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Abstract
Bug reports are used by software testers to identify abnormal software behaviour. In this
paper, we propose a multi-objective evolutionary approach to automatically generate finite
state machines (FSMs) based on bug reports written in natural language, to automatically
capture incorrect software behaviour. These FSMs can then be used by testers to both exercise
the reported bugs and create tests that can potentially reveal new bugs. The FSMgeneration is
guided by aMulti-ObjectiveEvolutionaryAlgorithm (MOEA) that simultaneouslyminimises
three objectives: size of the models, number of unrealistic states (over-generalisation), and
number of states not covered by the models (under-generalisation). We assess the feasibility
of our approach for 10 real-world software programs by exploiting three different MOEAs
(NSGA-II, NSGA-III and MOEA/D) and benchmarking them with the baseline tool KLFA.
Our results show that KLFA is not practical to be used with real-world software, because it
generates models that over generalise software behaviour. Among the threeMOEAs, NSGA-
II obtained significantly better results than the other two for all 10 programs, detecting a
greater number of bugs for 90% of the programs. We also studied the differences in quality
and model performance when MOEAs are guided by only two objectives rather than three
during the evolution. We found that the use of under-approximation (or over-approximation)
and size as objectives generates infeasible solutions. On the other hand, using as objectives
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over-approximation and under-approximation generates feasible solutions yet still worse than
those obtained using all three objectives for 100% of the cases. The size objective acts as a
diversity factor. As a consequence, an algorithm guided by all three objectives avoids local
optima, controls the size of the models, and makes the results more diverse and closer to the
optimal Pareto set.

Keywords Model inference · Search-based software engineering ·
Multi-objective optimisation

1 Introduction

Natural language bug reports are important resources for testers to generate test cases that
exploit the buggy features. Usually, once a bug report is submitted, the developers have to
analyze and validate it, and later fix the bug by coding a software patch. However, it remains
challenging to software testers to generate proper test cases to exercise the bugs reported by
the users. As a consequence, the patches may be incomplete or even introduce more bugs in
the software (Yin et al. 2011). Creating proper tests that exploit the buggy features is crucial
to improve the quality of bug fixes.

In order to reduce the human effort, bug reports can be used as events to automatically
generate a behavioural model of a system (Zhang et al. 2015). Behavioural models create
an abstraction of a system which describes its internal behaviour. This abstraction is used to
synthesize concrete software development (e.g., test cases) in an automated fashion (Boussaïd
et al. 2017). The focus of these models is on the dynamic view of the system, not on how it
is implemented (Dennis et al. 2015). More specifically, state machines are good behavioural
models for capturing state changes of a system (Dennis et al. 2015).

Models are highly used in software engineering because they help gain a better under-
standing of the system for which they are built, thus helping to achieve better quality and
improve productivity throughout the software development cycle (Boussaïd et al. 2017). Fur-
thermore, by using models, developers are not forced to understand the system in terms of
its source code to perform verification and validation. A behavioural reference model that
contains many bug traces of an application could help developers to fix reported bugs as
well as exercise unforeseen behaviour and potentially discover new bugs. We herein refer to
behavioural models that aid the tester during the testing task simply as “test models”.

The automatic generation of such a behavioural model is defined asmodel inference. It has
been introduced to reduce or eliminate the human effort involved in creating useful models,
which is the major issue in terms of cost and time effort (Walkinshaw et al. 2013a). The
inference technique’s performance depends on factors such as the “richness” of the input,
or the complexity of the software system. Generally speaking, the generation of a model is
based on two main parts: i) the selection of “examples” of software behaviour (e.g., program
traces) as input data; and ii) the application of algorithms from the domain of Artificial
Intelligence (Walkinshaw et al. 2013a).

Even though inference techniques are capable of automatically generating a set of solutions
in an effortless way for humans, the resulting models inferred from logs that guide the testers
in test cases generation can suffer from two main issues: under-approximation and over-
approximation (Tonella et al. 2012). The former means that the generated model is not able
to recognise some or all of the traces given for the training (under generalising). The latter
means that themodel is over generalising the application behaviour, i.e., generating execution
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pathswhich are not observable in practice. An example is the tool KLFA (Mariani and Pastore
2008). This tool is able to create a behavioural model of a system by using the software’s
log files. However, the incremental approach for the model creation generates a model that
is not practical for testers to use because of its huge size and over approximation.

This can be improved by adopting a different technique of model inference which can lead
to more feasible and practical models. In this paper we explore the use of Multi-Objective
Evolutionary Algorithms (MOEAs) to infer models considering multiple objectives, thus
generating optimal models with a good trade-off between such objectives. Our proposed
MOEA approach takes events (i.e., execution logs extracted from bug reports) written in
natural language as inputs and generates finite state machine models, which are able to
recognise the execution traces in the bug reports and generate unseen but valid behaviours
of an application.1

Our approach aims at optimising three important characteristics of the generated model:
their size, under- and over-approximation. The aim is to generate models that generalise the
set of user events which triggered software bugs. Hence, the tester can automatically infer a
behaviour model from bug reports that can guide their testing activity.

More specifically, two major use cases are possible with such models: 1) after the user
reports a bug, the tester evaluates it against the inferred model; if the model recognizes it, the
tester can generate the test case for that bug and eventually develop a patch; and 2) the tester
examines all the execution traces generated by the inferred model in order to create new test
cases to potentially find new bugs.

In other words, the idea is that the generated models can be analysed by the tester for
them to better understand the steps the software takes when a bug is present. If the tester
observes a state transition in the model that should not happen, they can create test cases to
capture this behaviour and check whether it produces an error. If a trace derived from a bug
report is accepted by the model, meaning that it is recognised by the model and observed in
practice, then the tester has an indication that it is a known bug or part of a known bug. In this
sense, the tester can avoid re-testing known bugs that may be already under fixing efforts,
or can use the model to leverage on information of known bugs to check whether they have
resurged in later versions of the software. Ultimately, these models could also be used by a
test generation tool to automatically generate test inputs that are likely to capture bugs.

The main novelty of this approach lies in its generation of models based on bug reports (as
opposed to execution logs as done byKLFA). This feature focuses on actual bug reproduction
steps, and consequently generates models that are specific for testing. Moreover, because our
approach also includes a size objective (minimisation) during the generation process, the
models become smaller and produce fewer execution traces. As a consequence, the engineer
can focus on specific traces that are more likely to trigger bugs, thus making the generated
models more practical.

We implement three differentMOEAswith our approach, namely Non-dominated Sorting
Genetic Algorithm II (NSGA-II) (Deb et al. 2002), Non-dominated Sorting Genetic Algo-
rithm III (NSGA-III) (Deb and Jain 2014), and Multi-Objective Evolutionary Algorithm
Based on Decomposition (MOEA/D) (Zhang and Li 2007). Later we compare it with the
baseline tool KLFA on 10 real-world programs retrieved from the BugZilla reporting sys-
tem. The solutions generated by the differentMOEAs are compared in terms of Hypervolume
(HV) and Inverted Generational Distance (IGD) as performance indicators (Riquelme et al.

1 Strictly speakingwe originally presented this idea in a short paper for the Challenge Track of the Symposium
on Search-Based Software Engineering (Zhang et al. 2015), which won the challenge. In this paper we provide
the full proposal of the approach with a comprehensive description of its functionality, and a large-scale
empirical evaluation.
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2015). We also compare them in terms of bugs revealed and overall estimated human effort
on analysing the model traces to create new test cases. The main goal is to evaluate the
trade-off between under and over generalisation of automatically generated models, while
also assessing the fault revealing capability of each algorithm.

As studied in a previousworkbySarro et al. (2016), it is also interesting to study the benefits
gained from a multi-objective formulation. Therefore, we investigate the use of different
combinations of objectives: i) under-approximation, over-approximation, and size; ii) under-
approximation and size; iii) over-approximation and size; and iv) under-approximation and
over-approximation. With this analysis, we intend to assess whether the three objectives are
indeed conflicting, or if a simpler two objective formulation subsumes the three objectives
formulation.

The results show that NSGA-II, compared with NSGA-III and MOEA/D, has lower size
values in 70% of the datasets, lower number of edges in all training sets of data, lower
over-approximation in six out of ten datasets, and lower under-approximation in 80% of the
datasets. Therefore, NSGA-II has a lower model complexity in terms of size, it produces
solutions which do not over-generalise as often and, lastly, the solutions are less under-
generalising, meaning that more application’s behaviours are recognized. In a real-world
testing scenario, NSGA-II can reveal a higher total number of bugs than NSGA-III and
MOEA/D on 80% of the testing datasets, thus producing solutions which are more extensible
to new behaviours and not too specific for an application.

Furthermore, the results of the comparison between different objectives formulations show
that the three objectives formulation generates smaller and more diverse solutions which can
find more bugs (double the number on 70% of the datasets). The three objectives formulation
yields significantly large and better HV and IGD values than the two-objectives one for
all programs. We also found out that the size objective in a three objectives formulation is
necessary in order to control the number of states of the automata, while also improving
the solutions diversity and uniqueness. Consequently, such formulation avoids local optima
during the evolutionary process and leads to more powerful models.

The main contributions of this paper are:

1. the proposal of a novel Multi-Objective Model Inference approach;
2. a large scale empirical study with real-world programs to assess the feasibility and effec-

tiveness of our approach;
3. the comparison of three evolutionary algorithms NSGA-II, NSGA-III and MOEA/D to

establish which one is the most effective on the presented model inference multi-objective
optimization problem;

4. the evaluation of the benefits gained from a three-objective problem formulation compared
to a two-objective formulation. The evaluation is performed in terms of solution trade-
offs between under-approximation and over-approximation along with fault revealing
capability of the models;

5. the comparison with a baseline tool for model inference: KLFA (Mariani and Pastore
2008);

6. the provision of our approach as an open-source software at https://github.com/SOLAR-
group/ModelInference.

The rest of the paper is organized as follows. Section 2 presents the background. Section 3
showshow the proposed approachworks. Section 4 presents the experimental set up. Section 5
shows the results and answers the research questions. Section 7 describes related work in the
field of model-based testing using Natural Language Processing (NLP). Finally, Section 8
draws conclusions and outlines future work.
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2 Background

In this section we present the necessary background onModel Inference andMulti-Objective
Evolutionary computation for a better understanding of the rest of the paper.

2.1 Model inference

Model inference is a crucial part of Model-Based Testing (MBT), which aims at manually
or (semi-)automatically producing (and sometimes also executing) test cases for a given
system under test (SUT), based on models derived from the systems. To these end, many
different approaches have been proposed in the literature. Among these, there are search-
based optimization algorithms (Boussaïd et al. 2017) such as Genetic Algorithms (GAs), Ant
Colony Optimization (ACO), and Simulated Annealing (SA).

