
(2023) 28: 99Empirical Software Engineering
https://doi.org/10.1007/s10664-023-10330-x

An empirical study of vulnerabilities in edge frameworks
to support security testing improvement

Jahanzaib Malik1 · Fabrizio Pastore1

Accepted: 12 April 2023 / Published online: 5 July 2023
© The Author(s) 2023

Abstract
Edge computing is a distributed computing paradigm aiming at ensuring low latency in
modern data intensive applications (e.g., video streaming and IoT). It consists of deploying
computation and storage nodes close to the end-users. Unfortunately, being distributed and
close to end-users, Edge systems have a wider attack surface (e.g., they may be physically
reachable) and are more complex to update than other types of systems (e.g., Cloud systems)
thus requiring thorough security testing activities, possibly tailored to be cost-effective. To
support the development of effective and automated Edge security testing solutions, we con-
ducted an empirical study of vulnerabilities affecting Edge frameworks. The study is driven
by eight research questions that aim to determine what test triggers, test harnesses, test ora-
cles, and input types should be considered when defining new security testing approaches
dedicated to Edge systems. preconditions and inputs leading to a successful exploit, the secu-
rity properties being violated, the most frequent vulnerability types, the software behaviours
and developer mistakes associated to these vulnerabilities, and the severity of Edge vulnera-
bilities.We have inspected 147 vulnerabilities of four popular Edge frameworks. Our findings
indicate that vulnerabilities slip through the testing process because of the complexity of the
Edge features. Indeed, they can’t be exhaustively tested in-house because of the large number
of combinations of inputs, outputs, and interfaces to be tested. Since we observed that most
of the vulnerabilities do not affect the system integrity and, further, only one action (e.g.,
requesting a URL) is sufficient to exploit a vulnerability

Keywords Security testing · Edge computing · Empirical study

Communicated by: Hadi Hemmati

B Fabrizio Pastore
fabrizio.pastore@uni.lu

Jahanzaib Malik
jahanzaib.malik@uni.lu

1 SnT Centre, University of Luxembourg, 29 Avenue John F. Kennedy, Luxembourg, Luxembourg

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10330-x&domain=pdf
http://orcid.org/0000-0003-3541-3641

(2023) 28: 99Empirical Software Engineering

1 Introduction

Business and private individuals are increasingly relying on data-intensive services provided
by remote systems; examples include music streaming, video conferencing, E-gaming, cloud
storage, and remote surveillance.

Because of the real-time transmission of large amounts of data, latency is one of the main
issues affecting the above-mentioned services. To minimize latency, the Edge Computing
paradigm has been introduced Stankovic (2014). It consists of distributed storage and com-
puting resources close to the end-users with the objective of minimizing latency and ensuring
real-time services.

When data is the main asset of a service, security is a major concern. Unfortunately, by
moving data and computation closer to the end-user (e.g., TV boxes), service providers have
less control on the infrastructure, which is often physically accessible, might be difficult to
update (e.g., because updates take place overnight when the system is turned off), and might
be installed on a large number of diverse hardware and OS layers whose configurations
might be difficult to be tested extensively. Consequently, compared to services executed on
traditional infrastructures (e.g., Cloud), services executed on Edge computing infrastructures
may expose a wider set of attack surfaces (e.g., because physically accessible) and be more
likely affected by vulnerabilities (e.g., because it is not possible to test all the configurations
of the software, or because it is not possible to ensure that the underlying environment is up
to date).

Because of the reasons above, infrastructure providers are looking for solutions to assess
that Edge frameworks and applications are free fromvulnerabilities. In this paper, we focus on
software security testing, which, differently from other approaches (e.g., security analysis),
provides evidence of the presence of vulnerabilities; for example, test failures show how an
attacker can exploit a vulnerability.

As a starting point towards the definition of Edge security testing solutions we conduct
an empirical study of the vulnerabilities affecting Edge frameworks. Our study partially
relies on a recent study by Gazzola (2017). The work of Gazzola et al., although focused
on functional failures and not security aspects, has guided us towards the characterization of
the vulnerable components (e.g., plugins), the type of failures being observed (e.g., signalled
or silent), the complexity of the required testing procedures (i.e., how many actions should
be performed to detect a vulnerability), and the reasons why vulnerabilities slip through the
development process (e.g., because of the combinatorial explosion of the inputs to be tested).
In addition, different from Gazzola et al., we characterized the preconditions (e.g., sub-nets
should be set-up) and the inputs (e.g., sending crafted messages) required to exploit Edge
vulnerabilities. Finally, similar to other vulnerability studies by Mazuera-Rozo et al. (2019),
we analyzed the distribution of MITRE (2022) identifiers (i.e., types of weaknesses leading
to Also, we studied their severity, based on the CVSS entries of the National Vulnerability
Database (2022).

In total, we defined eight research questions. We surveyed 263 bug reports concerning
four Edge frameworks (Mainflux Framework 2022, K3OS 2022a, KubeEdge 2023, and Zetta
2022a). Among them, we identified 147 vulnerability reports. Our results show that the
large number of combinations of configurations and inputs (i.e., combinatorial explosion)
is the main reasons for security vulnerabilities not being detected at testing time (RQ1).
Vulnerabilitiesmostly affect themainEdge framework components (i.e., controllers), aminor
presence is observed in network components and plugins, while other components (i.e.,
APIs, drivers, services, and resources) are less affected (RQ2). Generally, vulnerabilities

123

99 Page 2 of 65

(2023) 28: 99Empirical Software Engineering

can be observed when the software under test (SUT) is in a specific state or configuration
(RQ2, RQ4), which clarifies why vulnerabilities are not detected at testing time because of
combinatorial explosion. Security failures (RQ3) are silent (i.e., not detected by the SUT)
and concern value failures (e.g., illegal data being returned), network (e.g., data erroneously
routed), or actions (e.g., the software performs illegal operations on the environment). Once
the SUT is in the vulnerable state, vulnerabilities can be exploitedwith a single action (RQ5A)
that usually consists of providing specific data (RQ5B) to the SUT. The security property
that is likely violated by Edge vulnerabilities is confidentiality (RQ6). Confidentiality issues
are mainly due to developer mistakes concerning authentication mechanisms or information
management errors (RQ7). Further, failures are observed because the SUTperforms improper
access control or improper control of resources over lifetime (RQ7). NVD data indicates that
more than 50% of Edge vulnerabilities have a high severity and are easy to exploit, thus
highlighting their criticality and the need for improved testing solutions (RQ8).

Based on the characteristics summarized above, to ensure timely discovery of vulnerabili-
ties (e.g., before attackers), we suggest to automatically execute test cases directly in the field
(e.g., on the deployed Edge system); such practice is known as field-based testing (Bertolino
et al. 2021). Indeed, automated testing might be executed, in the field, when configurations
not tested in-house are observed; also, the detection of vulnerabilities might be simplified by
the fact that only a single action is sufficient to exploit them. Further, testing might focus on
confidentiality thus not requiring the identification ofmechanisms to compensate for integrity
problems caused by the testing process itself. All the data collected to perform our study are
available online (Malik and Pastore 2023).

Thismanuscript proceeds as follows. Section 2 presents background information including
a glossary. Section 3 describes the study design. Section 4 presents our results. Section 5
presents a discussion of threats to validity. Section 6 provides reflections on the research
directions for Edge security testing, based on our results. Section 7 discusses related work.
Section 8 concludes the manuscript.

2 Background

In this sectionwe provide a brief overview of Edge technology, related studies, and a glossary.

2.1 Edge Computing

The Edge computing paradigm has been introduced to enable data transfer with extremely
low latency for real-time services. Well known services relying on Edge computing include,
for example, E-sports Alvin Jude (2023), live streams broadcasts Todd Erdley (2023); SES
Luxembourg (2022), package trackingMurphy (1995), and internet connectivity services for
cruise lines SES Luxembourg (2022b) and aviation SES Luxembourg (2022a).

The development of services leveraging the Edge paradigm is supported by Edge frame-
works; well known examples are KubeEdge (2022b), Yomo Framework (2022), K3OS
(2022a), and Mainflux Framework (2022). In this paper, we rely on the term Edge frame-
work to indicate a set of software components, including Web services and APIs, that are
extended to provide a service relying on the Edge paradigm. Our definition is consistent with
the definition of framework provided by IEEE: partially completed software subsystem that
can be extended by appropriately instantiating some specific plugins IEEE:SSE (2017). Fur-
ther, our definition of Edge framework recalls the definition provided by Fayad and Schmidt

123

Page 3 of 65 99

(2023) 28: 99Empirical Software Engineering

for middleware integration frameworks, which are used to integrate distributed applications
and components; middleware integration frameworks are designed to enhance the ability of
software developers to modularize, reuse, and extend their software infrastructure to work
seamlessly in a distributed environment Fayad and Schmidt (1997). An Edge framework
integrates a broad range of technologies including Cloud services and virtualization envi-
ronments; therefore, an Edge framework is often implemented as an integration of multiple
frameworks developed by third parties. In this paper, we treat all the technologies cooperating
with an Edge framework as one single framework.We call Edge application the software that
implements the logic to provide a service to the end-user. We call Edge system what results
from the integration of an Edge framework, one or more Edge applications, and external
services that the Edge framework and applications may be configured to interact with.

Figure 1 provides a generic architecture of an Edge system. In Figure 1, the software
components that constitute the Edge framework are annotated with the UML stereotype SUT
(i.e., software under test). We use the term SUT to identify Edge frameworks’ components
because they are the target of our investigation.

Themain architectural components in an Edge system areCloud servers, Edge servers, and
Nodes. Cloud servers provide centralized services (e.g., end-user authentication for a video
streaming).Edge servers are deployed close to the end-user to minimize latency Bai et al.
(2020); for example, they include caching mechanisms for the data provided by the Cloud

Edge Server

External Server

Desktop
«Node»

VM
«Node»Pod

«Node»

EdgeClient
«SUT»

Pod
«Node»

Sensor
«Node»

IoT Thermostat
«Node»

MessagingClient
«SUT»

EdgeServerController
«SUT»

Cloud Server

Cloud Server Controller
«SUT»

Cloud Server API
<<API>>

IP Camera
«Node»

EdgeClient
«SUT»

Plugins

Databse
<<Resource>>

Network File System
<<Service>>

Configurations
<<Resource>>

MQTT Broker
<<SUT>>

Edge Server API
<<API>>

Network Firewall
<<Service>>

ContainerManager
«SUT»

Drivers

Fig. 1 UML deployment diagram capturing the architecture of Edge systems. Ball and socket notation is used
to distinguish between the component providing a service (ball) and the component relying on the service
(socket)

123

99 Page 4 of 65

(2023) 28: 99Empirical Software Engineering

server thus reducing latency.Nodes, instead, are deployed at the end-user’s side; depending on
the service provided through the Edge system, Nodes might be desktop computers, sensors,
or IP camera. In Figure 1, Nodes are annotated with the stereotype Node. The Edge system
may interact with external components providing specific services, for example a network
file system. In Figure 1, we annotated external services with the stereotype Service.

The Cloud server executes a Cloud server controller component that interacts with the
Edge server controller through theEdge server API. The Cloud server controller manages the
Edge server instances (e.g., to provide monitoring and policy enforcement). Also, it provides
and collect service data. Examples of provided data are on-demand video streaming and file
streaming. Examples of collected data include information about devices (e.g., offline status
of a surveillance camera) or end-user data (e.g., movies’ rating or list of videos watched in
a video streaming service).

The Edge server executes the Edge server controller, which has the responsibility of
controlling access to resources, instantiate drivers, access plugins, manage resources, and
control nodes. We use the term resource to indicate any medium used to store data, for
example, configuration files or databases (see the Resource stereotype in Figure 1).

The Edge server controller includes a container manager, which is responsible for man-
aging containers and Nodes. The Edge server controller usually integrates an MQTT (1995)
to communicate with devices.

Nodes execute the Edge client, which integrates the client of the MQTT component.
The Edge client sends the data gathered from the physical environment (e.g., temperature)
to the Edge server. Desktop Nodes usually execute Virtual Machine (VM) Nodes, which
may execute multiple Pods. Pods are the smallest deployable units of computing that can be
managed by Container Managers Kubernetes (2022).

In the rest of the paper, we use the term software environment to refer to the operating
system or any software component not belonging to the categories SUT and (SUT’s) API.

2.2 Testing of Edge Systems

Edge frameworks are tested according to standard software engineering practices Hagar
(2002). Information about the development process in place for proprietary frameworks
is limited; however, we note that large companies embrace a testing culture and provide
test automation support for the developers of Edge applications (e.g., for Microsoft 2022).
The open-source frameworks considered in our study (i.e., KubeEdge, Mainflux Framework
2022, K3OS 2022a, and Zetta) are supported by private companies. KubeEdge is supported
by the Cloud Native Computing Fundation and 27 additional private companies (e.g., ARM
2022, Huawei 2022, ci4rail 2022); Mainflux is developed and maintained by Mainflux Labs,
which is a for-profit technology company; K3OS is part of Rancher, a framework developed
by the open source software development company Suse (2022). However, since industry
participation in open source projects does not provide any guarantee about software secu-
rity Gopalakrishn et al. (2022), we investigated the testing procedures in place for the subjects
of our study and describe them in the following paragraphs

All the open-source frameworks considered in our study include automated test suites.
KubeEdge includes automated unit KubeEdge (2022a), integration KubeEdge (2023a) and
system test cases KubeEdge (2022c). Also, KubeEdge’s development process includes on
code review activities (e.g., contributions are revised by senior members1) and two security
teams KubeEdge (2023d, e) that audit the system and respond to reports of security issues.

1 see https://kubeedge.io/en/docs/community/membership/

123

Page 5 of 65 99

https://kubeedge.io/en/docs/community/membership/

(2023) 28: 99Empirical Software Engineering

Finally, KubeEdge is based on Kubernetes, whose development team includes a group of
security experts Kubernetes (2022a). Mainflux includes automated test cases and a dedicated
benchmark Mainflux (2022b); further, MainFlux Labs perform security audits MainFlux
(2022). Finally, both K3OS (2022) and Zetta (2022) include automated test suites. To con-
clude, automated test execution is a state-of-the-practice approach for Edge frameworks;
however, security seems to be better targeted by KubeEdge and, partly, by Mainflux.

The literature on Edge security highlights that security assurance of Edge systems should
account for multiple attack surfaces (from physical layer to data security) and holistic, dedi-
cated analyses are missing Jin et al. (2022). A recent survey of attack strategies and defense
mechanisms for Edge systems points out that one of the causes of security vulnerabilities in
Edge systems is the non-migratability of most security frameworks to the Edge context Xiao
et al. (2019); further, the provided attack descriptions show that, in general, the identification
of security vulnerabilities is often delegated to manual activities (e.g., side-channel attacks or
specification-based testing Chen et al. 2014) and automated tools concern vulnerabilities that
might affect related systems (e.g., code injection or dictionary attacks for authentication).
The lack of automated security testing solutions for Edge can be noticed from other surveys
on the topic Alwarafy et al. (2021); Mosenia and Jha (2017), that suggest manual testing as a
key solution to determine if the system appropriately respond to attack scenarios, thus further
motivating our work. Finally, these surveys on attack methods do not provide details about
the underlying vulnerabilities, thus, contrary to our work, not supporting the development of
automated vulnerability testing solutions dedicated to the Edge.

2.3 Field Failures

Field failures are caused by faults that escape from the in-house testing process. For their
characterization we refer to the work of Gazzola et al. Gazzola (2017), who performed a
comprehensive study about causes and nature of field failures (i.e., failures affecting software
deployed in the production environment or at end-user premises).

The study of Gazzola et al. is based on bug reports of open-source software (i.e., OpenOf-
fice, Eclipse, and Nuxeo). The analysis in the study is based on four research questions:

– Why are faults not detected at testing time?Authors classified faults that are not detected
at testing time into five categories (i.e., Irreproducible execution condition, Unknown
application condition, Unknown environment condition, Combinatorial explosion, and
Bad testing).

– Which elements of the field are involved in field failures? Authors identified five possible
elements (i.e., Resources, Plugins, OS, Driver, Network) to be involved in field failures;
sometimes none of them is involved.

– What kinds of field failures can be observed? Following the literature on the topic Bon-
davalli and Simoncini (1995); Aysan et al. (2008); Avizienis et al. (2004); Chillarege
et al. (1992); Cinque et al. (2007), authors classified failures according to failure types
and detectability. They report three failure types: value, timing and system failures. As for
detectability, they focus on three categories, which are signaled, unhandled, and silent.

– How many steps are needed to reproduce a field failure? Authors report on the number
of user actions (called steps) required to reproduce a failure.

Different from Gazzola et al., we do not target faults affecting the functional properties of
the software but faults affecting its security properties. Also, we have extended and refined
the set of research questions considered in our study. Precisely, our refined research questions
aim to facilitate the identification of security testing solutions to address the limitations of

123

99 Page 6 of 65

(2023) 28: 99Empirical Software Engineering

current security testing tools and practices. In our study, we address eight research questions
instead of four.

2.4 Security Testing Glossary

Below, we provide definitions for security terminology appearing in the paper; we do not
sort terms in alphabetical order but provide term definitions before their use in following
descriptions.
Security failure. A security failure is a violation of the security requirements of the system.
Vulnerability. A vulnerability is a “weakness in an information system, system security pro-
cedures, internal controls, or implementation that could be exploited or triggered by a threat
source” Dempsey et al. (2022). In our work we focus on vulnerabilities affecting Edge frame-
works, in other words, mistakes in the implementation, design, or configuration of the Edge
framework that prevent either the framework or the software running on it from fulfilling its
security requirements.

A vulnerability is said to be exploited by a malicious user U through an input sequence
I , when (a) the malicious user provides the input sequence I to the software under test, (b)
the input sequence exercises the vulnerability (i.e., the software executes the functionality
affected by the weakness), and (c) a security failure is observed (i.e., there is a violation of
security requirements). In a software testing context, it is the software tester who aims to
identify input sequences that may reveal the presence of vulnerabilities.
Test oracle. A test oracle (or, simply, an oracle) is a procedure to determine if the software
behaves according to its specifications Barr et al. (2015), otherwise a test failure should be
reported. In the context of security testing, test oracles should report security failures. Test
oracles may either be automated or manual; in this paper, we focus on automated test oracles
because we look for testing solutions that can be automatically executed.
CVE. MITRE (2022a) is a database managed by the MITRE Corporation (2022). It lists
publicly disclosed vulnerabilities.

The CVE list is enumerated andmanaged by the CVENumberingAuthorities (CVENum-
bering Authorities 2022. All the registered vulnerabilities are characterized with a univocal
identifier, a textual description, and additional details including severity, registration date,
vulnerable product.
CWE.CommonWeaknessesEnumeration (CWE) is a public databasemanaged by theMITRE
Corporation (2022). It lists the weaknesses that may lead to a vulnerability; a weakness can be
an invalid action taken by the software or a developer mistake performed when implementing
or designing the software. For each weakness, the CWE database reports the CWE ID, its
description, the creation date, a link to the NVD database, and references to external links
(e.g., GitHub) to further explain the details about the vulnerability.

The CWE weaknesses constitute a catalog of vulnerability types organized according to
different views (i.e, taxonomies) that group them in a hierarchical structure. The top level
entries of such structures are called pillars. The views considered in our study are research
concepts and software development. We excluded views that concern hardware design, are
mappings to other taxonomies, or concern problems related to specific systems. The research
concepts view focuses on the software behaviour and includes the following categories:
Improper Access Control, Improper Interaction Between Multiple Entities, Improper Con-
trol of a Resource Through its Lifetime, Incorrect Calculation, Insufficient Control Flow
Management, Protection Mechanism Failure, Incorrect Comparison, Improper Handling of
Exceptional Conditions, Improper Neutralization, Improper Adherence to Coding Standards.

123

Page 7 of 65 99

(2023) 28: 99Empirical Software Engineering

The software development concepts view focuses on the development (e.g., design and pro-
gramming) mistakes that lead to the vulnerability; it consists of 40 pillars including, among
the others, API / Function Errors, File Handling Issues, Data Validation Issues, and Memory
Errors.
Security properties. In our work we consider three security properties of software (i.e., Con-
fidentiality, Integrity, Availability — CIA) that we define according to the NIST Information
Security report NIST-800-137 Dempsey et al. (2022):

– Confidentiality concerns “preserving authorized restrictions on information access and
disclosure, including means for protecting personal privacy and proprietary informa-
tion” Dempsey et al. (2022).

– Integrity concerns “guarding against improper information modification or destruction,
and includes ensuring information non-repudiation and authenticity” Dempsey et al.
(2022).

– Availability concerns “ensuring timely and reliable access to and use of informa-
tion” Dempsey et al. (2022).

NVD. The National Vulnerability Database (NVD) is the U.S. government repository of
vulnerability data National Vulnerability Database (2022). Vulnerabilities are reported using
the Security Content Automation Protocol (SCAP), which consists of information including,
among others, the CVE data and the Common Vulnerability Scoring System (CVSS). All
the CVE vulnerabilities appears also on the NVD repository.
CVSS. TheCommonVulnerability Scoring System (CVSS) is a framework for communicating
the characteristics and severity of software vulnerabilities Common Vulnerability Scoring
System (1995). According to CVSS, each vulnerability is associated to a set of attributes:
Attack Vector, which captures the context of the attack (Network, Adjacent, Local, Physical),
Attack Complexity (Low, High), Privileges Required (None, Low, High), User Interaction,
which indicates if the attacker needs to interact with another user (None, Required), Scope,
which indicates whether a vulnerability in one vulnerable component impacts resources in
components beyond its security scope (Unchanged, Changed), and Impact Metrics. Impact
Metrics report how much the software security properties (i.e., Confidentiality, Integrity, and
Availability) might be impacted (High, Low, None) by an exploit for the vulnerability. The
CVSS attributes are represented through a string that reports the initials of each attribute
along with its value. For example, for CVSS version 3.1, the string

AV : L/AC : L/PR : L/UI : N/S : U/C : H/I : H/A : H
indicates a Local (L) Attack Vector (AV), Low (L) Attack Complexity (AC), Low (L) Priv-
ileges Required (PR) to exploit the vulnerability, No interaction with an additional user
being required (User Interaction, UI), Unchanged (U) Scope (S), and High impact (H) on
Confidentiality (C), Integrity (I), and Availability (A).

The CVSS attribute values are used to derive a score between 0 and 10 that captures the
severity of a vulnerability; score ranges are interpreted as follows: None (0.0), Low (0.1-3.9),
Medium (4.0-6.9), High (7.0-8.9), Critical (9.0-10.0).

3 Study Design

The goal of our study is to investigate security vulnerabilities affecting Edge computing
frameworks. The purpose is to identify the characteristics of Edge vulnerabilities with the
aim of driving improvements in the security testing process and supporting the identification

123

99 Page 8 of 65

(2023) 28: 99Empirical Software Engineering

of appropriate solutions for the development of security testing tools. The context consists of
147 vulnerabilities reported between January 2019 and December 2021. They concern four
Edge frameworks, which are KubeEdge, Mainflux, K3os and Zetta. All the data used in our
study are available online Malik and Pastore (2023).

This study addresses eleven research questions, which we defined by focusing on those
aspects that may drive the definition of an automated security testing technique. We focus
on aspects that help identifying the testing opportunity (i.e, determine in which scenarios
existing methods are insufficient), evaluating the feasibility of security testing automation
(e.g., to avoid severe consequences on the integrity of the system), and defining the technical
solution (i.e., design an input selection strategy, an automated test oracle, test harnesses and,
in general, supporting procedures).

Figure 2 provides an overview of the relations between our research questions (RQs) and
the final objective of this work (i.e., support the development of effective testing approaches
for Edge systems); precisely, in Figure 2, we organize our RQs according to their objec-

Fig. 2 Research Questions: Objectives, Data analyzed, and Information derived

123

Page 9 of 65 99

(2023) 28: 99Empirical Software Engineering

tives (i.e., identifying the testing opportunity, evaluating the feasibility of security testing
automation, and defining the technical solution) and indicate which information is acquired
by addressing each RQ. In this manuscript, our RQs are sorted according to the data used
to address them: first we present the RQs addressed through the manual inspection of vul-
nerability reports (RQ1 to RQ6, with the four RQs inspired by Gazzola et al.’s work first),
then we present research questions addressed using data available on the CVE and NVD
databases (RQ7 to RQ8). A detailed description of our research questions follows:

RQ1:Why are Edge vulnerabilities not detected during testing?
Like any other software system, an Edge system shall undergo a security testing phase in
which engineers verify that it meets its security requirements Felderer et al. (2016);Mais et al.
(2018). The presence of vulnerabilities not being detected during testing but discovered later
(e.g., once the system has been already released and deployed in the field), indicates pitfalls
in the testing process. This research question aims to determine the reasons that prevented the
detection of vulnerabilities during testing and whether further research is needed to prevent
security failures in the field or, alternatively, if field failures can be avoided simply through
the improvement of the testing process in place (i.e., testing was insufficiently conducted).

