Empirical Software Engineering (2023) 28:81
https://doi.org/10.1007/510664-023-10311-0

®

Check for
updates

Seeing confusion through a new lens: on the impact of atoms
of confusion on novices’ code comprehension

José Aldo Silva da Costa’® - Rohit Gheyi' - Fernando Castor? -

Pablo Roberto Fernandes de Oliveira' - Marcio Ribeiro> - Baldoino Fonseca3

Accepted: 1 March 2023 / Published online: 18 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Code comprehension is crucial for software maintenance and evolution, but it can be hin-
dered by tiny code snippets that can confuse the developers, called atoms of confusion.
Previous studies investigated how atoms impact code comprehension through the perspec-
tives of time, accuracy, and opinions of developers. However, we need more studies evaluating
other perspectives and the combination of these perspectives on a common ground through
experiments. In our study, we evaluate how the eye tracking method can be used to gain
new insights when we compare programs obfuscated by the atoms with functionally equiv-
alent clarified versions. We conduct a controlled experiment with 32 novices in Python and
measure their time, number of attempts, and visual effort with eye tracking through fixation
duration, fixations count, and regressions count. We also conduct interviews and investigate
the subjects’ difficulties with the programs. In our results, the clarified version of the code
with Operator Precedence reduced the time spent in the region that contains the atom to
the extent of 38.6%, and the number of answer attempts by 28%. Most subjects found the
obfuscated version more difficult to solve than the clarified one, and they reported the order of
precedence to be difficult to validate. By analyzing their visual effort, in the obfuscated ver-
sion, we observed an increase of 47.3% in the horizontal regressions count in the atom region,
making its reading more difficult. The additional atoms evaluated revealed other interesting
nuances. Based on our findings, we encourage researchers to consider eye tracking combined
with other perspectives to evaluate atoms of confusion and educators to favor patterns that
do not impact the understanding and visual effort of undergraduates.

Keywords Atoms of confusion - Code comprehension - Eye tracking

1 Introduction

When writing code, developers communicate their intent to other developers. Correctly inter-
preting their intent is crucial for the software maintenance and evolution processes. This

Communicated by: Janet Siegmund

B José Aldo Silva da Costa
josealdo@copin.ufcg.edu.br; peregrino001 @ gmail.com

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10311-0&domain=pdf
http://orcid.org/0000-0001-8918-1749

81 Page2o0f42 Empirical Software Engineering (2023) 28:81

interpretation occurs through a process of code comprehension, in which a developer reads
the source code, often written by another developer, and understands its behavior. However,
the developer’s interpretation of a piece of code can often differ from that of the one who
wrote the code due to tiny patterns that can cause misunderstandings. These tiny patterns
that can obfuscate the code and confuse developers causing them to misjudge the behavior of
the code are called atoms of confusion (Gopstein et al. 2017; Gopstein et al 2018; Langhout
and Aniche 2021) when it has been experimentally shown there are functionally equivalent
alternatives that lead to better performance.

Previous studies have investigated the impact of atoms of confusion on code comprehen-
sion using multiple criteria such as time, answer correctness, and opinions. They compare
code containing atoms likely to cause confusion, obfuscated code, to functionally equivalent
code hypothesized to be less confusing, clarified code (Gopstein et al. 2017). For instance,
Gopstein et al. (2017) presented a catalog of atoms of confusion for the C language and exper-
imentally showed that obfuscated code increased confusion by reducing the accuracy of the
subjects, in comparison to their accuracy when analyzing clarified code. Besides showing
that atoms are often found in the C real projects, Medeiros et al. (2019) investigated the devel-
opers’ opinions regarding the atoms of confusion. The subjects perceived obfuscated code to
be more confusing. Combining accuracy and opinions, Langhout and Aniche (2021) found
that developers made more mistakes and perceived obfuscated code to be more confusing
and less readable in the Java language.

Notwithstanding, the combination of different perspectives can give additional insights on
the impact of atoms of confusion on code comprehension. The subjects’ answer correctness
in an experiment can tell us the outcome of developers’ performance, but not how or why
they behaved in a certain way (Gopstein et al 2020). Combining number of attempts with
time, we can have a better idea about the subjects’ behavior. To investigate where in the code
the subject spent most of her time, we can combine time, number of attempts, and opinions
of the developers. This can help us infer where or why the subjects were confused. Gopstein
et al. (2020) used the think-aloud method in which the subjects verbalize their thoughts
while reading the code. Yeh et al. (2021) employed an Electroencephalograph (EEG) device
to analyze the subjects’ brain activities and evaluate an alternative way to understand code
comprehension. Oliveira et al. (2020) used a remote eye tracker to study the impact of atoms
on the subjects’ focus of attention. However, they did not explore the potential of fixation
duration, fixations count and regressions count. In the code, these three metrics measure
how long one fixates over an element, how many times one fixates on the element, and how
many times one goes back to previous lines of code, respectively. Combined with time and
number of attempts, we can assess where, when, and infer why and how the atoms impact the
subjects’ visual effort. We need more studies evaluating distinct perspectives on a common
ground through experiments.

In our study, we evaluate how the eye tracking method can be used to gain new insights
in the context of atoms of confusion. We report an eye tracking study that evaluates how
six atoms of confusion affect the code comprehension of 32 novices in Python. We con-
sider as novices in Python undergraduate students who know how to program but have little
experience with Python. We compare programs containing six atoms of confusion with func-
tionally equivalent clarified versions aiming to observe how and to what extent they influence
the performance of the subjects regarding time, number of attempts, and visual effort. We
measure visual effort with three eye tracking metrics, namely, fixation duration, fixations
count, and regressions count. Time and answer correctness have been employed before to
measure effects on code comprehension (Malaquias et al 2017; Schulze et al 2013). In addi-
tion, the visual effort has been measured before with fixation duration, fixations count, and

@ Springer

Empirical Software Engineering (2023) 28:81 Page3of42 81

regressions count (Busjahn et al 2011; Binkley et al 2013; Sharafi et al 2015). We analyze
these metrics in the whole code as well as in the main Area of Interest (AOI). The AOI
defines the region of the code that contains the atom or its corresponding clarifying version.
In our study, we selected six atoms that occur in real projects: Multiple Variable Assignment,
True or False Evaluation, Conditional Expression, Operator Precedence, Implicit Predicate,
and Augmented Operator. Each program containing one of these obfuscating atoms has a
functionally equivalent clarified version to be compared.

The addition of visual effort to the time and number of attempts measures contributed
with another dimension to better understand novices’ code comprehension and productivity.
With eye tracking, we could investigate 1) how much time the subjects spend in a specific
region, i.e., line or lines of the code that contain the atom and its clarifying version, 2) to
what extent the presence of the atoms impacts the fixation duration, fixations count, and
regressions count, and 3) how the presence of the atom impacts the code reading. These
results have implications for the research community. With the visual effort dimension, we
could see more nuances not observed in previous works. For instance, the region of the
code that contains the atom Multiple Variable Assignment required 38.6% less time than its
clarified version. Moreover, even perceiving the obfuscated and clarified versions as similar
in terms of difficulty, splitting the assignments between two lines to make the code clearer
led the subjects to make 60% more regressions inside the area of interest. By analyzing
the visual regressions horizontally and vertically, we observed that the subjects tend to read
the obfuscated code containing multiple variable assignments within the same line in a more
direct manner. Furthermore, there were more eye movement transitions between the two split
lines containing the assignments and the lines of code that later use them. Vertical regressions
are not possible on a single line of code; however, with eye tracking, we could measure the
extent of the impact of breaking the line on the vertical regressions and infer the visual effort
on doing so.

These nuances encourage researchers to consider eye tracking to evaluate atoms of con-
fusion with fine granularity. These results raise the awareness of educators. Introductory
courses should be more carefully designed not to use obfuscated code by Multiple Variable
Assignment, True or False Evaluation, or Operator Precedence. The code containing the
atoms showed a negatively significant impact on the subjects’ abilities to understand and
required more visual effort. The implication of these results for practitioners and language
designers’ community for Python is that they should be more careful when using construc-
tions to simplify the language that could possibly impair the novices’ abilities to understand
the code.

The main contributions of this study are:

— We present a controlled experiment using eye tracking with 32 novices in Python pro-
gramming language to evaluate six atoms of confusion (Section 4);

— We adapted a set of four atoms to Python language in addition of two atoms candidates
to the set (Section 4);

— We present and discuss the eye tracking method as a valuable method for evaluating
atoms of confusion (Section 5).

This article is organized as follows: Section 2 presents the motivating example. Section 3
presents the definition of the study and Section 4 presents the methodology. Section 5 presents
and discusses the results obtained and the interview with the subjects. Section 6 presents the
threats to validity, Section 7 presents the related work, and finally, Section 8 concludes the
study.

@ Springer

81 Page4of42 Empirical Software Engineering (2023) 28:81

2 Motivating Example

Atoms of confusion are prevalent in open-source projects in C language. Investigating the
presence of atoms of confusion in 50 C open-source software projects, Medeiros et al. (2019)
found more than 109,000 occurrences of 11 out of 12 atoms considered in their study. Some of
these projects, such as Apache, OpenSSL, and Python compiler, comprise more than 200,000
lines.

Atoms of confusion do occur in other languages as well, such as in Python, one of the
most used languages for programming nowadays.! For instance, in Fig. 1(a), we illustrate a
Conditional Expression found in the SwiftShader project for Python language and adapted
to a complete code snippet. Iterating over the list of elements, in Line 4, num receives the
value of elem if elem is equal to three. Otherwise, num receives one. If the implications
of the study of Gopstein et al. (2017) for C language are sustainable for Python as well, the
Conditional Expression in Line 4 impairs the code understanding of undergraduate students
because the assignment depends on the value of a variable, which can confuse the student
about the behavior of the code. Thus, the code in Fig. 1(a) can be obfuscated by the presence
of the atom.

To clarify this source of confusion, Medeiros et al. (2019) proposed an alternative solution
which we adapted for Python and presented in Fig. 1(b). In it, the line that contains the
atom becomes four lines of code, and the variable num is used twice, depending on the
condition of the if statement in line 4. Besides proposing a clarified version of the code
that contains the atom of confusion, Medeiros et al. (2019) also investigated the subjective
perception of experienced developers regarding the atom for the C language. Based on the
answers of the developers, the code with the atom did not influence the understanding of the
subjects negatively. In addition, the developers accepted pull requests with both obfuscated
and clarified versions.

Langhout and Aniche (2021) derived a set of atoms of confusion based on the work of
Gopstein et al. (2017), however, for Java language and performed a two-phase experiment
with students investigating accuracy and perception. Out of 14 atoms, four presented results
that were distinct from those presented in the study of Gopstein et al. (2017). One of these
atoms that presented distinct results was the Conditional Operator.

In a more recent qualitative study, Gopstein et al. (2020) raised a serious concern. They
pointed out that studies based on accuracy may be under-reporting the amount of misunder-
standing. Just because the accuracy of answers is affected negatively, it is not always due to
the factors the experiment was designed to test. Thus, we need to investigate this topic from
a finer-grained perspective.

Oliveira et al. (2020) performed a controlled experiment including students and profes-
sionals that compared the obfuscated and clarified version of the code with atom Conditional
Operator. However, Oliveira et al. (2020) investigated the objective performance of the
developers solving tasks with both versions using an eye tracker. Their study did not find
differences between the two versions regarding time, answer correctness, and visual attention
in the AOI, agreeing with the developers’ perception according to Medeiros et al. (2019).
However, Oliveira et al. (2020) did not consider the fixation duration, fixations count, and
regressions count to measure the extent of the impact of the atom on the visual effort of the
subjects. Neither investigated how the atom affected the way the subjects read the code by
distinguishing between horizontal and vertical transitions for all the subjects.

1 https://madnight.github.io/githut/#/pull_requests/2021/4

@ Springer

https://madnight.github.io/githut/#/pull_requests/2021/4

Empirical Software Engineering (2023) 28:81 Page50f42 81

1 elements = [7, 4, 3]
2 hum = @
L elements = [7, 4, 3] 3 for elem in elements:
2 num = @ 4 if (elem == 3):
3 for elem in elements: _—
. 5 num = elem
4 num = elem if elem == 3 else 1 .
rint(num) s .
> P 7 num = 1
g print(num)
(a)
(b)

Fig.1 Code adapted from SwiftShader with (a) obfuscated code containing the atom Conditional Expression,
and (b) the clarified version of the code

To contribute to this debate, we need more empirical evidence from a finer-grained perspec-
tive to better understand which atoms of confusion can affect code comprehension and to what
extent they do so. Since atoms are fine-grained code elements, coarser-grained approaches to
assess code comprehension, e.g., correctness in tracing tasks, may be insufficient to capture
their impact. A prior study showed the potential of eye tracking to investigate the effect of
small-grained code changes on code comprehension (da Costa et al 2021). An eye tracker
makes it possible to record the eye movements of human subjects and assess their visual
attention (Rayner 1998). The eye tracking data allowed researchers to mainly assess visual
attention and effort by investigating where the subject is fixating, the duration of their fixa-
tions, and how the fixations switched from one location to another (Sharafi et al 2015, 2020;
Busjahn et al 2011).

For instance, we simplified a sequence of fixations performed by two subjects in Fig. 2.
Each red circle represents a fixation that varies in size according to duration. The sequence
and direction of fixations are depicted in chronological order with a number inside. In the
obfuscated version (Fig. 2(a)), the subject makes eight fixations with six within the line of the
atom (Line 4). In the clarified version (Fig. 2(b)), the subject makes five fixations with four
of them within the atom region (Lines 4-7). Thus, the subject fixates more times and for a
longer time in the obfuscated version. To perform eight fixations, the subject performs seven

1 elements = [7, 44 3]
3 2 hum = 0
: Eiﬁmfngs = [Q) 3 for elem in elfements:
3 for elem in elements:? : 1§ (elez::=
4 (um—=—=lem—if>etlemp==3"clse| 7 N
s print(num) ° e"EE;s
P 7 num ={Z
8 print(num)

(a)
(b)

Fig.2 Code with eye gaze patterns for (a) obfuscated code containing the atom Conditional Expression, and
(b) the clarified version of the code

@ Springer

81 Page60f42 Empirical Software Engineering (2023) 28:81

transitions. A transition consists of any eye movement between two fixations in any direction
on the code. In the obfuscated code, we observe more visual transitions. In addition, the
subject regresses visually in the code more times in the obfuscated version. While transitions
are eye movements in any direction, regressions are a subset of transitions with a direction
opposed to the code writing system. In the obfuscated version, she goes back three times
in code, twice vertically examining the list, and one time horizontally to possibly inspect a
variable. In the clarified version, the subject goes back only once to the list, making a vertical
regression between lines. By examining their behavior at this small-grained level, we can
see nuances not observed in previous works. Thus, besides measuring time and number of
attempts, we investigate the effects of atoms of confusion on visual effort through fixation
duration, fixations count, and regressions count.