There are different types of models that can be exploited to derive test cases, ranging from
Unified Modelling Language (UML) (Ahmad et al. 2019) diagrams to Finite State Machine
(FSM) (Paradkar 2004; Stobie 2005). Recent studies have shown how models can be also be
built from artifacts written in natural language, which requires a preprocessing step to convert
natural language artifacts into structured data to give as input to the model. Testers benefit
fromNLP techniques because themanual effort of extracting test cases from natural language
requirements is reduced. Garousi et al. (2020) performed a systematic literature mapping of
NLP techniques exploited in the area of NLP-assisted software testing. Substantial effort has
been put on MBT, especially in devising algorithms for generating system models such as
Deterministic Finite Automaton (DFA) (Dias Neto et al. 2007).

A DFA model is an automaton that mimics a given behaviour, in our case, a software
behaviour. Formally (Rivest and Schapire 1993), a DFA model M is represented by a 5-
tuple:

M = (Q, �, δ, q0, F) (1)

where Q represents a finite set of states, � a finite alphabet, δ a transition function δ =
Q × � → Q, an initial state q0 ∈ Q, and a set of accept states F ⊆ Q. In summary, a
DFA model M receives as input a string w = σ1, σ2, ..., σn where σ ∈ �, consumes each
σ ∈ w in order, and uses such character as input to transition from one state q ∈ Q to
another according to the transition function δ until there are no more characters left inw. The
transition function maps each combination of (q, σ ) into a resulting state q , i.e., determines
what is the next state qi+1 from the current state qi when using the next input σi+1. After
processing the string w, a final state q f is reached and, if q f ∈ F (i.e., the final state is an
accept state), then the model M is said to accept w. If q f /∈ F , then M is said to reject w. In
this work, we also deal with incomplete DFAmodels during their inference. A DFAmodel is
called incomplete if the transition function δ is not able to map any combination (q, σ ), i.e.,
it means that the model does not support the given transition. If such transition is required in
practice, the model will halt and thus will not accept the string w.

Amodel inference technique must infer the elements of the 5-tuple model M using a set of
input examples W . According to Rivest and Schapire (1993), the objective of a model learner
is to infer a perfect model M , i.e., the inferred model can perfectly predict the correct output
for any sequence of inputs w ∈ W . For that, the technique must first ensure that the inferred
models comply with the rules of a DFA: i) there must be an initial state q0; ii) δ is able to map
all combinations of (q, a); and iii) F �= ∅. Besides being able to infer a perfect model, the
technique has to also be evaluated in terms of speed of model inference and size of learned
automata (Meinke andWalkinshaw 2012), otherwise the technique itself becomes infeasible.
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Finally, a trade-off has to be made between the computational complexity of model inference
and the cost of the models, otherwise the engineer might not be able to understand and use
such inferred model for their needs. In order to balance the cost of this procedure and the
quality of the results, the use of metaheuristics has been proposed (Zhang et al. 2015; Tonella
et al. 2012).

2.2 Multi-Objective Evolutionary Algorithms

Evolutionary computation comprises different kinds of algorithms such as: Genetic Algo-
rithms (GAs), Evolutionary Programming (EP), Evolution Strategies (EAs), and Genetic
Programming (GP). These algorithms address abstract tasks, representing them as search
problems in a space of potential solutions. What we look for is “the best” solution, so the
problem can be seen as an optimization process (Dasgupta and Michalewicz 1997).

When the search space is not feasible for classical exhaustive techniques, the need of more
sophisticated artificial intelligence techniques such as Evolutionary Algorithms arises. They
are naturally stochastic and the search methods derive from natural phenomena like genetic
inheritance and Darwinian strife for survival (Dasgupta and Michalewicz 1997).

The behaviour of an EA comprises of a population which evolves over several genera-
tions, following the natural selection and reproduction. Each individual in the population
represents a solution, which is differentiated from the others by its chromosome. A chromo-
some, constituted by a set of genes, can be represented as an array of simple data type like
bit, float or integer, or a complex data type like objects. The population evolves over several
generations, and two essential operations are stochastically applied: crossover and mutation.
The crossover operator takes a set of parents and generates new individuals which carry the
genes of their parents. The mutation operator promotes diversity, applying a perturbation to
the genes of the individuals. At each generation, the solutions are evaluated using a fitness
function, which denotes the quality of the solution. The process is repeated until a stopping
condition ismet, which can be a specific fitness value, running time, or number of evaluations.

EAs are based on an iterative optimization process which produces a certain number
of solutions in the search space. In our case, a solution is represented by a model which,
starting from artifacts written in natural language, can be inferred by adopting an optimization
technique.

In an optimization problem, a solution is described in terms of a decision vector (x1, ..., xn)

in the decision space X (Zitzler et al. 2004). Each solution’s fitness is represented by an
objective vector (z1, ..., zk) in the objective space Z , assigned by a function f : X → Z .
Optimization problems aim to minimize or maximize one or more objectives, depending on
the particular problem. An optimization technique can be mono-objective or multi-objective.

The former type is used when the individuals are evaluated on just one value that denotes
their fitness. The optimization process is simpler because the solutions are rankedwith respect
to their fitness, and the best ones are selected for the mating operations and for survival.

On the other hand, when dealing with a multi-objective problem, the optimization tech-
nique generates a set of diverse solutions. Since there is not a single best solution, the concept
of Pareto dominance is used. For minimization, a solution x1 is said to dominate a solution
x2 (x1 � x2) if no objective zi of x1 is greater than zi of x2 and at least one objective is
smaller (Zitzler et al. 2004). If these conditions do not hold, the solutions are called “non-
dominated”, meaning that both are equally acceptable solutions with different trade-offs for
the problem.
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Hence, the result of a multi-objective optimization is a set of optimal solutions. The set
of optimal solutions in the decision space X is in general denoted as the Pareto set X∗ ⊆ X
and its image in the objective space is denoted as Pareto front Z∗ = f (X∗) ⊆ Z . The
Pareto set has to be analysed by the decision maker in order to find the solution with the best
trade-off between objectives values for the particular problem, based on their needs. The aim
of evolutionary multi-objective optimization is to find a good approximation of the Pareto
set, because often the real Pareto front cannot be found in feasible time.

A very popular MOEA is NSGA-II, which performs the selection and survival operations
using the concept of crowding distance (Deb et al. 2002). For the replacement operation, the
individuals ranked first based on the dominance relation and then based on their crowding
distance. The NSGA-III algorithm uses reference directions to guide the search (Deb and
Jain 2014). NSGA-III introduces significant changes to the NSGA-II algorithm, maintaining
the diversity of the population members by supplying and adaptively updating a number
of reference points. A very different approach is used by the MOEA/D algorithm which is
based on decomposition (Zhang and Li 2007). The multi-objective optimization problem is
decomposed into a number of scalar sub-problems, which are optimized simultaneously by
the algorithm. The sub problems are optimized using information about their neighbours sub
problems.

In this work, we use these three MOEAs to generate testing models (according to the
representation shown in Equation 1) from bug reports written in natural language. We chose
these MOEAs as they are well-known in the literature, and have been used in the past for
various Search-Based Software Engineering (SBSE) problems including software testing
(Tonella et al. 2012; Guizzo et al. 2020), software effort estimation (Sarro et al. 2016; Tawosi
et al. 2021) and software project management (Ferrucci et al. 2013; Sarro et al. 2017).

3 Proposed approach

The main goal of this work is to provide an approach that performs all necessary tasks to
achieve a behavioural model for a SUTwithout any additional information other than the bug
reports themselves (written in natural language). Such behavioural models can help engineers
in creating test cases that can help them exercise defective code or reveal new faults. As far
as we are aware, only Zhang et al. (2015) were able to provide a prototype tool that could
aim at such a goal. Our approach is built upon the initial efforts of Zhang et al. (2015); it
consists of five main phases, as shown in Fig. 1 and briefly explained next and thoroughly
explained in their subsequent subsections.

The first step of our approach is named Extraction (Section 3.1). Given a bug tracking
system URL, it crawls the system to retrieve a list of bug reports written in natural language.
It then filters the reports to retain only the reproduction/trace steps representing the behaviour
we want to model. As output, it generates a list of bug traces which is given as input to the
next phase. In this paper, we consider “trace step” as a single step of a given bug report, and
“bug trace” the full list of steps to reproduce the bug.

The second phase is called Processing (Section 3.2). The main goal of this phase is to
parse the bug traces written in natural languages with an NLP framework in order to create
a more structured set of bug traces. This is required to allow for a more effective model
inference procedure. The result is a list of tokenised bug traces/reports and a list of known
tokens. The latter is given as input to the next phase.
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Fig. 1 Approach overview. Solid boxes represent processes and solid lines transitions between them. Dashed
boxes represent artefacts and dashed lines represent inputs and outputs of given artefacts

The third phase, Clustering (Section 3.3), aims at clustering similar trace steps in order
to identify the same behaviour. Hence, all trace steps inside a cluster represent the same
software action. This cluster of tokens is given as input to the next phase.

The fourth phase of our approach is named Mapping (Section 3.4). This phase maps
clustered trace steps into a single step, i.e., it assigns a single unique identifier to all steps
of a given cluster, consequently reducing the number of redundant steps and simplifying the
models.

Finally, the fifth phase, Inference (Section 3.5), is where the inference of the DFAmodels
is done using MOEAs on the trace steps obtained in the previous phases. It receives as input
the list of tokenised bug reports/traces (generated in phase two) and the list of unique tokens
identifiers (generated in phase four). The latter represents the alphabet/input space � of our
DFA (see Sections 2.1 and 3.5.1). The former iswhat our algorithm aims atmodellingwith the
inferred models, i.e., the goal is to create models that can mimic the behaviours represented
by such reports. These generated models are given as output to the engineer, who can use
such models to create test cases that can exercise the faulty code or generate unseen traces
to reveal new bugs.

3.1 Extraction

In the first phase, we extract bug reproduction information from the bug tracking system. For
each SUT, we access its bug tracking system and execute a webcrawler to mine the existing
bug information. Each bug report is transformed into a raw HTML page.

The relevant information obtained in this phase are the steps reported to reproduce the
bug. These steps are usually located between the “Steps to Reproduce”and “Actual Results”
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Fig. 2 Raw bug reproduction
steps

(or sometimes “Expected Results”) keywords. We have analysed the bug tracking systems
used in this work and found out that, although not officially disclaimed, there seems to be
a convention by bug reporters and developers on how to report bugs this way. We used this
convention to obtain a more accurate bug extraction. Hence, we filter the raw HTML pages
to contain only this information and then transform such pages into a JSON file.

Each JSON file represents a SUT containing a list of bugs. A bug is identified by its ID
(key) and is associated to a list of steps to reproduce (value). Figure 2 depicts an example of
such file for the “Firefox for Android” program (see Section 4 for more information on the
datasets used in this work).

3.2 Processing

The second phase focuses on processing the data collected during the bug report extraction
in order to remove noise and create tokenised traces. This phase is needed to retain only steps
that can translate into actionable operations in the software.

