Empirical Software Engineering (2023) 28:85
https://doi.org/10.1007/510664-023-10308-9

®

Check for
updates

An empirical study of the systemic and technical migration
towards microservices

Hamdy Michael Ayas'® - Philipp Leitner' - Regina Hebig?

Accepted: 27 February 2023/ Published online: 22 May 2023
© The Author(s) 2023

Abstract

Context As many organizations modernize their software architecture and transition to the
cloud, migrations towards microservices become more popular. Even though such migrations
help to achieve organizational agility and effectiveness in software development, they are also
highly complex, long-running, and multi-faceted.

Objective In this study we aim to comprehensively map the journey towards microservices
and describe in detail what such a migration entails. In particular, we aim to discuss not only
the technical migration, but also the long-term journey of change, on a systemic level.
Method Ourresearch method is an inductive, qualitative study on two data sources. Two main
methodological steps take place —interviews and analysis of discussions from StackOverflow.
The analysis of both, the 19 interviews and 215 StackOverflow discussions, is based on
techniques found in grounded theory.

Results Our results depict the migration journey, as it materializes within the migrating
organization, from structural changes to specific technical changes that take place in the
work of engineers. We provide an overview of how microservices migrations take place
as well as a deconstruction of high level modes of change to specific solution outcomes.
Our theory contains 2 modes of change taking place in migration iterations, 14 activities
and 53 solution outcomes of engineers. One of our findings is on the architectural change
that is iterative and needs both a long and short term perspective, including both business
and technical understanding. In addition, we found that a big proportion of the technical
migration has to do with setting up supporting artifacts and changing the paradigm that
software is developed.

Communicated by: Xin Peng

B Hamdy Michael Ayas
ayas @chalmers.se

Philipp Leitner
philipp.leitner @chalmers.se

Regina Hebig

regina.hebig @uni-rostock.de

Chalmers University of Technology and University of Gothenburg, Lindholmsplatsen 1,
Kuggen-351, Gothenburg 417 56, Sweden

University of Rostock, Albert-Einstein-Strafle 22, Rostock, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10308-9&domain=pdf
http://orcid.org/0000-0002-3926-3196

85 Page2of50 Empirical Software Engineering (2023) 28:85

Keywords Microservices - Migrations - Grounded theory - Empirical research

1 Introduction

Migrations towards Microservices Based Architectures (MSAs) are long and complex
endeavours, that entail significant changes in the ways that systems of organizations are
structured and operated (Newman, 2019). The complexity of migrations comes from the dis-
tributed nature of designing and developing MSAs (Zimmermann, 2017b; Newman, 2015),
but also the multidimensional nature of migrations (Michael Ayas et al., 2021a; Waseem
et al., 2021). Hence, empirically investigating migrations comprehensively from different
points of view is important to understand their details (Di Francesco et al., 2018). Guide-
lines, both originating from research and industrial best practice, can help organizations with
microservices migrations (Newman, 2019; Balalaie et al., 2016).

However, most practical and theoretical guidance focuses on isolated aspects of the
migration (e.g., how to technically split off services). Hence, it is not always clear how
these disparate aspects of migrations connect to each other. On the one hand, microservices
migrations are characterized by overarching patterns such as decomposing the old system
or introducing new technologies (Balalaie et al., 2018). On the other hand, these overarch-
ing patterns are operationalized by practical activities that are more specific and narrow in
scope (Fritzsch et al., 2019; Knoche and Hasselbring, 2018). What we are lacking is a clear
overarching view on how precedent MSAs migrations are conducted, and which activities
on organizational and technical levels are included (Di Francesco et al., 2019). For example,
migrations entail technical activities that actually take place in the code (e.g. actually splitting
the code-base into small services) (Gysel et al., 2016), but also activities that are structural
and relevant to how organizations operate (Hassan et al., 2020).

In this study, we address this gap through empirical, qualitative research in which we focus
out from initiatives that take place in isolation. Instead, we present how MSAs migration
initiatives connect in an overarching journey. The objective is to present what the overall
journey towards MSAs entails, who is responsible for the different initiatives and when
different parts of these initiatives take place. Hence, we separate the activities that migrating
organizations carry out into a set of guidelines for migrations to microservices.