3 Study Definition

In this section, we present the definition of our study following the Goal-Question-Metrics
approach (Basili et al 1994). We compare programs containing obfuscating atoms with func-
tionally equivalent clarified versions of these programs for the purpose of evaluating how
the eye tracking method can be used to gain new insights with respect to code comprehen-
sion from the point of view of novices in Python programming language in the context of
tasks adapted from introductory programming courses.

We address five research questions (RQs). Our null hypothesis for each RQ is that there is
no difference between the obfuscated and clarified programs concerning the collected metric.

— RQ: To what extent do the atoms affect task completion time? To answer this question,
following prior studies (Gopstein et al. 2017; de Oliveira et al 2020), we measure how
much time it takes for the subject to specify the correct output of the task. In addition,
we measure how much time the subject spends in specific areas of the code.

— RQ: To what extent do the atoms affect the number of attempts? To answer this
question, also following prior studies (Gopstein et al. 2017; de Oliveira et al 2020), we
measure the number of attempts by counting the number of attempts made by the subject
until answering the task correctly.

— RQ: To what extent do the atoms affect fixation duration? To answer this question,
we measure the duration of each fixation found in the captured data of the novices. In the
code comprehension scenario, fixations with high duration have been associated with an
increased level of attention (Busjahn et al 2011).

— RQ: To what extent do the atoms affect fixations count? To answer this question, we
count all fixations found in the captured data of the novices. A high number of fixations
has been associated with a longer time to process and understand code phrases (Binkley
et al 2013), more attention to complex code (Crosby et al 2002), and more visual effort
to recall identifiers’ names (Sharafi et al 2012).

— RQ: To what extent do the atoms affect regressions count? Regressions in the context
of natural language reading may indicate that the reader did not understand what they
read (Rayner 1998). In the programming context, regressions have been used to assess the
linearity of code reading (Busjahn et al 2015). In an imperative programming language,
text lines may be read left-to-right, top-to-bottom, similarly to natural language. However,
there are constructs, such as loops, that require the reader to read bottom-to-top at some
points. To make the comparison fair, both obfuscated and clarified versions of the code
have loops that iterate over the same number of elements. Thus, to measure regressions,

@ Springer

Empirical Software Engineering (2023) 28:81 Page7of42 81

we compute the number of saccades with a direction opposed to the writing system, which
can happen from a line of code to a previous one or within the same line. We compute
the number summing all regressions across all attempts. To compare the programs, we
compute the median number of regressions on each program.

4 Methodology

In this section, we present the methodology of our study. We present the pilot study (Section 4.1),
experiment phases (Section 4.2), subjects (Section 4.3), treatments (Section 4.4), evaluated
atoms of confusion (Section 4.5), programs (Section 4.6), eye tracking system (Section 4.7),
fixation and saccades instrumentation (Section 4.8), and finally the analysis (Section 4.9).

4.1 Pilot Study

Before conducting the actual experiment, we conducted pilot studies with five human sub-
jects. The purpose was to refine the material, such as forms and programs, and evaluate the
experiment setup and design. We do not consider these five subjects in the analysis of the
results.

Our study material comprises a set of programs, a form for characterizing the subjects,
and questions for a semi-structured interview. To evaluate our set of programs, we tested
complete code snippets from introductory programming courses. We validated the level of
difficulty of the programs, code font size, font style, spaces between the lines of code, and
indentation. In addition, we estimated the average time of each task, which allowed us to set
a proper time limit for them. We found that each of our programs usually took less than two
minutes to be solved. We also refined the questions from the forms.

Since our subjects are native Brazilians, we designed our programs and the vocabulary to be
in the Brazilian Portuguese language, thus, avoiding problems in code comprehension given
the lack of knowledge of words in English, for instance. We evaluated a limited vocabulary
of words to name the variables in the programs. The identifiers were carefully selected,
discussed by the researchers, and designed to convey some but not all of the information. For
instance, we used words such as elements and items, which are general terms for lists of
elements; value, result, and total for receiving the result of operations and printing
the output; in addition, we used two abbreviated words such as el em and cont to specify an
element and a counter, which are commonly employed in the context of teaching introductory
programming languages. In specific programs, we also used words such as grade, bonus,
average, and final to convey meaning in the specific context.

While previous empirical studies used variables with meaningless single-letter names
(Gopstein et al. 2017, 2020; Langhout and Aniche 2021), we opted for names that conveyed
some but not all the information. Meaningless names can make the code intrinsically harder
to understand, and, therefore, differences are likely to be accentuated. However, in real code
reading tasks, developers are usually, though not always, faced with variable names that
use real words and have a meaning for them (Lawrie et al 2007). Therefore, following this
approach is arguably closer to a practical scenario.

Through the conduction of the pilot studies, we learned that, when studying in the context
of novices, we should provide the tasks in their mother tongue, otherwise comprehension
would be hampered by natural language barriers. In addition, we should evaluate tasks with
different levels of difficulty, which allows us to have a better set of tasks. Finally, we should

@ Springer

81 Page 80f42 Empirical Software Engineering (2023) 28:81

ask the subjects questions about the programs, identifiers’ names, and other suggestions to
refine the tasks.

The pilot studies allowed us to evaluate and refine our experiment design, which consists
of four phases: (1) Tutorial, (2) Warm-up, (3) Task, and (4) Qualitative Interview. We then
estimated an average of around 60 minutes for each subject to complete all phases. Next, we
describe these phases in detail.

4.2 Experiment Phases

As the subject enters the room, we introduce ourselves and explain the main idea of the
study, what data we are going to capture, and for what reasons. We asked each subject to
fill out a consent form, agreeing to participate in the study and permitting the researchers to
use the data for academic purposes only. Access to the collected data was restricted to the
researchers, and the identity of the subjects was kept in anonymity.

In phase one, we present a tutorial with explanations regarding the execution of the exper-
iment. All subjects reported being familiar with Python language, thus, we present some
snippets to ensure they were familiar with them. We instruct the subjects on how to sit prop-
erly on the chair in front of the camera and how to perform the task. In addition, we explain
that the subject has the option of quitting at any time and does not need to provide any
reasons for doing that. Once the subject is seated comfortably in front of the camera, we
explain how the camera calibration process works, and we proceed with a calibration of the
camera on each subject’s eye. In the camera calibration process, the subject looks at specific
locations on the screen indicated by the camera software, and the same software indicates
when calibration is successfully done. For some subjects, we had to re-calibrate the camera
until we gained confidence that the data captured by the camera was reliable.

In phase two, we simulate the execution of the experiment with a simple warm-up task.
While solving the task, we demonstrate how the subjects can specify the output, how the
subject can close their eyes for two seconds before and after solving the task, how we signal
the correct and incorrect answer, and how we signal the time limit. The idea is that the subject
can be comfortable with the experiment setup and equipment.

In phase three, we run the actual experiment with twelve programs, six of them containing
a distinct obfuscating atom each, and six functionally equivalent clarified programs. To avoid
learning effects, we use a Latin Square design (Box et al 2005) for the experiment. We explain
this in more detail in Section 4.4.

In phase four, we end the experiment with a semi-structured interview. The goal is to
obtain qualitative feedback on how the subjects examined the programs and their subjective
impressions. We go through each of the twelve programs and ask three questions: (1) How
difficult was it to find the output: very easy, easy, neutral, difficult, or very difficult? (2) How
did you find the output? (3) What were the difficulties you had, if any?

The coronavirus pandemic made the running of eye tracking experiments more challeng-
ing. It is worth mentioning that the health and safety of our subjects are of utmost importance
to us. We started running the experiment only after the end of the country’s social distanc-
ing measures, the infections were decreasing, and the number of vaccinated people was
increasing. All subjects had at least one dose of a COVID-19 vaccine. Still, we arranged an
environment with fresh air, and all subjects had Personal Protective Equipment (PPE) and
disinfecting supplies such as hand sanitizers and face masks. Since we had one subject at a
time, we limited the number of people in the environment to only two.

@ Springer

Empirical Software Engineering (2023) 28:81 Page9of42 81

In addition to taking care of the environmental condition for the subjects’ health, we were
also careful with environmental aspects to reduce noise in the data. For instance, we did not
use a swivel chair because, in previous pilot studies, subjects tended to move, which reduced
the precision of the eye tracking equipment. Despite the measures we have taken, obtaining
perfect data is virtually impossible, given camera limitations. Thus, we as researchers have
discussed the collected data, plotted, interpreted, and performed data correction by slightly
shifting chunks of fixations in the y-axis. We discuss in more detail this strategy in the threats
to validity section (see Section 6.1). The dataset generated during the current study is available
on Zenodo repository within a replication package also containing other materials (da Costa
et al 2023).

4.3 Subjects

Our study included 32 undergraduate students that we call “novices”. On average, our sub-
jects had 20 months of experience with programming languages, including Python, Java,
JavaScript, C, and C++. However, only in Python, the language in which the programs were
written, they had on average seven months of experience. Thus, we refer to our subjects as
novices in Python language. They were recruited from three universities in Brazil and were
invited mainly through e-mails or text messages. All subjects were Brazilian Portuguese
speakers enrolled in academic universities.

Regarding the sample size, we computed the number of subjects necessary to have a
minimal power of 0.8 with a significant level of 0.05 using the T-test sample size computation.
Our analysis revealed that we need 26 subjects in two samples to have a minimal power of
0.8 with a significant level of 0.05. Alternatively, since we have 32 subjects instead of 26,
our study can also detect a moderate effect size of 0.5 with a power of 0.5 and a significant
level of 0.05.

4.4 Treatments

Each subject has the task of examining 12 programs (P;—Pj7). To avoid the same subject taking
a program in obfuscated and clarified versions, causing learning effects, we have designed
24 distinct programs divided into two sets of programs (SP; and SP»), each containing 12
programs. A subject takes six obfuscated programs (O) of the first set, for instance, SP;, and
six clarified programs (C) of the second set, SP», as seen in Fig. 3. Both sets SP; and SP; have
the same atoms; however, they are instantiated in distinct programs with distinct outputs. The
obfuscated programs are our baseline group, and the clarified ones are the treatment group.

For instance, consider Fig. 4, which depicts how the atom Multiple Variable Assignment
(A1) is evaluated in the programs P and P7 of the set of programs SP; and SP,, respectively.
The first subject examines the program Py, which is the clarified version of a program con-
taining A1, present in the set of programs SP (Py - Aj - SP; - C). The same subject examines
another program, P7, which contains the obfuscating atom Aj, present in the set SPy (P7 -
A1 - SP, - O), which prints a distinct output from that one in SP; to reduce learning effects.
A similar idea applies to the second subject. The second subject examines P containing the
obfuscating atom A present in SP; (P; - A - SP; - O), and then the same subject examines
another program, P7, which is the clarified version of a program containing A1, present in
SP, (P7 - A1 - SP, - C). It is important to mention that being in the same set, the programs P
- Aj - SP; - O prints the same output of Py - Aj - SP; - C; however, the first program contains
the obfuscating atom and the second is a clarified version of the obfuscated program. Both

@ Springer

81 Page 10 of 42

Empirical Software Engineering (2023) 28:81

> —

U T U U T T
=) o IS @ N

IS @ N -

U T U U U T
o

Multiple Var.
Assignment
True/False
Evaluation
Conditional
Expression
Operator
Precedence
Implicit
Predicate
Augmented
Operator

Set of
Programs
1

Multiple Var.
Assignment
True/False
Evaluation
Conditional
Expression
Operator
Precedence
Implicit
Predicate
Augmented
Operator

Set of
Programs
1

C

o)

Multiple Var.
Assignment
True/False
Evaluation
Conditional
Expression
Operator
Precedence
Implicit
Predicate
Augmented
Operator

U T U W ©W T
273 0" e~

N

Multiple Var.
Assignment
True/False
Evaluation
Conditional
Expression
Operator
Precedence
Implicit
" Predicate
Augmented
Operator

T U T
© © ~

=]

T T T

12

Programs

Programs

Set of

o)

2

Set of

C

2

—~
P

Fig. 3 Structure of a Latin Square. Subject; takes six programs (P1—Pg), which are clarified versions (C) of
the programs containing each of the atoms. These programs are from Set of Programs 1 (SPy). Subject; also
takes six programs (P7—P12) from the Set of Programs 2 (SP,) comprising the obfuscated code (O) containing
the atoms. Subject; takes the complement to that

-2e

|

;e

[[
[[

[[

[[

P,-A,-SP-C P,-A,-SP,-O
nota = 3 nota = media = 4
final = nota ’Q © |||final = 5 QN
bonus = 6 X if (final > nota): Q1
if (bonus > final): media = nota + 3

temporario = final | [print(media) -

final = bonus — =

bonus = temporario | | |~ |~
print(final) - -

[[
[[
[[

[[

[[

P,-A -SP,-0 P,-A, -SP,-C
final = nota = 3 Qe media = 4 Q NV
bonus = 6 Q ,’: nota = media Q ,('
if (bonus > final): final = 5

temporario = final if (final > nota):

final = bonus - media = nota + 3 -

bonus = temporario — print(media) —
print(final) N |

Fig.4 The structure of the programs P and P7, whether obfuscated or clarified version, from SP; and SP;.
We present all the programs with the obfuscating atoms and the clarified versions of the programs from SP;
and SP; in our website (da Costa et al 2023)

@ Springer

Empirical Software Engineering (2023) 28:81 Page 11 0f 42 81

Table 1 Atoms evaluated in this study

Atoms Description Obfuscated Clarified
Multiple We can assignthe same valuetomulti- a = b = 1 b=1a-=>b
Variable ple variables by using = consecutively
Assignment
True or False Eval- Directly checking whether something (not a == b) (a !'= b)
uation is True versus checking whether its
negation is False
Conditional Sometimes called “ternary operator”, a = b if b if (b == ¢):
Expression an if statement can be writteninone == ¢ else d a = b else:
line with conditional expression a =d
Operator Prece- The precedence of the operators influ- a and b or ¢ (a and b) or c
dence ences the outcome. Depending on the
order, we might have different results
Implicit Predicate An expression that does not produce a (a % b) (a $ b !=0)
bool is used as a predicate
Augmented A single operator adds a valuetoa a += 1 a=a+1

Operator variable and updates it

programs are examined by distinct subjects as well. In all the programs, the subjects had the
task of specifying the correct output in an open-ended fashion, which means that each subject
has to read the entire code and find the output without being presented with multiple options.

4.5 Evaluated Atoms of Confusion

We evaluated six atoms of confusion, summarized in Table 1. We selected four of them,
namely Multiple Variable Assignment, Conditional Expression, Operator Precedence, and
Implicit Predicate from a popular catalog of atoms for C that was proposed by Gopstein (2017,
2018), and further adapted to Java (Langhout and Aniche 2021; Mendes et al 2021). We
selected atoms that varied in their characteristics, which we found relevant for our investi-
gation purpose, could be adapted for Python, and that were found in real projects. Gopstein
et al. (2017) studied the prevalence of the atoms of confusion in 14 large and significant
open-source projects. The four selected atoms in our study, based on their work, are among
the seven most found atoms in the evaluated projects.