We first remove noise by deleting the leading step numbers, sentences in parenthesis
(which usually contain complementary information), and splitting composite trace steps into
multiple steps (e.g., step 5 of bug 702950 in Fig. 2). Next, we transform each step into a
list of words by tokenising the sentences. For that purpose, we use the NLTK framework.2

We then remove stop words (e.g., “is”, “the”, “at”) and punctuations. Finally, we stem the
words to their roots. Stemming is a common NLP technique to reduce multiple similar words
into a single stem for better recognition. For instance, the words “browse”, “browsing”, and
“browsed” are all stemmed to “brows”.

Moreover, we also remove words that appear only once in the dataset, because if they
were included, we would have an overly long dataset and traces containing steps that do not
represent a step shared by many bug reports. In this sense, such words may be part of specific
steps that serve as complement of a previous step or by incorrect steps wrongfully observed
by a single user, and thus they are likely to be irrelevant.

2 https://www.nltk.org/
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Fig. 3 Processed bug
reproduction traces

At the end of this step, we obtain a list of traces comprised of lists of words. Figure 3
depicts the results of the data processing procedure, when applied to the reproduction steps
presented in Fig. 2.

3.3 Clustering

It is very unlikely that all users will use the same words to describe the same software
behaviour, hence we must perform a clustering of similar words to identify synonyms. With
this in mind, we first perform a Latent Semantic Analysis (LSA) (Dumais 2004). Briefly,
LSA creates a matrix of words and documents (i.e., steps), where each cell is the frequency
of the given word in a given document.

The clustering algorithm uses the information retrieved by the LSA procedure and projects
it into a Latent Semantic Indexing (LSI). This indexing is then used by the algorithm to
compute the similarity between the steps and then join them into clusters. Since the number
of clusters k is defined by the user, we had to set it as an additional parameter. In a preliminary
experiment, we found out that the best value for k is around 20%–35% of the total number of
steps in the dataset, to amaximum of 400 clusters. A second parameter is the cosine similarity
threshold which was set to 0.7, i.e., the threshold to consider two trace steps similar. These
values come from an earlier preliminary experiment and from what we observed in related
work (Zhang et al. 2015).

The clustering algorithm iteratively performs LSI and compares the similarity of the
trace steps in a pairwise fashion. When a pair of steps is deemed similar (i.e., meets the
threshold 0.7), then they are added to the same cluster.After comparing all pairs, the algorithm
compares the entire clusters of steps generated in the previous iteration. When it finds two
clusters of trace steps that are sufficiently similar (0.7 threshold), they are joined into a single
cluster. Repeated steps are removed and overlapping clusters have their intersecting items
re-clustered. This process continues until there are no more changes in the clusters. Figure 4
depicts an example of clusters of trace steps obtained from the data shown in Fig. 3.
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Fig. 4 Clusters of similar trace
steps

3.4 Mapping

After obtaining a converged set of clusters, the next step is to map each cluster into a distinct
and unified step identifier that can represent all trace steps of such cluster. With this we can
then represent similar trace steps that are worded differently into a single software behaviour
during the model inference. The adopted mapping follows a simple heuristic: i) if all steps
in a given cluster are equal, use the trace step as identifier; else ii) if all trace steps are of
length one (i.e., only contain one word), use the most frequent one as identifier; else iii)
compute the most frequent trace step length and use the most frequent collocation of steps
(up to quadgram collocation) as identifier.

In the example shown in Fig. 4, “Cluster 1” is mapped to [“open”, “firefox”] (or in a
single word “open_firefox”) because the most frequent trace step size is two and this is the
most frequent bigram collocation of words. Similarly, “Cluster 2” is mapped to [“load”,
“page”] and “Cluster 3” is mapped to [“launch”, “fennec”].

However, this mapping canmiss clusters with the samemeaning or evenwith typos, which
we have indeed observed. For example, the word “fennec” is the codename of the Firefox
app for Android, which is a specific jargon for that program. A typo such as “fenec” is also
possible. Hence, the identifier [“open”, “firefox”] and [“launch”, “fennec”] refer to the
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Fig. 5 Dictionary of synonyms for Firefox for Android

same step/action of opening the browser, but they are in different clusters. In this situation,
the algorithmgenerated two distinct clusterswith trace steps representing the same behaviour,
but with different words identifying them. To solve this problem, we defined a dictionary of
synonyms for each program and included those corner cases, as shown in Fig. 5. The creation
of this dictionary is the only part of our approach that is not automated and can incur some
manual effort depending on the size of the dataset. Future work can consider automating the
creation of such a dictionary.

Then, using the dictionary, we unified clusters with the same meaning. At the end of this
procedure, we obtained a set of clusters of unique trace steps representing the unique steps
to reproduce the bugs. Figure 6 depicts an example of the final format of the clusters.

Using these clusters in conjunction with the processed bug reports data, we are able to
identify which bug reproduction steps translate to which distinct trace steps. This data is then
given as input to the next phase of our approach.

3.5 Inference

In the final phase of our approach, we execute MOEAs (Section 2.2) in order to generate
optimised DFA models that can represent the behaviour of the SUT. In other words, we want
to generate DFA models that can represent the behaviour described by the bug reports, but
at the same time we want those models to be small in size, whilst also under- and over-

Fig. 6 Mapped clusters of trace
steps
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generalising as little as possible. This is a naturally multi-objective problem, since these
objectives are typically conflicting (Harman 2007).

DFA models suit our context because they can succinctly represent the steps of a bug
report: it has states connected to each other representing current software states, and the
transitions represent actions/trace steps taken by the user, there is an end to the reproduction
steps, and nodes can be connected to many other nodes due to the possibility of many steps
creating the same state. Moreover, since they can be represented as graphs, it allows us to
apply optimisation techniques more easily.

Next we describe the main components of our algorithm and how to use it to automatically
infer models.

3.5.1 Solution representation

One of the most important components of a MOEA is the solution representation (Konak
et al. 2006). As wementioned before, each state represents a software state and the transitions
between states are actions taken by the user (as described in the bug reports). Hence, a DFA is
capable of emulating the software behaviour behind a bug report by incorporating the set of
bug report steps (trace steps) as automaton transitions and the consequent erroneous software
state as the final DFA state (accepting node).

In our case, our DFA model is represented slightly different from the conventional 5-
tuple model (Equation 1). Recapitulating, the original DFA model can be represented as
M = (Q, �, δ, q0, F) and has to adhere to three rules: i) it must have a start state q0; ii)
the transition function δ must be able to map all combinations of states and inputs Q × �

to a state in Q; iii) and the set of final states F must not be empty. Our modified DFA
representation, which is an adaptation from the works of Tonella et al. (2012) and Zhang
et al. (2015), includes a few constraints that make the DFA model more consistent with a
software behaviour:

M ′ = (Q, �, δ′, q0, q f ) (2)

where Q is the set of all software states, � is the set of all known trace steps (created
according to our mining approach presented in the previous sections), δ′ is the modified
transition function δ′ = Q × � → Q ∨ ∅, q0 ∈ Q is the starting state, and q f ∈ Q is the
end/accept state.

First, instead of a set of accept/final states F , our DFA model M ′ contains only one final
state q f , which represents an erroneous state in the SUT. If a given execution trace is fed
into the model and the execution does not ent at q f (rejects the trace), then it means that
the software behaviour has not been observed in practice or it likely does not result in an
erroneous state. It is worth noting that the final state q f can also act as an intermediate state
of a given trace.

Another difference is the modified transition function δ′ = Q × � → Q ∨ ∅. Differently
from the original function δ, the modified version δ′ may yield an empty result whenmapping
a combination (q, σ ) of state and trace step/input. In other words, it is possible that from a
given state q , the trace step σ cannot be executed, which constitutes an unobserved or impos-
sible behaviour. Using the example of Firefox given in the previous sections, an example of
unobserved (and likely impossible) behaviourwould be (q0, load_page), i.e., one cannot start
the trace execution by trying to load a page before even opening the program (open_firefox).

123

Page 13 of 41    95



(2023 ) 28: 95Empirical Software Engineering

Fig. 7 Example of a DFA model

In this case, the DFA model halts and rejects the execution trace. This modified function of
our representation violates the aforementioned second rule of a DFA, i.e., our representation
allows for the creation of incomplete DFAs during the inference procedure. In fact, the perfect
model M ′ will likely be incomplete, since SUTs most likely contain constraints that prevent
the execution of specific trace steps from specific states (much like the Firefox example).
Complete models can also be generated with our approach, however they are less frequent
than incomplete models because our approach allows for the direct generation of incomplete
models as opposed to generating a complete model and then pruning it.

Figure 7 depicts a simple example of a DFA model M ′ in our context for the Firefox
application. In this hypothetical scenario, the refresh feature of the program is defective, and
thus anyone who tries to perform the action refresh_page will encounter a failure and the
software execution will halt.

The model contains the following nodes Q = {q0, q1, q2}, where q0 is the initial state,
q1 is an intermediate state, and q2 is the final state q f . The possible transitions (trace steps)
are � = {open_firefox, load_page, refresh_page}. The transition function δ′ of the example
model M ′ can perform the mappings shown in Table 1.

In this example, the first encountered constraint is that the user must perform the
open_firefox step before any other, hence, this is the only possible transition from q0. By
doing so, the execution moves to the intermediate state q1. From q1, there are two possi-
ble transitions: i) (q1, load_page) → q1; and ii) (q1, refresh_page) → q2. The final state
q f = q2 can only be reached once the user performs the defective action refresh_page, after
which the erroneous state is reached and the program ends. However, the example model
allows for the execution of the load_page as many times as required.

In this scenario, trace inputs such as (open_firefox, refresh_page) and (open_firefox,
load_page, refresh_page) are accepted by the model, but traces such as (open_firefox,
refresh_page, refresh_page — inexistent transition in δ′) and (open_firefox, load_firefox
— ends in a node different than q f ) are not accepted. Moreover, if one uses the model to
generate unseen traces, it will not allow the generation of traces that do not fit the 5-tuple
specification.

Table 1 Transition function δ′
for the example of Fig. 7.
Transitions σ ∈ � are presented
in rows, states q ∈ Q in columns,
and each cell contains the result
of the state-transition (q, σ )
mapping, i.e., the resulting state

States
Transitions q0 q1 q2

open_firefox q1
load_page q1
refresh_page q2
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We use the FAdo v1.3.5.1 framework3 in order to implement this representation. With this
framework, we can easily map a graph to a finite state automaton. TheMOEAwill act on this
representation during the evolutionary process to create candidate models as its solutions.