RQ2:What are the types of components involved in a security failure?
Similarly to the study of Gazzola et al., we aim to determine which components are involved
in a security failure. However, to better support the definition of automated security testing
techniques, we aim to distinguish between (A) the failing components, which indicate what
should be the targets of test oracles, (B) the components that should be in a specific state to
exploit the vulnerability, which may indicate the conditions under which the software should
be tested (e.g., with an overloaded network), (C) the components receiving the input, which
influence the type of input interfaces that should be managed by the testing technique (e.g.,
a Web interface or an input file), and (D) the vulnerable components, which indicate what to
test. The analysis of the types of components involved in a security failure should support
the identification of appropriate testing strategies. Therefore, we refine our research question
into four:

– RQ2AWhat are the components manifesting an Edge security failure?
– RQ2BWhat are the components that are in the state required to exploit an Edge vulner-
ability?

– RQ2CWhat are the components that receive the inputs that trigger an Edge vulnerability?
– RQ2DWhat are the faulty (i.e., vulnerable) Edge components?

RQ3:What kind of failures are observed when an Edge vulnerability is exploited?
To automatically test a software system, it is necessary to specify test oracles (see Section 2.4).
The implementation of an automated test oracle depends on the nature of the failures to be
detected; for instance, the program logic required to automatically detect a crash might
be based on response timeout, which is likely different than the logic required to detect
unauthorized access to a resource, which might consist of verifying the data returned to the
caller.

RQ4:What is the nature of the precondition enabling the attacker to exploit Edge vulner-
abilities?
A vulnerability may be exploited only if a certain precondition holds (e.g., a subnet has been
set-up). Since it might be difficult for an automated approach to meet certain preconditions
(e.g., automatically set-up a network), to evaluate the potential benefits of test automation
(e.g., the proportion of vulnerabilities it might detect), we investigate the nature of such
preconditions for different vulnerabilities.

123

99 Page 10 of 65

(2023) 28: 99Empirical Software Engineering

RQ5:What Inputs Enable Exploiting Edge Vulnerabilities?
The effectiveness of a test automation approach depends on the degree of complexity of the
input to be generated, which we may characterize in terms of the number of required inter-
actions with the SUT and the structure and type of input actions to perform (e.g., providing
data, changing software configurations, or simulating network disruptions). For instance, a
vulnerability that requires a long input sequence to be exploited may be more difficult to
detect than one can be detected with single input. We therefore refine RQ5into two separate
questions:

– RQ5A: How many Steps are Required to Exploit an Edge Vulnerability?

– RQ5B :What is the Nature of the Input Action Enabling the Attacker to Exploit a Vulner-
ability?

simulating network disruptions).
RQ6:What Security Properties are Violated by Edge Vulnerabilities?

The type of security properties being violated by Edge security failures impact on the defi-
nition of automated oracles. Also, they may affect the test harness solutions2 to put in place.
For example, vulnerabilities that affect availability can be detected by oracles that look for
the lack of responses from the system; instead, to detect authorization vulnerabilities it is
necessary an oracle that is aware of the system’s access policies. Concerning test harness,
after discovering availability issues, it may be necessary to restart the system (e.g., to pre-
vent blocking other testing processes), which is not required after discovering confidentiality
problems (confidentiality issues do not alter the state of the system). Instead, the discovery
of an integrity issue may imply restoring the configuration of the system after discovery.

RQ7:What Faults Cause Edge Vulnerabilities?
The input selection strategy implemented by a test automation approach depends on the types
of faults being targeted. In the case of security testing, for example, the inputs to be selected
to identify an SQL injection attack are different than the ones used to detect a path traversal
vulnerability (e.g., they rely on different grammars). To categorize faults, we can rely on the
CWE vulnerability types, which is well-known and largely adopted taxonomy. Additional
aspects to take into account are the erroneous software behaviors caused by the vulnerability
(e.g., improper access control) and by the developer mistakes leading to the vulnerability
(e.g., memory buffer errors). Erroneous software behaviors are captured by the CWE pillars
for the CWE view Research concepts; developer mistakes are captured by the CWE pillars
for the CWE view Developer concepts. We therefore refine RQ7into three RQsthat reflect
the information collected in our process:

– RQ7A: What is the CWE Vulnerability Type?
– RQ7B :What are the Erronous Software Behaviours Leading to Edge Security Failures?
– RQ7C : What are the Developer Mistakes Leading to Edge Vulnerabilities?

RQ8: How Severe are Edge Vulnerabilities?
To evaluate the importance of improving Edge security testing approaches, RQ8discusses
severity based on NVD CVSS scores (see Section 2.4); severity analysis provides an indica-
tion about the urgency for automated security testing approaches.

RQ1, RQ2, RQ3, and RQ5Aare inspired by the work of Gazzola et al.; however, we have
extended the analysis method to better fit the context of this study. Precisely, the taxonomies
used to address RQ1and RQ5Amatch the one used by Gazzola et al.; the taxonomies used

2 We use test harness to indicate the technical solutions supporting test automation.

123

Page 11 of 65 99

(2023) 28: 99Empirical Software Engineering

for RQ2and RQ3are an extension of the one proposed by Gazzola et al. Further, we address
RQ4andRQ5Busing a taxonomy that we introduce in this article. ForRQ6we rely on the CIA
security properties (but we distinguish between data and system integrity). ForRQ7A,RQ7B ,
RQ7Cwe rely on CWE categories. Finally, for RQ8, we rely on NVD CVSS attributes.

3.1 Data Collection

Figure 3 provides an overview of the process adopted to collect data and answer our research
questions.

For our study, we selected Edge frameworks that fulfill the following criteria: (C1) being
open-source and publicly available, which enables the investigation of software patches for
a better understanding of the vulnerability, (C2) having active user base (i.e., users reporting
bugs and vulnerabilities online) and support (i.e., responses are provided to 90 (C3) having
at least five vulnerabilities reported by end-users either on the CVE databases or GitHub (not
all the vulnerabilities are necessarily reported on the CVE database).

We focus on Edge frameworks rather than services or applications developed to run on
Edge frameworks since the latter delegate securitymanagement to the underlying frameworks
KubeEdge (2022).

Search for Open-source Edge Computing Frameworks

Select Edge frameworks with active user-base and support

Shortlist Open-source Edge Frameworks

For every framework search for vulnerabilities being reported on CVE using the

Edge framework name

Identify the components of each shortlisted framework from their documentation

Search for vulnerability reports for the identified components on the CVE database

Discard vulnerability reports that do not concern security of Edge frameworks or are

not directly related with edge components

Inspect all the vulnerability reports to address the research questions

Fig. 3 Activity diagram for our approach in the manuscript

123

99 Page 12 of 65

(2023) 28: 99Empirical Software Engineering

First, we have identified 15 open-source Edge frameworks by executing aWeb search with
the Google search engine; we searched for the keywords ‘edge framework’ and ‘IoT
framework’. The identified frameworks are shown in Table 1, whereas columns C1, C2,
and C3 indicate which of the above-mentioned criteria had been satisfied.

Based on our criteria, we selected as subjects of our study KubeEdge, Mainflux, Zetta,
and K3os. KubeEdge (2022b) is the framework with the largest number of users providing
comments in the issue tracker, probably because it is the most widely adopted one. It is devel-
oped as an open-source project by (CNCF) Clound Native Computing Foundation (2022).
It is an open-source product built upon Kubernetes (2022c), which is a system for automat-
ing deployment, scaling, and management of containerized applications. KubeEdge extends
containerization capabilities to Edge devices. KubeEdge’s bug reports and vulnerabilities are
available on its GitHub page KubeEdge (2023) and MITRE (2022a), respectively.

Mainflux Framework (2022) is an open-source framework designed byMainflux Labs to
support smart devices in the Internet of Things (IoT) ecosystem. It has a simpler architecture
than KubeEdge (i.e., less components) and serves as a middleware between Edge devices and
cloud-based orchestration platforms; it targets systems that largely rely on the Edge paradigm
(i.e., IoT). Its bug reports can be accessed on GitHub Mainflux (2022a).

Zetta (2022a) is an open-source,Web-based Edge framework which provides connectivity
to different types of smart devices. The Zetta’s centralized device controller (Zetta hub) is
designed to work on low-powered devices capable of running an OS such as BeagleBone
Black, Intel Edison, or Raspberry Pi. Zetta’s bug reports and vulnerabilities are available on
the GitHub and CWE database Zetta (2022b).

K3OS (2022a) is an open-source Edge framework designed to work in low resource envi-
ronments with the capability of being managed through a light-weight Kubernetes dashboard
called k3s. For example, it is used by Rancher, a multi-Cloud container management plat-
form Rancher (2022).

Table 1 List of all the opensource Edge frameworks identified in our search (selected ones in bold)

Framework Selected Organization License C1 C2 C3

KubeEdge � Kubernetes apache-2.0 � � �
Wasm3 x Volunteers MIT � � x

Baetyl x Linux Foundation Edge apache-2.0 � x x

Mainflux � MAINFLUX LABS apache-2.0 � � �
Superedge x Volunteers other � x x

Yomo x Volunteers apache-2.0 � � x

Fog-flow x FIWARE bsd-3-clause � � x

Cloudsimsdn x Volunteers gpl-2.0 � x x

Deviceplane x Volunteers apache-2.0 � x x

Distributed Storm x Volunteers apache-2.0 x � x

ENORM x Volunteers apache-2.0 � x x

K3os � Volunteers apache-2.0 � � �
Oci x Volunteers BSD-2 x � x

Zetta � Volunteers MIT � � �

Labels C1, C2, and C3 refer to our selection criteria (see Section 3.1)

123

Page 13 of 65 99

(2023) 28: 99Empirical Software Engineering

For each Edge framework, we analyzed the vulnerabilities reported in its bug repository
(GitHub) and the ones appearing in the CVE database. To identify vulnerabilities in the
GitHub repository, we used the GitHub built-in search functions to search for bug reports
containing security-related keywords (i.e., security, vulnerability, crash, and privacy) either
in their title or in the description of the vulnerability.

To select vulnerabilities in the CVE database, we used the built-in search function to iden-
tify CVE records including the name of the framework. Also, we searched for vulnerabilities
referring to components implementing the containerization and communication features used
by our frameworks, which are MQTT brokers (e.g., Mosquitto 2022 and VerneMQ Broker
2022), Raspberry pi (configured as end-device or client manager for pods), and container
managers (i.e., Kubernetes, Docker, and Cri-o). Precisely, KubeEdge components include
Kubernetes, Cri-o, Raspberry Pi, Mosquitto or verneMQ, whereas Mainflux components
include only Docker. K3os components include Kubernetes; Zetta’s components include
Raspberry Pi. However, to avoid duplicates in our study, the Edge vulnerabilities concern-
ing Kubernetes (61, in total) and Raspberry Pi (two, in total) had been counted as part of
KubeEdge only. Since we do not aim to compare frameworks but study the nature of Edge
vulnerabilities, our choice should not bias our results.

In our study, we considered all the GitHub bug reports submitted till 31 November 2021,
and all the CVE vulnerabilities dated between 1 January 2019 and 31 November 2021.

Table 2 provides the number of reports collected from GitHub and CVE, for each selected
framework. The total number of reports ranges from 5 (Zetta) to 125 (KubeEdge); unsurpris-
ingly, such number is related to the complexity of the framework (i.e., the largest frameworks,
including their dependencies, are the ones with the largest number of vulnerabilities).

Column Vulnerabilities in Table 2 cin the collected reports, which are 201, in total. Vul-
nerability reports were identified by the first author of the paper who read all the report
descriptions. Among all the vulnerability reports, we excluded the ones that concern Edge
components (e.g., Docker) but affect features not used by Edge frameworks. An example is
vulnerability MITRE: CVE202131938 (2022) in Kubernetes (2022c), which concerns the
Microsoft Visual Studio Code Kubernetes tool Microsoft (2022). Such tool is not executed at
runtime within the Edge system but is used at configuration time to implement scripts for the
Kubernetes framework; therefore, the vulnerability is out of scope. After filtering, we count
147 vulnerabilities affecting the Edge frameworks considered in our study (see column Edge
vulnerabilities in Table 2). Please note that the requirement of minimum five vulnerabilities
to select an Edge framework for our study concern the total number of vulnerability-related
reports in GitHub or CVE (i.e., column Total in Table 2), not the number of Edge vulnera-
bilities selected at the end of the process.

3.2 Analysis Method

This section explains the metrics and the procedures put in place to answer our research
questions based on the collected vulnerability reports.

For our study, we proceeded as follows. The first author of the paper has carefully read the
147 vulnerability reports indicated above along with links to related electronic documents
(e.g., detailed vulnerability descriptions provided on the frameworks’ Web sites) and code
commits registered on their versioning systems (e.g., git code commits selected by relying
on either the vulnerability ID or a bug fix ID reported in related electronic documents). We
resorted to the inspection of code commits when the description of the vulnerability was not
clear (i.e., it did not enable us to answer some of our RQs). By reading the vulnerability

123

99 Page 14 of 65

(2023) 28: 99Empirical Software Engineering

Table 2 Vulnerabilities selected for each case study subject

Framework Reports
GitHub CVE Total Vulnerabilities Edge vulnerabilitiess

KubeEdge1 39 76 115 80 71

Mainflux2 7 118 125 119 74

K3os 18 – 18 1 13

Zetta 5 – 5 1 14

Total 69 194 263 201 147

Notes: 1 KubeEdge vulnerability count includes also vulnerabilities affecting Kubernetes, Cri-o, Raspberry-
Pi, and MQTT brokers (Mosquitto or verneMQ). 2 Mainflux vulnerability count includes the vulnerabilities
affecting Docker components used within Mainflux. 3 For K3OS, if we count also the vulnerabilities affecting
Kubernetes and Raspbery Pi we end up with 64 Edge vulnerabilities. 4 For Zetta, if we count also the
vulnerabilities affecting Raspbery Pi we end up with 3 Edge vulnerabilities

descriptions and the related electronic resources, to address each RQ, the first author (1)
classified each vulnerability according to the categories specified to address RQ1to RQ6and
(2) collected the data required to address RQ7Ato RQ8. To minimize subjectivity in the
manual classification, the authors of the paper have defined together the answers for each
RQand discussed at least one concrete case for each class. In practice, the first 30 vulnera-
bilities inspected at the beginning of the project had been reviewed by both the two authors
to ensure common understanding. Further, randomly selected cases and unclear cases had
been discussed. In total, about 50 vulnerabilities had been inspected by both authors. For a
subset of the first 30 vulnerabilities there had been disagreement due to definition of common
terminology and criteria, which lead the first author to re-classify, from scratch, all the 30
vulnerabilities till agreement was reached. For the remaining 20 randomly selected cases, the
two authors were in agreement. Addressing RQ7and RQ8did not require any specific agree-
ment between the authors because it relies on information available with the vulnerability
report.

Table 3 provides the data collected for the vulnerabilities mentioned as examples in the
following paragraphs.

3.2.1 RQ1: Why are Edge Vulnerabilities not Detected During Testing?

To address this research question, we classify each vulnerability report according to the same
five categories reported in Gazzola’s work:

– Irreproducible Execution Condition (IEC). It indicates that the vulnerability cannot be
identified at testing time because it is not feasible to reproduce the conditions underwhich
it can be exploited. An example is Kubernetes vulnerability MITRE: CVE20213499
(2022), which reports that Kubernetes is unable to apply multiple DNS firewall rules
during egress communication (i.e., communication leaving the local network). Without
knowing the specific firewall rules to apply during testing, it is unlikely to discover this
vulnerability.

– Unknown Application Condition (UAC). It indicates that the security failure depends on
an input that was not identified by the testing engineer because not specified in the doc-
umentation. An example is vulnerability MITRE: CVE20208565 (2022), which reports
that, with logging level 9, the system exposes administrator details by writing them in

123

Page 15 of 65 99

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
3

D
at
a
co
lle
ct
ed

fo
r
th
e
vu
ln
er
ab
ili
tie
s
de
sc
ri
be
d
in

Se
ct
io
n
3.
2

V
ul
ne
ra
bi
lit
y
ID

R
Q
1

R
Q
2
A

R
Q
2
B

R
Q
2C

R
Q
2
D

R
Q
3
-F

R
Q
3
-D

R
Q
4

R
Q
5
A

R
Q
5
B

R
Q
6

R
Q
7
A

R
Q
7
B

R
Q
7C

R
Q
8
-A

R
Q
8
-P

20
21
-3
49
9

IE
N
d

Se
N
e

Se
N
e

Sl
C
o

1
D

SI
86
3

28
4

–
H

N
on

20
20

-8
56

5
U
A

Su
Su

N
on

Su
A
c

SL
N
on

0
N
on

C
53

2
66

4
–

L
o

L
o

20
20
-8
55
9

U
E

Su
Su

N
e

Su
V

SL
N
on

N
o

D
SI

60
1

66
4

–
L
o

L
o

20
21

-2
57

37
C
E

N
e

N
e

Su
Su

N
e

SL
C
o

N
o

C
o

D
I

60
1,

18
4

66
4

–
L
o

H

20
20

-2
89

14
U
A

R
Su

Su
Su

A
c

SL
N
on

1
C
o

D
I

73
2

28
4

–
L
o

L
o

20
21

-3
91

59
U
A

N
d

Su
A
P

P
U

SL
N
on

1
D

SI
94

66
4

–
L
o

L
o

20
21

-3
44

31
C
E

N
d

N
e

N
e

N
e

N
e

S
N
on

1
D

A
40

1
66

4
–

L
o

L
o

20
19

-1
12

52
C
E

Su
N
on

N
on

Su
A
c

SL
N
on

0
N
on

C
20

9
66

4,
70

3
IM

E
,E

C
-R

C
-S
C

L
o

L
o

20
20
-1
51
27

C
E

N
d

N
e

N
e

Su
Sy

SL
N
on

1
D

SI
30
6

28
4

A
E

L
o

N
on

20
21

-3
27

83
U
A

Su
A
p

A
p

A
p

Sy
U
n

N
on

1
D

SI
61

0,
44

1
66

4
–

L
o

L
o

20
21

-3
85

45
C
E

N
on

H
W

H
W

H
W

A
c

SL
N
on

1
D

C
–

–
–

H
N
on

K
ub
eE

dg
e#
17
36

U
A

N
d

N
d

R
Su

T
S

C
o

1
D
e

A
–

–
–

–
–

20
21

-2
81

66
C
E

N
e

N
e

N
e

N
e

V
S

N
on

1
D

A
47

6
70

3
PI

L
o

L
o

20
20

-3
55

14
C
E

Su
P

Su
P

A
c

SL
N
on

1
D

SI
26

6
28

4
Pi

H
L
o

20
20

-8
55

8
U
A

Su
Se

N
e

Se
N
e

SL
N
on

1
D

C
28

7,
42

0
28

4
C
C
E

L
o

N
on

K
ub
eE

dg
e#
23
62

U
A

N
d

N
d

Su
Su

Sy
S

L
1

D
A

–
–

–
–

–

Z
et
ta
#3
35

C
E

Su
Su

Su
Se

N
e

Sy
C
o

1
R
eU

A
–

–

20
20

-8
56

3
C
E

Su
Su

N
on

Su
V

SL
C
o

0
N
on

C
53

2
66

4
A
/L
-E
,I
M
E

L
o

L
o

20
21

-2
02

18
C
E

N
d

P
Su

P
A
c

SL
N
on

N
o

D
SI

22
66

4
H

N
o

20
14
-5
27
8

C
E

Su
Su

Su
N
e

N
e

SL
C
o

1
D

SI
–

–
–

L
o

N
on

20
20

-8
55

7
U
A

N
d

N
on

N
on

Su
Sy

U
n

R
eU

0
N
on

A
40

0
66

4
–

L
o

L
o

20
20

-1
35

97
C
E

N
e

N
e

N
e

N
e

Sy
SL

C
o

1
C
o

C
20

0,
20

1
66

4
IM

E
H

L
o

20
21

-2
13

34
C
E

N
d

Su
Su

Su
A
c

SL
C
o

1
D

C
66

8
66

4
–

H
L
o

123

99 Page 16 of 65

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
3

co
nt
in
ue
d

V
ul
ne
ra
bi
lit
y
ID

R
Q
1

R
Q
2
A

R
Q
2
B

R
Q
2C

R
Q
2
D

R
Q
3
-F

R
Q
3
-D

R
Q
4

R
Q
5
A

R
Q
5
B

R
Q
6

R
Q
7
A

R
Q
7
B

R
Q
7C

R
Q
8
-A

R
Q
8
-P

20
21

-2
12

51
U
A

Su
P

P
P

V
SL

C
o

N
o

D
D
I

22
66

4
–

L
o

L
o

20
20

-2
21

1
C
E

Su
P

P
P

V
SL

C
o

1
D

SI
50

2
66

4
R
M
E

L
o

L
o

20
20

-8
56

6
U
A

Su
P

N
on

P
A
c

SL
N
o

0
N
on

C
53

2
66

4
A
L
E
,I
M
E

L
o

L
o

A
bb

re
vi
at
io
n
Te

rm
s:
IE

:
Ir
re
pr
od

uc
ib
le
ex
ec
ut
io
n
co
nd

iti
on

,U
A
:
U
nk

no
w
n
ap
pl
ic
at
io
n
co
nd

iti
on

,U
E
:
U
nk

no
w
n
en
vi
ro
nm

en
tc
on

di
tio

n,
B
:
B
ad

Te
st
in
g,

C
E
:
C
om

bi
na
to
ri
al

E
xp

lo
si
on

,R
:
R
es
ou

rc
e,
A
P
:
A
PI
,S

u:
SU

T,
D
:
D
ri
ve
r,
Se
:
Se
rv
ic
e,
N
e:

N
et
w
or
k,

N
d:

N
od
e,
H
W
:
H
ar
dw

ar
e,
N
on

:
N
on
e,
A
c:

A
ct
io
n,

V
:
V
al
ue
,T

:
T
im

in
g,

Sy
:
Sy

st
em

,I
:

In
te
gr
ity
,S

:S
ig
na
lle
d,
U
n:

U
nh

an
dl
ed
,S

L
:S

ile
nt
,A

:A
va
ila
bi
lit
y,
no

:N
o
In
fo
rm

at
io
n,
C
o:

C
on

fig
ur
at
io
n,
D
e:
D
el
ay

ca
us
in
g
m
is
si
ng

re
so
ur
ce
,L

:L
ac
k
of

D
at
a,
R
eB

:R
es
ou

rc
e

B
us
y,

C
:
C
on
fid

en
tia
lit
y,

R
eU

:
R
es
ou
rc
e
U
na
va
ila
bl
e,

SI
:
Sy

st
em

In
te
gr
ity
,
D
I:

D
at
a
In
te
gr
ity
,
L
o:

L
ow

,
H
:
H
ig
h,

IM
E
:
In
fo
rm

at
io
n
M
an
ag
em

en
t
E
rr
or
s,
R
M
E
:
R
es
ou

rc
e

M
an
ag
em

en
tE

rr
or
s,
A
L
E
:A

ud
it/
L
og

gi
ng

E
rr
or
,P

I:
Po

in
te
rI
ss
ue
s,
P
i:
Pr
iv
ile
ge

Is
su
es
,A

/L
-E

:A
ud

it/
L
og

gi
ng

E
rr
or
s,
R
Q
8
-A

:R
Q
8
-A

tta
ck

C
om

pl
ex
ity
,R

Q
3
-F
:R

Q
3
-F

ai
lu
re

Ty
pe
,R

Q
3
-D

:R
Q
3
-
D
et
ec
ta
bi
lit
y
R
Q
8
-P
:R

Q
8
-
A
tta
ck

Pr
iv
ile
ge
s
C
C
E
:
C
om

m
un

ic
at
io
n
C
ha
nn

el
E
rr
or
s,
E
C
-R

C
-S
C
:
E
rr
or

C
on

di
tio

ns
,R

et
ur
n
V
al
ue
s,
St
at
us

C
od

es

123

Page 17 of 65 99

(2023) 28: 99Empirical Software Engineering

logs as plain text, including authorization and bearer token (i.e., an hexadecimal string
used for requesting access to a resource). Since the availability of logging level 9 is not
well documented Kubernetes (2022b), testing engineers may have overlooked it.

– Unknown Environment Condition (UEC). It indicates that the precondition or the type
of input required for triggering the vulnerability depends on a characteristic of the envi-
ronment (software environment or physical environment) that was not known to security
engineers (e.g., because not well documented). name-space, thus escalating privileges,
which may compromise the cluster, causing massive DOS in the system. An example is
Kubernetes vulnerability report MITRE: CVE20208559 (2022), which indicates that a
malicious user can redirect update requests. This vulnerability has been likely not discov-
ered at development time because of the limited documentation on redirect responses,
which concerns the communication protocol. to identify the timestamp at which ESC
was deployed, possible combination in brute-force attack could be minimized.