We do so by conducting an interview study with 19 engineers from 16 case companies of
different size, industries, and geographical regions. All interviewed developers have been part
of their companies’ migration journeys towards microservices. Following that, we evaluate
and extend the activities of the aggregated migration journey with more empirical data using
questions and answers from StackOverflow. We conduct manual, qualitative analysis of 215
relevant posts, also using techniques from grounded theory. As a result, we provide an in-
depth characterization of MS A migration activities including concrete solutions. The research
questions that guide this study are as follows:

RQ1: How are microservice migrations structured?

Our results showcase that microservices migrations are an iterative process, and take
place in two modes of change, /) the systemic and 2) the technical migration. Change on the
systemic migration is on a long-term and strategic scope, whereas change on the technical
migration is on a short-term scope and is repeated in frequent migration sprints.

RQ2: What activities do the systemic and technical modes of change entail?

We identify in total 14 activities that happen in the 2 modes of change. The systemic migration
has 6 activities that drive the overall direction of the migration and are taken by management,

@ Springer

Empirical Software Engineering (2023) 28:85 Page30of 50 85

software architects and senior engineers. Activities in the systemic migration result in big,
structural changes on the overall system. The technical migration has 8 activities with a
smaller scope, on the technological changes. Activities in the technical migration result in a
different implementation of a given technical artifact.

RQ3: What common solutions are available to realize these activities?
This study organizes and presents 53 different solution outcomes that are used by engineers
to realize the migration. The systemic migration has 20 solution outcomes that are the con-
crete results of the work of management, architects and senior engineers when migrating.
The technical migration has 33 resulting solution outcomes that engineers devised in their
migrations.

The results to the aforementioned research questions result to a set of guidelines for
migrations to microservices. Therefore, in this paper we argue that:

— Our empirical analysis can give practitioners the expected migration journey, and can
serve as a road-map to what activities such a journey entails.

— We provide a high-level model of the migration journey that can help plan and structure
migrations as well as share a common picture of the state of a migration.

— The resulting journey entails a set of specific guidelines in the form of activities and
solution outcomes for each part of the system that can help organizations develop a
framework on which they can base their migration.

— Ourresults also provide a detailed theoretical basis to researchers for investigating further
the different aspects of microservices migrations.

An earlier version of this research has appeared in a previous conference paper
(Michael Ayas et al., 2021b). The current study builds on the modes of change and activities
already identified in the previous paper, but is extended by a second study step (analysis of
StackOverflow data), leading to deeper insights into concrete solution outcomes within all
activities of a microservice migration.

2 Related Work

Our main area of study are migrations towards microservices. In the following we briefly
summarize the current state of research, and discuss what gaps we address in our work.

2.1 Benefits of Microservices

Microservices are a way of structuring systems into loosely coupled pieces that are developed
and operated independently, each with its own individual resources (Thones, 2015). These
individual pieces communicate with each other to compose a complete system (Zimmermann,
2017b). There are many fundamental differences between a software application based on
a monolithic architecture and a system based on microservices (Newman, 2019). However,
we still need to understand more in detail these differences and how the transition between
the two architectures can possibly take place.

Migrating to a microservice-based architecture can be very rewarding for organizations
because microservices promise to enable many benefits (Newman, 2019; Singleton, 2016;
Soldani et al., 2018). The migration journey is often very helpful to improve the developed
system (Balalaie et al., 2016) and decrease technical debt on the long term (Lenarduzzi
et al., 2020). Hence, organizations are very often extremely motivated to migrate towards
microservice-based architectures and there are many potential ways to do so (Newman,

@ Springer

85 Page4of50 Empirical Software Engineering (2023) 28:85

2019; Mazlami et al., 2017). Microservices promise improvements in many aspects, such as
scalability, maintainability and continuous development (Di Francesco et al., 2018). Specif-
ically, resource-demanding parts of a software application can be scaled independently and
unburden the rest of the system. Also, the modular organization of the system with minimal
dependencies allows improved maintainability (Dragoni et al., 2017). In addition, the flexi-
bility in service design that can be achieved enables a lot of potential in continuous delivery of
new business value (Dragoni et al., 2018). All these benefits are promised for the completion
of the migration. However, it is not clear how they can be achieved in intermediary stages
and have tangible benefits during the migration.