3.5.2 Population initialisation

The initial population of solution models is formed randomly. Each initial solution is created
as union of three random bug traces with equal probability, where each bug trace is composed
by a set of trace steps. First, the algorithm generates an automaton formed by three parallel
chains of states and their transitions, each of which representing one of the selected bug
traces, starting from the same node q0, and ending on the same node q f . This union pro-
cedure is the basis for the Union Crossover Operator described in the next section. Second,
because such model can be a Non-deterministic Finite Automaton (NFA), we use the power-
set construction algorithm (Rabin and Scott 1959) to transform it into a DFA. Then, during
the evolutionary process, the algorithm recombines these initial models and mutates them
(with a given probability) using crossover and mutation operators to create new generations
of solutions.

3.5.3 Crossover operators

Weuse two crossover operatorswhich are selected at randomduring each reproduction step of
the evolutionary algorithm: Union and Intersection. Figure 8 depicts the crossover operators
used in our algorithm.

TheUnion operator combines twomodels bymerging together their states and transitions.
Given two parents, a new child solution is generated as a copy of either parent plus the non-
initial and non-final states and transitions of the other parent. First, the operator copies Parent
1 into a new solution (child). Then, the second parent’s states and transitions are attached to
the child’s initial state and ending on the child’s accepting state. This creates a model that
can generate all the traces of the first and second parents alike. This considerably increases
the size of the model, but also has the potential to reduce the number of existing bug traces
that are unrecognised by such model. This operator can cause a model to become an NFA
(multiple sibling transitions with the same condition). Therefore, in order to turn NFAs into
DFAs, we apply the powerset construction algorithm (Rabin and Scott 1959).

The Intersection operator generates children containing only the intersecting transitions
and nodes of both parents. In order to do that, both parents are traversed depth-first starting
from their initial nodes. When a node or a transition is the same for both parents, it is copied
to the child. In the example of Fig. 8, the node q0 is the same for both parents, thus it
is copied to the child, but the parents’ q0 nodes do not share any transition. In cases like
this, the algorithm copies the next matching transition to that node, which is the transition
load_page from q1. Because in Parent 1 the load_page transition is recursive, the Intersection
operator then compares the transitions of Parent 1’s q1 with the transitions of Parent 2’s q2.
This procedure continues until either model has no more nodes to compare. At the end, a
potentially smaller child is created with lower over-generalisation of the system behaviour,
i.e., only the behaviour that is common to the parents is passed along the generation.

3 https://pypi.org/project/FAdo/
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Fig. 8 Crossover operators example. The first two horizontal lanes represent the two parents used in the
crossover. The third horizontal lane depicts the result of applying the Union Crossover using Parent 1 as basis,
while attaching the non-initial and non-final nodes of Parent 2. The fourth horizontal lane depicts the result
of the Intersection Crossover. Intersecting nodes and transitions are highlighted in blue

3.5.4 Mutation operators

For the mutation procedure, we apply two different operators chosen at random with the
same probability: Add Trace and Merge State. Figure 9 depicts examples for the mutation
operators used in our algorithm.

The Add Trace operator modifies a given model in order to make it accept a random bug
report/trace. Using the example of Fig. 9, let us assume the trace load_page → refresh_page
was randomly selected. Because the original model would not accept such a trace (there is no
transition load_page from the initial node), then the operator performs the mutation to force
the model to accept the selected trace. It works by first creating a simple linear model for the
selected trace, and then using the Union Crossover operator to merge both of them. The result
of the example is similar to the Union Crossover example of Fig. 8, as both use the same
model merging procedure. This mutation can potentially improve the under-generalisation
of the model, but also has the drawback of increasing its size.

The Merge State is composed of two sub-operators, namely Random Merge and Random
k-tail Merge with 10% and 90% probability respectively. The former takes two nodes at
random from the model under mutation and merges them into a single one with all the
transitions of both nodes. In the example of Fig. 9, the nodes q1 and q2 are randomly selected
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Fig. 9 Add Trace and Merge State operators examples. The first horizontal lane represents the model before
any mutation. The second and third horizontal lanes represent the model after the mutations using the Add
Trace and Merge State operators, respectively. Merged nodes and transitions are highlighted in blue. Newly
created nodes and transitions are highlighted in green

to be merged into the new q1+2 node. Because q1 and q2 are adjacent, any transition between
both (refresh_page in the example) is transformed into a self-transition in q1+2. Then the
operator removes duplicated transitions, i.e., transitions with equal names, starting from the
same state, and ending on the same state.

The Random k-tail Merge performs a similar merge procedure, but it only merges two
randomly chosen nodes in Q in case the set of k-tails T k

q of one is the subset of the other. A

tail tk
q ∈ T k

q of size k of a given state q is a list such that tk
q = {σ0, σ1, ..., σk−1} and σi ∈ �,

where each transition σi is at most i distant from q . In other words, a tail of size k is a list
of k transitions that can be executed starting from q and ending on a node at most k distant
from q . We set k to two in our implementation. If k is too high, it is very unlikely that the
operator will be able to find such mergeable nodes. In the example of Fig. 9, the set of 2-tails
of q0 (i.e., T 2

q0 ) is: i) open_firefox → open_firefox; ii) open_firefox → load_page; and iii)
open_firefox → refresh_page. Because T 2

q0 ⊂ T 2
q1 , i.e., the model allows the execution of all
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the sequences of transitions of q0 if we start in q1, then the Random k-tails Merge operator
allows the merging of both nodes as done by the Random Merge operator.

The ultimate goal of Random k-tails Merge is to merge two nodes such that one is likely
to subsume the other in terms of possible transitions. By doing so, the operator removes
possibly redundant nodes and also introduces new transitions and nodes that allow for not
only the acceptance of existing bug reports, but also the creation of unseen traces that are
likely to be valid. As a consequence, this mutation is able to reduce the size of the models,
to maintain existing behaviour, and to generate solutions with lower over-generalisation, as
recommended in related work (Tonella et al. 2012).

After a successful mutation operator application, there is a 55% chance of an additional
step: pruning. In this step, a model is minimised by using the Hopcroft’s minimisation algo-
rithm (Hopcroft et al. 2007) with the purpose of removing redundant nodes and transitions.
We did not try to minimise all the models with 100% probability because Hopcroft’s min-
imisation is a complex algorithm that uses a considerable amount of computational power to
execute. Therefore, it can increase the execution time of our approach to a point of infeasibil-
ity for models of Q size 100–500 (which is commonly achieved by the algorithm). If we set
the probability to 0%, we observe a faster execution, but the models grow in size in a much
faster rate. All in all, the 55% minimisation rate is an acceptable compromise we found for
our approach.

3.5.5 Fitness functions

In this work, we implement the three minimisation objectives: model size, under-, and over-
approximation (Tonella et al. 2012). These functions measure the properties that we are
trying to optimise, i.e., they measure the quality of our solutions (models). If an unrecog-
nised/unaccepted behaviour occurs, it will lead to under-approximation, thus the model will
not be able to reproduce the bug trace and the tester will not be able to properly generate
tests based on the model. If the model generates unobserved behaviour, it will lead to over-
approximation, thus the model will provide false positives and the tester will lose time with
test cases that do not capture a real behaviour of the software. Finally, the size of the model
relates to the number of traces it can generate. While generating many traces can be helpful
to capture bugs, too many traces incur infeasible human effort in analysing them and creating
test cases to cover such traces.

The first objective is straightforward: we want to minimise the number of states in the
state machine models. It is measured by Equation 3:

↓ si ze(s) = |Q| (3)

where s is themodel being evaluated, and |Q|measures the number of states of s. The smaller
the model, the fewer traces it will be able to generate and the more likely it is for the tester
to be able to satisfactorily interpret it.

Under-Approximation (UA) measures the number of existing bug reports not accepted by
the candidate model/solution s. UA is computed by using Equation 4:

↓ UA(s, W ) =
∑

w∈W

{
0 if s accepts w

1 otherwise
(4)

where W is a set of existing bug reports/traces (possible real inputs to the model). That is, for
a set of |W | bug reports, UA measures the number of reports w ∈ W that cannot be accepted
by s. The lower the UA, the less likely s is in rejecting existing bug reports.
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On the other hand, theOver-Approximation (OA) objectivemeasures howmuch behaviour
is unobserved in reality. Equation 5 computes the OA of a model:

↓ OA(W ′, W ) =
∑

w′∈W ′

{
0 if w′ ∈ W

1 otherwise
(5)

where W is a set of existing bug reports/traces; and W ′ is the set of execution traces up to size
4 that can be generated by s.4 In other words, we want to minimise the number of infeasible
behaviours that can be generated by s. The lower this number, the more likely the traces in
W ′ are in translating into real observed behaviour.

The optimal solution would be the one that does not generate unobserved behaviours,
accepts all observed traces, and is as small as possible; because such a solution is hard to find
(sometimes impossible in feasible time), we expect to find solutions with a good trade-off
instead. Hence, the result of one algorithm execution is a Pareto front with the non-dominated
models from which the engineer can choose the solution that best fits their needs. In order
to aid the engineer in choosing a solution that best suits their needs, next we provide some
suggestions on interpreting the fitness values and choosing a solution.

3.5.6 Choosing a solution

Under-approximation impacts the engineer by providing them with unrecognised behaviour,
i.e., behaviour that the software produces but that the model deems as incorrect. Since the
model is created with bug reports and thus represents the known buggy behaviours, an
unrecognised behaviour is likely to be a new bug if it is derived from a new bug report.
Hence, if the tester wants to find new bugs, they should focus on analysing traces that are
not accepted by the model. We minimise it during training because we want to find models
as accurate as possible with the known bugs to avoid flagging a known bug as unrecognised.

Over-approximation impacts the engineer by providing them with modelled behaviours
that are not real, i.e., unobserved behaviour that the model produces but are not possible in
practice. Such kind of error may impact the tester by making them focus on creating test
cases that do not capture real buggy behaviour and thus wasting precious testing resources.
We minimise error during the model inference process to avoid the creation of irrelevant
traces.

Based on these scenarios, the tester can choose a solution in the Pareto front that better
suits their needs. If the tester selects a model with a high under-approximation, they will not
be able to model known buggy behaviours. If the tester selects a model with a high over-
approximation, they will model irrelevant behaviour. In general, the lower the fitness values,
the better the model in all scenarios for known bugs.