In their catalog, Gopstein et al. (2017) exemplify Multiple Variable Assignment as V1 =
V2 = 3. This atom was originally named Assignment as Value. Nevertheless, in Python,
assignments are not expressions, and this pattern has different semantics. It means that the
same value is assigned to multiple variables. Due to the syntactic similarity and semantic
difference, we use it as an atom and name it Multiple Variable Assignment.

In addition to those four atoms, we selected two other patterns that are found in style guides
for Python language, namely True or False Evaluation® and Augmented Operator.> While
planning the experiment, we came up with distinct atom candidates that had the potential to
cause confusion. We gave preference to candidates commonly used in practice, comprising
distinct characteristics, and we had alternative ways to write them. However, the pilot tests
were crucial to determining what candidates would be more likely to cause confusion. We

B https://google.github.io/styleguide/pyguide.html
3 https://www.python.org/dev/peps/pep-0577/

@ Springer

https://google.github.io/styleguide/pyguide.html
https://www.python.org/dev/peps/pep-0577/

81 Page 12 of 42 Empirical Software Engineering (2023) 28:81

aimed to understand how our approach to evaluating those four atoms of confusion could be
applied to evaluate these two atom candidates. In general, we conducted pilot tests to atrive
at these six atoms through refinements, investigation of feasibility, and discussion among the
authors.

4.6 Programs

We selected code snippets by manually analyzing code repositories of programming activities
for introductory programming students. We mainly targeted GeeksForGeeks* and Leetcode,’
which are popular code bases with programming activities for practicing and coding inter-
views. Given that we focused on novices, we selected easy, small, and complete problems
and adapted them to the camera constraints. We present an example of our programs for each
atom of confusion in Fig. 5.

A prior systematic literature review on code comprehension conducted by Oliveira
et al. (2020) revealed that 70% of the studies in this domain involve asking subjects to
provide information about the code, such as predicting the output. Following this commonly
adopted methodology, we provided a code snippet to the subjects and asked them to specify
the correct output. We are aware of other types of tasks in code maintenance and evolution,
such as adding functionality, refactoring the code, and fixing bugs. However, we based this
study on the assumption that the subject will need at least to know the code output or the
state of the variables to perform these other activities.

We used programs with less than ten lines of code to fit completely on the screen. All the
programs are free of syntactic errors. We used simple constructions that commonly occur in
many programming languages. We ensured that each program contains exactly one or zero
instances of one atom, whether the obfuscated or clarified version. Each program prints only
one correct output given a set of possible outputs. We avoided letting the programs present
only two possible outputs, even though, given the logic of the code, the code containing the
Conditional Expression (Fig. 5(c)) and Operator Precedence (Fig. 5(d)) do that. We made
sure that each version of the program, obfuscated and clarified one from the same set of
programs, presented the same output. For instance, the right-hand side and left-hand side of
Fig. 5(a). It is important to stress that, due to the use of a Latin Square design, no subject
was presented with the clear and obfuscated versions of the same program. The programs
followed Consolas font style, font size 16, line spacing of 1.5 inches, and eight white spaces
of indentation.

4.7 Eye Tracking System

We used the Tobii Eye Tracker 4C in our experiment with a sample rate of 90 Hz. The
calibration of the eye tracker followed the standard procedure of the device driver: while
calibrating, the subject is asked to look at five points appearing one at a time randomly,
twice, then, at the final stage, eight points appear for checking the calibration, three to the
left, two in the middle, and three to the right. The eye tracker was mounted on a laptop screen
with a resolution of 1366 x 720 pixels, a width of 30.9 cm, and a height of 17.4 cm at a
distance of 50-60 cm from the subject. The code tasks were displayed as an image in the
full-screen mode, but no Integrated Development Environment (IDE) was used, nor was a

4 https://www.geeksforgeeks.org/
5 https://leetcode.com/

@ Springer

https://www.geeksforgeeks.org/
https://leetcode.com/

Empirical Software Engineering (2023) 28:81 Page 130f42 81

Multiple Variable Assignment

final = nota = 3 nota = 3
bonus = 6 final = nota

if (bonus > final): bonus = 6

True or False Evaluation

valor = @

valor = @
cont = 1 cont =1
while (cont <= 4):

if (not cont == 3):

while (cont <= 4):

if (cont 1= 3):

temporario = final| if (bonus > final): |

final = bonus temporario = final valor = valor + 1 valor = valor + 1

bonus = temporario final = bonus cont = cont + 1 cont = cont + 1

print(final) bonus = temporario print(valor) print(valor)

print(final)

(a) SP, - Obfuscated and clarified version (b) SP, - Obfuscated and clarified version

Conditional Expression Operator Precedence

elementos = [7, 4, 3] pontos = 15 pontos = 15

elementos = [7, 4, 3]

resultado = @

resultado = @

for elem in elementos:

|if (False and True or True):|

|if ((False and True) or True):

media = pontos/3

media = pontos/3

for elem in elementos: if (elem == 3): else: else:
resultado = elem if elem == 3 else 10 resultado = elem media = @ media = @
print(resultado) else: print(media) print(media)
resultado = 10

print(resultado)

(c) SP, - Obfuscated and clarified version (d) SP, - Obfuscated and clarified version

Implicit Predicate Augmented Operator

elementos = [7, 12, 10] elementos = [7, 12, 18] elementos = [60, 30, 40]

limite = 50

elementos = [60, 30, 40]

valor = @ valor = @ limite = 50

for elem in elementos: total = @ total = @
[if (clem % 5): ([

valor = valor + 1

for elem in elementos:
if (elem% 5 1= 0): |

for elem in elementos: for elem in elementos:

if (elem < limite):
total += 1 | |

valor = valor + 1 if (elem < limite):
total = total + 1

print(total)

print(valor) print(valor)

print(total)

(e) SP, - Obfuscated and clarified version (f) SP, - Obfuscated and clarified version

Fig.5 Examples of programs from the set of programs SPy and SP, with obfuscated (left-hand side) versions of
the code containing the atoms Multiple Variable Assignment, True or False Evaluation, Conditional Expression,
Operator Precedence, Implicit Predicate, and Augmented Operator, and their respective clarified (right-hand
side) versions. Shaded areas represent the AOIs, which are the code lines in which both obfuscated and clarified
versions differ

number for the lines. From this distance, we compute an accuracy error of 0.7 degrees which
translates to 0.6 lines of inaccuracy on the screen, considering the font size we used and
the line spacing. The line spacing was tested in the pilot study to be sufficiently large, so
we could overcome the eye tracker accuracy limitations. For processing the gaze data, we
implemented a script in Python, which allowed us to analyze and collect the metrics.

4.8 Fixation and Saccades Instrumentation

During a fixation, our visual attention is focused on a specific area of the stimulus and
triggers cognitive processes (Just and Carpenter 1980). Thus, a fixation can be understood
as the stabilization of the eye on part of a stimulus for a period of time, and the rapid
eye movements between two fixations are called saccades (Salvucci and Goldberg 2000;
Holmgyvist et al 2011). The visual stimulus can be any object, for instance, a piece of source
code, over which the subject performs a task and whose visual perception by the subject
triggers cognitive processes and actions, such as edit of a statement in a source code file
(Sharafi et al 2020).

@ Springer

81 Page 14 of 42 Empirical Software Engineering (2023) 28:81

There is no standardized threshold in the literature to specify the exact period of time for a
fixation because duration usually depends on the processing demands of the task. However, we
have some guidelines popular among eye tracking researchers. Salvucci and Goldberg (2000)
define a fixation as the eye being stable for a period of time between 100 and 200 ms, while
according to Rayner (1998), our eyes remain relatively still during fixations for about 200—
300 ms when reading natural language text. Thus, after analyzing our programs, we used
200 ms as our threshold. Eye tracking researchers usually use an algorithm to classify gaze
samples into fixations based on this threshold.

In this study, we used a Dispersion-Based algorithm to classify the fixations. In particular,
we used the Dispersion-Threshold Identification (I-DT) (Salvucci and Goldberg 2000). We
also classified gaze samples as belonging to a fixation if the samples are located within a
spatial region of approximately 0.5 degrees (Nystrom and Holmqvist 2010). This region
corresponded to 25 pixels in our screen.

4.9 Analysis of the Results

From the total of 384 programs, the subjects solved 329, corresponding to 85.6% of the
programs. This set of solved programs includes programs that were solved either in the
first attempt or after many attempts. However, both were solved within the time limit. We
based our analysis only on these solved programs within the time limit. From this total, 160
programs were obfuscated, and 169 were clarified.

Due to technical issues with the camera, we missed the data for two programs. They consist
of only 0.5% of the data. Since they were not associated with correct or incorrect answers,
and as a requirement of the statistical analysis based on the Latin Square design, we decided
to impute them. Aiming to impute missing data for two programs, we used the Multivariate
Imputation by Chained Equations (MICE) method implemented as a mice package in R for
multiple imputations, namely Predictive Mean Matching (PMM). The PMM method uses
the predictive mean matching (Jadhav et al 2019) to impute univariate missing data. This
method performs better when the data sample size is sufficiently large (Kleinke 2017), which
was our case.

The eye tracker equipment has limitations, such as calibrating the eyes of the subjects. We
carefully calibrate and even re-calibrate when necessary. However, we still saw a need for an
adjustment in the gaze points. We adopted the following strategy. We selected programs with
a long horizontal line of code, specifically with lines that the subjects mentioned they were
looking at in the interviews. Then we systematically analyzed whether the fixations plotted
and heatmaps were on white spaces close to that long line, which could suggest a need for
an adjustment. For certain subjects, the heatmap revealed a red color over a blank area not
touching the code. Similarly, the plot of the fixation points sometimes revealed points over
blank areas. For these cases, a small adjustment was sufficient to get the data corrected. The
error for these cases was systematic, meaning that all the fixations for a particular program
received the same adjustment. We discuss involved threats in Section 6.1.

Once we had collected and adjusted our data, we performed a statistical analysis to test
our null hypotheses. We determine a significance level of 0.05, which means a 5% risk of
concluding that there is a difference when there is no actual difference. Whenever our p-value
is equal or inferior to 0.05, we reject the null hypothesis that there was no difference between
the median of the treatments.

We used statistical tests to compare two groups regarding the time, number of attempts, and
visual metrics. The obfuscated programs are the control group, and the clarified programs are

@ Springer

Empirical Software Engineering (2023) 28:81 Page 150f42 81

our treatment group. Following a practical guide on eye tracking studies (Sharafi et al 2020),
to test if data were normally distributed, we used Shapiro-Wilk Test (Shapiro and Wilk 1965).
For the normally distributed data, we performed the parametric ¢ test for the two independent
samples. The ¢ test can be used to verify whether there is a statistically significant difference
between two groups (Sheskin 2020; Sharafi et al 2020). However, before performing the ¢
test, we verify whether the variances of the two groups were equal (Sheskin 2020). For the
data that do not follow a normal distribution and that could not be normalized, we used the
non-parametric test Mann-Whitney, also known as Wilcoxon test, which can be applied to
these specific situations (Sheskin 2020; Sharafi et al 2020). The mean value in the data might
not be appropriate to characterize the fixations because the central tendency might depend
on some very high values (Galley et al 2015). Thus, we based on the median as a measure
of central tendency. To compare the six levels of atoms (six groups), we used ANOVA for
normal data and Kruskal-Wallis for not normal data. We used the post-hoc Dunn’s Test with
p-values adjusted with the Bonferroni method to identify which groups were different.

To identify code reading patterns in our data, we adopted the following methodology: we
identified a set of regions in the code, such as variable definition, loop condition, if condition,
and others. Then, we defined these regions in pixels on the images of the tasks. We defined
the regions inside the code according to a previous guideline (Holmqvist et al 2011). The
regions were driven by our hypothesis; their positioning was precisely defined with 10 pixels
to the right, left, top, and bottom, considering the camera limitations and so that we could
have a margin between the regions, and the regions did not overlap. In addition, we defined
the white-space as a region so that we could be aware of any threat to validity given the
camera limitations. Using the chronological order of the fixations and their positions, we
identified a sequence of visited regions for each participant. We then built a big picture of
the sequences by simplifying repeated transitions from one region to the same region. We
make the sequences and the images of the tasks with the regions identified available in our
supplementary material (da Costa et al 2023).

5 Results and Discussion

In this section, we present our results for each atom and discuss them. We present the
Multiple Variable Assignment (Section 5.1), True or False Evaluation (Section 5.2), Con-
ditional Expression (Section 5.3), Operator Precedence (Section 5.4), Implicit Predicate
(Section 5.5), and Augmented Operator (Section 5.6). We also present the coding of the
subjects’ answers (Section 5.7).

5.1 Multiple Variable Assignment

In Fig. 6, we depict the obfuscating atom Multiple Variable Assignment on the left-hand
side and the clarified version on the right-hand side. They differ in that the clarified version

Obfuscated Clarified

final = nota = 3 nota = 3
final = nota

Fig.6 Obfuscating atom Multiple Variable Assignment and clarified version

@ Springer

81 Page 16 of 42 Empirical Software Engineering (2023) 28:81

has two lines of code in the AOI, and one variable is repeated. In Table 2, we consider two
perspectives of the metrics, one examining only the AOI and the other examining the whole
code. While the time in the code, for instance, consists of the time one requires to examine
and solve the task regardless of the fixations made, the time in AOI consists of the time
examining only the region of the atom.

Concerning our RQj, the subjects spent more time in the AOI of the clarified version.
The clarified version has one more element to observe and one line to go back, which can
explain the need for more time, more fixations, and more regressions examining. To better
understand it, we investigated it by distinguishing between a regression to a previous line,
vertical regression, and a regression within the same line, horizontal regression.

Concerning our RQs, the clarified version presented slightly more vertical regressions in
the code and fewer horizontal ones when considering the two sets of programs. In Fig. 7,
we depict an example of the distribution of the regressions for two subjects who examine a
program of SP;. We selected subjects whose patterns hold for all subjects. One takes the
code with the atom Multiple Variable Assignment, and the other takes its respective clarified
version of the code. In the graph, each edge represents a regression with a direction to a
previous line of code or to the same line. Each node represents a line of code. The grayscale
intensity of the edge represents the number of times such regression was repeated. Adding
one more line might explain the increase in the vertical regressions. The reduction in the
number of horizontal regressions in the AOI might be because, in the clarified version, we
have two lines, but they are shorter compared to the obfuscated version. When we consider
the sum of vertical and horizontal regressions, the clarified version presents more regressions.

To deepen our analysis and look for reading patterns in our programs, among our subjects,
we identified a set of regions in the code as in Fig. 8. The colors distinguish between dis-
tinct regions and are identified by names such as Assignedvalue, IfCondition, and
PrintOutput. We analyzed the chronological order of the regions fixated by the subjects.

