020). All analyses and statistical tests were conducted based on the
mean performance across 30 runs with the chosen parameter setting. The code and data used
for our experiments is released as open source source at https://github.com/sunnysong14/jit-
sdp-retrospective-pf-validity.

5.1 Statistical Methodology for RQ1

RQI investigates impacts of waiting time on the amounts of label noise. Waiting time W
varied among four levels (15, 30, 60 and 90 days), following the previous work (Song and
Minku 2023).

The investigation for RQ1 will also take into account different lengths of the data stream
(1000, 2000, 3000, 4000 and 5000 evaluation time steps), where the moment of the data
collection T used by the retrospective performance evaluation procedure corresponds to the
Unix timestamp of the 1000th, 2000th, 3000th, 4000th and 5000th example, respectively. The
data stream length is investigated as the proportion of noisy examples could be relative to the
size of the data stream. In particular, the “tail” of the data stream could potentially contain
more noise than the rest of the data stream because it is composed of more recent software
changes (closer to the moment of data collection T'), for which less time has passed to find
defects. Therefore, for instance, if we have a larger stream length such as 5000 commits,
the proportion of noisy examples is likely to be smaller, as the “tail” of the data stream is
relatively small compared to the size of the data stream as a whole. Conversely, if we have
a smaller stream length such as 1000 commits, the proportion of noisy examples is likely to
be larger. Therefore, the impact of the length of the data stream is investigated as part of the
analysis in RQI.

We will perform Analysis of Variance (ANOVA) (Montgomery 2017) with the significance
level 0.05 to analyze the impact of waiting time and data stream length on the amount of label
noise in the evaluation data stream Dy, following the prior work (Song and Minku 2023).
The null hypothesis states that there is no difference among group means and is rejected
when the p-value is smaller than the significance level 0.05. ANOVA is used instead of
non-parametric statistical tests such as Friedman because it enables us to investigate multiple
factors. Sphericity is an important assumption made by the repeated measures ANOVA
design. Mauchly’s test (Mauchly 1940) is adopted to assess the statistical assumption of
sphericity when using ANOVA. When the test yields a p-value less than the significance
level 0.05, we consider that the assumption has been violated. The Greenhouse-Geisser
correction is then used to correct for this violation.

As shown in Table 3, the within-subject factors under investigation include the waiting
time W and the data stream length ¢. The response variable is the amount of label noise nw
in Eq. (1).
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5.2 Statistical Methodology for RQ2

RQ2 investigates impacts of label noise on the validity of retrospective performance evalua-
tion procedures. Following the prior work evaluation procedures. Following the prior work
ourspsTSEspspaper), we will perform linear regression analyses with the significance level
0.05 for this purpose. The linear regression approach adopted Ordinary Least Squares to
learn the model. As shown in Table 3, in addition to the label noise of evaluation examples
(evaluation label noise), we will also consider the label noise of training examples (training
label noise) as independent variables, for a more thorough analysis. Different from the wait-
ing time used for evaluation purposes (the main concern of this paper), the training waiting
time is used to produce the data stream for training JIT-SDP models. Different training wait-
ing times can lead to different levels of noise in the training data and consequently produce
different JIT-SDP models. Both the training and evaluation waiting times used to compute
the amount of noise varied among 15, 30, 60 and 90 days. As the waiting time used for
evaluation purposes is the main topic of this work, whenever using the term “waiting time”
on its own, we mean the “evaluation waiting time”’; whereas the training waiting time will
always be explicitly referred to as “training waiting time”.

Including training label noise would enable the analysis to consider to what extent different
JIT-SDP models could impact the conclusions of this study. The dependent variable is the
validity of retrospective performance evaluation procedures formulated in Eq. (4). The p-
value of each independent variable tests the null hypothesis that the corresponding coefficient
equals to zero (no effect on the dependent variable). The linear regression statistical test is
considered significantifits p-value is smaller than the significance level 0.05. ANOVA, which
was used to answer RQ1, is not viable for answering RQ?2. This is because the independent
variables are continuous but not ordinal, so one cannot set up the levels of within-subject
factors (Montgomery 2017).