2.2 Migrating towards microservices

Microservices are increasingly getting widely adopted by different organizations. Usually
there is a large leap between a monolith and a microservice architecture (Newman, 2015). A
migration / transition is the crucial project that takes the software development organization
through the leap (Hassan et al., 2020; Taibi et al., 2017). Research on microservice migration
projects gains popularity (Hassan et al., 2020). Previous research investigated the area sur-
rounding the architectural characteristics of microservices migrations (Balalaie et al., 2018;
Fritzsch et al., 2019), as well as how it relates to the overall development process (Taibi
et al., 2017). In addition, existing research provides several solutions on how to technically
enact and facilitate microservices migrations (Waseem et al., 2020). These solutions include
splitting a system, transforming the code of an application, identifying services in a mono-
lith (Fritzsch et al., 2018) or decentralizing their data management and governance (Loukiala
et al., 2021). Also, such solutions often provide tools on how to identify and decompose
services, assuming a technical and deterministic viewpoint on the migration (Gysel et al.,
2016). This is not always ideal, as migrations are more often than not complex endeavours
with many things to consider (Newman, 2019; Waseem et al., 2021) — so many that it seems
taunting to perform a migration in a one-off project (Taibi and Lenarduzzi, 2018).

In practice, researchers have observed that most microservice migrations entail weak-
nesses or limitations that stem from insufficient migration planning, leading to Microservices
Bad Smells (Taibi and Lenarduzzi, 2018) or Anti-Patterns (Taibi et al., 2020). To prevent such
bad smells, Balalaie et al. (2018) provide a valuable set of patterns that can guide a microser-
vices migration initiative (Balalaie et al., 2018). In addition, Auer et al. (2021) present a
metrics-based assessment framework for transitioning systems to microservices (Auer et al.,
2021). Current research also provides sufficient arguments and decision models on how to
tackle problems that arise and how to technically perform a migration (Waseem et al., 2021).
However, all those lead to work for engineers that needs to be done and more often than
not, the required solutions to implement them are unknown, in order to be planned accord-
ingly. Also, even though existing work organizes rigorously and systematically aspects that
describe architecting systems with microservices (Di Francesco et al., 2019), there is a gap
in studying with similar rigour migrations specifically.

2.3 Architectural Migration
Our work also builds on a body of work on architectural migrations of legacy systems (often

to service- or cloud-based architectures). Early work during the advent of service-oriented
architecture often focused on identifying (or “incubating”) services in a legacy system Zhang

@ Springer

Empirical Software Engineering (2023) 28:85 Page 50f 50 85

and Yang (2004). This problem also re-appears when migrating to microservices, particularly
when defining criteria for decomposition (Section 4.2.2).

There already exists significant research on how to conduct architectural migrations to
cloud systems Zimmermann (2017a); Ahmad and Babar (2014). Many of the solutions iden-
tified in these works also appear during microservice migrations, and are often applied by
practitioners in this context. Particularly, Jamshidi et al. have previously identified cloud
migration patterns, which, to a large extent, are also applicable to the migration to microser-
vices Jamshidi et al. (2014). In addition, there is extensive literature describing and analyzing
different strategies for migrating legacy systems to the cloud in general Zhao and Zhou (2014).
Existing research presents the general challenges of the general migration process towards
the cloud Gholami et al. (2017) and there are approaches that can support refactoring of
systems (towards Platform-as-a-Service Borges et al. (2018) or the modernization process
and roadmap towards the cloud Jain and Chana (2015).

2.4 Tools and Technology

The technologies and tools that implement microservices have grown over the years and get
applied extensively (Hassan et al., 2020). However, techniques to evaluate decomposition
approaches are often not evaluated on applications from industry, making problems appear in
later stages of the development lifecycle, i.e., in production, when applied (Di Francesco et al.,
2019). This improves with recent research on empirically analysing real-world microservices
systems (Camilli and Russo, 2022) and their traces (Zhou et al., 2021). However, the focus is
mainly on what stakeholders and developers could do differently and not what stakeholders
and developers face during a migration. For example, migrating towards microservices entails
challenges and activities that are not always in line with current best practices and these can
be identified and investigated (Di Francesco et al., 2018; Taibi and Lenarduzzi, 2018). Hence,
learning from organizations that migrated to microservices, can also help us understand the
elements of a migration journey and raise awareness for them over to future migrations.

3 Methodology

Our research method is a mixed methods study, consisting of two main methodological steps
as shown in Fig. 1.

First, we conducted interviews with practitioners who have recently participated in
microservices migration projects. An analysis of the interviews revealed different modes
and activities of the migration journey.