– Combinatorial Explosion (CE). Sometimes, to detect a vulnerability at testing time, it
is necessary to exercise the system with inputs derived by combining values belonging
to different input partitions3, for different input parameters or configurations. When the
system is large, the combination of values belonging to different input partitions for
different parameters and functions lead to a number of test cases that is very large and
thus infeasible to be defined, executed, or verified (i.e., the number of test cases explode).
Also, when inputs can have a complex structure adhering to a specific grammar (e.g.,
xpaths), testing different combinations of valid and invalid grammar tokens becomes
challenging. Unfortunately, without details about the development budget for our case
study subjects, it is not possible to determine a threshold above which it is impractical for
software engineers to test different input (or grammar token) combinations. Therefore,
we conservatively assume that combinatorial explosion is the cause of any vulnerability
that can be triggered only with specific combinations of input parameters, independently
from the number of parameters, input partitions, or grammar tokens, for the vulnerable
function. Indeed, in large systems, it is common practice for engineers to limit testing cost
by exercising only few combinations of inputs (e.g., by relying on the weak equivalence
class testing strategy Amman and Offutt (2016)). Please note that although functional
testing approaches such as N-wise coverage Amman and Offutt (2016) may have enabled
engineers to address combinatorial explosion and discover vulnerabilities, the available
information does not enable us to determine if such strategies had been applied in our
case study subjects. Therefore, we simply report all the combinatorial cases together,
independently of the strategy followed to test them. An example CE is provided by the
Kubernetes vulnerability report MITRE: CVE202125737 (2022); it indicates that the
user can redirect network traffic into a subnet, which is typically not allowed by the
administrator.

– Bad Testing (BT).We consider a vulnerability to slip through the testing process because
of bad testing when it is not possible to find a justification for the lack of testing effec-
tiveness in terms of lack of feasibility (i.e., IEC), lack of documentation (i.e., UEC and
UAC), or lack of test budget (i.e., CE). In practice, following the guidelines of Gazzola et
al., anything not categorized in the above-mentioned scenarios is considered due to bad
testing Gazzola (2017). In practice, as for the study of Gazzola et al., we conservatively
consider caused by bad testing only those cases where a basic security feature of the SUT

3 An input partition is a input region with equivalent values, from a testing perspective Amman and Offutt
(2016).

123

99 Page 18 of 65

(2023) 28: 99Empirical Software Engineering

is always not functioning as specified (e.g., when access to a feature is always granted,
even if the username/password combination is wrong).

Our classification has been performed by reading each vulnerability report to determine
the features that should be exercised to detect the vulnerability. Further, we inspected the
available documentation to (1) determine UAC and UEC cases (they concern the lack of
detailed documentation) and (2) to determine what are the possible input partitions. When
available, we also inspected bug-fix commits to have a better understanding of the vulnerabil-
ity. Although it is not possible to know the exact cause of each field failure without involving
the actual developers of the frameworks, our investigation helps determining reasonable ones
(i.e., causes that may not be true for the considered case study but might have been true for
a system with the same characteristics).

3.2.2 RQ2: What are the Types of Components Involved in a Security Failure?

This research question aims to characterize the components exercised when a security failure
is observed. sub-question for RQ2are listed below: As mentioned in Section 3, this research
question is divided into four:

– RQ2AWhat are the components manifesting an Edge security failure?
– RQ2BWhat are the components that are in the state required to exploit an Edge vulner-
ability?

– RQ2CWhat are the components that receive the inputs that trigger an Edge vulnerability?
– RQ2DWhat are the faulty (i.e., vulnerable) Edge components?

The above-mentionedRQs are addressed by tracing, for each vulnerability report, the types
of components involved in the activities captured by RQ2A- RQ2D . We have refined the list
of components introduced by Gazzola et al., which included resources, plugins, OS, drivers,
and network. Our refined list of components includes additional elements that characterize
Edge systems (see Section 2.1), which are API, Nodes, and hardware (i.e., the machine on
which the software is running). Also, we explicitly indicate if the failure concerns the SUT
(i.e., the Edge framework under test). We exclude the OS category from our analysis because
the activity of the OS is generally invisible to the Edge frameworks and we did not identify
any vulnerability related to it; further, OS-support tools are often part of Edge frameworks
themselves.

All our components are described in the following:

– Resources.Resource refers to any software medium used to store data, for example
files or databases. An example is given by Kubernetes vulnerability report MITRE:
CVE202028914 (2023), which indicates that a malicious user can access restricted fold-
ers (i.e., resources) with both read and write permissions using a guest account.

– Drivers. Driver indicate devices drivers for the operating system controlled by the Edge
server controller (see Section 2.1).

– Plugins.A plugin is an add-on component or module that enhances the system’s capa-
bilities. An example is provided by Kubernetes vulnerability MITRE: CVE202131938
(2022), which concerns the Kubernetes plugin Helm. Helm exchanges username and
password without encryption, therefore, a malicious user may introduce a custom URI
in the system configuration to steal the username and passwords of its users. In the case
of RQ2A, it is Helm (i.e., the plugin) what experiences the effect of the vulnerability
(i.e., receives username and password). For RQ2B , the component in the required state

123

Page 19 of 65 99

(2023) 28: 99Empirical Software Engineering

is a resource; precisely, a configuration file that contains the custom URI to exploit the
vulnerability. ForRQ2C , the component receiving the input that triggers the vulnerability
is the Helm plugin. ForRQ2D , the faulty component is the SUT, since it should not allow
end-users to change the configuration files in which the Helm URI is located.
Another case is provided by the docker vulnerability MITRE: VE202139159 (2022),
where the faulty component is the plugin matrix-media-repo. The plugin matrix-media-
repominimizes the size of the images saved on the server side. However, accessing stored
images from the database requires a decompression process; a malicious user may upload
special crafted images that exhaust the decompression process and cause a security failure
(i.e., a denial-of-service) on the SUT (i.e., KubeEdge).

– Software Under Test (SUT). We introduced this term to indicate cases in which issues
concern the Edge framework under test. An example is provided by vulnerabilityMITRE:
CVE202134431 (2022) inDocker, inwhich the faulty component is theMosquitto (2022)
MQTT Broker (SUT, according to Figure 1). During the handshake process between
the client and the server, a CONNECT packet should be sent from the client to the
server only once. The server is responsible for processing the CONNECT request and
reply; the presence of multiple CONNECT requests being sent to the server by a same
client is considered a protocol violation which results in the client being disconnected.
The vulnerability concerns Mosquitto, in which the disconnection of a client leads to
a memory leak that may end-up into a denial-of-service. In the example, the node is
the component affected by the effects of the vulnerability (RQ2A), the network protocol
should be in a specific state (i.e., the CONNECT state) (RQ2B), the network receives
the input which triggers the vulnerability (RQ2C), and the SUT (i.e., Mosquitto) is the
faulty component (RQ2D).

– Services. Services are executable programs that provide the data required by the SUT. An
example is provided by Kubernetes vulnerability report MITRE:CVE201911252 (2022),
which indicates that the services bound to loopback address (127.0.0.1) are accessible by
other hosts on the network. Those services should only be accessible to local processes.
In this case, these loopback services are the components experiencing the effects of the
vulnerability (RQ2A).

– Network. Components implementing network-related functionalities (i.e., communica-
tion protocols, firewalls, and ports) belong to this category. An example is provided by
the Kubernetes vulnerability report MITRE: CVE202128448 (2022), which describes
the incapability to enforce multiple firewall rules for DNS traffic during egress commu-
nication. In CVE-2021-28448, for RQ2A, the SUT is what experiences the effects of the
security failure since its data could be shared with otherwise restricted URLs over the
Internet (DNS filters are not working properly). For RQ2B , the network (specifically the
network firewall) is the component in the state required to exploit a vulnerability. For
RQ2C , it is the network what receives the input traffic exploiting the vulnerability. For
RQ2D , it is the network the vulnerable component.

– Node.ANode is an execution environment; it includes a file system and all the programs
and services running on it. In this category, we include also virtual machines and Pods.
An example is provided by vulnerability MITRE:CVE202015157 (2022) in Kubernetes;
it concerns Pods leaking passwords to a phishing URI. In kubernetes, a container can be
exported using two formats (i.e., .OCI and .v2). Importing a container from these images
initiates dependency resolution through the Web. A malicious user can inject a phishing
URL as a dependency to be resolved during the import of container; it will enable the
malicious user to steal credentials. Importing an infected container image will thus result
in credentials theft during dependency resolution. In the example, the newly deployed

123

99 Page 20 of 65

(2023) 28: 99Empirical Software Engineering

node is what it is compromised (RQ2A), the node is also what needs to be in the state that
requires resolving dependencies (RQ2B), the SUT (i.e., Kubernetes) is what receives the
input to import the container from an image (RQ2C), Kubernetes (i.e., our SUT) is the
faulty component (RQ2D).

– API.API indicates the components implementing the APIs used for controlling the Edge
system (see Section 2.1). An example vulnerability is MITRE: CVE202132783 (2022),
which concerns the Contour controller API in Kubernetes. Typically, an access request
from outside of the network is prohibited, therefore, the access is denied. However, the
Contour controller is not capable of correctly handling multiple access requests thus
resulting in a denial of service (DoS). In CVE-2021-32783, it is the SUT what is com-
promised after exploiting the vulnerability (RQ2A). Instead, it is the Contour API that
is faulty (RQ2D), needs to be in the necessary state to exploit the vulnerability (RQ2B),
and receives the input that triggers the vulnerability (RQ2C).

– Hardware. Hardware refers to the hardware components of the system, which include
physical devices running the SUT (e.g., IoT devices, servers, or desktops) and network
assets (e.g., routers and switches). An example is provided by vulnerability MITRE:
CVE202138545 (2022) in Raspberry Pi, which results in aGlowworm attack Nassi et al.
(2021). When speakers are connected to Raspberry Pi, voltage fluctuations caused by the
use of speakers impact on the power supplied to the led of the Raspberry Pi module. If
the led light is monitored, voltage fluctuations can be reconstructed and it is possible to
reproduce the sound being played on the speakers Nassi et al. (2022). In the example,
the failure affects a hardware component (RQ2A); indeed, the led violates the implicit
security requirement “it should not be possible to determine the sounds being played from
light fluctuations”. Further, the hardware should be in the necessary state (i.e., speakers
being connected, RQ2B), the hardware is the component that receives the input (sound
data) to trigger the vulnerability (RQ2C), and the hardware is the faulty component (i.e.,
it does not include a mechanism to avoid such light fluctuations, RQ2D).

Please note that not all the components mentioned above may be part of Edge framework
distributions; indeed, only SUT, API, and Resources (e.g., configuration files) are released
with Edge framework distributions. The other components (i.e., Drivers, Plugins, Services,
Network, Node, Hardware) are usually developed by third-parties but are strongly coupled
with anEdge framework and theirCVEsprovide references to suchEdge framework. (RQ2B),
or show the failure (RQ2A). Second, components concerningRQ2AtoRQ2C . Examples of the
second categoryof components follow.One example isCVE-2021-26928,which concerns the
serviceBIRDdaemon (it can be exploited to disrupt the integrity ofKubernetes).Another case
is CVE-2020-13597, which concerns the Network layer of Calico and leads to information
disclosure if IPv6 is enabledbut unused.LastCVE-2021-38545,which concerns thehardware
of Raspberry Pi.

3.2.3 RQ3: What Kind of Failures are ObservedWhen an Edge Vulnerability is Exploited?

Like Gazzola et al., for each vulnerability we determine failure type and detectability based
on the description in the vulnerability report and bug fix commit, when available. Gazzola et
al. determined category entries based on the taxonomies of Bondavalli and Simoncini (1995),
Aysan et al. (2008), Avizienis et al. (2004), Chillarege et al. (1992), and Cinque et al. (2007).
We extended their set with entries specific for our security context.

123

Page 21 of 65 99

(2023) 28: 99Empirical Software Engineering

The failure type concerns how a failure appears to an observer external to the systemGaz-
zola (2017).We extended the set of failure types provided byGazzola et al. (i.e., value, timing,
or system)with two additional entries (i.e., action, and network). They are all described below.

– Value. Value failures occur when the system provides an output that does not match its
specifications. In our context, they range from returning an illegal value (e.g, after exploit-
ing an integrity vulnerability), to providing sensitive information (e.g., for a vulnerability
concerning confidentiality).

– Timing. Timing failures include two cases: (1) the system takes longer than expected
(according to specifications) to generate an output, (2) the system takes shorter than
expected to generate output. An example is KubeEdge GitHub issue #1736 KubeEdge
(2023c), which indicates that, during initialization, a Pod may try to allocate a storage
volume according to configuration files that shall be provided by the Edge-core (i.e.,
the Edge server controller). Since the Pod is unable to find the configuration files in the
directory, it hangs and results in a denial-of-service (i.e., a timing failure).

– System. System failures occur when the system crashes. An example is provided by the
vulnerability report MITRE: CVE202128166 (2022), which concerns Mosquitto com-
municating with an MQTT broker. CVE-2021-28166 indicates that an authenticated
MQTT client can send a crafted packet CONNACK (connection Acknowledgment) to
the broker thus causing a null pointer dereference that crashes the system (system failure).
vulnerability. Different types of failures are discussed below for a clear understanding.

– Action. Action failures consist of the system performing an illegal interaction with the
environment. We introduced this category to compensate for the original categorization
by Avizienis et al. (2004) used by Gazzola et al., which considers the SUT as a black-box
and excludes the possibility to observe other output interfaces rather than the ones with
the end-user. To further clarify the difference between action failures and value failures,
we report that a value failure occurs when a system output is expected (e.g., after an input
or periodically) but the output data does not match specifications, an action failure occurs
when the output is not expected at all. An example is the vulnerability report MITRE:
CVE202035514 (2023) ofKubernetes, which indicates thatOpenShift, a containerization
platform, fails to enforce restrictive write access policy for the Kubernetes kubeconfig
file thus allowing an illegal modification (i.e., the action). Another case is Docker vul-
nerability CVE-2020-8564, which indicates that registry credentials are written into log
files (i.e., the action) when Docker is configured with logging level 4.

– Network. Network failures concern any aspect of the network. Since networking com-
ponents follow dedicated protocols, network failures (i.e., failing to comply with the
protocol) are unlikely to belong to any category described above; for this reason, we
introduced a specific category. An example is provided by the Kubernetes vulnerabil-
ity report MITRE: CVE20208558 (2023); it describes a case in which services bound
to the loopback address are accessible by other pods and containers on the local LAN
network. Any other category different than network failure would not clearly capture the
characteristics of such a failure.

The detectability attribute characterizes the difficulty of detecting the failure. Following
Gazzola et al., we consider the categories signaled, unhandled, and silent. From the work of
Gazzola et al., we exclude self-healed since Edge systems do not include any self-healing
feature for security issues.

– Signalled. It concerns cases in which the system prompts an error message. This could
primarily happen when an application encounters memory errors, prompting the user

123

99 Page 22 of 65

(2023) 28: 99Empirical Software Engineering

with an error message and asking for further actions. An example case is the KubeEdge
GitHub report #2362, which indicates that the Edge device prompts an error because it
is unable to connect with the Cloud through its API. memory to overflow; therefore, the
operating system (OS) terminates the application.

– Unhandled.A failure that the Edge system does not handle and that leads to a crash. The
system does not detect the failure, while the user detects the uncontrolled crash of the
application. An example is the GitHub issue #335 Zetta (2023) of Zetta, which is about
a memory overflow leading to a crash. It occurs when a dependency request is installed
before the handler process starts, it leads to a slow but continuous memory consumption
resulting in a crash.

– Silent A security failure that is not detected; consequently, the system operates with
wrong parameters and values thus producing undesirable behaviors and output. This is
the case of failures that are observable (e.g., the person who reported the bug was capable
of observing them) but not automatically reported by the system as such (e.g., because
implementing the logic to automatically determine if the system fails is not feasible since
it relates to the oracle problem in software testing Barr et al. 2015; Mai et al. 2019). as a
plugin, so that configuration files to access the plugin are stored locally in the kubernetes
system. The configuration file contains the URI for the helm plugin, which is used with
username and password for access. The username and password are not secured and are
shared in plain text. A malicious user can modify the URL in the helm configuration file
with a custom URI, which receives credentials upon request. An example is provided by
the Kubernetes vulnerability report MITRE: CVE20208563 (2022), which indicates that
with logging level set to 4, the credentials of the vsphere controller are written into the
controller log file as plain text. Only an end-user inspecting the log may notice such a
security failure.

3.2.4 RQ4: What is the Nature of the Precondition Enabling the Attacker to Exploit Edge
Vulnerabilities?

To address this research question, for each vulnerability, we keep track of the type of precon-
dition that shall hold to enable exploiting the vulnerability, based on the description appearing
in the vulnerability report. secure communication but a malicious user is capable of crafting
and manipulating the second token at his end to escalate privilege’s and gain access to other-
wise restricted modules of the system. Precondition for exploiting the vulnerability specifies
the system to be in specific configured state which in the example is the use of older version
of ESP. We identified the following categories:

– Data. What brings the system into a vulnerable state is a specific sequence of input
data. A example is the vulnerability MITRE:CVE202015157 (2022) presented earlier; it
affects a Kubernetes Pod, which may leak passwords to a phishing URI while resolving
malicious dependencies during the import of a container. In this case, the data consists
of the phishing dependencies inserted by a malicious user.

– Lack of Data.What brings the system into the vulnerable state is the lack of an expected
input (e.g., a missing initialization of a resource). It differs from Data since, in this case,
the required data is not provided; in the case of Data, instead, the data is provided but
with crafted values or in an unexpected order.An example is KubeEdge bug report #2362
MITRE (2022), which indicates that the end-user cannot connect to theKubernetes server
(availability problem) because no credentials are shared between the Cloud server and

123

Page 23 of 65 99

(2023) 28: 99Empirical Software Engineering

the Edge server. In this case the problem depends on a specific connection command not
being automatically executed on the Cloud server.

– Resource Busy. It indicates that a required resource cannot be accessed because it is
already busy. An example is provided by Kubernetes bug report #1017 KubeEdge
(2023b), which indicates that two different go-routine requests for a resource already
in use make the system unavailable.

– ResourceUnavailable. It indicates that a required resource does not exist in the system.An
example is Kubernetes vulnerability MITRE: CVE202035514 (2023), which indicates
that theKubelet Edge device agent fails tomanage the storage in a Pod; indeed, increasing
the storage consumption may lead to writing data to the configuration files of a Kubelet
agent resulting in compromising the Node. In this case, the unavailable resource is the
file system storage.

– System Configuration. It indicates a misconfiguration of the system. An example is vul-
nerability MITRE:CVE202013597 (2022) in Calico (a network security solution for
containers); if a Pod is configured to work on IPv4 and meanwhile IPv6 is enabled and
not being used, a specifically crafted request may cause the Pod to disclose information
or cause a DoS.

– DelayCausingMissing Resource. It indicates the case inwhich a delay (e.g., in input, out-
put, or module initialization) causes any resource to be missing (it differs from Resource
Unavailable since in this case the missing resource is an output of the SUT). An exam-
ple for such case was presented earlier, it concerns KubeEdge report #1736 KubeEdge
(2023c), which indicates that, during the initialization of the SUT, a Pod tries to allocate
storage volume using configuration files that should be created by the Edge-core. If the
initialization of the Edge-core is delayed, then the pod is unable to find the configuration
files in the directory and ends up with a denial of service.

– None. This case indicates that there is no precondition to be satisfied in order to exploit
the vulnerability.

3.2.5 RQ5A: Howmany Steps are Required to Exploit an Edge Vulnerability?

To answer this research question we determine, by reading the vulnerability report, the
number of steps required to exploit the vulnerability, once the system is in the state required
to exploit the vulnerability. However, the type of action to be performed depends on the case
study subject. Generally, a step is an action that can be described with a simple sentence
using terminology that is well-understood in the domain. For example, the sentence delete
the content of the configuration file settings.xml is a single step even if, in practice, implies
opening a file first. For example, the Kubernetes vulnerability MITRE: CVE202120218
(2022) reports a single step, consisting of executing the copy command on the Fabric8 plugin
Fabric8 Maven Plugin (2022). This step enables a malicious user to share restricted files
and folders in the system. The docker vulnerability report MITRE:CVE-2014-5278 (2022),
instead, describes a single stepwhich consists of creating a new container with a name already
assigned on the host. The vulnerability enables an attacker to intercept commands and control
other containers with the same name.

123

99 Page 24 of 65

(2023) 28: 99Empirical Software Engineering

3.2.6 RQ5B: What is the Nature of
the Input Action Enabling the Attacker to Exploit a Vulnerability?

This research question aims to characterize the types of inputs that enable a malicious user
to exploit a vulnerability. We rely on the same categories reported for RQ4. An example
concerning the Data category is that of Kubernetes vulnerability MITRE: CVE202121334
(2022), which reports that an input request for cloning a container image (the name of the
image is the required data) will result into the disclosure of information associated with the
container image.

The category None should be used when no input is needed to exploit the vulnerability.
This may be the case for vulnerabilities leading to the printout of credentials in log files
without the need for further inputs from a malicious user.

3.2.7 RQ6: What Security Properties are Violated by Edge Vulnerabilities?

We address this research question by determining the security property that is violated
when the vulnerability is successfully exploited. We consider availability, confidentiality,
and integrity, which are the security properties described in most security standards (see
Section 2.4). Concerning integrity, we distinguish between data integrity and system integrity.
They are all described in the following:

– Availability. An example availability issue appears in KubeEdge bug report #1017
KubeEdge (2023b), which has been introduced previously. It concerns two go-routines
trying to access, concurrently, a same web-socket. As a result, only one of the two rou-
tines succeeds; consequently, the availability of the function implemented by the failing
routine is compromised.

– Data Integrity. Data-integrity restricts our focus on the integrity of the data stored by
either the SUT or the environment in which the SUT is working. An example is provided
by the Kubernetes vulnerability report MITRE: CVE202121251 (2022). It concerns the
tarutils tool, which is used to extract compressed files. This vulnerability is a zip slip
vulnerability, i.e., a vulnerability that enables an attacker to overwrite arbitrary files
when the compressed file is packed in a specific manner.

– System Integrity. It concerns cases in which exploiting the vulnerability leads to a
modification of the configuration of the system. An example is the CVE vulnerability
MITRE:CVE20202211 (2022), which concerns the Jenkins Kubernetes CI/CD plugin.
The YAML parser in the plugin is not configured properly; consequently, it allows the
upload of arbitrary file types, which leads to remote code execution therefore compro-
mising the system integrity. Generating multiple connection request to Contour results
in DoS.

– Confidentiality. This category concern vulnerabilities affecting confidentiality. An exam-
ple is the CVE vulnerability report MITRE: CVE20208566 (2002), which concerns the
Ceph RADOS Block Device (RBD). RBD is the Kubernetes component for storage provi-
sioning.When logging level is set to 4, RBDwrites sensitive information (i.e., passwords)
to the log file in plain text.

Violated security properties are reported also in NVD CVSS attributes (see Section 2);
precisely,CVSSattributes capture the impact that a vulnerability has on each security property
(i.e., None, Low, High). However, we do not have CVSS IDs for all the vulnerabilities
considered in our study but only for the ones collected from the CVE database. Further, CVSS

123

Page 25 of 65 99

(2023) 28: 99Empirical Software Engineering

attributes capture all the security properties that might be affected, which results in multiple
security properties being likely violated by each vulnerability; in our analysis, instead, we
report only one security property for each vulnerability, which we identify as either the
security property that is easier to violate through an exploit (e.g., less steps to perform) or, if
multiple properties can be violated with a same simple input, the security property that can be
identified as being violated first. For example, themaliciousmodification of the configuration
of the system (system integrity)may result in aNode not responding to requests (availability);
in this case, although both system integrity and availability are violated, system integrity is
the first property being violated. The reason for our choice is that, with our study, we aim to
drive the implementation of software testing tools, which will likely discover scenarios that
are short and easy to process; in other words, they will detect violations of security properties
that are easier to trigger and report the first security being violated (without waiting for other
effects).

3.2.8 RQ7: What Faults Cause Edge Vulnerabilities?

In the following, we present the three different kinds of data collected to address RQ7:

– RQ7A: What is the CWE Vulnerability Type? We keep track of the CWE IDs associated
to each vulnerability report. Although there is no guarantee that every CVE vulnerabil-
ity report presents a set of CWE IDs capturing the vulnerability type, they are usually
reported (for our case study subjects, 89.8% of the vulnerabilities present a CWE ID, see
Section 4.8). The vulnerabilities without a CWE ID are not considered to addressRQ7A.

– RQ7B :What are the Erronous Software Behaviours Leading to Edge Security Failures?
For each CWE ID associated to a vulnerability, we inspect the Research Concept taxon-
omy and identify the corresponding pillars.