5.3 Statistical Methodology for RQ3

RQ3 investigates impacts of waiting time on the validity of retrospective performance eval-
uation procedures. Following the prior work (Song and Minku 2023), we will perform linear
regression analyses with the significance level 0.05 for that. The linear regression approach
adopted Ordinary Least Squares to learn the model. As shown in Table 3, we will consider
the evaluation waiting time and the training waiting time as the two independent variables
in the linear regression analyses for enabling a more thorough analysis of the validity. Both
have values varying among 15, 30, 60 and 90 days. The dependent variable is the validity
of retrospective performance evaluation procedures in Eq. (4). ANOVA adopted for answer-
ing RQ1 is not viable for RQ3, because there is a constraint between the two independent
variables: the evaluation waiting time should be no larger than the training one to follow the
principles of the online learning procedure, as explained in Song and Minku (2023).

6 Experimental Results
6.1 RQ1: Impact of Waiting Time on the Amount of Label Noise

In this section, ANOVA is used to analyze the influence of each of the two factors (the
waiting time and the data stream length) on the response variable (the amount of label noise).
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Mauchly’s tests show that the sphericity assumptions on the waiting time W and the length
of data stream ¢ are violated with p-values 4.42E-11 and 7.40E-5, respectively. Greenhouse-
Geisser corrections are thus adopted to account for such violations.

ANOVA with Greenhouse-Geisser corrections reports that W has significant impact on
the amount of label noise n(W) with p-value 0.016, but ¢ and the interaction W x ¢ are not
found to have significant impact on it with p-values 0.868 and 0.184, respectively. Effect
size in terms of partial eta-square is 0.447 for W, which is large compared to 0.009 for ¢,
and 0.163 for the interaction W x¢. Pairwise comparisons with post-hoc Bonferroni between
different waiting times find significant differences between 15 vs 30 days with p-value 0.024
and between 15 vs 60 days with p-value 0.033. No significant difference was found between
the other values.

We originally conjectured that the data stream length might have an impact on label noise,
because a larger proportion of the shorter data streams would likely be affected by label noise.
However, the statistical analysis shows that the data stream length does not have significant
impact on the amount of label noise. This suggests that, for different data stream lengths over
and including 1000, one does not need to be concerned with the impact of the data stream
length on label noise in the retrospective performance evaluation scenario. A potential reason
is that length of 1000 has been already large enough to avoid such impact.

Figure 3 shows impact of waiting time on the amount of label noise. Corresponding
numeric values can be found in the supplementary material. Each value in Fig. 3 represents
the average label noise across different lengths of data stream. Averaging across the data
stream length is reasonable because it has no significant impact on the label noise. The
plot for the impact of the data stream length on label noise is not shown as this impact is
not significant. As shown in Fig. 3(a)~(m), even though individual plots per dataset were
different from each other, larger waiting times usually lead to smaller label noise (except for
jGroup). This is reasonable since a larger waiting time would allow for more opportunities
to find defects induced by software changes, potentially contributing to smaller amounts of
label noise. Figure 3(n) shows the plot of median label noise across all datasets. We can see
that a larger waiting time of 90 days causes a median drop of 14.93% in the proportion of
defect-inducing examples labeled as clean across datasets. Therefore, different waiting times
can typically cause considerable difference in the amount of label noise, even though such
differences can be smaller for some datasets (minimum of around 4% in Broadleaf), and
larger for others (maximum of 45.86% in wp-Calypso).

Altogether, larger waiting time led to significant reduction on the amount of label noise; the
data stream length did not have significant impact on label noise. Section 6.2 will investigate
whether such amounts of label noise would be large enough to have a significant impact on
the validity of retrospective performance evaluation procedures.

-
Answer to RQ1 )
Smaller waiting times were found to be associated with significantly
larger amount of label noise. The proportion of defect-inducing examples
labeled as clean increased by up to 45.86% as a result of smaller waiting
time. The data stream length did not have significant impact on the
amount of label noise.
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Fig.3 RQI: Impact of waiting time (x-axis) on the amount of label noise (y-axis) in the retrospective perfor-
mance evaluation scenario. The impact of the length of data stream on label noise is not shown as this impact
is not significant. Values in the y-axis of Fig. 3(n) are the medians of the amount of label noise across all
datasets. We show the range of y-axis between 0.1 and 0.45 to facilitate visualization for all datasets except

for wp-Calypso
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6.2 RQ2: Impact of Label Noise on the Validity of Retrospective Performance
Evaluation Procedures

The linear regression analysis conducted for RQ2 shows that the linear relationship between
the two independent variables and the dependent one is significant with p-value 6.1834E-
11. So, we can continue to investigate the model coefficients. Both the evaluation and
the training label noise were found to have significant impact on the validity of ret-
rospective performance evaluation procedures with p-values 0.023215 and 7.2162E-10,
respectively.