In a second step, we analyzed 215 posts from the Q&A website StackOverflow. The
objective of analyzing the posts is to evaluate the results from the interviews and further
deepen our knowledge on the identified activities, by identifying involved solution outcomes.

Combining both, interviews and posts from StackOverflow, allows us to get a more holistic
picture of what developers go through during a migration journey. On the one hand, the
interviews served well to assess how practitioners perceive and experience their journey. On
the other hand, the discussions from StackOverflow allowed us to identify: i) the critical
points in the journey that prompt practitioners to reach out to others to deliberate and ii) the
detailed technical solutions that practitioners used throughout the journey. Furthermore, the
posts that we analyze helped to empirically identify common solutions that can be associated
with the activities. Thus, the combination of both data sources, interviews and StackOverflow

@ Springer

85 Page 6 of 50 Empirical Software Engineering (2023) 28:85

B2

Focused &)I RQ1: Theory I

Step 1: Interviews

© g

T
1
1
1
1
Design and conduct !
1
1
1
1
1

®

3 i Transcripts &
interviews:

I Theory Extension

h : initial coding Theoretical Development (Migration |
- Interview guide of 19 ; Journey, Phases & Activities) J
- Select interviewees . : coding ~ i Y ————— - 5

- Conduct interviews interviews / .ics o \
(& &)
1 N |
Step 2: StackOverflow discussions — i . 1
I
1

\
1
1
T T |
® NG ' @) RQ1: Theory | P A
r ! = ! 1 Evaluation 1 \ concrete tasks and so\utmns}
1 1 ———————
"’@ , - | I I
1 - | | me ey |
: T 4 -t ke
Set filtering criteria: ocuse I om eee |
- Search terms i SuﬁglreDr?; ! Theoretical | se Sm |
- Discussions (>1 answers) | d,Xp ! | coding on 215 y RQ2: Detailing I
- Perceived importance | ISeUSsIons: & posts activities with tasks
(>1 total upvote) i 7 j I and solutions I
\ 7/

Fig. 1 An overview of the followed research methodology

posts, allowed us to gain a more complete picture, by combining insights from practitioners’
perceptions when reflecting on the journey with traces of the discussions they created during
their respective journeys.

The analysis of both, interviews and posts, relies on techniques found in Grounded Theory
(GT) (Charmaz, 2014), namely coding, memoing, sorting and constant comparison. Based
on guidelines for GT in software engineering research, we cannot claim to use the classic GT
method. Instead, we used an adaptation of constructivist GT as we had significant previous
exposure to literature prior to the study (Stol et al., 2016), such that some of our themes align
with both, previous research (Balalaie et al., 2018; Hassan et al., 2020) as well as commonly
identified processes (Newman, 2019).

3.1 Interviews

We conducted semi-structured interviews (Fig. 1 methodological Step 1). The interview
guide, was constructed based on our first research question. However, we gave participants
significant freedom to describe their own migration journeys in their own words. In accor-
dance to constructivist GT, we started with an initial research question that evolved throughout
the study (Stol et al., 2016). The initial research question was inspired both from practical
experience and literature on the subject. At start, we targeted to address more generally the
underlying elements of a microservices migration, but early on we needed to narrow the
scope and focus specifically on the migration process.

It is worth noting that the interviews are collected in another study with focus on decision-
making during microservices migrations (Michael Ayas et al., 2021a). Even though both
studies rely on the same interviews, we conducted a new analysis for this work, based on a
different portion of the data. The main methodological difference in this study is that satu-
ration is observed retrospectively with the available data, rather than driving the termination
of inviting more participants.

The interview guide can be found in our replication package (Michael Ayas et al., 2022).
We omit interview transcripts from the replication package to preserve interviewee privacy
and protect potential commercial interests of our interviewee’s employers.

@ Springer

Empirical Software Engineering (2023) 28:85 Page 7 of 50 85

3.1.1 Participants

We relied on purposive sampling (Baltes and Ralph, 2020) and our personal network (e.g.,
through current and previous projects, colleagues, or students) to design and conduct the
interviews (Fig. 1, sub-step (a)). The recruited interview participants have a rich repertoire
of experiences with microservice migrations. Furthermore, we used a snowballing approach,
where we asked each interviewee to refer us further to other potential participants from
their networks. This way we tackled the well-known challenge of recruiting a sufficient
number of engineers for interview studies. The selection criteria for participants during the
study were adjusted in order to include more experienced engineers along the way. We used
an adapted saturation approach (Charmaz, 2014) in which we judged during data analysis
that no new insights were appearing and therefore, there was no need to continue inviting
more participants. For the selection of interviewees and case organizations, we used a set of
acceptance criteria. Specifically, our interviewees are (a) software engineering professionals
(not students) who (b) have participated (or were close observers) in a microservice migration
project within their professional work. An overview of the participants is found in Table 1.