– RQ7C : What are the Developer Mistakes Leading to Edge Vulnerabilities? For each
CWE ID associated to a vulnerability, we inspect the Developer Concept taxonomy and
identify the corresponding pillars.

3.2.9 RQ8: How Severe are Edge Vulnerabilities?

For each CVE vulnerability, we inspect the corresponding entry in the NVD database and
keep track of both the NVD severity score and the CVSS entry.

To discuss severity, we comment on the distribution of CVSS scores; for example, a high
median for the CVSS score is a strong motivation for improvement in Edge security testing
practices. Also, we report the percentage of vulnerabilities with a high impact on security
properties.

To discuss the easiness of attacks, which should lead to easy test automation, we discuss
the distribution of CVSS attributes Attack Complexity (Low/High) and Privileges Required
(None/Low/High).

4 Results

This section presents our findings; each research question (RQ) is discussed individually.
In this section we do not provide example cases for the vulnerabilities investigated in our
study because they are already described in Section 3.2; the reader can also refer to Table 3
to search for example cases through the manuscript.

123

99 Page 26 of 65

(2023) 28: 99Empirical Software Engineering

ForRQ1toRQ5A, we also compare our results with those of Gazzola (2017);RQ4toRQ8,
instead, were not studied by Gazzola et al.

4.1 RQ1:Why are EdgeVulnerabilities not Detected During Testing?

Figure 4 presents our findings4; Combinatorial Explosion (CE) represents 85.7% of the
vulnerabilities in our analysis, whereas Unknown Application Condition (UAC), Unknown
Environment Condition (UEC), Irreproducible Execution Condition (IEC) and Bad Testing
(BT) cover the 11.6%, 2.04%, 0.68%, and 0% of the cases, respectively. CE is the main
reason for vulnerabilities not being detected at testing time (126 vulnerabilities), which is
unsurprising given the complexity of Edge systems. Indeed, Edge systems are large and
process inputs of different natures (e.g., Web forms, configuration files, network data). The
second category is UAC,which indicates lack of appropriate documentation andmight be due
to the open source nature of our case study subjects. However, note that the development of
most of our case study subjects is supported by professional software development companies
and are used by many businesses (see Section 5.4), which minimizes this threat. Indeed,
vulnerabilities due to bad documentation are low (i.e., only 11.6%). Similarly, UEC may
be low because all the environment components (e.g., the OS) are widely used and well
documented. multiple factors which could never be tested in-house. Finally, in our analysis
we encountered only one occurrence of IEC and no BT cases.

The trend for RQ1is similar to the one observed for functional failures by Gazzola et al.,
except that UEC was ranked second in their study and we do not observe any bad testing
case. In the study of Gazzola et al. the proportions observed for IEC, UAC, UEC, CE, and
BT are 1.68%, 5.04%, 12.60%, 50.42%, and 30.25%, respectively. The larger proportion of
UAC in our context is likely due to the complexity of Edge frameworks; indeed, the desktop
applications considered by Gazzola et al. present a lower number of inputs, features, and
configuration options that the Edge frameworks considered in our study. We believe that the
likelihood of finding badly documented features is larger when the number of components
and configuration options is large. Instead the lack of BT cases might be due to the fact that
our case study subjects are software components with several years of development (e.g.,
KubeEdge is based on Kubernetes) during which trivial security issues slipping through the
test process had been already detected. IEC cases, by definition, are expected to be limited in
number; indeed, software inputs and environment conditions tend to be reproducible in the
development environment.

4.2 RQ2:What are the Types of Components Involved in a Security Failure?

Figure 5 provides the distribution of each Edge component for the different sub-questions
of RQ2. For all the sub-questions, SUT is the element with the highest number of entries,
which is expected since we collected vulnerability reports concerning the SUT. However, the
distribution of Edge components vary based on the sub-question considered, which indicate
that Edge components are interlaced in cause-effect chains.

The vulnerable component (RQ2D) is generally the SUT (93 cases); however, (miscon-
figured) Network and Plugins are the second and third cause of security failures. We did not
observe any vulnerability in Drivers and Nodes.

4 Please note that, to save space, in the barcharts appearing in Figure 4, we hid part of the Y-axis scale; the
hidden part is highlighted with the symbol //.

123

Page 27 of 65 99

(2023) 28: 99Empirical Software Engineering

Fig. 4 RQ1: Why are Edge vulnerabilities not detected during testing?

The consequences of vulnerabilities (RQ2A) mainly affect the SUT (108 cases) but also
Nodes, Network, Plugins, Resources, and Services. The distribution for RQ2Ais different
than the distribution observed for RQ2D ; indeed, for RQ2A, we observe a larger number of
SUT and Node cases along with a lower number for Plugins and Network. Such difference
mainly depends on (i) Plugin faults impacting on the SUT and (ii) Network faults impacting
on both Nodes and SUT.

Concerning RQ2B , most of the vulnerabilities can be exploited (and, consequently,
detected at testing time) only if some precondition holds, which is likely the reason why
they are not detected at testing time (i.e., it is more difficult to spot a vulnerability if the
system needs to be in a specific state). In 69 out of 147 cases, it is the SUT what needs to be
in a specific state, which is often a specific configuration (e.g., vulnerability CVE-2020-8563,
which requires the logging level to be set to 4). However, preconditions for exploitability may

Fig. 5 RQ2A: What are the components manifesting an Edge security failure?

123

99 Page 28 of 65

(2023) 28: 99Empirical Software Engineering

Fig. 6 RQ3A: What kind of failures are observed when an Edge vulnerability is exploited?

depend also on all the other components, except Drivers. The second and third components
presenting preconditions for exploiting a vulnerability are Network and Resources, which are
the primarymeans to provide inputs to Edge systems. other components i.e., plugins, network,
and resources also have the higher numbers which may mostly compromise confidentiality
due to the fact the resources may have information regarding the system, plugins may have
data from the system for processing, and network being always the external communicative
interface of the system.

As for RQ2C , the component that receives the largest number of inputs triggering a
vulnerability is the SUT (63 cases), followed by Network (36), Resources (12), Plugins
(11), APIs (10), Services (6), and Hardware (1). Unsurprisingly the SUT interface (e.g.,
Web page, Service, or API), which is the usual entry point for managing an Edge system,
is the component with the largest number of entries. The other components, instead, follow
the relevance of each input interface for the services provided by the SUT (i.e., Network is
clearly more relevant than all the other components, which have the same importance). In
eight cases, no input needs to be received by the software (seeNone); these are vulnerabilities
related to logging, where the SUT periodically writes sensible information in log files.

A precise comparison with the results obtained by Gazzola et al. is complicated by the
fact that their study does not separate RQ2into four subquestions and considers a smaller set
of component types. The main difference is that Resource was the component type mostly
involved in failures (50%), while Plugins (3%), Services (6%), and Network (1%) had a more
limited involvement. OS concerned 20% of the cases; OS cases had never been observd in
our study (see Section 3.2.2). In our work, instead, we explicitly model the case of the SUT,
which was ignored in the work of Gazzola et al.; concerning the other elements, the ones
mostly involved in security failures, if we compute the average of the four RQs, are Network
(14.8%), Plugins (7.31%), and Resources (5.61%). The difference in their distribution with
respect to the work of Gazzola et al. is mostly due to the different nature of our context (i.e.,
networked Edge components instead of desktop applications).

123

Page 29 of 65 99

(2023) 28: 99Empirical Software Engineering

4.3 RQ3:What Kind of Failures are ObservedWhen an EdgeVulnerability is
Exploited?

Figure 6-A and -B present the distribution of the different types of security failures (left) and
their detectability (right).

examples that I am afraid that your results are not reliable. Please let me know if there
is still some definition that you did not correctly understand. the purpose fix the reference
value. The complex architecture and heterogeneous coupling of modules in edge frameworks
might be the reason resulting in higher number of value failure. In our case we observed 57
cases for value failure.

Concerning failure type,most of the vulnerabilities lead toValue failures (57 cases, 38.8%),
which is expected since they include the effect of both authorization and integrity issues (see
Section 3.2.7). The second frequent type of failures are Network failures (39 cases, 26.5%),
which is expected since Edge frameworks mainly control devices over the network. Action
failures are high (33 cases, 22.4%) because several vulnerabilities make the software perform
illegal actions. System failures (usually crashes) are low (17 cases, 11.6%), likely because
of the availability of static code analysis tools aiming at detecting such problems Kube-
score (2022). likely to be fully compromised on the other hand we can see high numbers
of exploitation in other components as discussed earlier. Timing failures (early or delayed
response) are the lowest (one case, 0.68%). 2020-8564 in docker, in which the system is
designed to log events and diagnostic information in the system. The docker logging system
is designed in the was with multiple logging levels each with different level of details to
be included during logging. However, critical information i.e., registry credentials are also
written into the logs while logging level 4 is enforced in docker. Moreover, in our case we
observed 33 vulnerabilities belonging to policy failure. Furthermore, time failure specifies
the cases in which either the system output is delayed or returned before the expect ion. For
instance, vulnerability #1736 reported on GitHub in K8s specifies the case in which during
initialization of the system, module A request to communicate with module B, whereas
module B is not yet ready to reply back in time to module A. This is the only case in our study
which is based on time failure. B(handler), the system starts to consume the memory until
its fully occupied therefore resulting in a crash. In our study we observed 17 vulnerabilities
which result in complete system failure.

Concerning detectability, the largest proportion of vulnerabilities (i.e., 127, 86.4%) leads
to Silent failures, which is expected since this is the effect of a wide range of vulnerabilities,
from authorization problems (e.g, letting malicious users to access private resources) to
integrity ones (e.g., altering the content of a database). With much less entries, the second
category is Unhandled failures (i.e., 11, 7.48%). Signalled failures have the least occurrences
(i.e., 9, 6.12%), which is expected since it is difficult for an engineer to implement features
capable of detecting the effect of vulnerabilities (e.g., functions that trigger an alarm in the
presence of anomalous data); only security failures leading to the lack of communication or
causing memory allocation errors can be easily detected (see Section 3.2.3).

For both failure type and detectability, excluding cases introduced in our study (i.e., action
failures and network failures), we observe the same rankings reported byGazzola et al. In both
the two studies, the ranking for failure type is (1st) Value failures, (2nd) System failures, and
(3rd) Timing failures. For detectability, the ranking is (1st) Silent, (2nd) Unhandled, and (3rd)
Signalled. However the distribution of the vulnerabilities for each ranked category differs
across the two studies. Indeed, system failures are more frequent in desktop applications
(33.7%, based on Gazzola 2017) than in Edge systems (11.6%), possibly because Edge

123

99 Page 30 of 65

(2023) 28: 99Empirical Software Engineering

frameworks are more robust. Also, Value failures are more frequent in the study of Gazzola
et al. (i.e., 61.5% VS 38.8%), possibly because in our study we observe also Action failures
and Network failures (i.e., the total number of vulnerabilities is distributed across a larger
number of categories). Silent failures, instead, are more frequent in Edge frameworks (our
study, 86.4%) than in Gazzola et al. (i.e., 53%), likely because they reflect the effect of failure
types not observed with desktop applications (i.e., Action and Network failures).

4.4 RQ4:What is the Nature of the Precondition Enabling the Attacker to Exploit
EdgeVulnerabilities?

Figure 7 shows our results. In most of the cases (i.e., 92, 62.6%), the vulnerability can be
exploited only if the system is in a specific configuration, which is expected since Edge
systems consist of many components that can be installed on different devices and require
to be tuned according to the device characteristics and the service needs5; therefore, we may
expect that testing its security properties for all the available configurations is particularly
challenging and error prone.

The second most frequent case, with 47 cases (32%), is the absence of any precondition
to be fulfilled in order to exploit the vulnerability, which indicates that any configuration of
the system exposes the vulnerability; this is not surprising since it is a sort of base case. Only
few other vulnerabilities (eight in total) concern the other four cases (i.e., Data, Lack of data,
Resource busy, Resource unavailable).

4.5 RQ5:What Inputs Enable Exploiting EdgeVulnerabilities?

Figure 8 presents the distribution of the number of steps required to exploit a vulnerability
(RQ5A). We were unable to determine the number of steps required to exploit 20 vulner-
abilities out of 147 because of the lack of detailed descriptions in the vulnerability reports
and attached documents. For 119 vulnerabilities (81%), one step is sufficient to exploit the
system (see Section 3.2.5 for examples), whereas two steps are required only in the case of
three vulnerabilities. In eight cases (5.44%), no step is required to observe the effect of the
vulnerability, they match the eight logging vulnerabilities reported in RQ2C (i.e., the system
periodically logs sensitive information).

The study of Gazzola et al., instead, reported a larger number of steps required to trigger
a failure (median is two and 35% of the failures require at least three steps). We believe that
this is mainly due to the nature of the software under analysis (e.g., desktop applications are
more interactive than Edge frameworks).

Figure 9 provides the distribution of the input action types for the vulnerabilities considered
in our study (RQ5B). The category with the largest number of entries is Data, which concerns
any input provided to the software under test or its components. This is expected because
Edge systems, like most software systems, generate outputs based on the data received as
input; therefore, vulnerabilities are exploited by providing specific or crafted inputs to the
system. Instead, only a few vulnerabilities (i.e., nine, 6.12%) can be exploited by changing
a configuration file, which is expected since configuration files are generally not the main
mean for end-users to interact with the system.

5 Please note that dedicated static analysis tools had been developed to simplify the configuration of The
Chief I/O (2022)

123

Page 31 of 65 99

(2023) 28: 99Empirical Software Engineering

Fig. 7 RQ4: What is the Nature of the Precondition Enabling the Attacker to Exploit Edge Vulnerabilities?

The other cases (i.e., Lack of data, Resource busy, Resource unavailable) are less frequent,
possibly because they concern corner cases whichmay be difficult to spot (e.g., our case study
subjects might be vulnerable but the vulnerabilities have not been discovered yet).

Unsurprinsingly, the eight cases not requiring any input (i.e., None) match the eight zero-
step cases reported for RQ5A. These are the cases in which the SUT provides sensible
information (e.g., login credentials) in log files, periodically.

Fig. 8 RQ5A: How many Steps are Required to Exploit an Edge Vulnerability?

123

99 Page 32 of 65

(2023) 28: 99Empirical Software Engineering

Fig. 9 RQ5B : What is the Nature of the Input Action Enabling the Attacker to Exploit a Vulnerability?

In general, we can conclude that the inputs required to exploit an Edge vulnerability are
simple. Indeed, most of the times one step is sufficient and the action to perform is about
providing specific data values to the system.

4.6 RQ6:What Security Properties are Violated by EdgeVulnerabilities?

Figure 10 provides the distribution of security properties being violated by Edge vulnerabili-
ties. Confidentiality has the highest number of occurrences in our study (81, 55.1%), whereas
system integrity is the second most violated security property with 42 occurrences (28.6%).
Data integrity and availability are observed with 7 (4.8%) and 17 (11.6%) occurrences,
respectively.

Figure 11 provides the number of vulnerabilities affecting each security property, accord-
ing to the NVD CVSS entries. For each security property, we report the number of
vulnerabilities with High or Low impact on it. Also, we report the Total number of vulnera-
bilities concerning each security property. If we focus on the total number of vulnerabilities,
we can notice that the ranking does not differ from the ones in Figure 10 (i.e., confidentiality
is followed by integrity, while availability has the lowest number of cases) but the magnitude
of the differences varies a lot. Indeed, based on CVSS data it is difficult to draw any conclu-
sion (i.e., their difference is not significant, as reported in Section 5). Instead, by focusing
on the vulnerability that is easier to exploit or that is violated first (i.e., our criteria, see
Section 3.2.7), we can observe that Confidentiality is the security property that is more likely
affected by vulnerabilities (Figure 10), which provides a clear direction for the development
of test automation tools.

We verified that, for all the vulnerabilities, the security property that we selected matches
one of the security properties reported by CVSS with the highest score (lower scores indicate

123

Page 33 of 65 99

(2023) 28: 99Empirical Software Engineering

Fig. 10 RQ6: What Security Properties are Violated by Edge Vulnerabilities?

that a security property violation is less noticeable). Such condition is particularly important
in our context because testing tools should target the vulnerability with the highest impact,
otherwise results might be perceived as irrelevant by end-users.

4.7 RQ7:What Faults Cause EdgeVulnerabilities?

Figure 12, Figure 13, and Table 4, provide the distribution of CWE developer concepts
(i.e., developer mistakes, collected to address RQ7C), CWE Research Concepts pillars (i.e.,
erroneous software behaviors due to the vulnerability, collected to addressRQ7B), and CWE

Fig. 11 RQ6: Number of vulnerabilities affecting each security property based on NVD’s CVSS entries; in
total (Total) and grouped by impact (High/Low)

123

99 Page 34 of 65

(2023) 28: 99Empirical Software Engineering

IDs (i.e., fault types, collected to address RQ7A), respectively. The CWE IDs for the CWE
Research Concepts pillars are reported in Table 5. In the following, we first discuss the
distribution of the most frequent developer mistakes and erroneous software behaviours,
which helps prioritizing the target (input generation strategy) of security testing; we then
discuss the distribution of CWE IDs, which helps understanding why testing practices in
place aren’t sufficient.

Our plots do not cover all the vulnerabilities in our study because of the limited infor-
mation that can be retrieved from bug reports and CWE views. Precisely, among the 147
vulnerabilities in our study, 60 (40.8%) do not have an associated CWE developer concept.
However, although the proportion of vulnerabilities with a CWE developer concept is con-
tained, the proportion of vulnerabilities with CWE IDs and CWE research concepts is high;
indeed, 132 out of 147 vulnerabilities (89.8%) have a CWE-ID assigned to them and 130
out of 147 vulnerabilities (88.4%) can be associated to a CWE research concept. Further,
the results for RQ7Care in line with those for RQ7Band RQ7A(see following paragraphs);
therefore, our observations should hold for almost the whole set of vulnerabilities considered.

Although we analyzed 147 vulnerabilities in our study, the total number of research con-
cepts appearing in Figure 13 is 160. Such difference depends on some vulnerabilities having
more than one research concept associated to them (i.e., the software may behave in different
invalid ways because of the vulnerability).
RQ7C . By looking at the distribution of developer mistakes (Figure 12), we can observe that
most of the vulnerabilities in the study are associated with the authentication mechanism (37
observations, 33.94%). Such result is in linewithwhat observable fromTable 4. Indeed,CWE-
306 (Missing Authentication for Critical Function) has the largest number of occurrences;
since CWE-306 concerns authorization to perform an action or access data, our finding is
also line withRQ6results (i.e., vulnerabilities concern Confidentiality, that is, users accessing
data they are not authorized to access). More in general, still in line with the prevalence of

Fig. 12 RQ7C : What are the Developer Mistakes Leading to Edge Vulnerabilities?

123

Page 35 of 65 99

(2023) 28: 99Empirical Software Engineering

Fig. 13 RQ7B :What are the Erronous Software Behaviours Leading to Edge Security Failures? See Table 5for
detailed descriptions

confidentiality issues and authentication mechanism mistakes, we can observe that 42.6% of
all the vulnerabilities with a CWE ID are related to Access Control6s

The secondplace in the rankingprovidedbyFigure 12 is takenby Informationmanagement
errors, which have been observed 15 times (13.76%). Such observation is reflected in Table 4;
indeed, Information management errors relate to the control of resources, which concerns
52% of all the vulnerabilities with a CWE ID7. Among such CWE IDs, CWE-22 (Improper
Limitation of a path name to a Restricted Directory) is ranked second in Table 4 with eight
occurrences. The prevalence of vulnerabilities concerning the control of resources likely
depends on the fact that Edge systems, especially the Edge controller, often manage files.
Although some vulnerabilities about control of resources (i.e., path traversal vulnerabilities
CWE-22 and CWE-24) can be detected by Web testing tools such as BurpSuite or OWASP
Zap, the vulnerabilities considered in our analysis concern complex features, which are not
fully supported by these tools. For example, path traversal is often the result of the extraction
of a compressed file.

Logging errors, data neutralization, resource management errors, and privileges issues
have been observed nine, seven, seven, and six times respectively.
RQ7B . Figure 13 shows that the research concepts with the highest number of vulnerabil-
ities are CWE-664 (Improper Control of a Resource Through its Lifetime) and CWE-284
(Improper Access Control) with 64 and 62 vulnerabilities, respectively, which is in line with
our discussion above.

6 CWE IDs related to Access Control are CWE-306, CWE-863, CWE-552, CWE-798, CWE-372, CWE-
862, CWE- 269, CWE-266, CWE-283, CWE-250, CWE-532, CWE-732, CWE-522, CWE-287, CWE-420,
CWE-284, CWE-300, CWE-295, CWE-270.
7 CWE IDs related to the control of resources are CWE-22, CWE-863, CWE-552, CWE-312, CWE-434,
CWE-372, CWE-601, CWE-184, CWE-94, CWE-610, CWE-441, CWE-200, CWE-22, CWE-668, CWE-74,
CWE-23, CWE-20, CWE-24, CWE-250, CWE-502, CWE-532, CWE-669, CWE-732, CWE-522, CWE-73,
CWE-400, CWE-209, CWE-918, CWE-201, CWE-1050, CWE-770, CWE-789, CWE-59, CWE-61, CWE-
215, CWE-416, CWE-401.