The standardized coefficient for the amount of evaluation label noise was —0.172135,
showing a significant negative impact of the evaluation label noise on the performance valid-
ity. This means that larger evaluation label noise typically associates to significantly worse
validity of the retrospective performance evaluation procedure. The standardized coefficient
for the amount of training label noise was —0.499430, showing a significant negative impact
of the training label noise on the validity of retrospective performance evaluation proce-
dures. This means that larger training label noise typically means significantly worse validity
of retrospective performance evaluation procedures.

Figure 4 shows the relationship between the evaluation (training) label noise and the
validity of retrospective performance evaluation procedures in orange dotted (blue solid)
lines for all datasets. Corresponding numerical values can also be found in the supplementary
material. Each reported orange (blue) value represents the average performance validity
across all training (evaluation) label noises arising from different waiting times investigated
(15, 30, 60 and 90 days).

As shown by the orange dot lines in Fig. 4(a)~(m), even though the effects of evalua-
tion label noise on the validity in individual datasets were different, they typically showed
decreasing trends (except for Fabric, jGroup, and wp-Calypso). In this sense, larger evalu-
ation label noise typically associates to worse performance validity. Nevertheless, in most
datasets, the drops in the magnitude of the validity related to larger evaluation label noise
were small, with the validity differing by less than 1%, though some datasets might also
suffer from drops of around 2% (Nova). As shown by the orange dot line in Fig. 4(n), in
general, a larger evaluation label noise caused a median drop of only 0.3987% in the validity
across datasets. Therefore, larger evaluation label noise typically meant worse validity of ret-
rospective performance evaluation procedures, but the magnitude of the drop in the validity
was small.

As shown by the blue solid lines of Fig. 4(a)~(m), even though the effects of training
label noise on the validity in individual datasets were different, they typically presented
decreasing trends (except for Bracket, Fabric, Corefx, and Rails). In this sense, larger train-
ing label noise typically means significantly worse validity of retrospective performance
evaluation procedures. Nevertheless, in most datasets, the drops in the magnitude of the
validity caused by larger training label noise were small, with the validity differing by less
than 1%, though some datasets might also suffer from drops in validity of up to around
3% (Rust). As shown by the blue solid line of Fig. 4(n), in general, a larger training label
noise caused a median drop of only 0.4935% in the validity across datasets. Therefore,
larger training label noise would typically associate to worse validity of retrospective per-
formance evaluation procedures, but the magnitude of the drop in the validity would be
small.
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Fig.4 RQ2:Impact of the training label noise (blue solid lines in the lower x-axis) and the evaluation label noise
(orange dotted lines in the upper x-axis), arising from different waiting times, on the validity of retrospective
performance evaluation procedures (in y-axis). Reported values in Fig. 4(n) are the medians across all datasets
to demonstrate overall impacts on the performance validity. Note that the ranges of the x-axis may differ with
respect to the training and the evaluation label noise in order to facilitate visualization
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(- )

Answer to RQ2

Both evaluation and training label noise had significant negative im-
pact on the validity of retrospective performance evaluation procedures.
However, the magnitude of the changes in the validity caused by dif-
ferent amounts of label noise was small (varying up to around 2% for
evaluation label noise and 3% for training label noise, but most of the
time being less than 1%).

6.3 RQ3: Impact of Waiting Time on the Validity of Retrospective Performance
Evaluation Procedures

RQ1 and RQ2 have investigated the impact of waiting time on the validity of retrospective
performance evaluation procedures via label noise as a mediator. However, different choices
of waiting time might also affect the validity that cannot be captured by label noise. Such
impact could either increase or reduce the effect of label noise on the validity. RQ3 is designed
to investigate this.

The linear regression analysis conducted for RQ3 shows that there is a significant linear
relationship between the two independent variables and the dependent variable in the retro-
spective performance evaluation scenario with p-value 0.015. So, we move to the analysis
of the impact of each independent variable on the dependent one.