4 Experimental design

In order to assess the effectiveness of our approach, we consider the following Research
Questions (RQs):

RQ1:Howgoodare themodel inference results ofMOEAs in termsof objective values
and fault revealing ability when compared to the baseline tool KLFA? This question is
designed to evaluate how good the MOEAs are at inferring models which have good enough

4 We set a maximum size of 4 due to the great computational cost of generating sets with bigger traces.

123

Page 19 of 41    95



(2023 ) 28: 95Empirical Software Engineering

Table 2 Program statistics for train/test set of bug reports

Program N. bugs Mean Std. Dev. Variance

Kate 401/100 5.20/5.03 3.10/2.64 9.63/6.98

Vibe 425/106 7.93/9.42 4.72/8.66 22.32/74.93

Krita 962/240 5.48/5.39 3.42/4.60 11.69/21.18

LO Writer 1,040/260 6.10/5.47 4.30/5.24 18.51/27.45

Firefox OS 1,082/271 6.00/6.18 3.55/3.94 12.63/15.53

Firefox And. 1,054/264 6.08/5.67 3.22/2.98 10.34/8.88

SeaMonkey 1,598/400 4.49/4.80 2.29/2.41 5.22/5.82

Thunderbird 1,654/414 5.22/4.99 3.32/3.00 11.05/9.02

Calendar 2,576/644 5.32/5.79 3.07/3.94 9.42/15.49

BIRT 4,361/1,090 5.85/5.68 3.20/2.94 10.23/8.64

fitness values when compared to the baseline tool KLFA (Tonella et al. 2012). Moreover, by
answering this question, we intend to analyse the fault revealing abilities and cost of each
algorithm when compared to KLFA.

RQ2: How do different MOEAs perform when solving this problem? By answering
this question, we intend to gain insights into the capabilities of each MOEA when dealing
with this problem. Hence, we evaluate their results with multi-objective quality indicators
(more details to follow in the next subsections), objective values, and their fault-revealing
capabilities.

RQ3: What are the MOEA results when formulating the problem as a two objective
problem rather than a three objective one? As detailed in Section 3.5.5, the algorithms
optimise three objectives simultaneously: under-approximation (UA), over-approximation
(OA), and model size. Given the different problem formulations, we want to investigate
whether using 3 objectives is indeed necessary, i.e., perhaps the objectives are not entirely
conflicting and a simpler formulation should suffice. Either way, by answering this question,
we can better understand the problem and provide further insights that can help improve the
results, consequently making the usage of this technique more practical.

The data generated and analysed during the current study are available in the UCL’s
Figshare repository, https://doi.org/10.5522/04/14736180.

4.1 Experimental subjects

In order to answer those questions, we use a set of 10 real-world programs. The datasets
were collected following the first steps presented between Sections 3.1–3.4. Table 2 shows
the descriptive statistics of bug’s length for each dataset/program.

Each dataset is divided into training and testing set for validation purposes, with a percent-
age equal to 80% and 20% respectively. The first slice is used for the inference process, while
the second is used for the fault revealing capability analysis. Cross-validation is a common
practice (Berrar 2018) when dealing with time-based data, as in our case the bug reports
are retrieved in chronological order. This technique of distinguishing between a training and
testing set aims to assess how the generated models will generalize to to unseen behaviours.
In other words, using the same data to train and test the models would result in the unrealistic
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scenario where all the models would be almost completely accurate and too specific for that
set of data.

4.2 Experimental set-up

Weadopt three differentMOEAs in our experiments: NSGA-II, NSGA-III andMOEA/D.We
chose these algorithms for several reasons. The first algorithm NSGA-II is chosen because
it was adopted in previous work (Sarro et al. 2016). NSGA-III is chosen because it is an
interesting evolution of NSGA-II, uses a different non-dominated sorting based on reference
directions, and is deem to be better suited for multi-objectives optimisation. MOEA/D is
chosen because it is a completely different evolutionary approach based on decomposition
so it is interesting to compare it with the other two. Lastly, these algorithms are publicly
available in the framework used for the implementation of our problem, the pymoo framework
v0.4.2.2 (Blank 2022). This framework provides a visualization module and performance
indicators like Hypervolume (HV) (Zitzler et al. 2003) and Inverted Generational Distance
(IGD) (Audet et al. 2018), allowing for ease of use and replication. We also include the
KLFA (Mariani and Pastore 2008) tool in our experiments as a baseline to be consistent with
previous work, since the most closely related paper to ours (i.e., Tonella et al. (2012); Zhang
et al. (2015)) also used it as baseline. Since our work is built upon those two papers, we
decided to keep KLFA as baseline to keep the fidelity and replicability of the experiments.

The MOEAs’ initial population has a fixed size, depending on the algorithm. Comparing
the initial population size between MOEAs and the state-of-art tool KLFA, the latter uses all
the initial traces available for the generation of the model, whereas the former uses a limited
set of individuals stochastically chosen. For NSGA-II, the population size and the offspring
size are set respectively to 1,000 and 250 individuals as done in previous work (Tonella
et al. 2012). For NSGA-III we follow the settings of the paper that proposes it (Deb and Jain
2014), by having the population size set to 91, almost equal to the number of reference points,
which in our case (for 3 objectives and 12 partitions) is equal to 91. Similarly to NSGA-III,
for MOEA/D we follow the paper that proposes it (Zhang and Li 2007), thus the population
size was set to 300 and we let all the sub-problems to evolve equally by setting the number
of offspring equal to the population size. Moreover, in MOEA/D the number of neighbours
for each sub-problem is set to 20, and the Tchebycheff approach is used as decomposition
technique because it is more appropriate for a discrete problem. Lastly, we perform objective
normalization (Zhang and Li 2007) in order to deal with disparately scaled objectives.

These differences in population sizes are due to the different peculiarities of each algo-
rithm. Whilst NSGA-II population size was kept the same as in previous work (Tonella et al.
2012), after a preliminary set of experiments, we discovered that 1,000 solutions would not
be feasible for NSGA-III and MOEA/D due to their greater running time cost which esti-
mates to twice or thrice more. With the recommended values for the latter two, we could
successfully execute them in feasible time and with acceptable results.

In order to achieve a fair comparison, given the different starting population sizes, for
all three algorithms, the termination condition is set to 26,000 maximum fitness evaluations
or 18 hours, whichever comes first. We added a hard-limit on the execution time due to the
elevated cost of the Hopcroft minimisation algorithm used during the the fitness function
evaluation. In cases where the evaluated automata were considerably larger than the others,
the evaluation of such automata would be too costly to the algorithm. Furthermore, during
the evolutionary process and at the end of the generation, the solutions with OA and size
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values greater than 500 were removed, given that models with such size and infeasible traces
are not useful in practice for the testers.

The crossover and mutation probabilities are set to 100% and 55% respectively based on
previous work (Zhang et al. 2015). Indeed, the mutation rate is rather large when compared to
conventional evolutionary algorithms (Zitzler et al. 2004). However, unlike regular mutation
rates that are rolled for each gene in a chromosome to check whether the gene will be
mutated, ours is rolled only once to decide whether the entire chromosomewill face mutation
or not. While regular mutations aim at mutating each child at least once, ours focuses on
mutating only half of the children due to the more complex nature of the mutation operators.
Furthermore, because amutationmay not be applied after all (recall the constraint of Random
k-tails Merge in Section 3.5.4), a high mutation probability is required.

All experiments are performed on amachine with 32GB of 3,200MHzRAMand anAMD
Ryzen Threadripper 2950X 16-Core/32-Threads CPU. The execution time of all experiments
were computed from the beginning of the search, until the very end, including deletion of
dominated solutions.

4.3 Experimental analysis

To address the stochastic nature of the evolutionary algorithms, we perform 30 inde-
pendent runs, as suggested by several authors who give advise on SBSE experiments
procedures (Arcuri and Briand 2014; Harman et al. 2010). After running all 30 runs for
all algorithms on a dataset, we compute two performance indicators: HV and IGD. The two
indicators are used respectively to evaluate the covered area of the objective space and the
distance of a set of solutions from the reference pareto front. We use these indicators because
they are well-known and widely used in literature for multi-objective problems (Riquelme
et al. 2015; Barros 2012; Ishibuchi et al. 2006; Sarro et al. 2017; Guizzo et al. 2020; Tawosi
et al. 2021). Secondly, because they fit our needs of properly comparing the algorithms solu-
tions in terms of convergence and distribution of solutions in the objective space. Lastly these
indicators are easily available and ready-to-use in most MOEAs frameworks.

In order to assess statistical significance and magnitudes of differences between algo-
rithms, we have used Kruskal-Wallis Ranked Sum (Arcuri and Briand 2014) for the p-value
testing and Vargha-Delaney Â12 for the effect size (Arcuri and Briand 2014). We chose these
statistical tests because they are non-parametric (do not assume normal distribution of the
data) and can be easily applied to the MOEAs’ results. Moreover, Kruskal-Wallis provides
one p-value for a group of two or more algorithms, unveiling whether there is a difference
between the algorithms, and making it suitable for our purpose.

For both performance indicators, we normalise the objectives by computing the upper and
lower bounds for each subject program by taking the lower and the higher objective values
from all fitness vectors from the 30 runs of the three algorithms. For IGD we also collect
the reference pareto front as the union of all models from all pareto fronts taken from the 30
runs of all three algorithms, as done in previous work (Sarro et al. 2016, 2017; Tawosi et al.
2021; Guizzo et al. 2020).

5 Results

In this section we show the results and answer RQs 1–3.
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5.1 RQ1: comparison with KLFA

Differently from the MOEAs, KLFA only generates one solution (model) for each program,
thus using quality indicators (as done in the next section) to compare their results would
be unfair. With this in mind, we report objective results for the comparison between the
algorithms and KLFA in Table 3. It is important to note that in this section we only compare
the 3 objectives formulation UA-Size-OA for all MOEAs. The comparison betweenMOEAs
themselves is presented in Section 5.2, and Section 5.3 presents the comparison between the
2 and 3 objectives formulations.

The search-based algorithms have lower over-approximation values than KLFA, whereas
the latter has always 0 under-approximation given by the technique’s behaviour which con-
siders all the initial traces given as input. This is in line with the previous findings of Tonella
et al. (2012) on a different set of subjects (2 software projects) with the same three objective
functions.

The multi-objective algorithms are able to generate very small models compared to those
of KLFA on average. In the extreme case, models only contain a single state. Although this
kind of models show a low over-approximation, they are so small that they are not useful in
practice, because they do not allow to test a big part of an application’s execution traces.

We now focus on the bug revealing ability of the MOEAs when compared to KLFA. In
this specific scenario, the traces generated by the models are used to help the tester find new
bugs, i.e., the tester needs to evaluate the traces and create test cases that can exercise the
behaviours represented by such traces. This analysis is done in a cross-validation fashion
over the test set (20% of the data) with the models generated using the training dataset (80%
of the data), as explained in Section 4. We are interested in maximising the number of new
bugs that can be revealed with the minimum number of traces possible (analysing traces and
creating test cases is a costly task). We set the maximum length of traces during our data
analysis to 6 because it is the average length of bug traces in all datasets, and because it is
the best trade-off between results accuracy and computational effort.5

Table 4 shows this comparison. The third column contains the average number of traces up
to length 6 contained inside all the solutions of a Pareto front. The fourth column shows the
average number of bugs detected from all solutions of a Pareto front. The fifth column reports
the total number of bugs found by all models of all Pareto fronts. The last column shows the
ratio between average traces and average bugs detected, giving us the actual fault-revealing
value.