In the clarified version, the subjects go back and forth between the two lines to observe
the same variable. Half of the subjects make the transition Grade — GradeAssignment
16 times. Half of the subjects also go back making the transition GradeAssignment
— Grade 12 times. This may indicate confusion, given that the subjects have difficulty
associating the same variable between different lines or need to remember the assigned
value. Of the two subjects who failed to solve the task, on average, they went back and
forth between Grade and GradeAssignment six times. Most of the subjects make
the transition FinalAssignment— GradeAssignment in the clarified version more
than necessary. The subjects may forget or make incorrect associations with the variable
FinalAssignment, which is used five times in the code, and, in one of them, the variable
is updated. When the task requires more use of temporary memory, the subjects need to go
back in the code to refresh their memory. On average, 52% of subjects return from the lines
that later use FinalAssignment to it.

We used a five-point scale to assess the subjects’ opinions concerning how difficult they
perceived the programs to be solved. We asked the subjects to rate each program individually,
whether they found it very easy, easy, neutral, difficult, or very difficult. In Fig. 9, we compare
their perceptions with obfuscated and clarified versions of the code containing the evaluated
atoms.

The subjects perceive the obfuscated and clarified versions of the code as similar in
terms of difficulty, according to Fig. 9(a). We observe a discrepancy between how subjects
subjectively perceive the difficulty of the task and their performance on it. Such disagreement
can be explained by the fact that self-evaluation of difficulties can be an intrinsically difficult
activity. Not all subjects might be aware of their own effort while performing a task, such

@ Springer

Page 17 of 42 81

Empirical Software Engineering (2023) 28:81

e/u S 40] gerd 01¢ 0°LI - 0000 Jurd 09 00 unoy 39y “MAA

- 200 89pt 0vl 09 - 100 gyt 08 0l uno) 39y “z1oy
e/u 8¢'0 981t 0S¢ 0y e/u 1.0 991 0rl 0°SI uno) "8y
e/u 120 et 08L 0°L0T e/u €€°0 soet 0T 0°6S unoy) "Xty uorssaxdxy
e/u 81°0 gret 69T e e/u 70 gget 01 681 (00s) uoneI(y "XIJ [euonIpuo)
e/u 90 88t PIT Tl e/u e/u v/u v/u e/u sydwony
e/u ¥T0 et L9 9'IL e/u ¥8°0 ey 1ce L o€ (09s) Qi
e/u L80 8¢t 091 0Ll e/u e/u e/u 00 00 unoy 30y “MAA
e/u 850 rogt 0°SI (394 - €00 Lyt 0S $6 uno) '8y “ZLoH
e/u ¥L°0 9srt 0S¢ (17 ¥€°0- €0°0 Lyt 0S S6 wno) "8y uonenyeA
e/u LLO 828 06L 026 e/u TT0 78t 08¢ S0 unoy) "Xy osTe]
e/u 180 Leet 0'LT v'se e/u L¥0 Ll 901 101 (00s) uonem(y ‘X1 Jo anif,
e/u 9€°0 96! LET STl e/u e/u e/u e/u e/u sydwony
e/u €6°0 g8t 6'SS 19 e/u ¥T0 96171 €91 €0c (00s) oy,
e/u wo sed Sl 0¥l - 0000 Jurd 0C 00 unoy ‘S0Y "MoA
e/u S6'0 oert 001 SIl e/u 86°0 00zt 0C ST uno) '8y “ZLoH
e/u L90 8¢t 0T 09 620 $0°0 0094 (VR4 ST unop) "5y ewuSISSY
e/u 980 00 $'6S $'6S e/u LT'0 8¢y 081 0°€l noY "Xy Q[qeLrep
e/u €6°0 19t 781 v'6l e/u S1°0 6T I's (44 (09s) uonem(y "Xig srdnmy
e/u 91°0 001t LOT 611 e/u e/u e/u e/u e/u sidwony
e/u S8'0 9Ll (5% 47 'y €0 £€0°0 rogd 601 €8 (00s) o,
sq Ad % dd o) 0 sq Ad % dd o) 0 SOOI Swoyy

9poD dyy uf IOV 2 uf

UBAW) UO Paseq ST yarym ‘sydurane 10y 1deoxa ‘Aouapuo) [B1UD JO INSEIUI B SB URIPAW JY) UO PIseq I
pue O suwnjo)) “(BI[Ap S, JFI[D) AZIS 10912 = ST ‘dneA-d = AJ ‘90UdIIp 28ejudorad = (I ‘9pod PIYLIB[O =) $9p0d Pajedsnjqo = () ‘SWOJe [[B I0J SOLIIW [[B I0J SINsAY ¢ 3|qel

pringer

Qs

Empirical Software Engineering (2023) 28:81

81 Page 18 0f 42

(S0°0 > onyea-d) eouedoyTUSIS [EOTISTIE]S 9JLIIPUT ABIP[Oq UT J0s sanfeA-d

e/u L0 ge1t 011 0°€l e/u e/u e/u 00 00 uno) "5y MeA
/U 80°0 geet 09 06 e/u 9¢'0 00sT 01 0 unop) ‘5o ZLoH
e/u 1€°0 16t O°LT 0t e/u 9€°0 00s?t 01 07T uno) "oy
e/u 170 8811 SLy $'8¢ /U (440] roet 08 Sl1 unoY "Xuq JIoyeredQ
e/u 620 g6t v'91 0T e/u 600 reet 8T vy (00s) uoneIN("X pajuswsny
e/u 69°0 19d 0Tl €'l /U /U /U /U e/u sidwony
/U 0€°0 00ct $'o¢ LSy /U 81°0 9Lt 6°S TL (00s) ouury,
e/u €10 LXadl 0TI 01e e/u e/u e/u 00 00 uno) "5y MeA
e/u 0 ovet Sl 0ce v/u 88°0 00zt 08 00T unop) "8y ZLOoH
e/u 920 Lget $'8T 00v e/u 88°0 00zt 08 001 uno) ‘oY
e/u 820 oset S¥9 098 /U Sv°0 gzet 062 0er unoY "Xuq EILATIEMR |
e/u €€°0 zoet 6'ST I's¢ e/u wo sret 011 191 (00s) uoneIN("X yordug
e/u 91°0 6917 81'1 W /U /U /U /U e/u sidwony
e/u 01°0 reet 9Ly TIL /U 620 et €L 9T (008) ouury,
e/u 60°0 Liet 06 SII e/u e/u e/u 00 00 uno) "5y MeA
- $0°0 ¢set 00T 01 - 200 00s?t 0S 001 uno) "5y "ZLoH
e/u 900 ovet 061 0'sC €€°0- 700 00s?t oS 00T uno) ‘89y
e/u LO0 Lyt 0°6¥ S'LS T€0- 70°0 ceet 0ce gTe WNOD) "X Q2UPAIAI
e/u 80°0 rvrt 'Ll 661 €€°0- 20°0 rvet €L 011 (00s) uonEIN("X IoyeredQ
90~ »—0IXT ¢'8ct 9I'l 91 /U e/u /U e/u e/u sidwony
620 $0°0 roct L€ Ser LEO- 600°0 98¢t Tl 0T (00s) aury,
sd Ad % dd o) 0 sd Ad % ad 0 0 SOLIOI Swory
apoD oy uf 10V oy uf

panunuod g ajqeL

pringer

Ns

Empirical Software Engineering (2023) 28:81

Page 190f42 81

Obfuscated
1 final = nota = 3

2 bonus =6

3 if (bonus > final):

4 temporario = final
5 final = bonus
6 bonus = temporario

7 print(final)

(1
2 final =

Clarified

nota = 3
nota
3 bonus = 6

4 if (bonus > final):

5 temporario = final
6 final = bonus
7 bonus = temporario

8 print(final)

Regressions count

] |]
12345678

Fig. 7 Regressions graph with two subjects visually regressing horizontally and vertically while examining
the code, one with the code containing the obfuscating atom Multiple Variable Assignment and the other with

the clarified version of code

Obfuscated version

Clarified version

final = nota = 3
bonus = 6
if (bonus > final):

temporario = final

final = bonus
bonus = temporario
print(final)

[JWhiteSpace
FinalAssignment
GradeAssignment
AssignedValue
BonusVariable
IfCondition
BeginSwapping
MiddleSwapping
EndSwapping
PrintOutput

nota = 3
final = nota
bonus = 6

if (bonus > final):

temporario = final
final = bonus
bonus = temporario

print(final)

[JWhiteSpace
Grade
AssignedValue
FinalAssignment
GradeAssignment
BonusVariable
IfCondition
BeginSwapping
MiddleSwapping
EndSwapping
PrintOutput

Fig. 8 Set of regions inside the code version with Multiple Variable Assignment atom and in the code with

the clarified version of code

Obfuscated version

M Very easy Easy Neutral

Multiple Var.
Assignment

True or False
Evaluation

Condition
Expression

Operator
Precedence

Implicit
Predicate

Augmented
Operator
0%

25% 50%

Difficult [l Very difficult

75%

100%

Clarified version

B Very easy Easy Neutral

Multiple Var.
Assignment

True or False
Evaluation

Condition
Expression

Operator
Precedence

Implicit
Predicate

Augmented
Operator

0% 25%

50%

Difficult [l Very difficult

75% 100%

Fig.9 Perception of difficulties with obfuscated code containing the evaluated atoms and their clarified version

@ Springer

81 Page 20 of 42 Empirical Software Engineering (2023) 28:81

as going back and forth in the code or remembering the variables’ intermediate states. In
this scenario, we triangulate the subjective feedback with the other perspectives to have
a better comprehension of the phenomena of comprehension. Regarding the difference in
time in the AOI and in the Code, we observed that, in the clarified version, the subjects
mentioned difficulties with memorizing variables and difficulties with swapping values in
the if condition. This might indicate that repeating the variable in the atom region may
influence both their opinions and the variables’ associations in the swapping region code
outside AOIL.

We conducted semi-structured interviews mainly to identify the subject’s difficulties,
better interpret the results, and perform minor sanity tests. In the obfuscated version, the
subjects mentioned the issues: “first line is confusing”, “first line caused me trouble”, “first
line is hard”, “many variable assignments”, and “beginning strange”. In the clarified version,
the subjects mentioned: “many variables” and “if is confusing”. As a takeaway, in the
obfuscated version, the sources of confusion concentrate on the first line with the atom,
while in the clarified version, they concentrate on the number of variables.

Answering our RQs, in the clarified version of code with Multiple Variable
Assignment, there is an increase in the time in the AOI (RQ;) and in
the number of vertical regressions between the two lines (RQs). In the
obfuscated version, subjectively, the sources of confusion concentrate on
the first line with the atom, while in the clarified version, they concentrate
on the number of variables.

5.2 True or False Evaluation

In Fig. 10, we depict the obfuscating atom True or False Evaluation on the left-hand side and
the clarified version on the right-hand side. The clarified version removes the not operator
and replaces the equality operator (“==") by a not equals (“! ="") operator.

Even though the time (RQ;) and the number of submissions (RQ;) presented a slight
impact, the most impacted metrics were the visual metrics, especially the regressions count
(RQs). In terms of visual regressions, the clarified version reduced the median number of
horizontal ones in the AOI as well as the number of entries and exits from the AOI. For
instance, the obfuscated version of the program has 50% more horizontal regressions in the
code than the clarified one. Within the AOI, the obfuscated version has almost twice as many
horizontal regressions. In Fig. 11, we depict an example of the distribution of the regressions
of two subjects on a program of SP, with the code containing the True or False Evaluation and
the clarified version. Besides having more elements to observe horizontally, in the obfuscated
version, the subjects have to check whether the right-hand side and the left-hand side are equal

Obfuscated Clarified
if (not cont == 3): if (cont != 3):

Fig. 10 Obfuscating atom True or False Evaluation and clarified version

@ Springer

Empirical Software Engineering (2023) 28:81 Page 21 0f 42 81

Obfuscated Clarified

Regressions count
1 valor = @ 1 valor =0]

12345678

2 cont =1 2 cont =1

@ while (cont <= 4): 3 while (cont <= 4):
Q if (not cont == 3): 4 if (cont != 3):

@ valor = valor + 1 5 valor = valor + 1
6 cont = cont + 1 6 cont = cont + 1

7 print(valor) 7 print(valor)

Fig. 11 Regressions graph with two subjects visually regressing horizontally and vertically in the code, one
with the obfuscated version and the other with the clarified version of the code containing the atom True or
False Evaluation

and then apply the not operator. An interpretation for the same-line regressions for non-AOI
lines in only the obfuscated version is that the variable in the AOI depends on the repetitive
control structure of the loop before, which affects the incrementing variable outside the AOI
after. If the AOI is confusing, one can make more same-line regressions in regions outside
the AOI as well.

In terms of visual transitions, the subjects present a similar number between the AOI
and the rest of the code for the obfuscated code containing the True or False Evaluation
and the clarified version. We distinguish between transitions and regressions in the sense
that transitions are eye movements with any direction in the code, while regressions are a
subset of transitions with a direction opposed to the code writing system. While regressions
are represented as the backward arrows in Fig. 11, a transition describes eye movements
represented as forward and backward arrows such as in Fig. 12. We depict the transitions in
the transition graphs because we aimed to examine how many times the subjects enter and
exit the AOI. The median number of times the subjects visually enter the AOI is the same
for both versions. Nevertheless, in the clarified version, the subjects transition more with the
upper part of the code. In Fig. 12, we give an example of these transitions with two subjects
who examine a program of SP, with True or False Evaluation, one subject in each version.
To convey the concept more concisely, the transitions between the lower part of the code and
the upper part of the code are not present in the graph. In the obfuscated version, the subjects
reported difficulties with the operator not, and the subject seems to visit more the lower
part to make sense of it. In the clarified version, the subjects mentioned the increment and
the loop, and they seem to visit the upper part with the while statement more times.

In Fig. 13, we depict the True or False Evaluation atom and its clarified version.
We observed that for the obfuscated program, the addition of the particle not changes
the visual dynamics and possibly the way of understanding. For instance, the region

Obfuscated Clarified)
Regressions count
1-3 # MORE CODE 1-3 # MORE CODE EEE
} 12345678
4 >if (not cont == 3): 4 if (cont != 3):
5-77 4 MORE CODE 5-7 # MORE CODE

Fig. 12 Transitions graph with two subjects visually entering and exiting the AOI in the code, one with the
obfuscated code containing the True or False Evaluation and the other with the clarified version of the code

@ Springer

81 Page 22 of 42 Empirical Software Engineering (2023) 28:81

Obfuscated version Clarified version
valor = @ [JWhiteSpace valor = @ [JWhiteSpace
ValueAssignment ValueAssignment
cont =1 ContAssignment cont =1 ContAssignment
while (cont <= 4): WhileLoop while (cont <= 4): WhileLoop
- IfCondition = IfCondition
if (not cont == 3): BooleanEvaluation if (cont != 3): BooleanEvaluation
valor = valor + 1 [OperandValue valor = valor + 1 [7/OperandValue
ConditionTrue ConditionTrue
cont = cont + 1 Contlteration cont = cont + 1 Contlteration
print(valor) PrintValue print(valor) PrintValue

Fig. 13 Set of regions inside the code version with True or False Evaluation atom and in the code with the
clarified version of code

BooleanEvaluation is crucial for the understanding of the programs in both versions,
however, the subjects look at this region 45% fewer times in the clarified version com-
pared to the obfuscated one. In addition, they regress to regions ContAssignment and
WhileLoop about 50% fewer times. They also look at the region ConditionTrue 28%
fewer times in the clarified version, which depends on the correct interpretation of the region
BooleanEvaluation. Thus, we observe less effort from the subjects in moving between
different regions to solve the tasks in the clarified version. While some subjects mentioned
having difficulties understating the not particle in region BooleanEvaluation in the
obfuscated version, none of them mentioned making wrong associations regarding the order
of precedence.