123

99 Page 36 of 65

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
4

R
Q
7
A
:W

ha
ti
s
th
e
C
W
E
V
ul
ne
ra
bi
lit
y
Ty

pe
?W

e
re
po
rt
th
e
nu
m
be
r
of

vu
ln
er
ab
ili
tie
s
be
lo
ng
in
g
to

ea
ch

vu
ln
er
ab
ili
ty

ty
pe

di
sc
ov
er
ed

in
ou
r
in
ve
st
ig
at
io
n

O
cc
ur
re
nc
ie
s

C
W
E
N
um

be
r

D
es
cr
ip
tio

n

34
C
W
E
-3
06

M
is
si
ng

A
ut
he
nt
ic
at
io
n
fo
r
C
ri
tic

al
Fu

nc
tio

n

8
C
W
E
-2
2

Im
pr
op
er

L
im

ita
tio

n
of

a
Pa
th
na
m
e
to

a
R
es
tr
ic
te
d
D
ir
ec
to
ry

(‘
Pa
th

T
ra
ve
rs
al
’)

7
C
W
E
-2
00

E
xp

os
ur
e
of

Se
ns
iti
ve

In
fo
rm

at
io
n
to

an
U
na
ut
ho

ri
ze
d
A
ct
or

6
C
W
E
-5
32

In
se
rt
io
n
of

Se
ns
iti
ve

In
fo
rm

at
io
n
in
to

L
og

Fi
le

5
C
W
E
-2
0

Im
pr
op

er
In
pu

tV
al
id
at
io
n

4
C
W
E
-4
00

U
nc
on

tr
ol
le
d
R
es
ou

rc
e
C
on

su
m
pt
io
n

4
C
W
E
-2
69

Im
pr
op

er
Pr
iv
ile
ge

M
an
ag
em

en
t

4
C
W
E
-6
68

E
xp

os
ur
e
of

R
es
ou

rc
e
to

W
ro
ng

Sp
he
re

3
C
W
E
-5
02

D
es
er
ia
liz
at
io
n
of

U
nt
ru
st
ed

D
at
a

3
C
W
E
-2
84

Im
pr
op

er
A
cc
es
s
C
on

tr
ol

3
C
W
E
-2
09

G
en
er
at
io
n
of

E
rr
or

M
es
sa
ge

C
on

ta
in
in
g
Se
ns
iti
ve

In
fo
rm

at
io
n

3
C
W
E
-9
4

Im
pr
op

er
C
on

tr
ol

of
G
en
er
at
io
n
of

C
od

e
(C

od
e
In
je
ct
io
n)

3
C
W
E
-9
18

Se
rv
er
-S
id
e
R
eq
ue
st
Fo

rg
er
y
(S
SR

F)

3
C
W
E
-7
70

A
llo

ca
tio

n
of

R
es
ou

rc
es

W
ith

ou
tL

im
its

or
T
hr
ot
tli
ng

3
C
W
E
-5
22

In
su
ffi
ci
en
tly

Pr
ot
ec
te
d
C
re
de
nt
ia
ls

3
C
W
E
-8
63

In
co
rr
ec
tA

ut
ho

ri
za
tio

n

3
C
W
E
-2
66

In
co
rr
ec
tP

ri
vi
le
ge

A
ss
ig
nm

en
t

3
C
W
E
-8
62

M
is
si
ng

A
ut
ho
ri
za
tio

n

3
C
W
E
-6
01

U
R
L
R
ed
ir
ec
tio

n
to

U
nt
ru
st
ed

Si
te
(’
O
pe
n
R
ed
ir
ec
t’
)

3
C
W
E
-2
50

E
xe
cu
tio

n
w
ith

U
nn
ec
es
sa
ry

Pr
iv
ile
ge
s

2
C
W
E
-7
9

Im
pr
op

er
N
eu
tr
al
iz
at
io
n
of

In
pu

tD
ur
in
g
W
eb

Pa
ge

G
en
er
at
io
n
(’
C
ro
ss
-s
ite

Sc
ri
pt
in
g’
)

2
C
W
E
-2
95

Im
pr
op

er
C
er
tifi

ca
te
V
al
id
at
io
n

123

Page 37 of 65 99

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
4

co
nt
in
ue
d

O
cc
ur
re
nc
ie
s

C
W
E
N
um

be
r

D
es
cr
ip
tio

n

2
C
W
E
-6
10

E
xt
er
na
lly

C
on

tr
ol
le
d
R
ef
er
en
ce

to
a
R
es
ou

rc
e
in

A
no

th
er

Sp
he
re

2
C
W
E
-7
8

Im
pr
op

er
N
eu
tr
al
iz
at
io
n
of

Sp
ec
ia
lE

le
m
en
ts
us
ed

in
an

O
S
C
om

m
an
d
(’
O
S
C
om

m
an
d
In
je
ct
io
n’
)

2
C
W
E
-5
9

Im
pr
op
er

L
in
k
R
es
ol
ut
io
n
B
ef
or
e
Fi
le
A
cc
es
s
(’
L
in
k
Fo

llo
w
in
g’
)

2
C
W
E
-4
76

N
U
L
L
Po

in
te
r
D
er
ef
er
en
ce

2
C
W
E
-7
89

M
em

or
y
A
llo

ca
tio

n
w
ith

E
xc
es
si
ve

Si
ze

V
al
ue

2
C
W
E
-7
4

Im
pr
op

er
N
eu
tr
al
iz
at
io
n
of

Sp
ec
ia
lE

le
m
en
ts
in

O
ut
pu

tU
se
d
by

a
D
ow

ns
tr
ea
m

C
om

po
ne
nt

(’
In
je
ct
io
n’
)

1
C
W
E
-6
69

In
co
rr
ec
tR

es
ou

rc
e
T
ra
ns
fe
r
B
et
w
ee
n
Sp

he
re
s

1
C
W
E
-7
32

In
co
rr
ec
tP

er
m
is
si
on

A
ss
ig
nm

en
tf
or

C
ri
tic
al
R
es
ou
rc
e

1
C
W
E
-2
83

U
nv
er
ifi
ed

O
w
ne
rs
hi
p

1
C
W
E
-2
3

R
el
at
iv
e
Pa
th

T
ra
ve
rs
al

1
C
W
E
-2
87

Im
pr
op

er
A
ut
he
nt
ic
at
io
n

1
C
W
E
-4
20

U
np

ro
te
ct
ed

A
lte

rn
at
e
C
ha
nn

el

1
C
W
E
-1
84

In
co
m
pl
et
e
L
is
to

f
D
is
al
lo
w
ed

In
pu
ts

1
C
W
E
-7
98

U
se

of
H
ar
d-
co
de
d
C
re
de
nt
ia
ls

1
C
W
E
-3
12

C
le
ar
te
xt

St
or
ag
e
of

Se
ns
iti
ve

In
fo
rm

at
io
n

1
C
W
E
-3
27

U
se

of
a
B
ro
ke
n
or

R
is
ky

C
ry
pt
og

ra
ph

ic
A
lg
or
ith

m

1
C
W
E
-3
35

In
co
rr
ec
tU

sa
ge

of
Se
ed
s
in

Ps
eu
do

-R
an
do

m
N
um

be
r
G
en
er
at
or

(P
R
N
G
)

1
C
W
E
-2
01

In
se
rt
io
n
of

Se
ns
iti
ve

In
fo
rm

at
io
n
In
to

Se
nt

D
at
a

1
C
W
E
-3
00

C
ha
nn

el
A
cc
es
si
bl
e
by

N
on

-E
nd

po
in
t

1
C
W
E
-4
34

U
nr
es
tr
ic
te
d
U
pl
oa
d
of

Fi
le
w
ith

D
an
ge
ro
us

Ty
pe

1
C
W
E
-1
05

0
E
xc
es
si
ve

Pl
at
fo
rm

R
es
ou

rc
e
C
on

su
m
pt
io
n
w
ith

in
a
L
oo

p

1
C
W
E
-5
52

Fi
le
s
or

D
ir
ec
to
ri
es

A
cc
es
si
bl
e
to

E
xt
er
na
lP

ar
tie
s

1
C
W
E
-7
3

E
xt
er
na
lC

on
tr
ol

of
Fi
le
N
am

e
or

Pa
th

1
C
W
E
-3
72

In
co
m
pl
et
e
In
te
rn
al
St
at
e
D
is
tin

ct
io
n

123

99 Page 38 of 65

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
4

co
nt
in
ue
d

O
cc
ur
re
nc
ie
s

C
W
E
N
um

be
r

D
es
cr
ip
tio

n

1
C
W
E
-6
1

U
N
IX

Sy
m
bo

lic
L
in
k
(S
ym

lin
k)

Fo
llo

w
in
g

1
C
W
E
-2
15

In
se
rt
io
n
of

Se
ns
iti
ve

In
fo
rm

at
io
n
In
to

D
eb
ug

gi
ng

C
od

e

1
C
W
E
-4
16

U
se

A
ft
er

Fr
ee

1
C
W
E
-2
70

Pr
iv
ile
ge

C
on

te
xt

Sw
itc

hi
ng

E
rr
or

1
C
W
E
-2
4

Pa
th

T
ra
ve
rs
al

1
C
W
E
-4
01

M
is
si
ng

R
el
ea
se

of
M
em

or
y
af
te
r
E
ff
ec
tiv

e
L
if
et
im

e

1
C
W
E
-4
41

U
ni
nt
en
de
d
Pr
ox

y
or

In
te
rm

ed
ia
ry

(’
C
on

fu
se
d
D
ep
ut
y’
)

1
C
W
E
-7
55

Im
pr
op

er
H
an
dl
in
g
of

E
xc
ep
tio

na
lC

on
di
tio

ns

123

Page 39 of 65 99

(2023) 28: 99Empirical Software Engineering

CWE-707 (Improper Neutralization) is the third most frequent case (15 vulnerabilities),
in line with the number of data-integrity issues (RQ6) and data neutralization mistakes
(ranked fourth in the discussion for RQ7C , above), which are often caused by code injection
or path traversal vulnerabilities. For example, the path traversal vulnerabilities reported in
Section 3.2.7 can be exploited because the content of zip files is not verified.

CWE-703 (Improper Check or Handling of Exceptional Conditions) and CWE-693 (Pro-
tection Mechanism Failure) often lead to system crashes; indeed, they are often causing
availability issues. CWE-710 (Improper Adherence to Coding Standards), CWE-691 (Insuf-
ficient Control Flow Management), and CWE-697 (Incorrect Comparison) are related to the
quality of the software development procedures in place.
RQ7A. Table 4 provides the detailed distribution of CWE IDs for our case study. Except
for CWE-306, all the CWE IDs are assigned to less than ten vulnerabilities (median is two
vulnerabilities for each CWE ID), which indicates that vulnerabilities are spread across vul-
nerability types and this may be a consequence of the large number of features implemented
by Edge systems.

In addition to CWE-306 and CWE-22, already discussed above (see Paragraph RQ7C),
other frequent CWE IDs are CWE-200, CWE-532, and CWE-20, which have been reported
with 7, 6, and 5 occurrences in our results. CWE-532 and CWE-20 concern input neu-
tralization issues (CWE-94, CWE-22, CWE-74, CWE-20, CWE-24, CWE-250, CWE-918,
CWE-770, CWE-789, CWE-215, CWE-78, CWE-79, 14% of all the vulnerabilities with a
CWE ID) and leakage of sensitive data (CWE-532, CWE-201, CWE-215, CWE-312, and
CWE-209, 14%). Input neutralization issues can be detected using a wide range of tools (e.g.,
Metasploit 2022 or Invicti 2022); however, for the Edge systems under study, these vulner-
abilities were not detected because they require the system to be in a specific state, which
complicates testing. Some solutions for detecting data leakage exist Shabtai et al. (2012);
however, they are mainly research prototypes, which is the reason why such vulnerabilities
are not detected at development time. Leakage of sensitive data relates to the logging errors
reported for RQ7C .

Memory issues are limited in number (i.e., nine, considering CWE-476, CWE-789, CWE-
416, CWE-401, CWE-770); although some of these memory issues might be detected by
means of static code analysis tools such as SonarQubeSonarQube (2022) (it covers CWE-
476, CWE-401, and CWE-416), we believe that they are not detected because they concern
components implemented with the go-lang programming language Google (2022), for which
a limited set of static analysis tools are available Sonarsource (2022); Analysis Tools team
(2022); Honnef (2022). Some cases concern bad coding practices (i.e., CWE-335, CWE-
327, CWE-798, CWE-755). Tools like SonarQube may still help in identifying some of them
(i.e., CWE-798, CWE-327, CWE-755); however, rules for the Go programming language
are limited.

4.8 RQ8: How Severe are EdgeVulnerabilities?

Figure 14 shows the distribution of NVD severity score for the CVE vulnerabilities con-
sidered in our study; the median severity is 7.5, which indicates that more than half of the
vulnerabilities have a high severity score (severity is considered high when the severity score
is between 7.0 and 9.0, see Section 2.4).

Figure 15 provides the distribution of Attack Complexity values; the attack complexity is
low for 85.7% of the cases, which indicates that it is relatively easy for a malicious user to
exploit a vulnerability.

123

99 Page 40 of 65

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
5

D
es
cr
ip
tio

n
of

C
W
E
R
es
ea
rc
h
C
on
ce
pt
s
(i
.e
.,
th
e
er
ro
ne
ou
s
so
ft
w
ar
e
be
ha
vi
ou
rs
le
ad
in
g
to

se
cu
ri
ty

fa
ilu

re
s)

C
W
E
:R

es
ea
rc
h
C
on

ce
pt

C
W
E

C
W
E
-6
64

:I
m
pr
op

er
C
on

tr
ol

of
a

C
W
E
-2
83

:U
nv
er
ifi
ed

O
w
ne
rs
hi
p

R
es
ou

rc
e
T
hr
ou

gh
its

L
if
et
im

e

C
W
E
-8
63

:I
nc
or
re
ct
A
ut
ho

ri
za
tio

n

C
W
E
-5
52
:F

ile
s
or

D
ir
ec
to
ri
es

A
cc
es
si
bl
e
to

E
xt
er
na
lP

ar
tie
s

C
W
E
-7
98

:U
se

of
H
ar
d-
co
de
d
C
re
de
nt
ia
ls

C
W
E
-3
72

:I
nc
om

pl
et
e
In
te
rn
al
St
at
e
D
is
tin

ct
io
n

C
W
E
-8
62

:M
is
si
ng

A
ut
ho

ri
za
tio

n

C
W
E
-2
69

:I
m
pr
op

er
Pr
iv
ile
ge

M
an
ag
em

en
t

C
W
E
-2
66

:I
nc
or
re
ct
Pr
iv
ile
ge

A
ss
ig
nm

en
t

C
W
E
-3
06

:M
is
si
ng

A
ut
he
nt
ic
at
io
n
fo
r
C
ri
tic

al
Fu

nc
tio

n

C
W
E
-2
95

:I
m
pr
op

er
C
er
tifi

ca
te
V
al
id
at
io
n

C
W
E
-2
50
:E

xe
cu
tio

n
w
ith

U
nn
ec
es
sa
ry

Pr
iv
ile
ge
s

C
W
E
-5
32

:I
ns
er
tio

n
of

Se
ns
iti
ve

In
fo
rm

at
io
n
in
to

L
og

Fi
le

C
W
E
-7
32

:I
nc
or
re
ct
Pe

rm
is
si
on

A
ss
ig
nm

en
tf
or

C
ri
tic

al
R
es
ou

rc
e

C
W
E
-5
22

:I
ns
uf
fic
ie
nt
ly

Pr
ot
ec
te
d
C
re
de
nt
ia
ls

C
W
E
-2
87

:I
m
pr
op

er
A
ut
he
nt
ic
at
io
n

C
W
E
-4
20

:U
np

ro
te
ct
ed

A
lte

rn
at
e
C
ha
nn

el

C
W
E
-2
84

:I
m
pr
op

er
A
cc
es
s
C
on

tr
ol

C
W
E
-3
00

:C
ha
nn

el
A
cc
es
si
bl
e
by

N
on

-E
nd

po
in
t

C
W
E
-2
70

:P
ri
vi
le
ge

C
on

te
xt

Sw
itc

hi
ng

E
rr
or

C
W
E
-2
84

:I
m
pr
op

er
A
cc
es
s
C
on

tr
ol

C
W
E
-8
63

:I
nc
or
re
ct
A
ut
ho

ri
za
tio

n

C
W
E
-5
52
:F

ile
s
or

D
ir
ec
to
ri
es

A
cc
es
si
bl
e
to

E
xt
er
na
lP

ar
tie
s

C
W
E
-7
98

:U
se

of
H
ar
d-
co
de
d
C
re
de
nt
ia
ls

C
W
E
-3
72

:I
nc
om

pl
et
e
In
te
rn
al
St
at
e
D
is
tin

ct
io
n

C
W
E
-8
62

:M
is
si
ng

A
ut
ho

ri
za
tio

n

123

Page 41 of 65 99

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
5

co
nt
in
ue
d

C
W
E
:R

es
ea
rc
h
C
on

ce
pt

C
W
E

C
W
E
-2
69

:I
m
pr
op

er
Pr
iv
ile
ge

M
an
ag
em

en
t

C
W
E
-2
66

:I
nc
or
re
ct
Pr
iv
ile
ge

A
ss
ig
nm

en
t

C
W
E
-3
06

:M
is
si
ng

A
ut
he
nt
ic
at
io
n
fo
r
C
ri
tic

al
Fu

nc
tio

n

C
W
E
-2
83
:U

nv
er
ifi
ed

O
w
ne
rs
hi
p

C
W
E
-5
32

:I
ns
er
tio

n
of

Se
ns
iti
ve

In
fo
rm

at
io
n
in
to

L
og

Fi
le

C
W
E
-7
32

:I
nc
or
re
ct
Pe

rm
is
si
on

A
ss
ig
nm

en
tf
or

C
ri
tic

al
R
es
ou

rc
e

C
W
E
-5
22

:I
ns
uf
fic
ie
nt
ly

Pr
ot
ec
te
d
C
re
de
nt
ia
ls

C
W
E
-2
87

:I
m
pr
op

er
A
ut
he
nt
ic
at
io
n

C
W
E
-4
20

:U
np

ro
te
ct
ed

A
lte

rn
at
e
C
ha
nn

el

C
W
E
-2
84

:I
m
pr
op

er
A
cc
es
s
C
on

tr
ol

C
W
E
-3
00

:C
ha
nn

el
A
cc
es
si
bl
e
by

N
on

-E
nd

po
in
t

C
W
E
-2
70

:P
ri
vi
le
ge

C
on

te
xt

Sw
itc

hi
ng

E
rr
or

C
W
E
-3
95
:U

se
of

N
ul
lP
oi
nt
er
E
xc
ep
tio

n
C
at
ch

to
D
et
ec
tN

U
L
L
Po

in
te
r
D
er
ef
er
en
ce

C
W
E
-7
07

:I
m
pr
op

er
N
eu
tr
al
iz
at
io
n

C
W
E
-9
4:

Im
pr
op

er
C
on

tr
ol

of
G
en
er
at
io
n
of

C
od

e
(‘
C
od

e
In
je
ct
io
n’
)

C
W
E
-2
2:

Im
pr
op
er

L
im

ita
tio

n
of

a
Pa
th
na
m
e
to

a
R
es
tr
ic
te
d
D
ir
ec
to
ry

(‘
Pa
th

T
ra
ve
rs
al
’)

C
W
E
-7
4:
Im

pr
op

er
N
eu
tr
al
iz
at
io
n
of

Sp
ec
ia
lE

le
m
en
ts
in
O
ut
pu

tU
se
d
by

a
D
ow

ns
tr
ea
m
C
om

-
po

ne
nt

(’
In
je
ct
io
n’
)

C
W
E
-2
0:

Im
pr
op

er
In
pu

tV
al
id
at
io
n

C
W
E
-2
4:

Pa
th

T
ra
ve
rs
al
:’
../
fil
ed
ir
’

C
W
E
-2
50
:E

xe
cu
tio

n
w
ith

U
nn
ec
es
sa
ry

Pr
iv
ile
ge
s

C
W
E
-9
18
:S

er
ve
r-
Si
de

R
eq
ue
st
Fo

rg
er
y
(S
SR

F)

C
W
E
-7
70

:A
llo

ca
tio

n
of

R
es
ou

rc
es

W
ith

ou
tL

im
its

or
T
hr
ot
tli
ng

C
W
E
-7
89
:M

em
or
y
A
llo

ca
tio

n
w
ith

E
xc
es
si
ve

Si
ze

V
al
ue

123

99 Page 42 of 65

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
5

co
nt
in
ue
d

C
W
E
:R

es
ea
rc
h
C
on

ce
pt

C
W
E

C
W
E
-2
15

:I
ns
er
tio

n
of

Se
ns
iti
ve

In
fo
rm

at
io
n
In
to

D
eb
ug

gi
ng

C
od

e

C
W
E
-7
8:

Im
pr
op

er
N
eu
tr
al
iz
at
io
n
of

Sp
ec
ia
l
E
le
m
en
ts
us
ed

in
an

O
S
C
om

m
an
d
(’
O
S
C
om

-
m
an
d
In
je
ct
io
n’
)

C
W
E
-7
9:

Im
pr
op

er
N
eu
tr
al
iz
at
io
n
of

In
pu

t
D
ur
in
g
W
eb

Pa
ge

G
en
er
at
io
n
(’
C
ro
ss
-s
ite

Sc
ri
pt
-

in
g’
)

C
W
E
-7
03

:I
m
pr
op

er
C
he
ck

or
C
W
E
-4
76

:N
U
L
L
Po

in
te
r
D
er
ef
er
en
ce

H
an
dl
in
g
of

E
xc
ep
tio

na
lC

on
di
tio

ns

C
W
E
-2
09

:G
en
er
at
io
n
of

E
rr
or

M
es
sa
ge

C
on

ta
in
in
g
Se
ns
iti
ve

In
fo
rm

at
io
n

C
W
E
-7
55

:I
m
pr
op

er
H
an
dl
in
g
of

E
xc
ep
tio

na
lC

on
di
tio

ns

C
W
E
-6
93

:
Pr
ot
ec
tio

n
M
ec
ha
ni
sm

Fa
ilu

re
C
W
E
-3
27

:U
se

of
a
B
ro
ke
n
or

R
is
ky

C
ry
pt
og

ra
ph

ic
A
lg
or
ith

m

C
W
E
-3
12

:C
le
ar
te
xt

St
or
ag
e
of

Se
ns
iti
ve

In
fo
rm

at
io
n

C
W
E
-7
98

:U
se

of
H
ar
d-
co
de
d
C
re
de
nt
ia
ls

C
W
E
-6
01

:U
R
L
R
ed
ir
ec
tio

n
to

U
nt
ru
st
ed

Si
te
(’
O
pe
n
R
ed
ir
ec
t’
)

C
W
E
-1
84
:I
nc
om

pl
et
e
L
is
to

f
D
is
al
lo
w
ed

In
pu
ts

C
W
E
-3
35

:I
nc
or
re
ct
U
sa
ge

of
Se
ed
s
in

Ps
eu
do

-R
an
do

m
N
um

be
r
G
en
er
at
or

(P
R
N
G
)

C
W
E
-7
10

:I
m
pr
op

er
A
dh

er
en
ce

to
C
W
E
-7
98

:U
se

of
H
ar
d-
co
de
d
C
re
de
nt
ia
ls

C
od

in
g
St
an
da
rd
s

C
W
E
-4
76

:N
U
L
L
Po

in
te
r
D
er
ef
er
en
ce

C
W
E
-2
50
:E

xe
cu
tio

n
w
ith

U
nn
ec
es
sa
ry

Pr
iv
ile
ge
s

C
W
E
-6
91

:I
ns
uf
fic
ie
nt

C
on

tr
ol

Fl
ow

C
W
E
-9
4:

Im
pr
op

er
C
on

tr
ol

of
G
en
er
at
io
n
of

C
od

e
(’
C
od

e
In
je
ct
io
n’
)

M
an
ag
em

en
t

C
W
E
-9
18
:S

er
ve
r-
Si
de

R
eq
ue
st
Fo

rg
er
y
(S
SR

F)

C
W
E
-6
97

:I
nc
or
re
ct
C
om

pa
ri
so
n

C
W
E
-6
01

:U
R
L
R
ed
ir
ec
tio

n
to

U
nt
ru
st
ed

Si
te
(’
O
pe
n
R
ed
ir
ec
t’
)

C
W
E
-1
84
:I
nc
om

pl
et
e
L
is
to

f
D
is
al
lo
w
ed

In
pu
ts

123

Page 43 of 65 99

(2023) 28: 99Empirical Software Engineering

Fig. 14 RQ8: Distribution of NVD CVSS vulnerability scores

Figure 16 provides the distribution of the Privileges Required to exploit a vulnerability;
high privileges are required for only 15 (10.2%) of the vulnerabilities, whereas 59 (40.1%)
and 66 (44.9%) of the vulnerabilities can be exploited with low or no privileges at all. These
numbers confirm the easiness for malicious actors to exploit Edge vulnerabilities, which
increase the associated risks.

Further, Table 6 provides the percentage of vulnerabilities presenting a high, low, or no
impact on Confidentiality, Availability, and Integrity, according to the NVD CVSS results.
We can observe that more than half of the vulnerabilities present a high impact on at least

Fig. 15 Attack complexity (High - H, Low - L) for vulnerabilities in Edge frameworks, based on NVD CVSS
entries

123

99 Page 44 of 65

(2023) 28: 99Empirical Software Engineering

Fig. 16 Privileges required to exploit vulnerabilities in Edge frameworks, based on NVD CVSS entries (High
- H, Low - L, None - N). Please note that None is the most critical situation since an attacker can exploit a
vulnerability without any specific privilege on the system.

one of the three security properties thus highlighting the need for improved security testing
practices.

Based on the results above, we conclude that an improvement of Edge systems’ testing
practices is necessary.

5 Threats to Validity

5.1 Construct Validity

RQ1to RQ6might be affected by subjectivity in the manual classification. Indeed, the first
author performed the manual classification after reading all the documentation available for
each vulnerability. Tominimize this risk, the first 30 vulnerabilities inspected at the beginning
of the project had been reviewed with the second author to ensure common understanding.
Further, randomly selected cases and unclear cases had been discussed. In total, about 50
vulnerabilities had been inspected by both authors. We also provide the classification results
obtained for each vulnerability for further usage or independent analysis. RQ7Ato RQ8are
based on metrics (i.e., number of vulnerabilities for each CWE ID and CVSS score) that are
commonly used in empirical studies Mazuera-Rozo et al. (2019).

Table 6 Vulnerabilities’ impact
based on CVSS NVD scores

Confidentiality Integrity Availability

High 63.57% 55.00% 57.14%

Low 20.00% 10.71% 7.14%

None 16.43% 34.29% 35.71%

123

Page 45 of 65 99

(2023) 28: 99Empirical Software Engineering

5.2 Internal Validity

RQ1to RQ6results are derived from the inspection of vulnerability reports and documents
linked in the vulnerability reports (e.g., documentation, patches). Incomplete or imprecise
vulnerability descriptions may have affected our interpretation of results. We believe that the
inspection of all the resources related to the vulnerabilities havemitigated this threat.RQ7Ato
RQ8are based on data provided by the CVE and NVD repositories, which might be affected
by mistakes (e.g., erroneous CWE identifier associated to a vulnerability). To mitigate this
threat, the first author has read each CWE ID associated to the vulnerabilities investigated
in our study, to ensure they were consistent with the vulnerability descriptions. Finally, the
set of vulnerabilities reported for the frameworks selected for our study might be incomplete
(e.g., the selected frameworks may not have been sufficiently used in the field to trigger all
the vulnerabilities affecting them); this might be likely the case for K3OS and Zetta, which
present only one vulnerability each. However, such threat should have a limited impact on our
results becausewe do not aim to identify the less vulnerable framework but the characteristics
of the vulnerabilities discovered in the field; vulnerabilities not discovered yet are out of the
scope of our study. Please note that the low number of vulnerabilities reported for K3OS and
Zetta unlikely reflects a higher degree of security for these two frameworks but it is likely the
consequence of (1) a reduced code basewith respect toKubeEdge andMainflux (i.e., less code
implemented, less vulnerabilities), (2) a limited user base (i.e., with less users, the number
of vulnerabilities detected in the field is much more limited), and (3) a less rigorous security
testing process than KubeEdge and Mainflux (see Section 2.2). Further, the low number
of vulnerabilities reported for K3OS depends on our choice of not including Kubernetes
vulnerabilities among K3OS total count (see Section 3.1). The code base that we considered
for KubeEdge and Mainflux is larger than the one considered for K3OS and Zetta; indeed,
when collecting KubeEdge vulnerabilities, we included vulnerabilities in dependencies (i.e.,
KubeEdge, Cri-o, Raspberry Pi, Mosquitto, and verneMQ, see Section 3.1), which leads
to more than 1900k lines of code (LOC). For Mainflux, we collected also vulnerabilities
concerning Docker components such as ContainerdCloud Native Computing Foundation
(2023), which leads to more than 500k LOC. K3OS code, instead, includes 293k LOC, while
Zetta 14K LOC. About the user base, if we rely on the number of forks on GitHub as a proxy
to compare diffusion of frameworks, we observe that KubeEdge and Mainflux are the most
widespread projects with 1500 and 587 forks, respectively, while K3OS and Zetta have less
forks, 392 and 120, respectively. Based on the above, future work may concern assessing the
relation between framework adoption and vulnerabilities being reported; for example, based
on a security testing campaign for all the frameworks in our study aimed at determining how
vulnerability distribution changes when extensive security testing is in place.