In line with previous studies (Zhang et al. 2015; Tonella et al. 2012), we also observe that
KLFA generates an impractical number of test traces, between 6.3 and 11,459 times more
tests traces (up to length 6) on average with respect to the worst performing search-based
approach depending on the software tested. This makes latter models preferable, even if they
may find fewer bugs, since the cost involved in checking the results of test sequence requires
human effort and it becomes outright infeasible with KLFA.Moreover, we could not generate
traces for some programs due to the infeasible amount of computational resources needed for
this task. For this reason, we have omitted the fault-revealing results of KLFA from Table 4.

Overall, we can state that theMOEAs generatemore preferablemodels in practice because
KLFA models have a too high over-approximation and this reflects on the number of edges
and on the overall model complexity. In general, the size of a model reflects on the over-
approximation, however, in the KLFA case, the models have a low number of states and a
high over-approximation due to the numerous loops (or self-transitions) inside the model.

5 Not to be confused with the maximum length of 4 used during the optimisation process.
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Table 4 RQ1 & RQ2 & RQ3 – Results of the fault-revealing ability of the models inferred by NSGA-III,
MOEA/D, and NSGA-II3obj with the UA-Size-OA formulation, and NSGA-II2obj with the UA-OA formula-
tion. Column A. #T shows the average number of traces generated (up to size 6) per Pareto front, A. #B the
average number of bugs revealed per Pareto front, T. #B the total number of distinct bugs revealed, and A.
#T/#B the average number of traces needed to reveal each bug per Pareto front. The best values are highlighted
in bold

Program Algorithm A. #T A. #B T. #B A. #T/#B

Kate NSGA-II2obj 286 5.6 7 51

NSGA-II3obj 77772 7.4 14 10510

NSGA-III3obj 9421 4.6 9 2048

MOEA/D3obj 30566 6.3 13 4852

Vibe NSGA-II2obj 213 0.6 1 355

NSGA-II3obj 61490 1.0 3 61490

NSGA-III3obj 18013 0.8 2 22516

MOEA/D3obj 36874 1.0 3 36874

Krita NSGA-II2obj 413 10.6 15 39

NSGA-II3obj 146307 22.4 42 6532

NSGA-III3obj 5977 10.9 31 548

MOEA/D3obj 38965 14.2 37 2744

LO Writer NSGA-II2obj 325 14.7 22 22

NSGA-II3obj 112588 25.3 43 4450

NSGA-III3obj 7494 15.1 31 496

MOEA/D3obj 33852 17.8 38 1902

Firefox OS NSGA-II2obj 343 3.8 10 90

NSGA-II3obj 79204 4.8 12 16501

NSGA-III3obj 4310 1.7 11 2535

MOEA/D3obj 28802 4.4 13 6546

Firefox And. NSGA-II2obj 318 5.7 11 56

NSGA-II3obj 93353 10.7 32 8725

NSGA-III3obj 7847 4.6 17 1706

MOEA/D3obj 44056 7.8 22 5648

SeaMonkey NSGA-II2obj 426 12.0 23 36

NSGA-II3obj 97405 19.9 44 4895

NSGA-III3obj 4747 10.1 31 470

MOEA/D3obj 31184 15.4 34 2025

Thunderbird NSGA-II2obj 542 9.4 20 58

NSGA-II3obj 74994 17.6 39 4261

NSGA-III3obj 4850 7.7 30 630

MOEA/D3obj 29596 12.5 33 2368

Calendar NSGA-II2obj 484 11.2 31 43

NSGA-II3obj 97553 22.3 49 4375

NSGA-III3obj 4765 9.8 36 486

MOEA/D3obj 29598 15.5 44 1910
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Table 4 continued

Program Algorithm A. #T A. #B T. #B A. #T/#B

BIRT NSGA-II2obj 458 26.9 69 17

NSGA-II3obj 90656 46.1 97 1967

NSGA-III3obj 6391 24.5 69 261

MOEA/D3obj 32615 34.8 100 937

Therefore, the KLFA models tend to over-approximate rather than under-approximate an
application’s behaviour, resulting in very specific but too complex models for the targeted
problem (Tonella et al. 2012).

5.2 RQ2: different MOEAs

In this RQ we are interested in comparing the results obtained by NSGA-II, NSGA-III, and
MOEA/D. To assess the multi-objective quality of the resulting Pareto fronts, we compute
the HV and IGD indicator (Zitzler et al. 2004) values for each of the 30 independent runs,
and report the averages and standard deviations in Table 5. Columns five and nine show the
p-value obtained by the the Kruskal-Wallis Ranked Sum test based on multi-comparison for
HV and IGD results respectively. Values in bold represent the best results.

As a sanity check, we compared the results of all algorithms against a Random Search
algorithm with the same search budget. For all comparisons in all cases, the results of the
Random Search algorithm were worse than NSGA-II, NSGA-III, and MOEA/D, yielding
p-values lower than 0.05 and always large effect sizes in favour of the other algorithms.
Therefore, we can state that the algorithms used in this paper are not obtaining their results
due to pure chance, but rather are actively searching for solutions in the multi-objective
search space. For sake of space, we do report herein the full results of this comparison in our
replication package.6

The best algorithm in all the scenarios and data we tested7 is NSGA-II, which achieves the
highest HV and the lowest IGD mean values on all training programs with statistical signifi-
cance. The HV results reveal how NSGA-II is able to produce more diverse and dominating
solutions in the objective space. This is really important because the algorithm offers more
choices for testers who have to select the best model among all the non-dominated solutions
which have different objectives trade-offs, based on the application needs. On the other hand,

6 https://doi.org/10.5522/04/14736180
7 Note that we cannot generalise these results outside the scope of our work, as explained in Section 6.
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Table 5 RQ2 –HV and IGD results and p-values for NSGA-II, NSGA-III and MOEA/D. The greater the HV,
the better. The lower the IGD, the better

Program NSGA-II NSGA-III MOEA/D p-value

Hypervolume (HV)

Kate 0.60 (0.03) 0.35 (0.04) 0.46 (0.02) < 2.2e-16

Vibe 0.60 (0.01) 0.40 (0.03) 0.46 (0.02) < 2.2e-16

Krita 0.60 (0.02) 0.31 (0.03) 0.43 (0.03) < 2.2e-16

LO Writer 0.60 (0.02) 0.32 (0.04) 0.44 (0.03) < 2.2e-16

Firefox OS 0.58 (0.02) 0.36 (0.04) 0.47 (0.02) < 2.2e-16

Firefox And. 0.59 (0.01) 0.29 (0.05) 0.41 (0.02) < 2.2e-16

SeaMonkey 0.58 (0.02) 0.27 (0.04) 0.43 (0.02) < 2.2e-16

Thunderbird 0.60 (0.02) 0.32 (0.02) 0.45 (0.03) < 2.2e-16

Calendar 0.61 (0.01) 0.30 (0.04) 0.43 (0.03) < 2.2e-16

BIRT 0.67 (0.02) 0.38 (0.03) 0.54 (0.04) < 2.2e-16

IGD

Kate 0.05 (0.003) 0.16 (0.02) 0.10 (0.01) < 2.2e-16

Vibe 0.05 (0.006) 0.12 (0.02) 0.09 (0.01) < 2.2e-16

Krita 0.05 (0.005) 0.19 (0.02) 0.11 (0.02) < 2.2e-16

LO Writer 0.05 (0.005) 0.20 (0.04) 0.11 (0.02) < 2.2e-16

Firefox OS 0.05 (0.006) 0.16 (0.02) 0.08 (0.02) < 2.2e-16

Firefox And. 0.05 (0.005) 0.22 (0.04) 0.41 (0.02) < 2.2e-16

SeaMonkey 0.05 (0.004) 0.27 (0.03) 0.43 (0.01) < 2.2e-16

Thunderbird 0.05 (0.004) 0.18 (0.02) 0.09 (0.02) < 2.2e-16

Calendar 0.05 (0.003) 0.20 (0.03) 0.10 (0.02) < 2.2e-16

BIRT 0.05 (0.004) 0.21 (0.03) 0.09 (0.02) < 2.2e-16

the IGD results show that NSGA-II is capable of generating solutions which represent the
best Pareto set approximation for the inference problem at hand.

In order to assess the magnitude of HV and IGD values difference between the MOEAs,
we compute the Vargha-Delaney Â12 effect size. Table 6 shows the effect size results.

For all programs, NSGA-II has 100% probability of having higher HV values than NSGA-
III and MOEA/D. Only the biggest dataset BIRT shows an effect size value not equal to one
for the comparison between NSGA-II and MOEA/D, however the probability is still near to
100% (99%). Furthermore, NSGA-II has 100% probability of having lower IGD values (the
lower the better) than the other two algorithms.

The effect size analysis is a clear evidence of how NSGA-II solutions are better in all
cases, both for solutions diversity and optimality (distance from the reference Pareto front).
Themagnitude of the HV and IGD difference is always largely in favour of NSGA-II, making
it preferable over the other two evolutionary algorithms.

We further report the objective results for the comparison between the algorithms in
Table 3. Note that NSGA-III and MOEA/D use the 3 objectives formulation, thus in this
section we compare the results of NSGA-II with the 3 objectives formulation.
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Table 6 RQ2 – HV and IGD
effect size results for NSGA-II,
NSGA-III and MOEA/D. Greater
HV effect sizes and lower IGD
effect sizes are better for
Algorithm X. Effect sizes of 0.5
indicate no difference

Program Alg. X Alg. Y HV IGD

Kate NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0

NSGA-III MOEA/D 0.012 0.961

Vibe NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0

NSGA-III MOEA/D 0.056 0.911

Krita NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0

NSGA-III MOEA/D 0.002 0.992

LO Writer NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0

NSGA-III MOEA/D 0.017 0.992

Firefox OS NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0.003

NSGA-III MOEA/D 0.008 0.992

Firefox And. NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0

NSGA-III MOEA/D 0.038 0.962

SeaMonkey NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0

NSGA-III MOEA/D 0.006 1

Thunderbird NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0

NSGA-III MOEA/D 0.025 0.861

Calendar NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 1 0

NSGA-III MOEA/D 0.011 0.999

BIRT NSGA-II NSGA-III 1 0

NSGA-II MOEA/D 0.991 0

NSGA-III MOEA/D 0.003 0.998

While the minimum and maximum values of model size and over-approximation are
almost identical for the three MOEAs, the average values show a consistent difference.
For 70% of the datasets, NSGA-II3obj has lower size values, reflecting the overall model
complexity on the number of edges as well where NSGA-II produces better values for 100%
of the training sets. For six out of ten projects it has lower over-approximation values,meaning
that NSGA-II models can better fit a specific problem without over generalising as often.
Lastly, the under-approximation for NSGA-II is better for 80% of the projects, resulting in
models which are unable to recognize fewer application bugs.