For the obfuscated version of the atom True or False Evaluation, adding the particle not
before the variable followed by equals might lead to confusion. The subjects might not be
certain whether the not negates the variable or the expression of the variable followed by
equals and a number. For instance, consider the transitions exhibited by the subjects in Fig. 14.

In the gaze transitions, we observed several transitions going forward and backward
between not and the variable, which may be associated with confusion. Many subjects
reported being confused about the not particle, including Subject 9, who needed two sub-
missions to solve the task and presented time in the AOI twice the average. Confusion can
be due to the lack of clear understanding about whether the variable or the equals operator
gets negated. On the other hand, the clarified code with True and False Evaluation seemed
to ease the operators’ understanding. For instance, consider the transitions exhibited by the
subjects in Fig. 15.

We observed fewer transitions going forward and backward in the expression. When we
remove the not particle to clarify the code, the reading seems to follow the flow of the code
better, decreasing the number of backward transitions one needs to make in the same line.
Indeed, Subject 6 reported that “it was clear that the if statement was executed only once”
and her time in the AOI was almost half of the time of the average of the subjects with
the obfuscated version and the number of regressions about one-third of the average of the
subjects with the obfuscated one.

1f (”@’*’* 3)t et - 3): if (it e—3):
(a) Transitions of Subject 1~ (b) Transitions of Subject 3 (c) Transitions of Subject 9

Fig. 14 Sequence of transitions of subjects on the obfuscated code version with True or False Evaluation

@ Springer

Empirical Software Engineering (2023) 28:81 Page 23 of 42 81

if (comeiy 3): m@wm if dcomtmEs) .

(a) Transitions of Subject 6 (b) Transitions of Subject 10 (c) Transitions of Subject 12

Fig. 15 Sequence of transitions of subjects on the clarified code version with True or False Evaluation

In the obfuscated version, the subjects mainly mentioned the following issues: “difficulties
with not”, “not made it complicated”, “didn’t understand not”, “not is strange”, “if
complex”, and “not is confusing”. For the clarified version, they mentioned: “increment
confusing”, “difficulties with 1 £”, and “confused the loop”. As a takeaway, in the obfuscated
version, the sources of confusion are more concentrated in not, while in the clarified version,

the sources are more diverse.

Answering our RQs, in the clarified version of code with True or False
Evaluation, there is a reduction in the number of horizontal regressions
in the AOI (RQs). The additional metrics in RQ;-RQ4 did not present
a substantial impact. In the obfuscated version, subjectively, the sources
of confusion are more concentrated in not, while in the clarified version,
the sources are more diverse.

5.3 Conditional Expression

In Fig. 16, we depict the obfuscating atom Conditional Expression on the left-hand side, and
the clarified version on the right-hand side. They differ in that the clarified version has three
more lines of code in the AOI than the obfuscated version and more elements, such as the
repetition of one variable. Concerning the time (RQj) and number of submissions (RQ3), we
observed a slight impact. However, with the clarified version, we observed substantial reduc-
tions in the duration of the fixations, in the fixations count, and in the horizontal regressions
count (RQ3-RQs).

We investigated all regressions from anywhere in the AOI to the for loop in both versions.
We found that the subjects often regress from the AOI to the region ForLoop. Indeed, they
regress 80% more times in the clarified version than in the obfuscated one. In the obfuscated
version, most of the regressions go from region ConditionTrue to the ForLoop, while
in the clarified version, most of them go from the region TfCondition to the ForLoop.
We learned that most regressions to the ForLoop come from its subsequent regions in both
versions. On the other hand, in the clarified version, the subjects make fewer regressions
between the regions inside the AOI. In the clarified version, they return 31% fewer times
between the regions compared to the obfuscated.

Concerning the number of submissions (RQ>) and the correctness of the answers, the
obfuscated version was associated with more programs that were not solved. With the obfus-

Obfuscated Clarified
resultado = elem if elem == 3 else 10 if (elem == 3):
resultado = elem
else:

resultado = 10

Fig. 16 Obfuscating atom Conditional Expression and clarified version

@ Springer

81 Page 24 of 42 Empirical Software Engineering (2023) 28:81

Obfuscated version Clarified version
elementos = [7, 4, 3] [JWhiteSpace elementos = [7, 4, 3] [JWhiteSpace
resultado = @ ListOfValues resultado = © ListOfValues
. ResultAssignment ResultAssignment
for elem in elementos: ForLoop for elem in elementos: ForLoop
resultado = elem if elem == 3 else 1@ | ConditionTrue if (elem == 3): IfCondition
A IfCondition ConditionTrue
print(resultado) Else resultado = elem g
ConditionFalse else: ConditionFalse
PrintResult PrintResult
resultado = 10
print(resultado)

Fig. 17 Set of regions inside the code version with Conditional Expression atom and in the code with the
clarified version of code

cated version, seven programs were not solved, while in the clarified one, only two were. For
instance, concerning the program in Fig. 17, a subject who could not solve it exhibited the
sequence IfConfition — ConditionTrue considerably more times than necessary.
This behavior of returning several times may indicate that the type of structure adopted in the
obfuscated version can confuse the subject, making him/her return unnecessarily repetitively.
Similarly, the sequence ForLoop — ConditionTrue is made substantially more times
than necessary.

One of the reasons why we have larger differences in the code than AOI can be that the
clarified version makes the subjects go fewer times to the outside of the AOI. For instance,
in Conditional Expression, in the clarified version, the subjects go 22% fewer times to the
top where we have the variables declared.

The subjects perceive the obfuscated version as more difficult to understand. Quantita-
tively, we observed an alignment between perception or difficulty and actual results. The
subjects needed more time and exhibit more visual effort with the obfuscated version.

For the obfuscated version of the atom Conditional Expression, we observed several
transitions going forward and backward in the center of the expression. Several subjects
mentioned being confused about the condition line. For instance, Subject 4 mentioned that
the ternary if was confusing and needed two submissions to solve the task while spending
more than twice the average time in the AOI that the subjects needed in the clarified version.
The fact that the true condition comes before the condition being tested can make the subjects
go back more times to observe it. For instance, consider the transitions exhibited by the
subjects in Fig. 18.

In the gaze transitions, the subjects often go back in the code to the true condition. Sub-
ject 4 regresses three times the average number of regressions in the AOI in the clarified

resultado - etEntFere P clse 10 resultado = elm: else 10
(a) Transitions of Subject 4 (b) Transitions of Subject 2
resultafc—eTHTFciem P se 10

(c¢) Transitions of Subject 12

Fig. 18 Sequence of transitions of subjects on the obfuscated code version with Conditional Expression

@ Springer

Empirical Software Engineering (2023) 28:81 Page 250f42 81

elem

resultado = 10 resultddo = 10 resultado = 10

(a) Transitions of Subject 3 ~ (b) Transitions of Subject 5 (c) Transitions of Subject 9

Fig. 19 Sequence of transitions of subjects on the clarified code version with Conditional Expression

version, which can indicate confusion. We also observed similar transitions going forward
and backward for other subjects. On the other hand, in the clarified code, we observed longer
transitions between true and false conditions. For instance, consider the transitions exhibited
by the subjects in Fig. 19.

The subjects make transitions between statements when the conditionis true and false.
However, unlike the obfuscated code, the transitions are not concentrated nor go back and
forth so often. Instead, they are in the vertical between lines of code. Subject 5 commented
about the structure of the code which she found easy. She solved the tasks in the first submis-
sion with half of the time and half of the number of regressions in the AOI compared to the
average time and number of regressions in the obfuscated version. Breaking one long line of
the condition expression into more lines modified the structure of the code but also seemed
to improve the performance of the subjects.

The main issues mentioned by the subjects for the obfuscated version were: “conditional
expression is confusing”, “more time to validate 1t conditional”, “1f conditional is com-
plicated”, “unsure about it conditional”, “didn’t understand the list”, “didn’t remember
if conditional”, and “1i £ difficult and I prefer another style”. For the clarified version, they

»

mentioned: “for loop”, “if condition is difficult”, “difficulties with elem”, and “inden-
tation confusing”, “else difficult”. As a takeaway, in the obfuscated version, confusion
sources are more concentrated in the conditional expression. In the clarified version, the

sources are more concentrated in variables and the condition of the i f statement.

Answering our RQs, in the clarified version of code with Conditional FEx-
pression, there is an increase in the number of vertical regressions in the
AOI concerning the RQs. While there were substantial reductions in the
fixation duration and fixations count (RQ4—RQ5), time and submissions
were not so affected (RQ;—RQz2). In the obfuscated version, subjectively,
confusion sources are more concentrated in the conditional expression. In
the clarified version, they concentrate on variables and the condition.

5.4 Operator Precedence

In Fig. 20, we depict the obfuscating atom Operator Precedence on the left-hand side and
the clarified version on the right-hand side. The only change in the clarified version consists
of adding two parentheses to clarify the precedence of the boolean operators.

Knowing the order of precedence of the operators is essential to correctly solve the code
since the wrong order yields a wrong output. For instance, (False and True) or
True when correctly interpreted prints True, while False and (True or True),

@ Springer

81 Page 26 of 42 Empirical Software Engineering (2023) 28:81

Obfuscated Clarified
if (False and True or True): if ((False and True) or True):

Fig.20 Obfuscating atom Operator Precedence and clarified version

evaluated wrongly, prints False. Concerning the RQ, we observed a reduction in the time
spent in the AOI combined with fewer attempts (RQ) with the clarified version. Those
reductions were associated with reductions in the duration of the fixations (RQ3), fixations
count (RQ4), and regressions count (RQs). These results suggest that adding the parenthesis
reduces the effort involved in comprehending the clarified version.

Eye tracking allows us to see the impact of adding the parenthesis at a fine-grained level.
We observe that the clarified version reduced the median number of horizontal regressions
by 28% in the code, possibly freeing the subjects from going back and forth in the statement
trying to figure out the right order of the boolean operators. That becomes more emphasized
in the reduction of regressions in the AOI by 47%.

Most subjects make a linear sequence of the three regions FirstOperand —
SecondOperand — ThirdOperand in both versions. The regions are depicted in
Fig. 21. However, in the obfuscated version, the subjects make 29% more transitions between
these regions than the clarified one. When subjects reach the end of the entire expression,
they should enter the true condition ConditionTrue as a result of correct comprehension.
However, in the obfuscated version, this number of transitions is 77% smaller than in the
clarified version, which can indicate that, due to the lack of understanding of priority, subjects
tend to get back on the line to try to understand again. The number of regressions between
ThirdOperand — SecondOperand is 52% higher in the obfuscated version, which
may indicate a wrong association because of priority. In addition, in the obfuscated version,
two subjects go from ThirdOperand — ConditionFalse, which is moving to the
incorrect condition. Both only got the programs solved in the second attempt and presented
time in the AOI above the average.

We isolated the subjects who submitted more than one answer to solve and compared
the concentration of eye movements between FirstOperand — SecondOperand and
SecondOperand — ThirdOperand. In the obfuscated version, FirstOperand —
SecondOperand has the and operator which has precedence but no parenthesis. We
found that the subjects make FirstOperand — SecondOperand 27 times while
SecondOperand — ThirdOperand 28 times. They make SecondOperand —
FirstOperand 15 times while ThirdOperand — SecondOperand 17 times. We

Obfuscated version Clarified version
pontos = 15 [JWhiteSpace pontos = 15 [JWhiteSpace
if (False and True or True): PointsAssignment if ((False and True) or True): PointsAssignment
FirstOperand FirstOperand
media = pontos/3 SecondOperand media = pontos/3 SecondOperand
else: ThirdOperand else: ThirdOperand
ConditionTrue ConditionTrue
media = @ Else media = @ Else
print(media) ConditionFalse print(media) C(?ndmonFaIse
PrintOutput PrintOutput

Fig.21 Setof regions inside the code version with Operator Precedence atom and in the code with the clarified
code version

@ Springer

Empirical Software Engineering (2023) 28:81 Page 27 of 42 81

if ((FirTamagr*rrreypor True): if ((Folspdagephue) e Tgue): if ((FalSEFTGMue) or True):
(a) Transitions of Subject 1 ~ (b) Transitions of Subject 5 (c) Transitions of Subject 13

Fig. 22 Sequence of transitions of a subject on the clarified code version with Operator Precedence

learned that they go back and forth between these regions with a similar effort. How-
ever, they make ThirdOperand — FirstOperand nine times and FirstOperand
— ThirdOperand three times, which might be an indication of confusion. The pattern
ThirdOperand — FirstOperand can indicate a wrong precedence involving the ‘or’
operator between the regions.

We performed a deeper analysis of the gaze transitions to understand the thought process
of the subjects. For the clarified version of the Operator Precedence, the subjects exhibited
transitions going forward and backward concentrating on the expression inside the parenthe-
ses. We observed the same transitions for other subjects. Consider the transitions exhibited
by the following subjects in Fig. 22.

In the gaze, we observed transitions going forward and backward between ‘False and
True’ which may indicate that the subject understands which sub-expression should be eval-
uated first. Subject 5 mentioned that it was easy to solve because of the parenthesis. On
the other hand, for the obfuscated version of the Operator Precedence, we found transitions
that indicate confusion. Consider the gaze transitions exhibited by the following subjects in
Fig. 23.

In the gaze, we observed transitions going forward and backward repeatedly between
the logical operators ‘and’ and ‘or’, which may indicate that the subjects were not certain
about which operator should come first. Subject 2 mentioned having difficulties with the
precedence, made an error in the first submission, and reported that only later on she realized
that the ‘and’ had precedence over ‘or’. Consider the transitions exhibited by the subjects
in Fig. 24.

We observed transitions going forward and backward between ‘True or True’ which
may indicate that the subject had doubts about which expression should be evaluated first.
Indeed, Subject 4 mentioned having difficulties with the ‘and’ and ‘or’ operator. The lack
of parenthesis may lead to more transitions going forward and backward between the logical
operators and lead to making wrong associations. Unlike the obfuscated version, in the clari-
fied version we did not observe such transitions going forward and backward eye movements
between ‘True) or True’.