5.3 ConclusionValidity

Our study is purely observational; precisely, we compare the distribution of categorical vari-
ables not the effectiveness of different treatments. Therefore, we should ensure that the
differences in the number of occurrences for each category are significant. For each RQ,
to reject the null hypothesis each category is equally likely we performed a Pearson’s Chi-
squared goodness-of-fit test. Table 7 provides the results; for all our RQs, we reject the null
hypothesis with p-value < 0.01. Please note that for RQ6our manual analysis (i.e., what
we plot in Figure 10), which identifies, for each vulnerability, only one violated security
property (either the one that is easier to violate or the one that is violated first), leads to sig-

123

99 Page 46 of 65

(2023) 28: 99Empirical Software Engineering

Table 7 Statistical significance
of the differences across
RQcategories (Chi-squared
goodness-of-fit test)

RQ p-value

RQ1 5.75e−86

RQ2A 4.61e−140

RQ2B 5.7e−48

RQ2C 3.19e−47

RQ2D 2.34e−101

RQ3(Failure type) 1.02e−12

RQ3(Detectability) 3.53e−41

RQ4 3.55e−75

RQ5A 7.99e−53

RQ5B 2.02e−19

RQ6 4.10e−19

RQ6(NVD-Total) 0.1e−0

RQ6(NVD-High) 0.6e−0

RQ6(NVD-Low) 0.7e−2

RQ7A 7.44e−56

RQ7B 7.74e−51

RQ7C 6.0e−45

RQ8(Attack Complexity) 2.87e−17

RQ8(Priviliges Required) 7.70e−08

nificant conclusions (see row RQ6in Table 7). Instead, the data derived from NVD’s CVSS
(i.e., what we plot in Figure 11) does not enable us to reject the null hypothesis neither by
looking at the total counts (see row named RQ6NVD-Total in Table 7) nor by looking at
the vulnerabilities with the highest impact (see row RQ6NVD-High). Indeed, as anticipated
in Section 4.6, NVD’s CVSS records usually report multiple security properties as being
violated by each vulnerability. In practice, our choice makes the results more actionable in
our context since it enables prioritizing the security feature to target. However, it might lead
to oversimplification (a vulnerability may affect multiple security properties) and therefore
should not be considered to draw general conclusions about the impact of vulnerabilities.

Another factor that may affect our conclusions is the distribution of faults per project.
Indeed, two of our case study subjects include 98% of the vulnerabilities in our study:
Kubedge (48.3%) and Mainflux (50.3%). If these two projects present different distributions
for our RQanswers (e.g., the most frequent vulnerability type differ between them), our
conclusions may not generalize. In practice, we need to determine if the answers provided
to each RQare equally likely to belong to both Kubedge and Mainflux. To this end, for each
research question, we performed a Fisher’s exact test Fisher (1922). The Fisher’s exact test
computes the probability (p-value) of observing the distribution of vulnerability results across
our RQchoices8, under the null hypothesis that each category is equally likely to appear in
either Kubedge orMainflux.We consider the null hypothesis to be rejected (i.e., Kubedge and
Mainflux have significantly different distributions for the different categories) if the p-value
is below 0.05.

8 We use the term choice to indicate one of the possible answers that can be selected to address one RQ, for
each vulnerability.

123

Page 47 of 65 99

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
8

D
is
tr
ib
ut
io
n
of

R
Q
s’
an
sw

er
s
fo
r
M
ai
nfl

ux
(M

)
an
d
K
ub
eE

dg
e
(K

)

R
Q
1

R
Q
2

R
Q
2A

R
Q
2B

R
Q
2D

R
Q
3A

K
M

K
M

K
M

K
M

K
M

K
M

IE
C

1
0

R
es
ou
rc
es

1
4

R
es
ou
rc
es

5
9

R
es
ou
rc
es

4
8

R
es
ou
rc
es

1
1

Po
lic
y
Fa
ilu

re
21

12

U
A
C

17
0

A
PI

0
0

A
PI

6
2

A
PI

8
2

A
PI

7
2

N
et
w
or
k

22
12

U
E
C

3
0

Pl
ug

in
s

5
0

Pl
ug

in
s

11
1

Pl
ug

in
s

9
2

Pl
ug

in
s

12
3

V
al
ue

Fa
ilu

re
15

42

C
E

50
74

SU
T

40
67

SU
T

18
50

SU
T

16
45

SU
T

37
55

T
im

in
g
Fa
ilu

re
1

0

B
T

0
0

D
ri
ve
r

0
0

D
ri
ve
r

0
0

D
ri
ve
r

0
0

D
ri
ve
r

0
0

Sy
st
em

Fa
ilu

re
12

3

Se
rv
ic
es

0
0

Se
rv
ic
e

6
1

Se
rv
ic
es

6
0

Se
rv
ic
es

4
0

N
et
w
or
k

6
3

N
et
w
or
k

9
11

N
et
w
or
k

19
17

N
et
w
or
k

9
13

N
od

e
18

0
N
od

e
3

0
N
od

e
0

0
N
od

e
0

0

H
W

0
0

H
W

1
0

H
W

1
0

H
W

1
0

N
on

e
1

1
N
on

e
12

0
N
on

e
7

1
N
on

e
0

0

R
Q
3B

R
Q
4

R
Q
5

R
Q
6

R
Q
7

Si
gn

al
le
d

6
3

Z
er
oS

te
p

7
1

D
at
a(
pr
ev
io
us

In
pu

t)
4

0
D
at
a(
pr
ev
io
us

In
pu

t)
54

72
Sy

st
em

In
te
gr
ity

24
18

U
nh
an
dl
ed

6
4

1
St
ep

44
73

L
ac
k
of

D
at
a

1
0

L
ac
k
of

D
at
a

1
0

D
at
a

6
1

Si
le
nt

59
67

2
St
ep

3
0

M
is
si
ng

N
od
e

0
0

M
is
si
ng

N
od
e

0
0

C
on
fid

en
tia
lit
y

28
52

3
St
ep

0
0

R
es
ou
rc
e
B
us
y

1
0

R
es
ou
rc
e
B
us
y

0
0

A
va
ila
bi
lit
y

13
3

4+
St
ep

0
0

R
es
ou
rc
e
na
va
ila
bl
e

2
0

R
es
ou
rc
e
N
av
ai
la
bl
e

0
0

N
o
In
fo

17
0

C
on

fig
ur
at
io
n

28
62

C
on

fig
ur
at
io
n

8
1

N
on

e
35

12
N
on

e
7

1

D
el
ay

C
au
si
ng

M
is
si
ng

1
0

123

99 Page 48 of 65

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
8

co
nt
in
ue
d

R
Q
9

R
Q
11

(D
is
tr
ib
ut
io
n)

R
Q
11

(A
tta

ck
C
om

pl
ex
ity

)
R
Q
11

(P
ri
vi
lig

es
R
eq
ui
re
d)

K
M

K
M

K
M

K
M

C
W
E
-2
84

:I
m
pr
op

er
A
cc
es
s
C
on

tr
ol

19
43

0
-
1

0
0

L
ow

50
70

H
ig
h

43
16

C
W
E
-6
64

:
Im

pr
op

er
C
on

tr
ol

of
a
R
es
ou

rc
e
T
hr
ou

gh
its

L
if
et
im

e
40

24
1.
1
-
2

0
0

H
ig
h

17
3

L
ow

5
10

C
W
E
-6
97

:I
nc
or
re
ct
C
om

pa
ri
so
n

1
0

2.
1
-
3

0
2

N
on

e
19

47

C
W
E
-6
93

:P
ro
te
ct
io
n
M
ec
ha
ni
sm

Fa
ilu

re
2

3
3.
1
-
4

1
2

C
W
E
-6
91

:I
ns
uf
fic
ie
nt

C
on

tr
ol

Fl
ow

M
an
ag
em

en
t

1
2

4.
1
-
5

8
5

C
W
E
-7
07

:I
m
pr
op

er
N
eu
tr
al
iz
at
io
n

8
7

5.
1
-
6

16
20

C
W
E
-7
03

:
Im

pr
op

er
C
he
ck

or
H
an
dl
in
g
of

E
xc
ep
tio

na
l

C
on

di
tio

ns
s

4
2

6.
1
-
7

17
21

C
W
E
-4
35

:
Im

pr
op

er
In
te
ra
ct
io
n

B
et
w
ee
n

M
ul
tip

le
C
or
re
ct
ly
-B

eh
av
in
g
E
nt
iti
es

0
0

7.
1
-
8

14
23

C
W
E
-7
10

:I
m
pr
op

er
A
dh

er
en
ce

to
C
od

in
g
St
an
da
rd
s

2
2

8.
1
-
9

9
45

9.
1
-
10

2
1

123

Page 49 of 65 99

(2023) 28: 99Empirical Software Engineering

Ta
bl
e
8

co
nt
in
ue
d

R
Q
8

R
Q
8

R
Q
8

R
Q
10

K
M

K
M

K
M

K
M

C
W

E
-8
63

2
1

C
W

E
-4
44

0
0

C
W

E
-9
18

1
2

St
at
e
Is
su
es

1
0

C
W

E
-5
52

0
1

C
W

E
-4
16

1
0

C
W

E
-3
35

1
0

D
at
a
P
ro
ce
ss
in
g
E
rr
or
s

2
1

C
W

E
-3
27

0
1

C
W

E
-2
70

1
0

C
W

E
-2
0

2
3

D
at
a
V
al
id
at
io
n
Is
su
es

1
0

C
W

E
-3
12

0
1

C
W

E
-7
8

1
1

C
W

E
-2
4

1
0

D
at
a
N
eu
tr
al
iz
at
io
n
Is
su
es

3
4

C
W

E
-7
98

0
1

C
W

E
-7
87

0
0

C
W

E
-2
83

1
0

P
ri
vi
le
ge

Is
su
es

5
1

C
W

E
-4
34

0
1

C
W

E
-4
01

1
0

C
W

E
-2
50

2
1

A
ut
he
nt
ic
at
io
n
E
rr
or
s

3
34

C
W

E
-3
72

1
0

C
W

E
-7
9

1
1

C
W

E
-5
02

3
0

F
ile

H
an

dl
in
g
Is
su
es

2
1

C
W

E
-6
01

2
1

C
W

E
-2
90

:
0

0
C
W

E
-5
32

5
1

P
oi
nt
er

Is
su
es

2
0

C
W

E
-1
84

1
0

C
W

E
-2
81

0
0

C
W

E
-6
69

1
0

B
us
in
es
s
L
og
ic
E
rr
or
s

4
0

C
W

E
-9
4

1
2

C
W

E
-2
56

0
0

C
W

E
-7
32

1
0

R
es
ou

rc
e
M
an

ag
em

en
t
E
rr
or
s

7
0

C
W

E
-6
10

2
0

C
W

E
-7
55

1
0

C
W

E
-5
22

2
1

A
ud

it
/L

og
gi
ng

E
rr
or
s

7
1

C
W

E
-4
41

1
0

C
W

E
-2
01

1
0

C
W

E
-3
06

0
0

In
fo
rm

at
io
n
M
an

ag
em

en
t
E
rr
or
s

10
4

C
W

E
-2
00

5
2

C
W

E
-3
00

1
0

C
W

E
-7
3

1
0

C
om

m
un

ic
at
io
n
C
ha

nn
el
E
rr
or
s

1
0

C
W

E
-8
62

3
0

C
W

E
-2
95

1
1

C
W

E
-2
87

1
0

E
rr
or

C
on

di
ti
on

s,
R
et
ur
n
V
al
ue
s,
St
at
us

C
od

es
1

2

C
W

E
-2
69

2
2

C
W

E
-1
05

0
1

0
C
W

E
-4
20

1
0

R
an

do
m

N
um

be
r
Is
su
es

1
0

C
W

E
-2
66

3
0

C
W

E
-7
70

3
0

C
W

E
-4
00

2
2

C
ry
pt
og
ra
ph

ic
Is
su
es

1
0

C
W

E
-3
06

2
32

C
W

E
-7
89

2
0

B
ad

C
od

in
g
P
ra
ct
ic
es

1
0

C
W

E
-2
2

4
4

C
W

E
-5
9

1
1

B
eh

av
io
ra
lP

ro
bl
em

s
0

0

C
W

E
-6
68

2
2

C
W

E
-6
1

1
0

M
em

or
y
B
uf
fe
r
E
rr
or
s

0
0

C
W

E
-7
4

2
0

C
W

E
-2
15

1
0

C
re
de
nt
ia
ls
M
an

ag
em

en
t
E
rr
or
s

0
2

C
W

E
-2
3

1
0

C
W

E
-2
09

1
2

P
er
m
is
si
on

Is
su
es

0
2

C
W

E
-4
76

2
0

C
W

E
-2
84

2
1

H
an

dl
er

E
rr
or
s

0

123

99 Page 50 of 65

(2023) 28: 99Empirical Software Engineering

Table 9 Statistical significance
of the differences in RQanswers
between Mainflux and
KubeEdge, based on Table 8
(Fisher test)

RQ p-value

RQ1 1

RQ2A 0.071

RQ2B 0.999

RQ2C 0.999

RQ2D 1

RQ3(Failure type) 1

RQ3(Detectability) 1

RQ5A 1

RQ4 0.476

RQ5B 0.035

RQ6 1

RQ7A 0.005

RQ7B 0.999

RQ7C 0.046

RQ8(Distribution) 0.133

RQ8(Attack Complexity) 1

RQ8(Priviliges Required) 1

Table 8 reports the distribution of vulnerabilities for each RQanswer, for both Kubedge
and Mainflux; Table 9 reports the p-values computed with the Fisher’s exact test. We can
observe that, for most of our RQs, it is not possible to reject the null hypothesis that each
category is equally likely to appear in either Kubedge or Mainflux (p-value > 0.05), which
indicates that the distribution of answers, for most of our RQs, do not present any pattern
specific to any of the two frameworks. Therefore, we can conclude that most of our results are
likely to generalize. In the following, we discuss the three RQshaving a p-value below 0.05
(i.e.,RQ5B ,RQ7A,RQ7C). In the case ofRQ5B , we observe that, forMainflux, what enables
the attacker to exploit a vulnerability is mainly input data (97.4% of the cases); instead, for
KubeEdge, although input data remains the prevalentmean to exploit vulnerabilities (76.1%),
vulnerabilities may be exploited also with no inputs (9.9%) or configuration options (11.3%).
Although the difference in distribution is significant, it does not affect our conclusion, which
is about focusing on input data generation to support testing; indeed, input data is the most
frequent answer for both KubeEdge and Mainflux. In the case of RQ7A, we observe that, for
Mainflux, 47.1% of the vulnerabilities concernMissing Authentication for Critical Function
(CWE-306), instead, for KubeEdge, the vulnerabilities are more uniformly spread across a
larger set of vulnerability types. Still, although the difference in distribution is significant,
it does not affect our conclusion for RQ7A, which is that the most frequent vulnerability
types are the ones concerning access control9 and path traversal or control of resources10.

9 Access control vulnerabilities areCWE-306,CWE-863,CWE-552,CWE-798,CWE-372,CWE-862,CWE-
269, CWE-266, CWE-283, CWE-250, CWE-532, CWE-732, CWE-522, CWE-287, CWE-420, CWE-284,
CWE-300, CWE-295, and CWE-270.
10 Vulnerabilities concerningpath traversal or control of resources areCWE-863,CWE-552,CWE-312,CWE-
434, CWE- 372, CWE-601, CWE-184, CWE-94, CWE-610, CWE-441, CWE-200, CWE-22, CWE-668,
CWE-74, CWE-23, CWE-20, CWE-24, CWE-250, CWE-502, CWE-532, CWE-669, CWE-732, CWE-522,
CWE-73, CWE-400, CWE-209, CWE-918, CWE- 201, CWE-1050, CWE-770, CWE-789, CWE-59, CWE-
61, CWE-215, CWE-416, and CWE-401.

123

Page 51 of 65 99

(2023) 28: 99Empirical Software Engineering

The percentage of access control vulnerabilities amounts to 37.8% for KubeEdge (31 out
of 82) and 62.7% for Mainflux (42 out of 68). The percentage of vulnerabilities concerning
path traversal or control of resources is 68.3% for KubeEdge and 39.7% for Mainflux.
Although their ranking is swapped (i.e., access control vulnerabilities are the most frequent
for Mainflux but the second frequent for KubeEdge), they remain the two the most frequent
vulnerability types for both the projects; therefore our observations may generalize to other
projects. Finally, inRQ7C the distribution of vulnerabilities is more spread out for KubeEdge
while it concentrates manly on a single cause of errors for Mainflux. Indeed, 64.15% of the
developer mistakes are authentication errors for Mainflux and only 5.6% for KubeEdge. In
KubeEdge, the other frequent sources of problems are Data Neutralizaton Issues, Privilege
Issues, Resource Management Errors, Logging Errors, and Information Management Errors,
which cause 5.8%, 9.6%, 13.5%, 13.5%, and 19.2% of the vulnerabilities, respectively. In
Mainflux, they cause 7.5%, 1.9%, 0%, 1.9%, and 7.6% of the vulnerabilities. In Mainflux,
Credentials Management Errors, Permission Issues, and errors in the management of Error
Conditions, Return Values, Status Codes have slightly higher frequencies (3.8%) than some
of the four cases above. In the case of RQ7C , we believe that the difference in distribution
between KubeEdge and Mainflux is in part related to the difference observed for RQ7A.
Indeed, it is reasonable that the larger proportion of access control vulnerabilities observed
in RQ7Afor Mainflux is related to the larger proportion of authentication errors observed
for Mainflux. The mistakes leading to path traversal or control of resources, which are more
frequent in KubeEdge, are likely more diverse. Also, the difference in distribution between
KubeEdge and Mainflux might be due to a non-negligible proportion of vulnerabilities for
whichRQ7Cdata is not available (60 vulnerabilities in total, 40.8%); forRQ7A, the proportion
ofmissing vulnerabilities is lower, 10.20%, in total. To conclude, only the results ofRQ7Cmay
not generalize. However, RQ7C results are the least actionable; indeed, they do not enable us
to derive any suggestion for the development of automated testing tools (see Section 6).

Finally, the results for KubeEdge and Mainflux may also generalize to K3OS and Zetta.
In the case of K3OS, results should generalize because K3OS inherits all the Kubernetes
vulnerabilities affecting KubeEdge. For Zetta, assuming that the low number of vulnerabili-
ties found is due to a limited user base, we may observe, in case of a broader use of Zetta, a
distribution of vulnerabilities similar to the one discussed above because Zetta includes com-
ponents (e.g., the event broker, the pub-sub service, and the http-server) that, in a simplified
manner, replicate the functionalities available in KubeEdge.

5.4 External Validity

We selected Edge frameworks that, based on our selection criteria, have an active user base,
which indicates that they provide features that are necessary for the development of Edge sys-
tems For example, KubeEdge is used to manage nearly 100,000 edge nodes in unmanned toll
stations across China Kubernetes (2023). Further, the selected frameworks include a range of
features broad enough to support several contexts of use for Edge systems, including smart
light, speed sensors’ monitoring (e.g., vehicles’), smart home security, temperature sens-
ing, and video streaming systems Zetta Edge framework examples (2022); KubeEdge Edge
framework examples (2022). Consequently, the vulnerabilities encountered in our investiga-
tion are likely representative of the different types of vulnerabilities thatmight be encountered
in Edge frameworks; indeed, every software feature may be vulnerable.

The type of security failures observed in the field depend not only on the features imple-
mented by the software but also on the quality of the software security testing process in

123

99 Page 52 of 65

(2023) 28: 99Empirical Software Engineering

place. In our study, we considered only open source software; open source software is often
developed by volunteers who may not be enforced to follow a quality assurance process.
However, this is not the case for KubeEdge, Mainflux, and K3OS because their development
is supervisioned by private companies that have invested effort towards test automation for
these frameworks (see Section 2.2). The development process of KubeEdge, the largest sys-
tem considered in our study, relies on code review activities (e.g., contributions are revised
by senior members11 and two security teams KubeEdge (2023d, e) that audit the system and
respond to reports of security issues. Further, KubeEdge is based onKubernetes, whose devel-
opment team includes a group of security experts Kubernetes (2022a). Mainflux is developed
and maintained by Mainflux Labs, which is a for-profit technology company; considering
that Mainflux Labs developed a test suite and a benchmark for Mainflux, and that Mainflux
Labs provides auditing services, we assume the development process behind Mainflux to be
no different than the one adopted for other commercial Edge software. Similar to Mainflux
is the case of K3OS, which is part of Rancher, a framework developed by the open source
software development company Suse (2022). Among the frameworks selected for our study,
only Zetta is not supported by a for-profit organization but only volunteers; therefore, the
conclusions drawn for Zetta may not generalize to commercial software solutions. However
the impact of this threat is limited because Zetta provides only 1 of the 147 vulnerabilities
investigated in our study (see Table 2, Page 2).

Given the growing popularity of Edge systems, the number of Edge vulnerabilities to be
studied might increase and vary; therefore, larger replications of our study will be possible
in the future.

6 Discussion and Lessons Learned

Our study aims to support the development of testing automation techniques that discover
vulnerabilities in Edge systems.

RQ1indicates that security vulnerabilities slip through the testing process not because
of bad testing but because of other reasons, which are Combinatorial explosion, Unknown
environment conditions, Unknown application conditions, Irreproducible execution condi-
tions. Software faults (and therefore vulnerabilities, which are a specific type of fault) that
slip through the testing process because of the reasons above are defined as field intrinsic
by to Gazzola (2017).To identify such faults, Gazzola et al. propose to rely on field-based
testing, which concerns performing testing activities directly in the production environment.
Field-based testing might be adopted also to discover field-intrinsic vulnerabilities. A recent
survey Bertolino et al. (2021) identifies three field-based testing approaches: online testing,
where test cases are executed directly on the software instance used in production, offline
testing, where test cases are executed on a separated software instance running in the pro-
duction environment, and ex-vivo testing, where test cases are executed in-house (i.e., in the
development environment) but using data collected from the field.

Field-based testing solutions differ for the approach adopted, the software properties under
test (i.e., functional, robustness, security), the test generation strategy (specification-based,
structure-based, fault-based, and reusing pre-existing test cases), the environment in which
test cases are generated (i.e., in-house, in-house with field data, or in-the-field), the criterion
adopted to trigger test cases (i.e., periodically, after a specific event, after a request, based
on a policy, when a function is used, after system reconfiguration, after environment change,

11 see https://kubeedge.io/en/docs/community/membership/)

123

Page 53 of 65 99

https://kubeedge.io/en/docs/community/membership/

(2023) 28: 99Empirical Software Engineering

after module change/insertion/removal), the resources required (e.g., user inputs, memory,
logs, test data), and the types of oracles (i.e., domain-dependent or domain-independent).

The number of available field-based testing techniques targeting software security is lim-
ited, seven out of 80 papers appearing in the above-mentioned survey Bertolino et al. (2021).
Two papers propose a technique that works offlineDai et al. (2010, 2012), five papers concern
online testing Bertolino (2007); Bertolino et al. (2021); De Angelis et al. (2011); Hui et al.
(2016); Zhang (2004). Six techniques are specification-based Bertolino (2007); Bertolino
et al. (2021); De Angelis et al. (2011); Hui et al. (2016); Dai et al. (2010, 2012), one is
fault-based Zhang (2004). They are activated by three different types of triggers: a policy
De Angelis et al. (2011); Bertolino et al. (2021), the execution of a certain functionality
defined either at run-time Dai et al. (2010) or before Hui et al. (2016); Dai et al. (2012), and
the deployment of a newmodule Bertolino (2007); Zhang (2004). Unfortunately, these seven
field-based security testing approaches cannot be applied to test Edge frameworks; indeed,
four of them address problems in online service compositions Bertolino (2007); Bertolino
et al. (2021); De Angelis et al. (2011); Zhang (2004), one approach targets only integer
overflows Hui et al. (2016), which were not observed in our analysis, two approaches Dai
et al. (2010, 2012) concern offline testing (i.e., they test sibling processes with modified con-
figurations), which is infeasible with large service (e.g., Edge controller) or with embedded
devices running Edge nodes. New field-based testing solutions for Edge security testing thus
need to be developed.