What is evident from the results is that NSGA-II has a higher number of solutions for
each Pareto front (depending on the initial population size) and consistently lower average
objectives values compared to those of NSGA-III and MOEA/D, confirming the solutions
generated by the non-dominated sorting strategy the best for the model-inference problem.
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We further analyse the results of each MOEA in terms of fault revealing capabilities,
as shown in Table 4. NSGA-II has the highest number of total bugs found for 80% of the
programs. An exception is the BIRT dataset, in this caseMOEA/D has more bugs found, with
a significantly lower number of tests per bug revealed. Although NSGA-III has the lowest
test per bug revealed ratio, the number of bugs found is always lower than the others. Overall,
MOEA/D seems to show the best trade-off between bugs found and average tests per bug
because it can reveal more bugs than NSGA-III with a lower number of traces than NSGA-II,
while keeping the average test per bug revealed smaller.

5.3 RQ3: 2 objectives vs. 3 objectives

RQ3 focuses on assessing the effectiveness of a three-objectives formulation compared to
a two-objectives one. Since RQ2 revealed that NSGA-II is the best algorithm according
to performance indicators, we perform the objectives combination comparisons using this
algorithm.Wecompare the three-objectives formulationUA-Size-OAwith the two-objectives
formulations UA-Size, OA-Size, and UA-OA.

After some preliminary tests, we discovered that the combinations UA-Size and OA-Size
are not feasible for the model inference problem. Taking the example of the smallest dataset
Kate, in the OA-Size formulation the replacement operator allows individuals with very few
states (the average size of a model is 1.84) to survive. Focusing only on those two objectives
leads to infeasible models in practice because of their small size and lack of generalisation to
real bug traces. On the other hand, in the UA-Size formulation, even though the model size is
kept relatively small (150.02 states on average), it leads to infeasible models on the opposite
front. The final solutions are more complex and they have an higher over-approximation
than the UA-Size-OA formulation, making them practically infeasible to analyze because of
the high number of traces (tens of millions). Both combinations also show a lack of solution
diversity (the average number of solutions is 14), producing fewer unique and non-dominated
solutions compared to the three objectives combination.

Given that the previous two objectives formulations are infeasible for two opposite reasons
(either too simple or too complex models), in the remaining we focus on the comparison
of NSGA-II with UA-Size-OA (NSGA-II3obj) and NSGA-II with UA-OA (NSGA-II2obj).
Table 3 shows the objectives values, together with the average number of edges and the
average number of solutions in a Pareto front. We compute the size values for the two
objectives combination afterwards as they were not included in the evolutionary process.

The Pareto fronts of the 30 independent runs of NSGA-II2obj contain very few non-
dominated and unique solutions on average, as opposed to NSGA-II3obj, which provides
hundreds of solutions. This is an evidence that the algorithm tends to early converge towards a

123

Page 31 of 41    95



(2023 ) 28: 95Empirical Software Engineering

local optimum, exploring just a few locally good solutions.Moreover, when the size objective
is removed from the search, the models grow significantly in size (from twice to thrice as
many edges).

We now investigate the fault-revealing ability of the two formulations. Table 4 shows the
fault revealing ability analysis results.

NSGA-II3obj produces models with more traces, bugs, and test per bug revealed. The fault
revealing ability (average and total number of bugs revealed) of NSGA-II2obj is not as high as
the three-objectives formulation. NSGA-II3obj is consistently better on all datasets in terms
of bugs detected, so it can achieve more powerful models.

However, due to the great number of traces that can be produced by NSGA-II3obj, the
average number of traces per bug revealed is several orders of magnitude higher than NSGA-
II2obj. Therefore, in order to reveal a new bug, the engineer has to evaluate 100–1,000 times
more traces on average, either manually or automatically using test case generation. This can
increase the overall cost fo the testing activity, but not necessarily make it infeasible.

Another interesting observation is the fact that NSGA-II2obj produces bigger models, but
ultimately its set of models produce fewer traces than the set of smaller models of NSGA-
II3obj. Not using the size objective can also explain the low over-approximation of themodels.
However, the diversity of solutions introduced by NSGA-II3obj allows the generation of more
unique traces, and consequently reveal more bugs. Hence, for this problem, having more
succinct models in the Pareto front is more beneficial to the overall fault revealing ability of
the testing task than having fewer and more complex models.

Table 7 presents the HV and IGD results, followed by the p-values and Vargha-Delaney
Â12 effect size values for both the indicators. Since, NSGA-II2obj did not optimise for the size
objective, in this particular analysis, we computed the quality indicators taking into account
only the UA and OA objectives. That way, we can guarantee a more fair comparison between
the formulations.

NSGA-II3obj produces more diverse solutions with better objectives values compared to
NSGA-II2obj. In 100%of the datasets,NSGA-II3obj has higher values forHVand lower values
for IGD.Moreover, the Kruskal-Wallis test showed statistical significance in all comparisons.
NSGA-II3obj has almost 100% probability (effect size of 1 for HV and 0 for IGD) of having
better values than NSGA-II2obj. This translates into a large statistically significant difference
between the formulations, for which the three objectives formulation always yields the best
results.

Taking all the results of this subsection into consideration, we can state that the size
objective is needed in the problem formulation as it can be seen as a controller for the
number of vertices in a model (when we do not use the size objective, the sizes vary without
control), but also as a diversitymechanism during the evolutionary process. Such an objective
helps maintain smaller and succinct models, whilst also increasing the diversity during the
search.

What is also evident from the results is that the size objective does not control for the
number of possible traces, which is the parameter that we are interested in controlling to keep
the models cheap to analyse. Hence, other factors determining the traces complexity can be
investigated in future work, for example the number of transitions, which can be considered
as a proxy for the interpretability of a model, can be used to guide the evolutionary search.
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Table 7 RQ3 – HV and IGD results, p-values, and effect sizes (ES) for NSGA-II3obj and NSGA-II2obj . The
greater the HV, the better. The lower the IGD, the better. Greater HV effect sizes and lower IGD effect sizes
are better for NSGA-II3obj . Effect sizes of 0.5 indicate no difference

Program NSGA-II3obj NSGA-II2obj p-value ES

Hypervolume (HV)

Kate 0.86 (0.07) 0.78 (0.02) < 6.5e-06 0.84

Vibe 0.91 (0.02) 0.69 (0.02) < 2.5e-11 1

Krita 0.86 (0.03) 0.75 (0.03) < 6.9e-11 0.99

LO Writer 0.88 (0.04) 0.68 (0.02) < 2.6e-11 1

Firefox OS 0.89 (0.04) 0.73 (0.02) < 2.7e-11 1

Firefox And. 0.91 (0.03) 0.70 (0.02) < 2.6e-11 1

SeaMonkey 0.82 (0.06) 0.74 (0.02) < 2.1e-07 0.89

Thunderbird 0.90 (0.03) 0.72 (0.02) < 2.6e-11 1

Calendar 0.89 (0.04) 0.70 (0.03) < 2.7e-11 1

BIRT 0.88 (0.04) 0.76 (0.02) < 4.9e-11 0.99

IGD

Kate 0.02 (0.006) 0.47 (0.03) < 9.6e-12 0

Vibe 0.02 (0.003) 0.32 (0.01) < 3.3e-12 0

Krita 0.02 (6.9e-18) 0.47 (0.04) < 1.1e-12 0

LO Writer 0.02 (0.002) 0.35 (0.03) < 2.1e-12 0

Firefox OS 0.02 (0.004) 0.43 (0.04) < 5.7e-12 0

Firefox And. 0.02 (0.003) 0.34 (0.02) < 3.5e-12 0

SeaMonkey 0.02 (0.004) 0.44 (0.04) < 5.8e-12 0

Thunderbird 0.02 (0.002) 0.38 (0.04) < 2.1e-12 0

Calendar 0.02 (6.9e-18) 0.38 (0.04) < 1.1e-12 0

BIRT 0.02 (0.003) 0.37 (0.04) < 2.9e-12 0
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6 Threats to validity

Threats to Internal Validity: We used pymoo (Blank 2022) as the framework for multi-
objective optimisation. Each algorithm is implemented with its configurations and adjusted
according to the available features in the framework.An incorrect implementation and/or con-
figuration of algorithms can impact the final results of our evaluation. We carefully reviewed
and configured each algorithm based on previous work recommendations (Zhang et al. 2015;
Zhang and Li 2007; Deb et al. 2002; Deb and Jain 2014) before executing our experiments.
Moreover, we also made sure to use the quality indicators with the recommended adjust-
ments (Zitzler et al. 2004) (i.e., normalisation, and approximated reference fronts).

When looking for reproduction steps during the creation of the word dataset, it is possible
that the reproduction steps are poorly described or structured by the users, thus leading to
the creation of inaccurate models. If such model is used during training, then incorrect steps
are created and the unobserved fitness will increase. If it is used during testing, the number
of unrecognised traces will increase. In order to mitigate this threat, we search for and only
include bug reports written in a well structured set of steps (itemised) and between specific
keywords, and yet, we were able to mine at least 500 bugs for each program.

Threats to Construct Validity: In order to cater for the stochasticity of algorithms, we
performedmultiple independent runs and used statistical tests in our results, as recommended
by Arcuri and Briand (2014). Furthermore, we evaluated our results using both Software
Engineering focused measures (e.g., number of revealed bugs, size of models, and trace
cost) and Multi-Objective Optimisation specific indicators (e.g., HV and IGD). With such
approach, we intend to provide as much information as possible on our experimental results,
consequently allowing the reader to evaluate such results in the best way they deem fit.

Threats to External Validity: The programs used in the experiments might not be repre-
sentative of the true population of Software. In order to mitigate this threat, we collected
programs used in previous work (Zhang et al. 2015) and added new programs of different
sizes, number of bug reports, and states. However, we have not tested our approach against
a newly created project with a limited number of bug reports, and thus we cannot generalise
our results to this kind of project.

Similarly, the choice of MOEAs might not be representative of all MOEAs. The three
MOEAs used in our work are well-know and common algorithms in the SBSE literature,
mainly NSGA-II (Deb et al. 2002) which was also used in previous work (Zhang et al. 2015;
Tonella et al. 2012). Moreover, we purposely selected different types of MOEAs (such as
MOEA/D which is based in decomposition) to cater for the great variety of algorithms.
We make our experimental data and code publicly available respectively at https://doi.org/
10.5522/04/14736180 and https://github.com/SOLAR-group/ModelInference, to allow for
reproduction and extension of our work.

DFA models have a limitation in regards to their applicability in practice. If the existing
features of a software are not removed from the software or drastically changed in behaviour,
the models work as expected and the correct traces are generated. However, new features
would not be reproducible with the models because they do not have the correct states to
capture new functionalities, and thus the number of unrecognised traces would increase.
Similarly, if a feature is completely removed from the software, the number of unobserved
traces would also increase, thus making the models not so effective. However, this is a
general limitation of any model created from execution steps: they are susceptible to the
natural evolution of the software and thus the engineer needs to maintain them updated when
adding new features.
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Moreover, we do not know how well our approach scale to bigger programs with a wider
corpus of bug reports. For example, the manual creation of a synonym and typo dictionary
(Section 3.4) may render our approach infeasible depending on the size of the software and
list of bug reports. Future work should focus on assessing this scalability.