The subjects perceived the obfuscated version as more difficult to solve. In the obfuscated
version, the subjects mainly mentioned the following issues: “order of precedence”, it dif-
ficult”, “misunderstood 1£”, “if difficult to validate”, * misunderstood and with ox”, “I

» o« » o« » o«

missed parentheses”, “precedence”, “order confusing”, “boolean difficult”, “didn’t remem-

9«

ber and or”. In clarified version, they mentioned: “confused true and false”, “validate
and with or difficult”, “validation complicated”. As a takeaway, in the obfuscated version,

if (False ajfeP¥Rgevor True): if (False ang§Mue.qp True): if (Fals&FPPFieor True):

(a) Transitions of Subject 2 (b) Transitions of Subject 2 (c) Transitions of Subject 10

Fig.23 Sequence of transitions of a subject on the obfuscated code version with Operator Precedence

@ Springer

81 Page 28 of 42 Empirical Software Engineering (2023) 28:81

sources of confusion are more concentrated in if condition, while in the clarified version,
still in 1 £ condition, however, less often.

Answering our RQs, in the clarified version of code with Operator Prece-
dence, there were reductions in the time in the AOI (RQ;), number of
attempts (RQ2), duration of fixations (RQ3), fixations count (RQy), and
horizontal regressions count (RQs). In the obfuscated version, subjec-
tively, sources of confusion are more concentrated in if condition, while
in the clarified version, still in if condition, however, less often.

5.5 Implicit Predicate

In Fig. 25, we depict the obfuscating atom Implicit Predicate on the left-hand side and the
clarified version on the right-hand. The obfuscated version assumes that the expression in the
condition of the if statement can be used as a predicate. The change in the clarified version
consists of making the condition explicit by adding a comparison with zero. With the clarified
version, we observed reductions in the time in the AOI (RQ;), number of attempts (RQ3),
fixation duration (RQ3), fixations count (RQ4), and horizontal regressions count (RQs).

In Fig. 26, we give an example of these reductions with two subjects who examine the
program of SP; containing the Implicit Predicate, one subject in each version. The subject
seems to go back more times in the code to decipher the missing information with the
implicit predicate. The subjects report having difficulties in understanding the modulo in the
obfuscated version.

In the obfuscated version, the subjects should evaluate the expression IfFirstOperand
— ModuloNumber in Fig. 27 at most three times, once for each iteration in the loop.
However, we observed that subjects make this transition considerably more times than
necessary, which may indicate more effort to understand. It is possible to arrive at the
result by performing the ModuloNumber — IfFirstOperand regression. However,
the subjects regress more times than necessary. So we observe a frequent back-and-
forth. Furthermore, in the obfuscated version, subjects look specifically at the region
containing the modulo considerably more times than necessary, which might indicate
difficulty with this region. In the clarified version, adding the predicate explicitly splits
the reading effort between three regions: IfFirstOperand, ModuloNumber, and
ComparisonOperator. With the explicit predicate, almost 50% of the subjects per-
formed IfFirstOperand — ModuloNumber — ComparisonOperator linearly.
The modulo region and CompasionOperator are seen considerably more times than
necessary. As a takeaway, both versions demonstrated diverse reading patterns, but the addi-
tion of the explicit predicate divides the effort by making it lower compared to the implicit
predicate.

if (False andﬁm): if (Falseqm): if (False and Thpe=¥ True):
(a) Transitions of Subject 4 (b) Transitions of Subject 4 (c) Transitions of Subject 8

Fig. 24 Sequence of transitions of a subject on the obfuscated code version with Operator Precedence

@ Springer

Empirical Software Engineering (2023) 28:81 Page 29 of 42 81

Obfuscated Clarified
if (elem % 5): if (elem % 5 != 9):

Fig. 25 Obfuscating atom Implicit Predicate and clarified version

In obfuscated version, the subjects mainly mentioned the following issues: “i £ is compli-
cated, “i f is difficult”, “% symbol confusing”, “modulo”, “% made it difficult”, “difficulties
with modulo”, “unsure about % part”, “% 5”, “didn’t understand %", “1 f confusing”,“if
hard to validate”, “difficult because of %”. In clarified version, they mentioned: “difficul-
ties with % and !=", “modulo”, “while and if together is difficult”, “incrementing”,
“1= 0 confusing”, “counter in while difficult”, “confused %", “1f takes more time to
understand”. As a takeaway, in the obfuscated version, the sources of confusion are more
concentrated in the condition of the i f statement, while in the clarified version, still in the
if statement but with more diverse sources.

Answering our RQs, in the clarified version, we observe reductions in the
time in the AOI (RQ;), number of attempts (RQs), fixation duration

(RQ3), fixations count (RQ4), and regressions count (RQs). The highest
impact was observed for the time in the AOIL In the obfuscated version,
subjectively, the sources of confusion are more concentrated in the con-
dition of the if statement involving the modulo operator, while in the
clarified version, still in the if statement but with more diverse sources.

5.6 Augmented Operator

In Fig. 28, we depict the Augmented Operator. To make the expression shorter, the combi-
nation of the arithmetic operator with the assignment operator can confuse the subject about
what receives the result of the operation. When the subjects have to pay more attention to
the augmented operator or look more often at the assigned variable can give evidence of the
effort in the understanding. With the clarified version, the subjects spent less time in the AOI
(RQ1) and had a less visual effort with reductions in the fixation duration (RQ3), fixations
count (RQy4), and regressions count (RQs).

We observed that, in the obfuscated version, the region that contains the assignment symbol
next to the operator with the assigned value, Assignment, is seen 37% more times than

Obfuscated Clarified
1 elementos = [7, 12, 10] 1 elementos = [7, 12, 10] Regressions count
2 valor =0 2 valor =@ 12468101-25%
3 for elem in elementos: 3 for elem in elementos:
(D if (elem % 5): ‘D if (elem % 5 != 0):
5 valor = valor + 1 5 valor = valor + 1
6 print(valor) 6 print(valor)

Fig. 26 Regressions graph with two subjects visually regressing horizontally and vertically in the code, one
with the obfuscated code containing the Implicit Predicate and the other with the clarified version of the code

@ Springer

81 Page 30 of 42 Empirical Software Engineering (2023) 28:81

Obfuscated version Clarified version
elementos = [7, 12, 1@] [OWhiteSpace elementos = [7, 12, 10] [OWhiteSpace
ListOfValues ListOfValues
valor = @ ValueAssigned valor = @ ValueAssigned
for elem in elementos: ForL.oop for elem in elementos: ForL.oop
IfFirstOperand IfFirstOperand
if (elem % 5): ModuloNumber if (elem % 5 != 0): ModuloNumber
valor = valor + 1 ConditionTrue valor = valor + 1 ComparisonOperator
PrintValue ConditionTrue
print(valor) print(valor) Printvalue

Fig. 27 Set of regions inside the code version with Implicit Predicate atom and in the code with the clarified
version of code

the same region in the clarified. The regions are depicted in Fig. 29. The structure without
the augmented operator may alleviate the effort of looking at the same variable every time
on the same line.

The clarified version aims to clarify the operation for updating an integer variable by
repeating the same variable even if it becomes more verbose. It is worth remembering that,
in Python, we can update a variable by adding and assigning (+=), multiplying and assigning
(*=), and using other operators. In our programs, we used these two operators. Thus, the
clarified version has more elements to be observed by the subject. However, instead of
increasing the visual effort, it is reduced, and the reduction in the number of regressions in
the AOI is even more noticeable.

The subjects make fewer transitions between the AOI and the rest of the code in the
clarified version containing the Augmented Operator. The subjects entered the AOI slightly
fewer times with the clarified version than the obfuscated one. In Fig. 30, we give an example
of these reductions. In the obfuscated version, in the example, the transitions between the AOI
and the rest of the code are more intense than in the clarified version. Most of the difference
in the number of transitions occurs between AOI and the upper part of the code. Since we
have a loop that iterates over three elements, the number of entries and exits should be three.
It seems that using syntactic sugar in the obfuscated version leads the subjects to turn to
the upper part more times, at least for the multiply and assign operator, as reported by the
subjects.

In obfuscated version, the subjects mainly mentioned the following issues: “*= symbol is
strange”, “element variable is confusing”, “didn’t recognize *= symbol”, “for and elem
are difficult”. In clarified version, they mentioned: “for and elem”, “confused values”,
“difficulties with elem variable”, “didn’t understand the list”, “lost myself in the values”.
As a takeaway, in the obfuscated version, the sources of confusion are more concentrated
in the lack of knowledge of the *= symbol, while in the clarified version, the sources were
concentrated in the values.

Obfuscated Clarified

valor *= 10 valor = valor * 10

Fig. 28 Obfuscating atom Augmented Operator and clarified version

@ Springer

Empirical Software Engineering (2023) 28:81 Page 310f42 81

Answering our RQs, in the clarified version, we observed reductions in the
time spent in the AOI (RQ;) as well as in the fixation duration (RQs),
fixations count (RQ4), and regressions count (RQs). The number of at-
tempts slightly increased (Rz). In the obfuscated version, subjectively, the
sources of confusion are more concentrated in the lack of knowledge of the
x= symbol, while in the clarified version, the sources were concentrated
in the values.

5.7 Coding Subjects’ Answers

We used the method of the grounded theory proposed by Strauss and Corbin (1998) to
analyze our qualitative data. A tentative explanation for most of the quantitative results is
the presence of certain obfuscating atoms. However, by employing the grounded theory, we
aim to understand and discuss whether we have qualitative evidence to support this theory
in our study or whether the qualitative evidence reveals other alternative potential sources of
confusion.

The grounded theory aims at coding and categorizing to describe a phenomenon found
in the data, avoiding preconceived theories to focus on only the data. We used the following
steps. First, during the interview, we ask questions to the subjects, break their answers into
smaller chunks of data, and identify the major idea by assigning it a code that emerged
from their answers. Thus, we perform coding in the first step. Second, we read all the codes
and search for opportunities to group them into higher-level concepts. Third, we identify
categories by discussing how similar the concepts were according to their properties. Fourth,
we derive a theory through an inductive approach. All these steps can be seen in Table 3.
We make all these steps available with more detail in our replication package on Zenodo (da
Costa et al 2023).

In the code step, we coded the answers of the subjects. We focused on synthesizing what
phenomenon is described by the subject. Our codes ranged from a single word to short
sequences of words. We had a set of 142 codes across 384 answers. Our codes included
issues such as “I was confused with if ternary”, “confusion with the rest of the division”, and
“trouble in memorizing the variables’ assignments”. More details can be seen in Table 3.

In the concept step, we focused on abstracting, connecting, and grouping multiple codes.
We found 22 concepts that emerged from the codes. For instance, we grouped “trouble in

Obfuscated version Clarified version
elementos = [20, 1@, 50] [JwhiteSpace elementos = [20, 10, 50] [JWhiteSpace
valor = 80 ListOfValues valor = 80 ListOfValues
ValueAssigned ValueAssigned
for elem in elementos: ForLoop for elem in elementos: ForLoop
if (elem > 30): IfCondition if (elem > 30): IfCondition
Variable Variable
valor *= 10 Assignment valor = valor * 10 Assignment
pr‘int(valor) PrintValue pr‘int(valor‘) PrintValue

Fig.29 Setof regions inside the code version with Augmented Operator atom and in the code with the clarified
version of code

@ Springer

81 Page 320f42

Empirical Software Engineering (2023) 28:81

Obfuscated
1-4~. # MORE CODE
5 >valor‘ *= 10

6 # MORE CODE

1-4

5

6

Clarified
MORE CODE

valor = valor * 10

MORE CODE

Regressions count

L]]]
12345678

Fig. 30 Transitions graph with two subjects visually entering and exiting the AOI in the code, one with the
obfuscated code containing the Augmented Operator and the other with the clarified version of the code

memorizing the variables’ assignments” and “it was difficult to remember the value of the
variable” in the same underlying concept, which is “memorization of values”.

In the category step, we group the concepts into more abstract categories. Our concepts
were included in seven broad categories, namely code style, control/repetition structures,
knowledge, mathematics, memory load, operators, and no difficulties. Code style comprised
concepts such as indentation or multiple assignments in the same line; control flow comprised

Table 3 Steps of the coding process of the subjects” answers

Code Step

Concepts Step

Category Step

Many assignments in one line complicates

Got confused in indentation

if inside loop is difficult
Evaluating if takes longer

Few iteractions over loop

Not used to ternary

for in Pyhton in strange

Simple calculations

Difficulties with the division

Incrementing is difficult

I got lost in the iteration

Index of the loop confuses

Trouble in memorizing the variables
Too many variables

Difficulties in swapping the variables

Unnecessary variable

Difficulties with modulo and arith-
metic operators

Found modulo operator confusing
Found boolean operator complex
Confused true and false

Difficulties with Precedence

I had no difficulties

Single line assignments

Indentation

nesting structures
Conditional structure

Repetition structure

Knowledge of Idiom
Knowledge of Language

Math calculation

division calculation

Increment

Iteration

Index of loop
Memorization of Values
Amount of Variables
Swapping Variables

Temporary Variable
Combination of Operators
Arithmetic Operator
Relational Operator

Logical Operators

Operator Precedence

No difficulties

Code Style

Control Flow

Knowledge

Mathematics

Memory Load

Operators

No difficulties

@ Springer

Empirical Software Engineering (2023) 28:81 Page 330f42 81

both conditional structures, repetition structures, and their combination nested; knowledge
comprised both knowledge of programming language and idiom. More details can be seen
in Table 3.

A research question emerged from the data which was: what are the potential sources
of confusion found in the data? From the categories, we derived a theory describing the
factors that influence the understanding of the subjects in the study, which can provide an
understanding of the sources of confusion. For instance, the theory revealed that sources of
confusion were diversified in the context of novices in Python involving aspects of the code
such as the style and structure, and external factors such as knowledge domain and memory
load.

Regarding the flow category, we found 31 codes related to the three concepts: conditional
structures, repetition structures, and their combination. Most of the atoms we evaluated have
control flow which can explain why this category is so broad. However, the theory revealed
that difficulties were associated more frequently with the obfuscated versions of the code in
this category, especially in the atom Conditional Operator. For instance, we found six codes
associating its obfuscated version with more complication, confusion, difficulties, and more
time. Even though it did not affect the number of attempts, three subjects mentioned “It
takes longer to validate the 1t statement”. Indeed, we observed that the subjects fixated for
a longer duration in the AOI, which affects time, and presented more horizontal regressions.

Regarding the memory load category, we found 36 codes related to seven concepts, com-
prising memorization of values, iterating over loops, and swapping variables, among others.
We carefully designed the tasks to have a few variables and iterate over a short list to avoid
memory load effects. The clarified version of Multiple Variable Assignments was the main
atom related to the concepts associated with the number of variables. The clarified version
repeats one variable and breaks the assignment into two lines. The subjects mentioned that
“There are too many variables” and we observed more visual horizontal regressions associ-
ated with these specific programs. We did not observe an impact in the number of attempts,
but the clarified version might indicate that short-term memory can be affected.