We have interviewed 19 professionals from 6 different countries (Cyprus, UAE, Germany,
Romania, Sweden, The Netherlands), of which 18 were male and one female. Interviewers
had on average 7.5 years of experience (ranging from 2 to 21) and they have worked at medium
to large companies in twelve business domains. Note that some of the interviewees have 2
or less years of experience with MSAs. We consider that to be representative of companies
that are still in process of migrating towards microservices architectures. In addition, the
migration cases are about systems delivered to external customers (e.g. Enterprise SaaS), in-
house enterprise solutions for internal users and also Software Applications sold as a service
(e.g. mobile app). Each interviewee worked in (at least) one case of microservices migration
and we consider migrations from 16 different companies, as shown in Table 1.

3.1.2 Protocol

We conducted our interviews over a period of six months. Each interview took between 30
and 60 minutes (Fig. 1, sub-step (a)). Due to the COVID-19 pandemic that was ongoing
during our data collection, as well as geographical distance, interviews had to be carried out
through video conferencing. Prior to each interview, participants were asked to sign a consent
form, and consent to recording the interview. Further, participants were made aware that they
can drop out of the study at any point, which no interviewee made use of. We did not offer
financial rewards to study participants.

In order to learn about the migration journeys of the interviewees, we opted for a semi-
structured interviewing process. The semi-structured format gave the study participants the
freedom to describe their journey, as they experienced it. The prepared questions (can be seen
in the replication package of this study Michael Ayas et al. (2022)) were used to maintain
the scope of the discussion. The interviews were initiated using two to five introductory
questions, depending on how elaborate the participant’s answers were. The introductory
questions were used to obtain descriptions of the participant’s background, experience, role,
industry, and type of software they migrated to microservices. Then, seven questions were
prepared to guide participants in reporting about the migration journey they experienced
(listed in Table 2). In addition, some clarification questions were also asked, to stretch on
certain topics that the interviewees touched upon but did not go into depth.

@ Springer

Empirical Software Engineering (2023) 28:85

85 Page 80of50

SOITAIOSOIOTUI Y)IM dJULIAAXD UO 2IB $IORIQ UI SIN[EA PUB SIEAA UT ST 9duLIad Xy

)12 1091yo1y dsudiuyg 611 SuLmjoejnuBA wy 91310
9 or1 01D 811 Surmoenuey ST 1810
) €1 JULY[NSUOD) 2IMOANYIIY AIBMIJOS 911 Suruued / sons130] 00029 #1810
()8 Iopunoj-0) LTI Suruued / sonsIS0] 0¢ €1810
&) ¥ JO9)IYIIY 2IBMIJOS SI1 arem)jos A31ougg 0S 21810
[(SAR% I9oUISUF AIBM)JOS 11 arem)jos ASroug 0S 71310
(©) ot 109D o[Iotuag eIl Sunndwo) pnofy 000°€8 11810
@9 Toouruy ere((48} QIemlJoS aIedyi[esHq oSl 01310
©9 Toaursug IeM1jos 111 sonAeuy SuneyIen 000°€€ 6510
)L Toaur3ug aremijos [edroutiq 011 Sunndwo) pnop) 000°00T 8310
[(SXS 1snuaIdg 1ndwo)) 61 arem)jos ostdioyuyg 000°LC 1310
©¢ 1odojoaa(aremijos 81 SUOT)EOTUNWITIOI[A], 000°0€ 9310
@ L Ioaursug rem1jos LI AIEMIJOS UONEIAY 000°¢ G810
Mz 190UISUF AIBM)JOS 91 arem)jos ostdiojuyg 0S 1310
@ 61 IoouI3uy 1eM1jos SI oreM1JOS Sunjueq 0006 810
e ToaurSug Iem1jos 12! swIsAg Surjueq 000°9¢ €810
@u JI9pEB] WeaJ, Jo1uas 91 arem)jos ostdioyuyg 0S 1810
@ JoouIsug Iemijos u Sumuen 000t 7810
Nz 1adojaaap yoels [[ng 1 Seeg osudiojuyg 0S 1810
(VSW) 2ouariadxsg 210y Ma1a423uf Lasnpuy 2218 810 UOND2IUDSL()