No significant impact of the evaluation waiting time on the validity of retrospective per-
formance evaluation procedure was found with p-value 0.564. Therefore, even though the
label noise caused by different evaluation waiting times has a significant (but small) impact
on the validity of retrospective performance evaluation procedures, other factors associated
to different choices of waiting time are likely to moderate this effect, resulting in evaluation
waiting time not having a significant impact on the validity. A discussion on such factors is
provided in Section 6.4.2.

Training waiting time was found to have a significant impact on the validity of retrospective
performance evaluation procedures with p-value 0.028. The standardized coefficient was
0.22, showing that the training waiting time had positive impact on the performance validity,
i.e., larger training waiting times are associated to better validity.

Figure 5 shows the relationship between training waiting time and the validity of retrospec-
tive performance evaluation procedures in the blue solid lines for all datasets. Corresponding
numerical values can also be found in the supplementary material. Each reported value rep-
resents the average validity of retrospective performance evaluation procedures across all
evaluation waiting times investigated (15, 30, 60 and 90 days). Averaging across evaluation
waiting times is reasonable because the evaluation waiting time has no significant impact
on the validity. Despite that, we also show the validity plots for different evaluation waiting
times in orange dotted lines to demonstrate that the validity of the retrospective performance
evaluation procedure was high in all datasets.

As shown in Fig. 5(a)~(m), even though smaller training waiting times were sometimes
associated to better validity of performance evaluation procedures (jGroup and wp-Calypso),
large training waiting times typically positively impact the validity of retrospective perfor-
mance evaluation procedures. This means that, depending on the actual JIT-SDP model
maintained for a given project and being evaluated, the validity of retrospective performance
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Fig. 5 RQ3: Impact of the training waiting time (blue solid lines in x-axis) and the evaluation waiting time
(orange dotted lines in x-axis) on the validity of retrospective performance evaluation procedures (in y-
axis). Reported values in Fig. 5(n) are the medians across all datasets to demonstrate overall impacts on the
performance validity

evaluation procedures may be better or worse. However, despite the significant impact of
training waiting time on the validity, the increases in the magnitude of the validity resulting
from larger training waiting times were not large, with the validity differing by less than 1
percentage point in most datasets; the differences were of at most around 2% (Django and
Rust). Figure 5(n) shows the plot of median validity of performance evaluation procedures
across datasets, for different waiting times. We can see that a larger evaluation waiting time
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of 90 days causes a median increase of even less than 0.5% in the validity compared to that
of 15 days, being of small magnitude. Therefore, such impact is unlikely to be practically
relevant when evaluating JIT-SDP models.

(" 2

Answer to RQ3

No significant impact of evaluation waiting time was found on the valid-
ity of retrospective performance evaluation procedures. Training waiting
time had a significant impact on the validity of retrospective perfor-
mance evaluation procedures, meaning that the validity may be better
or worse depending on the actual JIT-SDP model being evaluated. How-
ever, the changes in validity were small (typically less than 1%, and up
to around 2%), and so this impact is unlikely to be practically relevant.)

6.4 Discussion and Implications
6.4.1 High Validity of Retrospective Performance Evaluation Procedures

From the analyses presented in Sections 6.1 to 6.2, we know that, despite different evaluation
waiting times leading to significantly different amounts of label noise and such amounts of
label noise having a significant impact on the validity of retrospective performance evaluation
procedures, the magnitude of differences in the validity was rather small. When investigating
the impact of evaluation waiting time on the validity in Section 6.3, such impact was not
significant. This indicates that other factors related to evaluation waiting time are likely
to moderate the effect of label noise, canceling it out. Therefore, the choice of evaluation
waiting time among 15, 30, 60 and 90 days investigated in this study is unlikely to matter
when evaluating JIT-SDP in the retrospective performance evaluation scenario.

Such conclusion would be irrelevant if all of these waiting times had led to equally poor
(low) performance validity. In particular, that would have meant that larger waiting time
values might need to be investigated, to see if they would lead to significantly better validity.
However, Fig. 5 shows that the validity was indeed very high, being close to 1 (100%) in
all datasets. This result is very encouraging as such high validity values mean that not only
the results of existing JIT-SDP studies that have not cut a large portion of data streams to
prevent the validity issues are likely to remain valid, but also that researchers can make use
of relatively small or recent projects with just 1000 software changes in their studies when
adopting retrospective evaluation procedures. Such studies can be conducted by adopting
an evaluation waiting time as small as 15 days, leading to a relatively small portion of
the software changes of the project having to be eliminated. Future work could investigate
whether even smaller projects are also possible. It is worth noting that, if the waiting times
investigated in this study had not been large enough to achieve high validity, this would have
meant that studies to evaluate JIT-SDP could only be performed with much larger projects,
so that a very large portion of the tail of their corresponding data streams could be removed,
as done in this work for computing the “true” predictive performance with high confidence.