Regarding the operators’ category, we found 29 codes related to five concepts comprising
arithmetic, relational, and logical operators, their combination, and precedence. The obfus-
cating atom Operator Precedence did not make explicit in which order the subjects should
evaluate the expression, and we had 21 answers related to difficulties in identifying the cor-
rect order or with the easiness in using parenthesis for that purpose. Six subjects need two
attempts to solve the programs and present more horizontal regressions. One subject that
needs one more attempt mentioned ‘‘I evaluated from left to right, then I realized that 1
should examine the operator AND first”.

6 Threats to Validity

Here we describe potential issues and threats to the validity of our study: internal validity
(Section 6.1), external validity (Section 6.2), and construct validity (Section 6.3).

6.1 Internal Validity
We performed the experiment in four locations to gather more subjects and have a variety

of subjects from distinct higher-education institutions. However, different locations may
influence the visual attention of the subjects. To mitigate this, we carefully arranged the rooms

@ Springer

81 Page 34 of 42 Empirical Software Engineering (2023) 28:81

to have similar conditions. For instance, they were quiet rooms with minimum distractions,
similar temperatures, and artificial light sources. In future work, we aim to keep track of
which subject performed over which location so we can bind possible differences.

Despite our best efforts, the presence of a researcher in the room may have unintentionally
influenced the visual attention or performance of the subjects since they were aware of being
observed. To mitigate this threat, we put effort into letting the subjects feel comfortable with
the researcher’s presence. In addition, we avoided any interaction with the subjects while
they were examining the programs so that they could be concentrated.

Given the camera limitations, we needed to adjust the gaze points for some subjects. The
adjustment in the points influences the interpretation. However, the authors discussed the
adjustments by going systematically through the data for each subject. Thus, to mitigate the
threat of working with uncalibrated equipment we generated another threat. However, the
authors decided that the threat of adjusting the points would be preferable to analyze the
data with points not touching the code, given the uncalibrated equipment. It is important
to mention that the median number of pixels used to correct the fixations in y-coordinate
was 30 pixels, which translated to 0.6 lines of inaccuracy on the screen, and the maximum
value was 80 pixels. For the x-coordinate, following this strategy, we did not need to adjust
the x-coordinate. We made the fixations and adjustment strategy available in our replication
package (da Costa et al 2023).

In pilot studies, we observed that a swivel chair could impair data collection by the camera
or negatively affect the captured data. To mitigate this threat, we used chairs without swiveling
capability in all rooms we used to conduct the experiment.

The total time we allocated for each subject was one hour, and we assigned them 12
programs, which may have influenced the visual effort. To minimize this threat, we designed
simple and short programs with only one atom instantiated and put a time limit of two minutes.
Given the simplicity of the programs, most subjects solved them before the time limit. Since
our programs consist of non-minimal snippets, in the sense that they do not contain only the
atom region, the extra lines of the code might introduce working memory as a confounding
factor. However, with eye tracking, it is possible to measure and compare time and visual
effort only in the atom region. In addition, both programs, in obfuscated and clarified versions
with the same atom, had the same extra lines of code to make the comparison fair.

All the subjects had the option to keep making attempts until getting the correct output.
We then compared the number of attempts until they answered correctly. However, following
this strategy, if one makes wrong attempts, she could make more fixations or even longer
ones, with more regressions. Alternatively, we collected the eye tracking data separately for
each attempt made to compare only the first one. We performed an analysis based only on
the data from the first attempt, but we found similar results.

Using the Latin Square design, we blocked the set of programs to control noise. Besides
performing combinations of the programs in the squares, we analyzed the programs with the
atoms individually. The analysis of individual programs in the set of programs violates the
design. The extent of such violation does not have an estimated impact. However, to better
understand the effects of the atoms, analyzing them combined and individually can give a
more nuanced and complete understanding of their effects.

6.2 External Validity

We resorted to small programs with less than 10 lines of code aiming at fitting the code
onto the screen. This approach may restrict generalization to larger programs. However,

@ Springer

Empirical Software Engineering (2023) 28:81 Page 350f42 81

previous work on the same subject has resorted to code snippets with a similar number of
lines (Gopstein et al. 2017; Oliveira et al 2020). If we find differences in small code snippets,
we expect that larger snippets may tend to show greater differences. Nevertheless, we need
to conduct other studies with larger code snippets to provide empirical evidence for those
expectations.

In our study, we focused on novices in Python. Thus, we cannot generalize to more
experienced developers in Python. Novices have also been the subject of other eye tracking
studies on code comprehension (Busjahn et al 2015). In the future, we intend to explore the
same topic of this study with experienced developers.

Since we have focused on atoms in Python programming language, we cannot generalize
our findings to other programming languages. To mitigate this threat, in our programs, we
used constructions common in other languages, and most of our subjects reported some
experience with other languages. In addition, since our subjects were Brazilian Portuguese
native speakers, our programs were designed to contain identifiers in their mother tongue.

Our programs were designed to have only one output, a numeric value. All subjects had
to solve the task by specifying the correct output aloud after reading the code. The results
for this type of task may not generalize to other types, such as finding a bug, fixing a syntax
problem, or adding a feature. In addition, since the font style may influence the subject’s
attention, to minimize a possible threat, we consistently used the same font style and size for
the programs, with no syntax highlighting and no bold font.

The number of atoms instantiated in a program may influence the performance and visual
effort of the subjects. To minimize threats related to the number of atoms, we consistently
used only one atom in each program.

6.3 Construct Validity

Time and answer correctness are often employed to assess code comprehension (Schulze et al
2013; Malaquias et al 2017) and in particular, to investigate atoms of confusion (Gopstein
et al. 2017; de Oliveira et al 2020). Concerning eye tracking methodology, other studies
have employed similar metrics to measure visual-related aspects (Melo et al 2017; Sharif
and Maletic 2010; Bednarik and Tukiainen 2006). Other works have combined time, answer
correctness, and visual effort (Sharif et al 2012; de Oliveira et al 2020; da Costa et al 2021).
In particular, fixation duration and fixations count have been used to measure visual effort
(Sharif et al 2012; Binkley et al 2013). According to Sharafi et al. (2015), metrics based on
saccades, such as the number of saccades or saccades duration, are metrics whose definitions
are identical to the ones based on fixations. Thus, we decided to explore eye movement
regressions since they have been explored and associated with visual effort (Sharafi et al
2015).

Inviting people to participate in eye tracking studies may influence the subjects’ decisions
regarding their visual behavior. For instance, we have to make them aware that their eyes are
being tracked, which may influence where or how much they look at some regions of the
code. To minimize this threat, we did not make the subjects aware of the precise goals of the
study to avoid hypothesis guessing.

7 Related Work

In this section, we present the related work. We present works related to the atoms of confusion
(Section 7.1), code comprehension (Section 7.2), and eye tracking experiments (Section 7.3).

@ Springer

81 Page 36 of 42 Empirical Software Engineering (2023) 28:81

7.1 Atoms of Confusion

Gopstein et al. (2017) introduced the term “atom of confusion” as the smallest code pat-
tern that can cause misunderstanding in the programmer. They proposed a set of 15 atoms
they extracted from the International Obfuscated C Code Contest. They hypothesized that
these atoms could cause programmers to misunderstand code. They performed two empiri-
cal experiments, one with 73 subjects and the other with 43 mostly students, aiming to find
which atoms caused confusion and how much confusion they could reduce by clarifying the
atoms. They measured the time it took for programmers to answer correctly and the accuracy
of their answers. They found that small C code snippets, including atoms of confusion, are
more difficult to understand than their functionally equivalent clarified versions. Extending
their prior work, Gopstein et al. (2018) investigated the prevalence of atoms of confusion in
the real-world setting. They performed a study involving 14 open-source projects in the C
language and found that atoms of confusion are prevalent in real and successful projects. In
addition, the presence of these atoms correlates with bug-fixing commits and long code com-
ments. We performed a controlled experiment to observe the impact of the obfuscated code
containing atoms of confusion and the clarified code on the novices’ code comprehension.
However, we focused on Python programming language and, besides time and accuracy, we
investigated the eye tracking metrics. In addition, we were more conservative in our pro-
grams than in their studies, using more meaningful names for the variables. This approach
is arguably closer to a practical scenario.

Gopstein et al. (2020) performed a study with 14 human subjects, including both profes-
sionals and students, aiming to understand better and scrutinize their prior studies on atoms
of confusion. According to them, precision and accuracy can only tell the outcome of pro-
grammers’ performance, but not how or why programmers behaved in a certain way. They
used a think-aloud methodology to collect data and then performed a qualitative analysis.
They found that correct hand-evaluations do not imply understanding, which means that a
subject can answer correctly and still be confused. Similarly, incorrect evaluations do not
imply misunderstanding. With the sole use of accuracy, these sources of confusion would
otherwise go unnoticed. Going beyond accuracy, we used an eye tracker to assess the visual
effort of the subjects. Eye tracking allowed us to understand their visual behavior better
while solving the tasks, which could give insights into how or why programmers behaved in
a certain way. In addition, we also performed a qualitative interview to get personal feedback.

Medeiros et al. (2019) aimed to understand the relevance and prevalence of atoms of
confusion in C open-source projects. They used a mixed research method approach, which
comprised mining repositories of 50 C open-source projects and a survey with 97 developers
with experience in the C language. They found that atoms of confusion are prevalent in open-
source projects, with more than 109K occurrences of the 12 atoms. In addition, according to
developers’ opinions, only some atoms are perceived to cause misunderstandings. Instead of
basing on the opinions of experienced developers in C, we conducted a controlled experiment
to quantitatively and qualitatively assess the performance of the human subjects who were
novices in Python. In addition to time and accuracy, we collect eye tracking metrics to
have a better understanding of the effect of the atoms. To complement our quantitative data,
additionally, we perform interviews to get feedback from the subjects.

7.2 Code Comprehension

Yeh et al. (2021) used an EEG device to measure the cognitive load of the developers as they
attempted to predict the output of C code snippets. They aimed to observe whether particular

@ Springer

Empirical Software Engineering (2023) 28:81 Page 37 of 42 81

patterns within the code snippet induced higher levels of cognitive load. They found that
particular patterns indeed affect the developers’ cognitive processes. We focused on eye
movements instead of brain activity. We explored in more depth the visual effort regarding
atoms in Python language.

Langhout and Aniche (Langhout and Aniche 2021) replicated the work of Gopstein et
al. (2017), however, in the Java programming language. After deriving a set of atoms of
confusion for Java, they performed an experiment with 132 novices. They found that atoms
of confusion can cause confusion among novice developers. Extending this idea, Mendes et
al. (2021) proposed a tool named BOHR (The Atoms of Confusion Hunter) to detect atoms
of confusion in Java systems. The tool detected eight out of 13 types of atoms pointed out
as confusing by Langhout and Aniche (2021). We also investigated the potential of atoms
to influence the code comprehension of novices negatively. However, we did so in Python
language and from the perspective of the eye tracking measures.

Castor (2018) proposed a structured definition of atoms of confusion, examined factors
that make them confusing, and presented a preliminary catalog of atoms of confusion for the
Swift programming language. Based on the prior studies (Gopstein et al. 2017; Gopstein et al
2018), Castor defined an atom as precisely identifiable, likely to cause confusion, replaceable
by another pattern that is less like to cause confusion, and indivisible. He also identified
sources that make atoms confusing, such as little-known and less common constructs, which
include Conditional Operator and Assignment as Value. We used the definition already
proposed (Gopstein et al. 2017; Gopstein et al 2018) and empirically investigated the effects
of obfuscated and clarified programs on code comprehension in Python language.

Schroéter et al. (2017) conducted a literature review to investigate how researchers address
code comprehension. Among their findings, they found that the source code and program
behavior are the mostly addressed parts of code comprehension in their empirical studies.
Our work consists of an empirical study that compares programs following distinct styles.

7.3 Eye Tracking

Oliveira et al. (2020) studied the impact of atoms on time, accuracy, and the subjects’ focus
of attention with an eye tracker. They conducted a controlled experiment with students and
software practitioners. They evaluated code snippets from real open-source C/C++ systems
of different domains containing three types of atoms, Assignment as Value, Conditional
Operator, and Logic as Control Flow. They found differences in time and visual attention of
the subjects. However, they did not explore fixation duration, fixations count, and regressions
count. Besides using these visual metrics, we evaluated more atoms instantiated in code
snippets in Python language.

Sharafi et al. (2010) studied the influence of the styles camel case and underscore on
code comprehension. They measured time, answer correctness, and visual effort through eye
tracking. They found a significant improvement in time and visual effort with the underscore
style. Sharafi et al. (2012) investigated the impact of the same two styles on code comprehen-
sion by considering the gender of the subjects. Measuring time, accuracy, and visual effort,
no differences were observed. In our study, we considered similar metrics—time, number of
attempts, and visual effort—however a different context.

Stefik and Siebert (2013) studied the influence of programming language syntax on the
novices’ comprehension. As their tasks, the novices had to rate the intuitiveness of several
programming language constructs. Among the findings of the study, syntactic choices made in
commercial programming languages are more intuitive to novices than others, and variations

@ Springer

81 Page 380f42 Empirical Software Engineering (2023) 28:81

in syntax influence novice accuracy rates when they are starting to program. We also explored
the context of novices. However, we considered just one language and used objective metrics
while novices solved the code task.

Obaidellah et al. (2018) conducted a systematic mapping study on eye tracking experi-
ments focusing on code scenario. They found that the main areas of research include program
comprehension and debugging, non-code comprehension, collaborative programming, and
requirements traceability research. In addition, they found that most of the subjects in the
experiments were students and faculty members from institutions. In our controlled experi-
ment, we focus on code comprehension involving novices.

8 Conclusions

In this article, we reported on eye tracking as a method to gain new insights into the atoms of
confusion. We performed a controlled experiment with eye tracking to evaluate the impact of
six atoms of confusion on code comprehension. We evaluated to what extent the obfuscated
code containing atoms of confusion and the functionally equivalent clarified versions of the
code impacted the time, number of attempts, and visual effort of 32 novices in Python.

With eye tracking, we investigated how much time the subjects spent in a specific region
of the code that contained the atoms of confusion and their clarifying versions, to what extent
the atoms impacted the fixation duration, fixations count, and regressions count, and how the
atoms impacted the way the subjects read the code. Thus, our findings contribute with some
relevant implications. For the education community, our study contributes to raising concerns
regarding teaching methods that may hinder code comprehension for Python novices. Educa-
tors should be careful when preparing the teaching material for introductory courses, avoiding
using code snippets with atoms that can confuse the novices. For instance, the subjects in our
study needed 28.3% more attempts to solve the code containing the Operator Precedence,
which is associated with a negative impact on their abilities to understand the code. For
Python novices, the positive impact of most of the clarified versions of the code containing
the atoms in the time in the AOI and fixation duration, fixations count, and regressions count
may indicate improvements in their productivity, understanding, and visual effort.