Since RQ1indicates that most of the vulnerabilities are not discovered at testing time
because of combinatorial explosion (i.e., the infeasibility to exercise the Edge framework
under all the possible execution conditions), we believe that field-based testing might be
an ideal solution since it might be implemented by developing techniques that identify the
conditions inwhich testing automation should be triggered (e.g.,whenobserving combination
of inputs not tested in-house). To further support our suggestion,we joined the results obtained
for RQ1and RQ4, which enables us to report that 84 out of 126 (67%) CE vulnerabilities
present a specific combination of configuration parameters as precondition (i.e., they can
be exploited only if a specific configuration is in place). Such number indicates that, by
activating field-based testing whenever the system is executed with a configuration not tested
in-house, we may discover up to 57% (i.e., 84 out of 147) Edge vulnerabilities.

Based onRQ2results, we conclude that the SUT is the component that (a) is usually faulty,
(b) receives the inputs that trigger the vulnerability, (c) presents the preconditions required
for the vulnerability to be exploitable, and (d) shows failures. Therefore, testing techniques
should focus on the SUT interfaces, typically command line utilities, API, or Web interfaces.

RQ3results indicate that most of the security failures are silent; also, the majority includes
Value (38.8%) andAction failures (22.4%). Therefore, approaches looking for crashes are not
sufficient to support the identification of Edge vulnerabilities, which prevents the adoption
of most fuzz testing approaches Manes et al. (2021). Fuzz testing tools (e.g., AFL Zalewski
2020) usually rely on evolutionary search algorithms to generate test inputs bymodifying pre-
viously generated inputs that demonstrated to be effective in improving a target metric (e.g.,
code coverage). Fuzz testing is normally used to either identify inputs leading to crashes or
memory errors (e.g., use after free, out of bounds accesses, memory leaks); althoughmemory
errors might be indicators of vulnerabilities leading to value or timing failures (e.g., access-
ing private data or causing denial of service), without manual inspection it is not possible to
determine if a memory error is exploitable as a vulnerability (i.e., if it breaks security prop-
erties) Miller Koziol (2010). Therefore, fuzz testing can’t be used to automatically detect
Edge vulnerabilities resulting in value errors. It is therefore necessary to identify solutions
addressing the oracle problem (i.e., the problem of automatically determining if a test output

123

99 Page 54 of 65

(2023) 28: 99Empirical Software Engineering

is correct Barr et al. (2015)); in this regard, metamorphic testing might be an option since
it has shown successful results when applied to test the security of Web systems Mai et al.
(2019). Metamorphic security testing concerns specifying properties (called metamorphic
relations) that relate the outputs generated by a set of source inputs and a set of follow-up
inputs derived from them. Source inputs are sequences of legal Web interactions (e.g., HTTP
requests) collected using a Web crawler. Follow-up inputs are generated by altering source
inputs as an attacker would do. Metamorphic relations enable engineers to avoid implement-
ing test assertions to verify that test inputs lead to specific test outputs Mai et al. (2019);
indeed, metamorphic relations enable testing a software with any test input and automati-
cally verifying the correctness of the software outputs. One alternative solution that enables
engineers to automatically verify software outputs consists of relying on executable formal
specifications (e.g., assertions verifying method post-conditions and used in property-based
testing Finka and Bishop 1997); however, such solution is generally infeasible for Edge sys-
tems because software projects usually lack executable formal specifications because they
are expensive to produce and maintain. For such reason, engineers manually implement test
assertions that are specific for the inputs exercised by a test case. Instead, recent work has
shown that it is possible to define generic metamorphic relations that can discover a broad
range of vulnerabilities and can be reused across software systems because they process
system inputs Chaleshtari et al. (2023); assertions, instead, are typically implemented within
low-level software functions and, therefore, can’t be reused across systems. Like assertions,
metamorphic relations enable detecting silent failures (i.e., failures that can be detected only
by verifying the correctness of the output data generated by the system). An example of
howmetamorphic security testing enables engineers to test a software system without imple-
menting test assertions for every test inputs follows. With metamorphic relations, bypass
authorization vulnerabilities can be detected by verifying if a URL provided by the Web
interface of a user leads to a different response page when requested by a user whose Web
interface does not provide the same URL. If the two users receive the same response page
then the second user had been able to bypass the authorization schema Mai et al. (2019).
Thanks to the use of Web crawlers, such metamorphic relation can be tested with any URL
provided by a Web system thus enabling the exhaustive testing of all the available URLs.
Since manually deriving test assertions should be based on user-specific access policies, such
exhaustive testing is infeasible without metamorphic relations.

The results of RQ5Aindicate that, once the system reaches the state required to trigger
the vulnerability, one input action (one step) is generally sufficient to exploit a vulnerability.
In addition, RQ4indicates that, usually, it is a specific system configuration what enables
exploiting the vulnerability. Therefore, it should be feasible to automate security testing for
Edge systems. Indeed, once a configuration to be tested is identified, it might be sufficient
to exercise the system with all the possible single (one step) actions not with long action
sequences, which should result in a quicker testing process. Further, it should be feasible to
thoroughly test the system.

The results of RQ5B indicate that most of the inputs triggering vulnerabilities are data,
which means that even brute force approaches like fuzzing might be sufficient to exploit
vulnerabilities; however, the oracle problemneeds to be addressed (e.g., throughmetamorphic
relations, as suggested above).

The results of RQ6show that 55% of the vulnerabilities concern confidentiality. Since
confidentiality failures are about accessing sensible resources and do not affect the state of
the system, we believe that isolation techniques, which are difficult to implement, are not
neededwhen testing for confidentiality problems. Consequently, field-based testing solutions
focusing on confidentiality will not need to integrate solutions that ensure isolation. Further,

123

Page 55 of 65 99

(2023) 28: 99Empirical Software Engineering

based onRQ1results, we suggested to automatically trigger field-based testing when observ-
ing new configurations not tested in-house. After joining RQ6and RQ4data, we determined
that 72 out of 81 confidentiality vulnerabilities depend on a specific configuration of the
system (i.e., they were likely not detected because the specific configuration they depend
on was not considered). Therefore, we can speculate that a field-based testing approach that
focuses on confidentiality issues and is triggered by untested configurations might feasibly
detect a large proportion of Edge vulnerabilities (i.e., 72 out of 147, 49%).

The results forRQ7AtoRQ7Cprovide further directions for the implementation of testing
automation techniques. The results of RQ7Aindicate that most of the vulnerabilities concern
CWE-306 (Missing Authentication for Critical Function), which indicates that it is necessary
to develop methods to automatically determine what are the functions that should require
authentication. Authorization problems (i.e., CWE-284 in RQ7B) are frequent and, unfortu-
nately, covered by existing field testing approaches only in the case ofWeb services Bertolino
(2007); Bertolino et al. (2021); De Angelis et al. (2011); Zhang (2004). However, related
work has shown that it is feasible to detect authentication and authorization problems with
metamorphic security testing Mai et al. (2019).

Input neutralization issues are often due to improper exception handling, which may
indicate the need for better robustness testing.

Finally, leakage of sensitive data, memory issues, and bad coding practices might be
detected through improved static code analysis tools; however, the evaluation of the effec-
tiveness and extensibility of existing tools go beyond the scope of this paper. For that, we
refer the reader to a recent empirical evaluation of Web-based systems Elder et al. (1995),
which has shown that exploratorymanual penetration testing ismore effective than automated
static analysis tools in detecting severe vulnerabilities (e.g., the ones in the OWASP Top Ten
list OWASP (2022) related to Security Logging and Monitoring Failures, like CWE 532 -
Insertion of Sensitive Information into Log File, which is a form of information leakage).
Automated static analysis tools, instead, detect the largest number of vulnerabilities, overall.

To summarize, since we observed that vulnerabilities are likely not discovered at testing
time because of combinatorial explosion, we suggest researchers to introduce new security
testing techniques for Edge systems that aim to address such problem (RQ1). The need for
improved testing is motivated by the fact that the Edge vulnerabilities detected in-the-field
are severe and easy to exploit (see RQ8). exploit (see RQ8); further, since vulnerabilities are
likely not discovered at testing time because of combinatorial explosion, it is doubtful that
engineers can effectively detect them at testing time without a spike in development costs
(RQ1). To minimize the number of vulnerabilities discovered by the end-users (or by mali-
cious users), we suggest the development of field-based testing techniques that are triggered
when the system is executed with a configuration not tested in-house (RQ4). The feasibility
of such techniques should be facilitated by most vulnerabilities requiring only one input step
to be exploited (i.e., testing techniques don’t have to derive long input sequences, RQ5A);
further, plain input data is sufficient to exploit most of them (RQ5B). Such techniques should
target the interfaces of Edge frameworks not the components they rely upon (e.g., network or
drivers, RQ2). Further, field-based security testing techniques shall focus on confidentiality,
which concerns a large portion of the cases (RQ6); based on our results, field-based security
testing techniques targeting confidentiality and triggered in the presence of untested con-
figurations should be able to address 49% of the vulnerabilities. Since most vulnerabilities
lead to silent, value failures (RQ3), researchers need to address the oracle problem (i.e.,
vulnerabilities are unlikely detected by looking for crashes); however, metamorphic testing
might be a feasible solution since it has been successfully applied to detect authentication
and authorization problems, which are among the most frequent types of vulnerabilities and

123

99 Page 56 of 65

(2023) 28: 99Empirical Software Engineering

developer mistakes (RQ7). Finally, till new approaches are not developed, we suggest devel-
opers of Edge frameworks to increase the effort put into testing of configurations; especially
their effect on confidentiality.

7 RelatedWork

To the best of our knowledge, our work is the first to report on vulnerabilities affecting Edge
frameworks. Related work concerns empirical studies of software vulnerabilities, which we
summarize below. A recent survey of empirical studies on software failures indicates that
their typical workflow includes six steps, which match our workflow: Define problem scope
(see Section 3), Collect defect reports and supplementary data (see Sections 3.1 and 3.2),
Analyze bug characteristics (see RQ1 to RQ6 and RQ8), Perform root cause analysis (see
RQ7A to RQ7C), Report results (see Section 4), Discuss impact and recommendations for
industry (see Section 6). The survey is based on 52 papers; however, only five of them focus on
software vulnerabilities Zaman et al. (2011); Linares-Vásquez et al. (2017); Mazuera-Rozo
et al. (2019); Cottrell (2021); Blessing et al. (2021). Further, none of the selected papers
aim to discuss the feasibility of performing field-based testing, which was instead the aim of
Gazzola (2017).

Bavota et al. analyzed the vulnerabilities affecting the Android OS Linares-Vásquez et al.
(2017); Mazuera-Rozo et al. (2019). Their study investigates type and evolution of vul-
nerabilities, the most common CVSS vectors, the Android subsystems mostly affected by
vulnerabilities, and the time required to fix them. Similar to our results, Bavota’s study show
that vulnerabilities affecting access control and privileges (i.e., CWE pillars CWE-664 and
CWE-284 in our case, see RQ7B) are the most frequent ones. However, in their analysis,
memory errors take the second place, which is not the case for us, likely because of the differ-
ent nature of these two types of software. Indeed, Android includes anOS layer that takes care
of handling also the memory at kernel level, which is not the case for Edge systems where a
third party OS layer (excluded from vulnerability reports) takes care of handling the memory.
The layers mainly affected by Android vulnerabilities are the kernel, the native libraries, and
the application layer, which is in line with our findings where the SUT, Plugins, and APIs are
among the mostly affected components in Edge systems. Somehow, these results show that
the core components (i.e., SUT for our analysis and kernel for Bavota’s) are the ones affected
by most of the vulnerabilities, possibly because they implement most of the core software
features. Their take-out lessons mostly concern the improvement of coding practices while
we focus on a complementary aspect, i.e., the development of testing automation tools.

Blessing et al. (2021) analyzed the vulnerabilities affecting eight cryptographic libraries
(i.e., OpenSSL, GnuTLS, Mozilla NSS, WolfSSL, Botan, Libgcrypt, LibreSSL, and Bor-
ingSSL). They collected data from multiple sources (i.e., NVD, CVE and OpenCVE). Their
findings suggest that vulnerabilities in cryptographic libraries are mainly due to the follow-
ing CWEweaknesses: exposure of sensitive information, improper input validation, numeric
errors, memory buffer issues, resourcemanagement errors, and cryptographic issues. Expect-
edly, the distribution of these weaknesses differ from the ones reported in our paper (e.g.,
memory buffer issues count for 20% of the cryptographic cases while in our paper they are
less than 1%); indeed, Edge frameworks and cryptographic libraries present a very different
nature.

Zaman et al., compared faults affecting two types of non-functional properties for the
Firefox Web-browser, which are security and performance Zaman et al. (2011). Different

123

Page 57 of 65 99

(2023) 28: 99Empirical Software Engineering

from our work, they do not aim to study the reasons why faults are not detected at testing
time but they focus on the fault-fixing process and report about the time required to fix
these faults, the number of developers involved in the fix, and the complexity of the fix
(number of lines and files modified). Similarly, Catolino et al. discuss the distribution of
different types of faults, the time before assignment/response/change, the duration of the
bug fixing process, and the topics related to different fault types Catolino et al. (2019); such
information does not help designing automated testing tools, which is our purpose. Tan et al.
report on the faults affecting three popular open-source systems in 2014: the Mozilla Web-
browserMozilla foundation (1995), theApacheHTTPServer Apache foundation (2022), and
the Linux operating system’s kernel Linux foundation (2022). Their discussion of security
vulnerabilities is limited; indeed, they report that semantic bugs are themain cause of security
vulnerabilities but they do not report any finer grained characterization. Further, they report
that availability is violated slightly more than confidentiality and integrity; however, the data
set is older than ours and their systems are different in nature.

Cottrell et al. report on the frequency, type, and severity of vulnerabilities affecting hard-
ware and software robotic components Cottrell (2021). They report that vulnerabilities are
more frequent in software (92.6%) than in hardware (7.4%) components, which is in line with
our findings. They do not explicitly rely onCWEvulnerability types; however, they report that
software vulnerabilities mainly concern Memory management (32.4%), Input sanitization
(24.1%), Authorization/Authentication (22.5%), Denial of Service (19.6%), Cryptography
(7.3%), Insecure default settings (7.3%), Dependency management (6%), Directory traver-
sal (2.5%), Hard-coded secrets (2.4%). Such distribution of vulnerability types different
from ours; we believe that the difference is mainly due to the nature and maturity of the
software considered. For example, memory management issues have a limited impact in in
Edge frameworks (see CWE-789, CWE-1050, CWE-416, CWE-401 in Table 4, which count
for 3.4% of the total), likely because Edge frameworks delegate memory management to
widely adopted open-source OSs. Input sanitization issues affect both robotics and Edge sys-
tems; however, they are less frequent in Edge systems (see CWE-707, 9.20% in Figure 13,
Figure 13). Authorization and authentication issues are more frequent in Edge frameworks
because it is a key feature ofWeb-based distributed systems (see 38% for CWE-284 in Figure
13). The frequency of denial of service (i.e., availability) issues is in line with our findings
(see Figure 10). Finally, in robotics systems, severity is considered either high or critical for
more than 50% of the software vulnerabilities, a result that is similar to ours (see Section 4.8),
which indicates that improved security testing solutions are necessary across fields, not only
Edge systems.

Austin et al. empirically evaluated the effectiveness of different security testing approaches
in detecting vulnerabilities of Web-based content management systems Austin et al. (2013).
They compared four approaches: exploratory manual penetration testing, systematic manual
penetration testing, static analysis, and automated penetration testing (i.e., dynamic pro-
gram analysis). Their results show that different approaches detect different vulnerabilities;
precisely, static analysis detects mainly code injection vulnerabilities, systematic manual
penetration testing detects audit and input validation vulnerabilities, automated penetration
testing detects information leaks but leads to a high false positive rate for other types of
vulnerabilities. Finally, static analysis accurately detects unsafe code and lack of null checks
but leads to a high false positive rate for other types of vulnerabilities. CMS share a subset of
the features of Edge systems (e.g., Web interfaces, interaction with databases); therefore, the
results of Austin et al. confirm that testing these systems is complex (i.e., different approaches
are required). Also, it shows that existing test automation tools are affected by a high false
positive rate which may limit their adoption.

123

99 Page 58 of 65

(2023) 28: 99Empirical Software Engineering

Zahid et al. recently conducted a survey on riskmanagement approaches for cyber-physical
systems (CPS), including IoT systemsZahid et al. (2021). Their findings show that availability
and integrity are ofmajor concern for CPS, in contrast to Cloud systemswhere access control,
integrity, and auditability are the most-studied quality attributes. Unsurprisingly, since Edge
frameworks inherit several characteristics of Cloud computing frameworks, we observe a
higher impact of access control and integrity issues rather than availability ones.

Tabrizchi et al., in a recent survey on security challenges in Cloud computing Tabrizchi
andKuchaki Rafsanjani (2020), list the architectural solutions thatmight be adopted to ensure
security properties; further, they list the security threats affecting Cloud systems, according
to literature. The provided list of threats includes path traversal attacks, code injections,
authentication issues, abuse of functionalities, resource manipulation, denial of service, and
data breaches. All the threats identified by Tabrizchi et al. match the vulnerabilities reported
in our study; such result is not surprising since Cloud systems share many commonalities
with Edge systems. However, Tabrizchi et al. do not provide any solution for software testing
automation neither provide suggestions for prioritizing the testing of vulnerabilities based
on their frequency or criticality, which we do, instead. Similar to the work of Tabrizchi et al.,
the work of Ardagna (2015) provides another taxonomy of Cloud security solutions but is
more dated. Their work shows that the number of automated testing solutions was limited;
however, they do not provide any direction for future work.

8 Conclusion

We presented an empirical study of the security vulnerabilities affecting Edge frameworks.
Our objective is to support the development of automated software testing techniques target-
ing software security in Edge frameworks. Our work is motivated by the increasing relevance
of the Edge paradigm, which ensures low latency for several data-intensive applications (e.g.,
video streaming, video conferencing, video surveillance, naval services). This is the case for
our industry partner, SES, a world-leading satellite operator.

We selected Edge frameworks with reported vulnerabilities and an active user base. We
have manually read all the vulnerability reports and processed CWE and CVSS data reported
in the CVE and NVD databases. We investigated eleven research questions that concern
aspects influencing the development of automated testing tools (i.e, weaknesses in the testing
process, types of components involved in a security failure, type of failures observed, steps
required to exploit a vulnerability, nature of preconditions and inputs leading to a successful
exploit, security properties being violated, frequent vulnerability types, software behaviours
and developer mistakes associated to these vulnerabilities, severity).

Our results show that the large number of features implemented by Edge frameworks
result in a combination of configuration options that often prevent the detection of vulnera-
bilities. Vulnerabilities are often due to implementation errors in the Edge software but their
consequences affect both the software itself, the network configuration, and the controlled
nodes. Confidentiality is the security property mostly affected by these security vulnerabil-
ities, which can be easily exploited (in one step). Half of these vulnerabilities have a high
NVD severity score, which highlights the need for their timely detection. We identify field-
based testing (i.e., performing testing activities directly in the production environment) as a
possible solution to address these vulnerabilities, which is facilitated by the prevalence of
confidentiality problems (i.e., testing in the field is unlikely to affect the functioning of the
system). Our future work will concern the definition of such solutions based on our findings.

123

Page 59 of 65 99

(2023) 28: 99Empirical Software Engineering

Acknowledgements This work has been supported by SESLuxembourg (2023) and the LuxembourgNational
Research Fund (FNR) under the project INSTRUCT (Luxembourg National Research Fund 2022).

Data Availability The authors declare that the data supporting the findings of this study are available at the
following URL https://zenodo.org/record/7826981.

Declaration

Conflicts of interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Jude A (2023) Howwill 5G and edge computing transform the future of mobile gaming? Last Accessed: 2023.
https://www.ericsson.com/en/blog/2021/3/5g-edge-computing-gaming

Alwarafy A, Al-Thelaya KA, Abdallah M, Schneider J, Hamdi M (2021) A survey on security and privacy
issues in edge-computing-assisted internet of things. IEEE Internet of Things Journal 8(6):4004–4022.
https://doi.org/10.1109/JIOT.2020.3015432

Ammann P, Offutt J (2016) Introduction to software testing -, 2nd edn. Cambridge University Press
Analysis Tools team (2022) Static analysis tools for GO Last Accessed: 2022. https://analysis-tools.dev/tag/

go
Apache foundation (2022) Last Accessed: 2022. https://www.apache.org/
Ardagna CA, Asal R, Damiani E, Vu QH (2015) From security to assurance in the cloud: A survey. ACM

Computing Surveys (CSUR) 48(1):1–50
ARM (2022) Microcontrollers and infrastructure manufacturer. Last Accessed: 2022. https://www.arm.com/
Austin A, Holmgreen C, Williams L (2013) A comparison of the efficiency and effective-

ness of vulnerability discovery techniques. Information and Software Technology 55(7):1279–
1288. DOIurlhttps://doi.org/10.1016/j.infsof.2012.11.007. www.sciencedirect.com/science/article/pii/
S0950584912002339

Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable and secure
computing. IEEE transactions on dependable and secure computing 1(1):11–33

Aysan H, Punnekkat S, Dobrin R (2008) Error modeling in dependable component-based systems. In: 2008
32nd Annual IEEE International Computer Software and Applications Conference, IEEE pp. 1309–1314

Bai T, Pan C, Deng Y, Elkashlan M, Nallanathan A, Hanzo L (2020) Latency minimization for intelligent
reflecting surface aided mobile edge computing. IEEE Journal on Selected Areas in Communications
38(11):2666–2682

Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle problem in software testing: A survey.
IEEE Transactions on Software Engineering 41(5):507–525

Nassi B, Pirutin Y, Galor TC, Elovici Y, Zadov B (2022) Last Accessed: 2022. https://www.nassiben.com/
glowworm-attack

Bertolino A, Angelis GD, Frantzen L, Polini A (2007) The plastic framework and tools for testing service-
oriented applications. In: Software Engineering, pp. 106–139. Springer

Bertolino A, Braione P, De Angelis G, Gazzola L, Kifetew F, Mariani L, Orrù M, Pezzè M, Pietrantuono R,
Russo S, Tonella P (2021) A Survey of Field-based Testing Techniques. ACMComputing Surveys 54(5).
https://doi.org/10.1145/3447240

BertolinoA,DeAngelis G,Kellomaki S, Polini A (2011) Enhancing service federation trustworthiness through
online testing. Computer 45(1):66–72

123

99 Page 60 of 65

https://zenodo.org/record/7826981
http://creativecommons.org/licenses/by/4.0/
https://www.ericsson.com/en/blog/2021/3/5g-edge-computing-gaming
https://doi.org/10.1109/JIOT.2020.3015432
https://analysis-tools.dev/tag/go
https://analysis-tools.dev/tag/go
https://www.apache.org/
https://www.arm.com/
www.sciencedirect.com/science/article/pii/S0950584912002339
www.sciencedirect.com/science/article/pii/S0950584912002339
https://www.nassiben.com/glowworm-attack
https://www.nassiben.com/glowworm-attack
https://doi.org/10.1145/3447240

(2023) 28: 99Empirical Software Engineering

Blessing J, Specter MA, Weitzner DJ (2021) You really shouldn’t roll your own crypto: An empirical study
of vulnerabilities in cryptographic libraries. arXiv:2107.04940

Bondavalli A, Simoncini L (1990) Failure classification with respect to detection. [1990] Proceedings. Second
IEEE Workshop on Future Trends of Distributed Computing Systems, IEEE, pp 47–53

CatolinoG, Palomba F, ZaidmanA, Ferrucci F (2019)Not all bugs are the same:Understanding, characterizing,
and classifying bug types. Journal of Systems and Software 152:165–181 10. https://doi.org/10.1016/j.
jss.2019.03.002. www.sciencedirect.com/science/article/pii/S0164121219300536

Chaleshtari NB, Pastore F, Goknil A, Briand LC (2023) Metamorphic testing for web system security. IEEE
Transactions on Software Engineering. Accepted, available at https://arxiv.org/abs/2208.09505

Chen EY, Pei Y, Chen S, Tian Y, Kotcher R, Tague P (2014) Oauth demystified for mobile application develop-
ers. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’14, p. 892-903. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.
1145/2660267.2660323

Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK, Wong MY (1992) Orthogonal
defect classification-a concept for in-process measurements. IEEE Transactions on software Engineering
18(11):943–956

ci4rail (2022) Computing Intelligence for Rail and Public Transport Last Accessed: 2022. http://www.ci4rail.
com

Cinque M, Cotroneo D, Kalbarczyk Z, Iyer RK (2007) How do mobile phones fail? a failure data analysis of
symbian os smart phones. In: 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07), IEEE pp. 585–594

Cloud Native Computing Foundation (2023) Last Accessed: 2023. https://github.com/containerd/containerd
Clound Native Computing Foundation: Last Accessed: 2022. https://www.cncf.io/
Common Vulnerability Scoring System (2022) Last Accessed: 2022. https://www.first.org/cvss/
Cottrell K, Bose DB, Shahriar H, Rahman A (2021) An empirical study of vulnerabilities in robotics. In:

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 735–744.
https://doi.org/10.1109/COMPSAC51774.2021.00105

CVENumbering Authorities (CNA) (2022) Last Accessed: 2022. https://www.cve.org/ProgramOrganization/
CNAs

Dai H, Murphy C, Kaiser G (2010) Configuration fuzzing for software vulnerability detection. In: 2010
International Conference on Availability, Reliability and Security, pp. 525–530. IEEE

DaiH,MurphyC,KaiserGE (2012)Confu: Configuration fuzzing testing framework for software vulnerability
detection. In: Security-Aware Systems Applications and Software Development Methods, IGI Global pp.
152–167

DeAngelisG,BertolinoA, PoliniA (2011) (role) cast:A framework for on-line service testing. In: International
Conference on Web Information Systems and Technologies, vol. 2, pp. 13–18. SCITEPRESS

Dempsey K, Shah, N, Arnold C, Johnston JR, Jones AC, Orebaugh A, Scholl M, Stine K (2022) NIST Spe-
cial Publication 800-137 Information Security. Last Accessed: 2022. https://nvlpubs.nist.gov/nistpubs/
legacy/sp/nistspecialpublication800-137.pdf

Elder S, Zahan N, Shu R, Metro M, Kozarev V, Menzies T, Williams L (2022) Do I really need all this work
to find vulnerabilities? Empirical Software Engineering 27(6):154. https://doi.org/10.1007/s10664-022-
10179-6

Fabric8 Maven Plugin: Last Accessed: 2022. https://maven.fabric8.io
FayadM, Schmidt DC (1997) Object-oriented application frameworks. Commun. ACM 40(10):32–38. https://

doi.org/10.1145/262793.262798
Felderer M, Büchler M, Johns M, Brucker AD, Breu R, Pretschner A (2016) Security testing: A survey.