Such high validity values also mean that the predictive performances being reported in
research studies are close to the predictive performances that would have been obtained if
verification latency was not an issue in JIT-SDP. This is also very encouraging. It means
that practitioners can more confidently use knowledge of such estimated performances to
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decide whether or not they would like to adopt or investigate a given JIT-SDP model in their
companies.

It is worth noting that our study investigated the impact of waiting time on the validity
of retrospective performance evaluation procedures. This is different from investigating the
impact of waiting time on the predictive performance of JIT-SDP models. The latter is about
measuring the impact of waiting time on the capability of JIT-SDP models to correctly predict
labels of software changes. The former is about measuring the impact of waiting time on the
procedure used to evaluate what the predictive performance of such models is. We propose
the former to be investigated as future work.

6.4.2 Contrasting Validity Results of Retrospective vs Continuous Evaluation Scenarios

Being a conceptual replication of Song and Minku (2023), it is important to compare the
results obtained by our paper in the context of retrospective performance evaluation proce-
dures with those obtained by Song and Minku (2023) in the context of continuous performance
evaluation procedures. The results of this study are different from those obtained in Song
and Minku (2023), despite having some similarities. The main difference is that we found
that evaluation waiting time did not have a significant impact on the validity in the context
of retrospective performance evaluation procedures, whereas Song and Minku (2023) con-
cluded that it had a significant impact on the validity in the context of continuous performance
evaluation procedures. The potential reasons for such differences are as follows.

Even though both our study and Song and Minku (2023) found that waiting time had a
significant impact on label noise, the magnitude of this impact was smaller in the retrospective
scenario than in the continuous scenario. In particular, even though the amount of label noise
generated by waiting time was somewhat large in the retrospective scenario (around 0.3 for
the waiting time of 15 days), it was even larger in the continuous evaluation scenario (around
0.5 for the waiting time of 15 days (Song and Minku 2023)). This may have contributed to
a larger magnitude of the impact of label noise on the validity of continuous performance
evaluation scenario (by up to around 3% in Song and Minku (2023)), compared to that of the
retrospective evaluation scenario (by usually less than 1%).

Moreover, Song and Minku (2023) found that the obsolescence of past examples (which
are used to estimate the current performance in the continuous evaluation scenario) played
a significant role in affecting the validity of continuous performance evaluation procedures,
resulting in smaller waiting times leading to higher validity (despite it leading to larger
amounts of label noise). The role of the obsolescence of the past examples was strong,
because it affected every example in the continuous evaluation data stream.

In the context of retrospective performance evaluation, the obsolescence of examples is
also a factor that can influence the impact of waiting time on the validity. This is because the
true predictive performance is computed with examples obtained until Unix timestamp T,
whereas the observed retrospective performance evaluation procedure uses only examples
obtained until 7 — W. Therefore, the larger the waiting time W, the more obsolete the
observed evaluation data stream ]D)’{,V is compared to the true ). However, the number of
newer examples in [D that are not present in D, is small compared to the whole data stream
size. Therefore, the role of the obsolescence becomes less impactful than in the continuous
performance evaluation scenario. It becomes a moderator of the already small impact of label
noise on the validity, such that the impact of waiting time on validity became insignificant.
This role was thus that of a moderator that reduces the impact of waiting time on the validity,
rather than changing the impact from negative (lower waiting time leading to lower validity)
to positive (lower waiting time leading to better validity) as in Song and Minku (2023).
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7 Threats to Validity

This section discusses the threats to validity of our study, which are similar to the threats to
validity of Song and Minku (2023).