For the research community, our study setup exploring the visual effort dimension con-
tributes to nuances not observed by previous works. For instance, in the analysis of the
visual data for code containing the Multiple Variable Assignment, we perceived that the use
of multiple assignments within the same line impacted the way the subjects read the code.
The code with Multiple Variable Assignment allowed the subjects to read the assignments
in a more direct manner, with 60% fewer regressions in the AOI. When the assignments are
split between two lines, to make the code clearer, the subjects tended to make more vertical
regressions and to keep coming back to those lines, transitioning between those lines and the
lines of code that later use them. Hopefully, this will encourage researchers to consider eye
tracking as a promising alternative to evaluate atoms of confusion. Other dimensions, such
as mapping neural activities with Functional Magnetic Resonance Imaging (fMRI) or track-
ing all the subjects’ activity during the experiments, could possibly reveal other nuances and
allow us to dive deeper into how this atom impacts difficulty beyond visual effort. This can be
a future direction for research. For practitioners and language designers, the use of syntactic
sugar in the language syntax has to be done considering whether the pattern will impair the
novices’ abilities to understand the code. Some languages have abolished constructs because
they can create obstacles for novices. For example, C-style for loops were removed from

@ Springer

Empirical Software Engineering (2023) 28:81 Page 39 of42 81

Swift (Sadun and Gregor 2015) because, among other things, they offer “a steep learning
curve from users arriving from non C-like languages” .

In future work, we aim to evaluate other types of atoms proposed by Gopstein et al. (2017).
Cedrim et al. (2017) studied the influence of refactorings on code smells and found that their
majority are neutral, and some refactorings even lead to new smells in the code. We aim to
explore this topic with the perspective of eye tracking. In addition, we aim at conducting more
experiments with experienced developers in Python, with a larger number of subjects, explore
other programming languages, programs with variables names that have no meaning at all,
other types of tasks such as finding a bug and investigate a higher number of atoms instantiated
in a single task. Finally, we intend to add other eye tracking metrics based on saccades, blink
rate, and pupil dilation and explore code reading patterns based on gaze transitions. As future
work, we envision the development of more advanced tools that track the eye movements of
developers and assist them with tips. For instance, if a tool detects transitions going forward
and backward eye movements between two operators such as ‘and’ and ‘or’, or between an
expression that has no precedence, a tip should arise to add the parentheses. We also envision
proposing heuristics or building a model whereby a programmer receives an arbitrary source
code, and we use eye tracking data to identify which elements were atom candidates or infer
confusing regions that negatively impacted the code comprehension of the programmer.

Acknowledgements We would like to thank the anonymous reviewers for their insightful suggestions. This
work was partially supported by CNPq grants.

Data Availability The dataset generated during the current study is available on Zenodo repository within a
replication package also containing forms, programs, fixation data, data correction strategy, and other materials
(da Costa et al 2023).

Declarations
Conflict of Interest The authors declared that they have no conflict of interest.

References

Basili V, Caldiera G, Rombach H (1994) The Goal Question Metric Approach. Encycl Softw Eng 2:528-532

Bednarik R, Tukiainen M (2006) An Eye-tracking Methodology for Characterizing Program Cprehension
Processes. In: Proceedings of the Symposium on Eye Tracking Research & Applications, ETRA’06, pp
125-132. Association for Computing Machinery, New York

Binkley D, Davis M, Lawrie D, Maletic J, Morrell C, Sharif B (2013) The Impact of Identifier Style on Effort
and Comprehension. Empir Softw Eng 18(2):219-276

Box G, Hunter JS, Hunter WG (2005) Statistics for Experimenters. Wiley-Interscience

Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B, Tamm S (2015) Eye Movements
in Code Reading: Relaxing the Linear Order. In: Proceedings of the International Conference on Program
Comprehension, ICPC’ 15, IEEE, pp 255-265

Busjahn T, Schulte C, Busjahn A (2011) Analysis of Code Reading to Gain More Insight in Program Compre-
hension. In: Proceedings of the Koli Calling International Conference on Computing Education Research,
Koli Calling’ 11, pp 1-9. Association for Computing Machinery, New York

Castor F (2018) Identifying Confusing Code in Swift Programs. In: Proceedings of the CBSoft Workshop on
Visualization, Evolution, and Maintenance, VEM’18. ACM, Sio Carlos

Cedrim D, Garcia A, Mongiovi M, Gheyi R, Sousa L, de Mello R, Fonseca B, Ribeiro M, Chavez A (2017)
Understanding the impact of refactoring on smells: A longitudinal study of 23 software projects. In:
Proceedings of the Joint Meeting on Foundations of Software Engineering, ESEC/FSE’17, ACM, pp
465475

@ Springer

81 Page 40 of 42 Empirical Software Engineering (2023) 28:81

Crosby M, Scholtz J, Wiedenbeck S (2002) The Roles Beacons Play in Comprehension for Novice and Expert
Programmers. In: Workshop of the Psychology of Programming Interest Group, PPIG’02, p 5. Brunel
University

da Costa JAS, Gheyi R, Castor F, Roberto P, Ribeiro M, Fonseca B (2023). Seeing Confusion Through a New
Lens: On the Impact of Atoms of Confusion on Novices’ Code Comprehension (Artifacts). https://doi.
org/10.5281/zenodo.7650076

da Costa JAS, Gheyi R, Ribeiro M, Apel S, Alves V, Fonseca B, Medeiros F, Garcia A (2021) Evaluating
Refactorings for Disciplining #ifdef Annotations: An Eye Tracking Study with Novices. Empir Softw
Eng 26(5):1-35

de Oliveira B, Ribeiro M, da Costa JAS, Gheyi R, Amaral G, de Mello R, Oliveira A, Garcia A, Bonifécio R,
Fonseca B (2020) Atoms of Confusion: The Eyes Do Not Lie. In: Proceedings of the Brazilian Symposium
on Software Engineering, SBES’20, pp 243-252

Galley N, Betz D, Biniossek C (2015) Fixation Durations: Why are They so Highly Variable. Adv Vis Percept
Res 93:83-106

Gopstein D, Fayard A-L, Apel S, Cappos J (2020) Thinking Aloud about Confusing Code: A Qualitative
Investigation of Program Comprehension and Atoms of Confusion. In: Proceedings of the Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE’20, pp 605-616. Association for Computing Machinery, New York

Gopstein D, Iannacone J, Yan Y, DeLong L, Zhuang Y, Yeh MK-C, Cappos J (2017) Understanding Misunder-
standings in Source Code. In: Proceedings of the Joint Meeting on Foundations of Software Engineering,
ESEC/FSE’17, pp 129-139. Association for Computing Machinery, New York

Gopstein D, Zhou HH, Frankl P, Cappos J (2018) Prevalence of Confusing Code in Software Projects: Atoms of
Confusion in the Wild. In: Proceedings of the International Conference on Mining Software Repositories,
ICSMR’18, pp 281-291. Association for Computing Machinery, New York

Holmgqvist K, Nystrom M, Andersson R, Dewhurst R, Jarodzka H, Van de Weijer J (2011) Eye Tracking: A
Comprehensive Guide to Methods and Measures. OUP Oxford

Jadhav A, Pramod D, Ramanathan K (2019) Comparison of Performance of Data Imputation Methods for
Numeric Dataset. Appl Artif Intell 33(10):913-933

Just MA, Carpenter PA (1980) A Theory of Reading: From Eye Fixations to Comprehension. Psychol Rev
87(4):329

Kleinke K (2017) Multiple Imputation under Violated Distributional Assumptions: A Systematic Evaluation
of the Assumed Robustness of Predictive Mean Matching. J Educ Behav Stat 42(4):371-404

Langhout C, Aniche M (2021) Atoms of Confusion in Java. In: Proceedings of the International Conference
on Program Comprehension, ICPC’21, IEEE, pp 25-35

Lawrie D, Feild H, Binkley D (2007) Quantifying Identifier Quality: an Analysis of Trends. Empir Softw Eng
12(4):359-388

Malaquias R, Ribeiro M, Bonificio R, Monteiro E, Medeiros F, Garcia A, Gheyi R (2017) The Discipline of
Preprocessor-Based Annotations — Does #ifdef TAG n’t #endif Matter. In: Proceedings of the International
Conference on Program Comprehension, ICPC’17, IEEE, pp 297-307

Medeiros F, Lima G, Amaral G, Apel S, Kistner C, Ribeiro M, Gheyi R (2019) An Investigation of Misun-
derstanding Code Patterns in C Open-source Software Projects. Empir Softw Eng 24(4):1693-1726

Melo J, Narcizo FB, Hansen DW, Brabrand C, Wasowski A (2017) Variability Through the Eyes of the
Programmer. In: Proceedings of the International Conference on Program Comprehension, ICPC’17,
IEEE Press, pp 3444

Mendes W, Viana W, Rocha L (2021) BOHR - Uma Ferramenta para a Identificacdo de Atomos de Confusio
em Codigos Java. In: Workshop de Visualiza¢do, Evolucdo e Manutengdo de Software, VEM’21, SBC,
pp 41-45. Sociedade Brasileira de Computacio

Nystrom M, Holmgqyvist K (2010) An Adaptive Algorithm for Fixation, Saccade, and Glissade Detection in
Eyetracking Data. Behav Res Methods 42(1):188-204

Obaidellah U, Al Haek M, Cheng PC-H (2018) A Survey on the Usage of Eye-tracking in Computer Program-
ming. ACM Comput Surv (CSUR) 51(1):1-58

Oliveira D, Bruno R, Madeiral F, Castor F (2020) Evaluating Code Readability and Legibility: An Examination
of Human-centric Studies. In: Proceedings of the International Conference on Software Maintenance and
Evolution, ICSME’20. Association for Computing Machinery, New York

Rayner K (1998) Eye Movements in Reading and Information Processing: 20 Years of Research. Psychol Bull
124(3):372

Sadun E, Gregor D (2015) Remove c-style for-loops with conditions and incrementers. Swift Programming
Language Evolution, proposal SE-0007. https://github.com/apple/swift-evolution/blob/main/proposals/
0007-remove-c-style-for-loops.md. Accessed 21 March 2023

@ Springer

https://doi.org/10.5281/zenodo.7650076
https://doi.org/10.5281/zenodo.7650076
https://github.com/apple/swift-evolution/blob/main/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/main/proposals/0007-remove-c-style-for-loops.md

Empirical Software Engineering (2023) 28:81 Page 410f42 81

Salvucci D, Goldberg J (2000) Identifying Fixations and Saccades in Eye-tracking Protocols. In: Proceedings
of the Symposium on Eye Tracking Research & Applications, ETRA’00, pp 71-78. Association for
Computing Machinery, New York

Schroter I, Kriiger J, Siegmund J, Leich T (2017) Comprehending Studies on Program Comprehension. In:
Proceedings of the International Conference on Program Comprehension, ICPC’20, IEEE, pp 308-311

Schulze S, Liebig J, Siegmund J, Apel S (2013) Does the Discipline of Preprocessor Annotations Matter?:
A Controlled Experiment. In: Proceedings of the International Conference on Generative Programming:
Concepts & Experiences, GPCE ’13, pp 65-74. Association for Computing Machinery, New York

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika
52(3/4):591-611

Sharafi Z, Shaffer T, Sharif B, Guéhéneuc Y-G (2015) Eye-tracking Metrics in Software Engineering. In:
Proceedings of the Asia-Pacific Software Engineering Conference, APSEC’ 15, IEEE, pp 96-103

Sharafi Z, Sharif B, Guéhéneuc Y-G, Begel A, Bednarik R, Crosby M (2020) A Practical Guide on Conducting
Eye Tracking Studies in Software Engineering. Empir Softw Eng 25(5):3128-3174

Sharafi Z, Soh Z, Guéhéneuc Y-G, Antoniol G (2012) Women and Men-Different but Equal: On the Impact
of Identifier Style on Source Code Reading. In: Proceedings of the International Conference on Program
Comprehension, ICPC’ 12, IEEE, pp 27-36

Sharif B, Falcone M, Maletic J (2012) An Eye-tracking Study on the Role of Scan Time in Finding Source
Code Defects. In: Proceedings of the Symposium on Eye Tracking Research & Applications, ETRA’12,
ACM, pp 381-384

Sharif B, Maletic J (2010) An Eye Tracking Study on Camelcase and Under_score Identifier Styles. In:
Proceedings of the International Conference on Program Comprehension, ICPC’ 10, IEEE, pp 196-205

Sheskin DJ (2020) Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press

Stefik A, Siebert S (2013) An Empirical Investigation into Programming Language Syntax. Trans Comput
Educ 13(4):1-40

Strauss A, Corbin J (1998) Basics of Qualitative Research Techniques. Citeseer

Yeh MK-C, Yan Y, Zhuang Y, DeLong LA (2021) Identifying Program Confusion Using Electroencephalogram
Measurements. Behav Inf Technol 41:1-18

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

81 Page 42 of 42 Empirical Software Engineering (2023) 28:81

Authors and Affiliations

José Aldo Silva da Costa'® - Rohit Gheyi' - Fernando Castor? -

Pablo Roberto Fernandes de Oliveira' - Marcio Ribeiro3 - Baldoino Fonseca3

Rohit Gheyi
rohit@dsc.ufcg.edu.br

Fernando Castor
f.j.castordelimafilho@uu.nl

Pablo Roberto Fernandes de Oliveira
pablo@copin.ufcg.edu.br

Marcio Ribeiro
marcio@ic.ufal.br

Baldoino Fonseca
baldoino @ic.ufal.br

Federal University of Campina Grande, Campina Grande, Brazil
Utrecht University, Utrecht, Netherlands

Federal University of Alagoas, Macei6, Brazil

@ Springer

http://orcid.org/0000-0001-8918-1749

	Seeing confusion through a new lens: on the impact of atoms of confusion on novices' code comprehension
	Abstract
	1 Introduction-4pt
	2 Motivating Example
	3 Study Definition
	4 Methodology
	4.1 Pilot Study
	4.2 Experiment Phases
	4.3 Subjects
	4.4 Treatments
	4.5 Evaluated Atoms of Confusion
	4.6 Programs
	4.7 Eye Tracking System
	4.8 Fixation and Saccades Instrumentation
	4.9 Analysis of the Results

	5 Results and Discussion
	5.1 Multiple Variable Assignment
	5.2 True or False Evaluation
	5.3 Conditional Expression
	5.4 Operator Precedence
	5.5 Implicit Predicate
	5.6 Augmented Operator
	5.7 Coding Subjects' Answers

	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity
	6.3 Construct Validity

	7 Related Work-2pt
	7.1 Atoms of Confusion
	7.2 Code Comprehension-2pt
	7.3 Eye Tracking

	8 Conclusions
	Acknowledgements
	References