7 Related work

Natural Language Processing (NLP) techniques applied to software testing allow for the
extraction of useful knowledge from requirements and artifacts written in natural language.
Such information allow us to automatically infer computational models, which can then be
used to generate test cases, thus minimising both the high effort and potential errors caused
by a manual approach.

Search-Based Model-Driven Engineering (SBMDE) investigates meta-heuristic search
techniques to aid software engineers in a variety of Model-Driven Engineering tasks, such
as automatically generating or optimizing both models and model transformations, auto-
matically generating software test procedures by using models of system requirements and
behaviour (Boussaïd et al. 2017). This has rapidly became a widely investigated topic in
the literature given the tedious challenges posed by manual MDE, especially in the field of
Model-Based Testing (MBT) (Boussaïd et al. 2017).

Due to the wide range of applications of both MBT and SBMDE, we focus our discussion
on previous work at the intersection of NLP and search-based model inference testing. We
refer the reader to the systematic mapping study of Garousi et al. (2020) for a comprehensive
review of MBT using NLP-assisted techniques, to the survey by Boussaïd et al. (2017) for
a comprehensive review of SBMDE approaches, to the systematic review of Saeed et al.
(2016) for an extensive analysis on Search-Based Techniques for MBT, and to the survey of
Harman et al. (2012) for a more general review of search-based techniques for all other areas
of Software Engineering.

The current literature in search-based model testing aided by NLP, can be broadly divided
in three categories: the one exploiting software requirements to infer model, the one using
software execution traces, and the one using user bug reports. Work falling in each of these
categories automatically generate test cases based on the inferred models exploiting a variety
of approaches depending on the type of model, as detailed below.

7.1 MBT using NLP and software requirements

Santiago Júnior andVijaykumar (2012) present amodel-based approach, dubbed SOLIMVA,
which is able to generate test cases from natural language requirement deliverables. They use
a tool which automatically translates requirements into Statechart models. Then, the GTSC
tool is used to generate test cases. Their approach requires the definition of the application
domain through a dictionary. Scenarios for system and acceptance testing are identified using
combinatorial designs.

Carvalho et al. (2014) use a model-based testing approach that takes as input requirements
formulated in a Controlled Natural Language. Requirements are syntactically analysed fol-
lowing a domain specific language used for describing system requirements and the semantics
is described based on the Case Grammar theory. The semantics is then represented as tran-
sition relation, so inferring a model from which a solver can generate test cases.
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Wang et al. (2020) presented an approach for generating acceptance test cases from
requirements specifications in natural language. Their approach, UMTG, is based on use
case specifications and a domain model for the system under test. The generation of test data
relies on the use of NLP, adopted for automatically identifying test scenarios and generating
formal constraints representing conditions that trigger the execution of the test scenarios.
UMTG uses NLP to build Use Case Test Models (UCTMs) from Restricted Use Case Mod-
eling (RUCM) specifications. The model captures the application control flow and enables
the identification of the sequences of use case steps, and consequently the generation of
executable test cases.

7.2 Search-basedMBT using NLP and execution traces

Tonella et al. (2012) investigated the problem of balancing over- and under-approximation
in models inferred from execution traces. They achieved a balance of over- and under-
approximation by applying two search-based algorithms: a multi-objective Genetic Algo-
rithm (GA) and NSGA-II (Deb et al. 2002). They showed that “models generated by
multi-objective algorithms are well-distributed across various levels of over- and under-
approximation”. Moreover, they proved that the models produced by multi-objective
algorithms violate fewer application constraints than the models generated by the KLFA
tool (Tonella et al. 2012).

Subsequently, Tonella et al. (2014) proposed a method to automatically infer models from
program execution traces, leveraging on the N-gram probabilistic language model. They
apply this technique to obtain models that do not violate dependencies and constraints of
the application. They adopt interpolated N-grams which are able to derive feasible test cases
from a model. The interpolated N-grams overcome the limitation of N-grams statistics that,
as N increases, becomes incomplete.

More recently, Shin et al. (2022) proposed PRINS, a component-based model infer-
ence approach using system logs. PRINS first generates models for each of the system’s
components and then merges them together using information about their interactions. For
generating the models, PRINS uses MINT (Walkinshaw et al. 2013b), an “off-the-shelf” tool
that uses Search-based algorithms. Similarly, Liu et al. (2016) propose a component-based
approach for inferring behavioural models by mining event logs. Other work also usually
infer models from system logs, but the models are represented differently (Mariani et al.
2017) or are non-deterministic (Emam and Miller 2018).

The main difference between those works and ours is that we use a different approach
to infer models from another source of information. We perform the extraction of steps and
traces from a bug report system, apply many steps of the NLP pipeline to obtain a dictionary
of “bug traces”, and only then we infer the models. Moreover, since bug reports are written
by humans with no clear structure (as it happens in an execution log), we face different types
of challenges.

7.3 Search-basedMBT using NLP and bug reports

Zhao et al. (2019) proposed ReCDroid, a tool to automatically reproduce crashes from bug
reports. ReCDroid generates event sequences based on the bug reports, which can later be
used by the engineers to guide their tests and reproduce the reported crashes. The focus of
this tool is on reproducing GUI crashes. Differently from our work, ReCDroid only uses one
objective and executes a restarting procedure whenever the set of GUI actions grows in size.
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According to Saeed et al. (2016), using multi-objective search is one of the identified
challenges in MBT. In their systematic literature review, only 14% of papers they identified
used any kind of multi-objective optimisation. With that in mind and inspired by the work
of Tonella et al. (2012, 2014), we envisaged that the use of natural language processing,
coupled with the power of multi-objective optimisation, would allow us to automatically
infer effective test models from user bug reports (Zhang et al. 2015).

Thus, Zhang et al. (2015) presented a proof of concept benchmarking this proposal against
KLFA on a single software system (Kate) in the award winning SSBSE’2015 challenge
paper. Herein, we fully present the idea, detail the process applied, and perform a large-scale
empirical study in order to verify its applicability and effectiveness for a wider range of real
software systems.

7.4 Other related work

The work of Lucas and Reynolds (2005) presents an evolutionary algorithm for the automatic
inference of DFAmodels. Although not related to Software Testing, their approach resembles
ours in the evolutionary aspect. However, their representation and context significantly differ
from ours.

First, as we describe in Section 3.5.1, our representation considers incomplete DFAs
to represent impossible SUT behaviour, meaning that the transition matrix might not be
complete. Moreover, our states do not have complex classes, i.e., only one state can be
considered the final state and there is no output other than “accept” or “reject” for a given
input. Finally, their algorithm works on the transition matrix using training and testing data,
whereas ours focuses on inferring entiremodels (e.g., states, transitions, and transitionmatrix)
from scratch using the entire set of traces.

The usage of more general approaches such as the one presented by Lucas and Reynolds
(2005) would not be as suitable for the problem at hand because one of the three objectives
is to reduce model over-approximation. In other words, we want to generate models that do
not allow for the creation of impossible/unobservable action sequences in practice. Using an
approach generating only complete DFAs would decrease the models’ under-approximation
at the cost of increasing their over-approximation, as both measures are conflicting. In other
words, the models would be more likely to accept a possible but unseen transition that would
allow the discovery of new bugs. These models could then be pruned to become incomplete
and to avoid impossible transitions (also unseen). However, impossible transitions and valid
unseen transitions would likely be indistinguishable, because both are unseen in the training
set. Therefore, instead of pruning states and transitions after a complete DFA is generated,
previous work on automated test model generation has opted for the use of incomplete
DFAs models by applying transformations that allow the generation of unseen traces (Zhang
et al. 2015; Tonella et al. 2012). In this way, one can keep a low over-approximation while
also being less likely to increase under-approximation. In this work, we adopted the same
representation as in previous work (Zhang et al. 2015; Tonella et al. 2012), and the results of
our experiments show that by using an evolutionary algorithm searching for both complete
and incomplete DFAmodels (where no pruning is required) one can achieve the best trade-off
between the two objectives of under-approximation and over-approximation.

What we observed with KLFA (and could likely happen with other more general
approaches) is the generation of models that are so general that lead to too many unob-
servable traces, thus increasing model over-approximation which, in turn, makes their use
infeasible in practice, i.e., an engineer cannot manually analyse that many traces in a reason-
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able time. Instead, based on related work and our own experience we found that allowing
DFA models to be incomplete from the beginning of their inference, and constraining them
to having only one initial state and one accepting state is more effective to reduce both the
over- and under-approximation.

8 Conclusion and future work

In this paper, we proposed and compared the use of three well-known MOEAs (NSGA-II,
NSGA-III and MOEA/D) to automatically infer state-machine models. Our results showed
that NSGA-II achieves significantly better results than all other approaches for all programs
under investigation. Moreover, NSGA-II can detect a higher number of bugs for 90% of the
programs studied with respect to the other MOEAs.

We also studied the differences in quality and models performance between guiding
the MOEAs by using two objectives and three objectives. The combinations of under-
approximation with size, and over-approximation with size, generated infeasible results. On
the other hand, combining over-approximation with under-approximation generated feasible
models that, although bigger in size, produced fewer traces in general and were cheaper when
considering the number of traces needed to reveal bugs. However, using the three-objective
formulation yielded better results, larger effect sizes, and statistically significant results in
100% of the cases. The size objective acts as a diversity factor, avoiding local optima, con-
trolling the size of the models, making the results more diverse and nearer to the optimal
Pareto set, and generating more balanced models for real-world scenarios.

As future work, the parameters of the MOEAs such as the number of reference points for
NSGA-III or the population size can be automatically tuned to further improve the results.We
reckon that different configurationswould provide insightful results, thuswe intend to explore
these possibilities in future work. MOEA/D showed promising results when considering the
objectives trade-off, hence a more thorough investigation of decomposition algorithms could
yield better results (e.g., MOEA/DD andMOEA/D-CMA (Castro et al. 2017)). Furthermore,
since the size objectivewas not able tomaintain lowmodel costs during evolution, futurework
can investigate whether other objectives such as number of transitions, can better capture the
cost of the models, thus making them more practical. Another possible future work would
be the incorporation of semantic analysis in the set of sentences and words, which could
possible enhance the accuracy of the clustered steps used to build the models. User Interface
exploration steps can also be considered in the set of available steps, thus creating a hybrid
approach that leverages on both human written traces and automatically generated ones.
Besides, future work can investigate and compare different clustering approaches to assess
if the results obtained herein can be further improved. Last but not least, it would be also
interesting to investigate the effectiveness of the models over time (i.e., model degradation)
and across different projects to aid the use of the approach with newly-developed software
lacking its own bug reports (cross-project models).
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