Advances in Computers, Elsevier 101:1–51
Fink G, Bishop M (1997) Property-based testing: A new approach to testing for assurance. SIGSOFT Softw.

Eng. Notes 22(4):74–80. https://doi.org/10.1145/263244.263267
Fisher RA (1922) On the interpretation of x2 from contingency tables, and the calculation of p. Journal of the

Royal Statistical Society 85(1):87–94
Murphy G (2023) Asset Tracking - Living on the Edge Last Accessed: 2023. https://www.iottechnews.com/

news/2022/nov/09/asset-tracking-living-on-the-edge/
Gazzola L Mariani L Pastore F, Pezze M (2017) An exploratory study of field failures. In: 2017 IEEE 28th

International Symposium on Software Reliability Engineering (ISSRE), IEEE pp. 67–77
Google (2022) Go lang Last Accessed: 2022. https://go.dev
Gopalakrishna N, Anandayuvaraj D, Detti A, Bland F, Rahaman S, Davis JC (2022) “if security is required”:

Engineering and security practices for machine learning-based iot devices. In: 2022 IEEE/ACM 4th
International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT), pp.
1–8. IEEE Computer Society, Los Alamitos, CA, USA. https://doi.org/10.1145/3528227.3528565

123

Page 61 of 65 99

http://arxiv.org/abs/2107.04940
https://doi.org/10.1016/j.jss.2019.03.002
https://doi.org/10.1016/j.jss.2019.03.002
www.sciencedirect.com/science/article/pii/S0164121219300536
https://arxiv.org/abs/2208.09505
https://doi.org/10.1145/2660267.2660323
https://doi.org/10.1145/2660267.2660323
http://www.ci4rail.com
http://www.ci4rail.com
https://github.com/containerd/containerd
https://www.cncf.io/
https://www.first.org/cvss/
https://doi.org/10.1109/COMPSAC51774.2021.00105
https://www.cve.org/ProgramOrganization/CNAs
https://www.cve.org/ProgramOrganization/CNAs
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-137.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-137.pdf
https://doi.org/10.1007/s10664-022-10179-6
https://doi.org/10.1007/s10664-022-10179-6
https://maven.fabric8.io
https://doi.org/10.1145/262793.262798
https://doi.org/10.1145/262793.262798
https://doi.org/10.1145/263244.263267
https://www.iottechnews.com/news/2022/nov/09/asset-tracking-living-on-the-edge/
https://www.iottechnews.com/news/2022/nov/09/asset-tracking-living-on-the-edge/
https://go.dev
https://doi.org/10.1145/3528227.3528565

(2023) 28: 99Empirical Software Engineering

Hagar JD (2002) IoT System Testing: An IoT Journey from Devices to Analytics and the Edge. Apress
Honnef D (2022) Staticcheck: static analysis tool for the go programming language. Last Accessed: 2022.

“https://staticcheck.io/"
Huawei (2022) Last Accessed: 2022. http://www.huawei.com
HuiZW,HuangS, JiMY(2016)A runtime-testingmethod for integer overflowdetection based onmetamorphic

relations. Journal of Intelligent & Fuzzy Systems 31(4):2349–2361
Invicti (2022) Acunetix. Last Accessed: 2022. https://www.acunetix.com/plp/web-vulnerability-scanner/?utm

_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords
&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD
_BwE

ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary (2017) ISO/IEC/IEEE
24765:2017(E) pp. 1–541. https://doi.org/10.1109/IEEESTD.2017.8016712

Jin X, Katsis C, Sang F, Sun J, Kundu A, Kompella R (2022) Edge security: Challenges and issues.
arXiv:1048550/ARXIV.2206.07164

K3OS (2022) K3OS Automated Test Suite. Last Accessed: 2022. https://github.com/rancher/k3os/blob/
master/scripts/test

K3OS (2022a)K3OS Edge Computing Framework. Last Accessed: 2022. https://k3os.io/
Koziol J (2010) Charlie Miller Reveals His Process for Security Research. https://resources.infosecinstitute.

com/topic/how-charlie-miller-does-research/
Kube-score (2022) Static code analysis for kubernetes object definitions. Last Accessed: 2022. https://kube-

score.com/
KubeEdge (2022) KubeEdge Deployment using Keadm. Last Accessed: 2022. https://kubeedge.io/en/docs/

setup/keadm/
KubeEdge (2022a)KubeEdgeDevelopmentProcess.LastAccessed: 2022. https://kubeedge-docs.readthedocs.

io/en/latest/getting-started/contribute.html
KubeEdge (2022b) KubeEdge Edge Computing Framework. Last Accessed: 2022. https://kubeedge.io/en/
KubeEdge (2022c) KubeEdge End-To-End Test Suite Last Accessed: 2022. https://github.com/kubeedge/

kubeedge/tree/master/tests/e2e
KubeEdge (2023) KubeEdge GitHub issue tracker Last Accessed: 2022. https://github.com/kubeedge/

kubeedge/issues
KubeEdge (2023a) KubeEdge Integration Test Suite Last Accessed: 2022. https://github.com/kubeedge/

kubeedge/tree/master/tests/integration
KubeEdge (2023b)KubeEdge Issue 1017LastAccessed: 2022. https://github.com/kubeedge/kubeedge/issues/

1017
KubeEdge (2023c)KubeEdge Issue 1736LastAccessed: 2022. https://github.com/kubeedge/kubeedge/issues/

1736
KubeEdge (2023d) KubeEdge Security Team Last Accessed: 2022. https://github.com/kubeedge/community/

tree/master/security-team
KubeEdge (2023e) KubeEdge Sig-Security Team Last Accessed: 2022. https://github.com/kubeedge/

community/tree/master/sig-security
KubeEdge Edge framework examples (2022) KubeEdge Last Accessed: 2022. https://kubeedge.io/en/docs/

developer/device_crd/
Kubernetes (2022) Kubernetes pods Last Accessed: 2022. https://kubernetes.io/docs/concepts/workloads/

pods/
Kubernetes (2022a) Kubernetes Security Special Interest Group Last Accessed: 2022. https://github.com/

kubernetes/community/tree/master/sig-security
Kubernetes (2022b) Logging in Kubernetes Last Accessed: 2022. https://github.com/kubernetes/community/

blob/master/contributors/devel/sig-instrumentation/logging.md
Kubernetes (2022c) Open-source system for automating deployment, scaling, and management of container-

ized applications Last Accessed: 2022. https://kubernetes.io
Kubernetes (2023) Test Report on KubeEdge’ Support for 100,000 Edge Nodes Last Accessed: 2022. https://

kubeedge.io/en/blog/scalability-test-report/
Linares-Vásquez M, Bavota G, Escobar-Velásquez C (2017) An empirical study on android-related vulner-

abilities. In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
pp. 2–13. https://doi.org/10.1109/MSR.2017.60

Linux foundation (2022) Last Accessed: 2022. https://www.kernel.org/
Luxembourg National Research Fund (2022) INSTRUCT - INtegrated Satellite - TeRrestrial Systems for

Ubiquitous Beyond 5G CommunicaTions Last Accessed: 2022. https://instruct-ipbg.uni.lu/
Mai PX, Gokni A, Shar LK, Pastore F, Briand LC, Shaame S (2018) Modeling security and privacy require-

ments: a use case-driven approach. Information and Software Technology 100:165–182

123

99 Page 62 of 65

https://staticcheck.io/
http://www.huawei.com
https://www.acunetix.com/plp/web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE
https://www.acunetix.com/plp/web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE
https://www.acunetix.com/plp/web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE
https://www.acunetix.com/plp/web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE
https://doi.org/10.1109/IEEESTD.2017.8016712
https://github.com/rancher/k3os/blob/master/scripts/test
https://github.com/rancher/k3os/blob/master/scripts/test
https://k3os.io/
https://resources.infosecinstitute.com/topic/how-charlie-miller-does-research/
https://resources.infosecinstitute.com/topic/how-charlie-miller-does-research/
https://kube-score.com/
https://kube-score.com/
https://kubeedge.io/en/docs/setup/keadm/
https://kubeedge.io/en/docs/setup/keadm/
https://kubeedge-docs.readthedocs.io/en/latest/getting-started/contribute.html
https://kubeedge-docs.readthedocs.io/en/latest/getting-started/contribute.html
https://kubeedge.io/en/
https://github.com/kubeedge/kubeedge/tree/master/tests/e2e
https://github.com/kubeedge/kubeedge/tree/master/tests/e2e
https://github.com/kubeedge/kubeedge/issues
https://github.com/kubeedge/kubeedge/issues
https://github.com/kubeedge/kubeedge/tree/master/tests/integration
https://github.com/kubeedge/kubeedge/tree/master/tests/integration
https://github.com/kubeedge/kubeedge/issues/1017
https://github.com/kubeedge/kubeedge/issues/1017
https://github.com/kubeedge/kubeedge/issues/1736
https://github.com/kubeedge/kubeedge/issues/1736
https://github.com/kubeedge/community/tree/master/security-team
https://github.com/kubeedge/community/tree/master/security-team
https://github.com/kubeedge/community/tree/master/sig-security
https://github.com/kubeedge/community/tree/master/sig-security
https://kubeedge.io/en/docs/developer/device_crd/
https://kubeedge.io/en/docs/developer/device_crd/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://github.com/kubernetes/community/tree/master/sig-security
https://github.com/kubernetes/community/tree/master/sig-security
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md
https://kubernetes.io
https://kubeedge.io/en/blog/scalability-test-report/
https://kubeedge.io/en/blog/scalability-test-report/
https://doi.org/10.1109/MSR.2017.60
https://www.kernel.org/
https://instruct-ipbg.uni.lu/

(2023) 28: 99Empirical Software Engineering

Mai PX, Pastore F, Goknil A, Briand LC (2019) MCP: A security testing tool driven by requirements. In:
ICSE’19, pp. 55–58. https://doi.org/10.1109/ICSE-Companion.2019.00037

MainFlux (2022) Consulting and Security Audits Last Accessed: 2022. https://mainflux.com/consulting.html
Mainflux (2022a) Mainflux Last Accessed: 2022. https://github.com/mainflux/mainflux/issues
MainFlux (2022b) Mainflux Benchmark Last Accessed: 2022. https://github.com/mainflux/benchmark
Mainflux Framework (2022) Mainflux Last Accessed: 2022. https://mainflux.com/
Malik J, Pastore F (2023) Replicability package Last Accessed: 2023. https://doi.org/10.5281/zenodo.7826981
Manes VJ, Han H, Han C, Cha SK, Egele M, Schwartz EJ, Woo M (2021) The Art, Science, and Engineering

of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47(11):2312–2331. https://doi.org/
10.1109/TSE.2019.2946563

Mazuera-Rozo A, Bautista-Mora J, Linares-Vásquez M, Rueda S, Bavota G (2019) The android os stack and
its vulnerabilities: an empirical study. Empirical Software Engineering 24(4):2056–2101

Metasploit (2022) Metasploit edge computing framework Last Accessed: 2022. https://www.metasploit.com
Microsoft (2022) Accelerating IoT solution development and testing with Azure IoT Device Simulation

Last Accessed: 2022. https://azure.microsoft.com/pl-pl/blog/accelerating-iot-solution-development-
and-testing-with-azure-iot-device-simulation/

Microsoft (2022) Visual Studio CodeKubernetes Tools Last Accessed: 2022. https://marketplace.visualstudio.
com/items?itemName=ms-kubernetes-tools.vscode-kubernetes-tools

MITRE (2022) Last Accessed: 2022. https://github.com/kubeedge/kubeedge/issues/2362
MITRE (2022a) Common Vulnerabilities and Exposures project Last Accessed: 2022. https://cve.mitre.org/

cve/
MITRE (2022) Common Weaknesses Enumeration project Last Accessed: 2022. https://cwe.mitre.org
MITRE Corporation (2022) Last Accessed: 2022. https://www.mitre.org
MITRE: CVE-2014-5278 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2014-5278
MITRE: CVE-2019-11252 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2019-11252
MITRE: CVE-2020-13597 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-13597
MITRE: CVE-2020-15157 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-15157
MITRE:CVE-2020-2211 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-2211
MITRE: CVE-2020-28914 (2023) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-28914
MITRE: CVE-2020-35514 (2023) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-35514
MITRE: CVE-2020-8557 (2023) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-8557
MITRE: CVE-2020-8558 (2023) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-8558
MITRE: CVE-2020-8559 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-8559
MITRE: CVE-2020-8563 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-8563
MITRE: CVE-2020-8565 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-8565
MITRE: CVE-2020-8566 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-8566
MITRE: CVE-2021-20218 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-20218
MITRE: CVE-2021-21251 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-21251
MITRE: CVE-2021-21334 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-21334
MITRE: CVE-2021-25737 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-25737
MITRE: CVE-2021-28166 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-28166

123

Page 63 of 65 99

https://doi.org/10.1109/ICSE-Companion.2019.00037
https://mainflux.com/consulting.html
https://github.com/mainflux/mainflux/issues
https://github.com/mainflux/benchmark
https://mainflux.com/
https://doi.org/10.5281/zenodo.7826981
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://www.metasploit.com
https://azure.microsoft.com/pl-pl/blog/accelerating-iot-solution-development-and-testing-with-azure-iot-device-simulation/
https://azure.microsoft.com/pl-pl/blog/accelerating-iot-solution-development-and-testing-with-azure-iot-device-simulation/
https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.vscode-kubernetes-tools
https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.vscode-kubernetes-tools
https://github.com/kubeedge/kubeedge/issues/2362
https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://cwe.mitre.org
https://www.mitre.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5278
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5278
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11252
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11252
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13597
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13597
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15157
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15157
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2211
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2211
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28914
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28914
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8557
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8557
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8558
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8558
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8563
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8563
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8565
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8565
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20218
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20218
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21251
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21251
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21334
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21334
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25737
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25737
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28166

(2023) 28: 99Empirical Software Engineering

MITRE: CVE-2021-28448 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-28448

MITRE: CVE-2021-31938 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-31938

MITRE: CVE-2021-32783 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-32783

MITRE: CVE-2021-34431 (2002) CVE-2021-34431 Last Accessed: 2022. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2021-34431

MITRE: CVE-2021-3499 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-3499

MITRE: CVE-2021-38545 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-38545

MITRE: VE-2021-39159 (2022) Last Accessed: 2022. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-39159

Mosenia A, Jha NK (2017) A comprehensive study of security of internet-of-things. IEEE Transactions on
Emerging Topics in Computing 5(4):586–602. https://doi.org/10.1109/TETC.2016.2606384

Mosquitto (2022) Last Accessed: 2022. https://mosquitto.org
Mozilla foundation (2022) Last Accessed: 2022. https://www.mozilla.org
MQTT (2022) Last Accessed: 2022. https://mqtt.org/
Nassi B, Pirutin Y, Galor T, Elovici Y, Zadov B (2021) Glowworm attack: Optical tempest sound recovery via

a device’s power indicator led. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, p. 1900-1914. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3460120.3484775

National Vulnerability Database (2022) Last Accessed: 2022. https://nvd.nist.gov
OWASP (2022) OWASp Top Ten. Last Accessed: 2022. https://owasp.org/www-project-top-ten/
Rancher (2022) Rancher container management Last Accessed: 2022. https://rancher.com/
SES Luxembourg (2022) SES broadcasting services Last Accessed: 2022. https://www.ses.com/find-service/

broadcasters
SES Luxembourg (2022a) SES connectivity for commercial aviation Last Accessed: 2022. https://www.ses.

com/find-service/commercial-aviation
SES Luxembourg (2022b) SES connectivity for commercial maritime Last Accessed: 2022. https://www.ses.

com/find-service/commercial-maritime
SES Luxembourg (2023) SES, leading satellite operator Last Accessed: 2022. https://ses.com/
Shabtai A, Elovici Y, Rokach L (2012)A Survey of Data LeakageDetection and Prevention Solutions. Springer

Publishing Company, Incorporated
SonarQube (2022) Last Accessed: 2022. https://www.sonarqube.org/
Sonarsource (2022) Sonarsource tools for GO Last Accessed: 2022. “https://rules.sonarsource.com/go”
Stankovic JA (2014) Research directions for the internet of things. IEEE internet of things journal 1(1):3–9
Suse (2022) Suse software Last Accessed: 2022. https://www.suse.com
Tabrizchi H, Kuchaki RafsanjaniM (2020) A survey on security challenges in cloud computing: issues, threats,

and solutions. The journal of supercomputing 76(12):9493–9532
The Chief I/O (2022) 7 Static Analysis Tools to Secure and Build Stable Kubernetes Clusters

Last Accessed: 2022. https://thechief.io/c/editorial/7-static-analysis-tools-to-secure-and-build-stable-
kubernetes-clusters/

Todd Erdley (2023) How Edge Computing Unleashes Innovation in Live Streaming? Last Accessed: 2023.
https://www.tvtechnology.com/opinion/how-edge-computing-unleashes-innovation-in-live-streaming

VerneMQ Broker (2022) Vernemq Last Accessed: 2022. https://vernemq.com/
Xiao Y, Jia Y, Liu C, Cheng X, Yu J, Lv W (2019) Edge computing security: State of the art and challenges.

Proceedings of the IEEE 107(8):1608–1631. https://doi.org/10.1109/JPROC.2019.2918437
Yomo Framework (2022) Yomo Last Accessed: 2022. https://yomo.run/
Zahid M, Inayat I, Daneva M, Mehmood Z (2021) Security risks in cyber physical systems-a systematic

mapping study. Journal of Software: Evolution and Process 33(9):e2346. https://doi.org/10.1002/smr.
2346

Zalewski M (20202) American Fuzzy Lop: a security-oriented fuzzer. http://lcamtuf.coredump.cx/afl/
Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: A case study on firefox. In:

Proceedings of the 8th Working Conference on Mining Software Repositories, MSR ’11, p. 93-102.
Association for Computing Machinery, New York, NY, USA. 10.1145/1985441.1985457

Zetta (2022) Zetta Automated Test Suite Last Accessed: 2022. https://github.com/zettajs/zetta/tree/master/
test

123

99 Page 64 of 65

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28448
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28448
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31938
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31938
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34431
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34431
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3499
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3499
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38545
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38545
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39159
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39159
https://doi.org/10.1109/TETC.2016.2606384
https://mosquitto.org
https://www.mozilla.org
https://mqtt.org/
https://doi.org/10.1145/3460120.3484775
https://nvd.nist.gov
https://owasp.org/www-project-top-ten/
https://rancher.com/
https://www.ses.com/find-service/broadcasters
https://www.ses.com/find-service/broadcasters
https://www.ses.com/find-service/commercial-aviation
https://www.ses.com/find-service/commercial-aviation
https://www.ses.com/find-service/commercial-maritime
https://www.ses.com/find-service/commercial-maritime
https://ses.com/
https://www.sonarqube.org/
https://rules.sonarsource.com/go
https://www.suse.com
https://thechief.io/c/editorial/7-static-analysis-tools-to-secure-and-build-stable-kubernetes-clusters/
https://thechief.io/c/editorial/7-static-analysis-tools-to-secure-and-build-stable-kubernetes-clusters/
https://www.tvtechnology.com/opinion/how-edge-computing-unleashes-innovation-in-live-streaming
https://vernemq.com/
https://doi.org/10.1109/JPROC.2019.2918437
https://yomo.run/
https://doi.org/10.1002/smr.2346
https://doi.org/10.1002/smr.2346
http://lcamtuf.coredump.cx/afl/
https://github.com/zettajs/zetta/tree/master/test
https://github.com/zettajs/zetta/tree/master/test

(2023) 28: 99Empirical Software Engineering

Zetta (2022a) Zetta Edge Computing Framework Last Accessed: 2022. https://github.com/zettajs/zetta/wiki/
Overview

Zetta (2022b) Zetta GitHub bug reports Last Accessed: 2022. https://github.com/zettajs/zetta/issues
Zetta (2023) Zetta Issue 335 Last Accessed: 2022. https://github.com/zettajs/zetta/issues/335
Zetta Edge framework examples (2022) Last Accessed: 2022. https://www.zettajs.org/projects/
Zhang J (2004) An approach to facilitate reliability testing of web services components. In: 15th International

Symposium on Software Reliability Engineering, IEEE pp. 210–218

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Page 65 of 65 99

https://github.com/zettajs/zetta/wiki/Overview
https://github.com/zettajs/zetta/wiki/Overview
https://github.com/zettajs/zetta/issues
https://github.com/zettajs/zetta/issues/335
https://www.zettajs.org/projects/

	An empirical study of vulnerabilities in edge frameworks to support security testing improvement
	Abstract
	1 Introduction
	2 Background
	2.1 Edge Computing
	2.2 Testing of Edge Systems
	2.3 Field Failures
	2.4 Security Testing Glossary

	3 Study Design
	3.1 Data Collection
	3.2 Analysis Method
	3.2.1 RQ1: Why are Edge Vulnerabilities not Detected During Testing?
	3.2.2 RQ2: What are the Types of Components Involved in a Security Failure?
	3.2.3 RQ3: What Kind of Failures are Observed When an Edge Vulnerability is Exploited?
	3.2.4 RQ4: What is the Nature of the Precondition Enabling the Attacker to Exploit Edge Vulnerabilities?
	3.2.5 RQ5A: How many Steps are Required to Exploit an Edge Vulnerability?
	3.2.6 RQ5B: What is the Nature of the Input Action Enabling the Attacker to Exploit a Vulnerability?
	3.2.7 RQ6: What Security Properties are Violated by Edge Vulnerabilities?
	3.2.8 RQ7: What Faults Cause Edge Vulnerabilities?
	3.2.9 RQ8: How Severe are Edge Vulnerabilities?

	4 Results
	4.1 RQ1: Why are Edge Vulnerabilities not Detected During Testing?
	4.2 RQ2: What are the Types of Components Involved in a Security Failure?
	4.3 RQ3: What Kind of Failures are Observed When an Edge Vulnerability is Exploited?
	4.4 RQ4: What is the Nature of the Precondition Enabling the Attacker to Exploit Edge Vulnerabilities?
	4.5 RQ5: What Inputs Enable Exploiting Edge Vulnerabilities?
	4.6 RQ6: What Security Properties are Violated by Edge Vulnerabilities?
	4.7 RQ7: What Faults Cause Edge Vulnerabilities?
	4.8 RQ8: How Severe are Edge Vulnerabilities?

	5 Threats to Validity
	5.1 Construct Validity
	5.2 Internal Validity
	5.3 Conclusion Validity
	5.4 External Validity

	6 Discussion and Lessons Learned
	7 Related Work
	8 Conclusion
	Acknowledgements
	References