Construct Validity. We carefully chose G-mean as the evaluation metric whenever the
performance of JIT-SDP was required to compute in the analyses of this study. Adopting G-
mean is adequate due to its insensitivity to the class imbalance issue (Wang et al. 2018), which
is particularly important for JIT-SDP that typically suffers from the class imbalance issue
(Cabral et al. 2019). G-mean is the most widely used metric in online class imbalance learning
studies (Wang et al. 2018). We used grid search based on an initial portion of the data stream
to tune parameters of the machine learning algorithms used in this study. Random search
might find better parameter values than grid search (Bergstra and Bengio 2012). However,
whether or not this is the case in data stream learning is still an open question, as the best
values for the initial portion of the data stream are not necessarily the best for the remaining
of the data stream due to concept drift, which is frequently occurred in JIT-SDP (Cabral
et al. 2019; Cabral and Minku 2022; MclIntosh and Kamei 2018). Moreover, this paper is
concerned with investigating the validity of the performance evaluation procedures rather
than with improving predictive performance of JIT-SDP. The specific choice of parameter
tuning method is less relevant in this context than in studies targeted at improving predictive
performance of JIT-SDP models.

Internal Validity. A potential threat of the internal validity is that the true labels of some
defect-inducing software changes may never be accessible when the defects induced by
them are not induced until the end of the data stream due to very large verification latency.
To mitigate this threat, we used open source projects covering a period of at least four years
and eliminated software changes from the latter periods of data streams.

External Validity. We have investigated 13 open source projects, with 4 levels of waiting
time, and 5 lengths for data streams, covering a range of different characteristics in previous
JIT-SDP studies. However, as with any study involving machine learning, results may not
generalize to other contexts. Moreover, our study focuses on OOB with Hoeffding trees,
which have been previously adopted for online JIT-SDP (Song and Minku 2023; Cabral et al.
2019; Tabassum et al. 2020). Being a conceptual replication of Song and Minku (2023), we
adopt the same machine learning approach as in that paper. Other types of machine learning
approaches could be investigated as future work following the same investigation procedures
and statistical methodologies for answering the same RQs in future work. The conclusions
of our study are in the context of noise resulting from waiting time when using SZZ for data
collection. Label noise not caused by waiting time may have different effects on the validity
and could be investigated as a future work. Similarly, different conclusions may be obtained
regarding the impact of waiting time if a different algorithm from SZZ is adopted for data
collection.

8 Conclusion

We conducted the first analysis of the extent with which the conclusions of JIT-SDP research
studies are (in)valid in view of the fact that observed labels rather than the true labels of soft-
ware changes are being used for conducting retrospective performance evaluation procedures.
We conduct our investigation by answering three research questions as below.
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RQ1. How large is the amount of label noise caused by different waiting times in
retrospective JIT-SDP data collection? We found that smaller waiting times were associ-
ated to significantly larger amount of label noise. The proportion of noisy defect-inducing
examples labeled as clean increased by up to 45.86% as a result of smaller waiting time.

RQ2. To what extent is the validity of retrospective performance evaluation pro-
cedures impacted by label noise resulting from waiting time? We found that both the
evaluation and the training label noise had significant negative impact on the validity of ret-
rospective performance evaluation procedures. However, the magnitude of the changes in the
validity was typically small, varying up to around 2% for evaluation label noise and 3% for
training label noise, but most of the time being less than 1%.

RQ3. To what extent is the validity of retrospective performance evaluation proce-
dures impacted by different waiting times? No significant impact of the evaluation waiting
time was found on the validity of retrospective performance evaluation procedures. Training
waiting time had a significant impact on the validity, meaning that the validity of performance
evaluation procedures may be better or worse depending on the actual JIT-SDP model being
evaluated. However, the changes in validity were small (up to around 2%), and so this impact
is unlikely to be relevant.

Besides the investigation of the three research questions, our results also report that the
validity of retrospective performance evaluation procedures was high in magnitude even when
using small evaluation waiting times. This is an encouraging result, as it means that future
studies can make use of not only larger (with 5k+ software changes) but also smaller (with
1k software changes) software projects for evaluating predictive performance of JIT-SDP
models. This is particularly important in terms of having a validated performance evaluation,
as many software companies have projects of short duration compared to some of the existing
open source projects that have run for several years. With this in mind, people would feel
safe to trust the estimated performance even for smaller software projects in the retrospective
performance evaluation scenario.

As future work, other performance metrics, machine learning algorithms, and sources of
label noise can be investigated. The impact of waiting time on the predictive performance of
JIT-SDP models could also be investigated.
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