sookordwe owm [[ny Jo soqunu djewrxoldde ur payrodar st 9z1s suoneziuesI() ‘suoneziue3Io ased pue syuedionred morAIu] | djqel

pringer

as

Empirical Software Engineering (2023) 28:85 Page 9 of 50 85

Table 2 The interview guide used in the semi-structured interviews

Question

Q0 Background information (education, training, working experience, experience with
microservices, current role, type of software)

ol What do you consider as microservice architecture? What defines it and what are you trying
to get out of it?

Q2 Can you briefly describe your journey of architecting, designing, and implementing a
microservices-based architecture while migrating from a monolith (migration process,
transformation etc.)?

Q3 Can you tell me about different things/properties/aspects that you have considered before
starting the design of the microservices architecture that enhanced your work (technical or
organizational, internal or external)?

04 What did you do different than existing guidelines and why? Did you follow the guidelines
completely, one-to-one?

o5 Were there any problems/issues or surprises that came along? (regarding the way about things
that you did not consider and afterwards you felt that you should have considered? What,
why, how?)

06 What were the costs of facing the different problems and the aspects not considered? (use

example from interview)

Q7 Can you describe a wish list of 3 things you would like to have in retrospective?

3.1.3 Analysis

We applied initial, focused and theoretical coding on the transcribed interviews (Charmaz,
2014; Stol etal., 2016). After conducting every interview, it was transcribed and analyzed with
initial coding (Fig. 1, sub-step (b)). During the initial coding we analyzed the data horizontally
by fracturing them to find relevant statements. During the focused coding (Fig. 1, sub-step
(c)), we aggregated and connected those excerpts into categories and themes, analyzing
them vertically until achieving saturation. During the theoretical coding we specified the
relationships of the connected categories and integrated them into a cohesive theory, by
conducting both horizontal and vertical analysis. The initial coding was conducted by the first
author. All three authors collaborated in focused coding in three card sorting and memoing
sessions lasting three to four hours each.

In initial coding, the first author coded those statements from the interviews, where prac-
titioners described their actions during the migration journey. It was observed in the first
focused coding session that most of these statements were about actions that practitioners
performed during a migration. These actions were responses either to issues that practition-
ers faced or to (non-)functional requirements that needed to be fulfilled for the migration.
Consequently, in the focused coding sessions, the actions of practitioners were recorded and
organized into activities and phases. The separation of different activities is based on what
interviewees described as separate tasks or as tasks with a different nature of executing. In the
following iterations of coding, descriptions of the activities were gathered from interviews
and enriched with more information, also concerning the phases. In addition, the distinction
of longer and shorter-term activities started becoming apparent and therefore, we sorted the
activities and phases in two iterative modes of change. Finally, in the theoretical coding,
the three authors reflected more in-depth to how the activities link together and the iterative
perspective of the migration started developing.

@ Springer

85 Page 10 of 50 Empirical Software Engineering (2023) 28:85

All resulting findings are supported by statements from multiple participants. Finally,
it is worth mentioning that literature played a supporting role to our analysis in order to
enhance the validity of our findings. Existing literature helped us to understand more com-
prehensively the statements of software developers during the interviews in combination with
the authors experiences and previous exposure to the topic. Also, in this analysis we took
into account existing research guidelines on creating processes and taxonomies in Software
Engineering (Ralph, 2019).

3.2 Posts from StackOverflow

We analyse posts from StackOverflow (Fig. 1, methodological step 2) through the lens of
extracting the solution outcomes that engineers make when migrating. StackExchange is a
data source for mining data from Q&A websites and it is widely used in Software Engineering
research (Tahir et al., 2020; Papoutsoglou et al., 2022; Wen et al., 2021; Chen et al., 2020).
Such websites and forums that facilitate Q&A across software development communities are
hosting a lot of information of software engineers’ rationale and day-to-day work (Baltes
and Diehl, 2019). Examples of different Q&A websites are StackOverflow, Software Engi-
neer, DB professionals (and many more). We conduct a purely manual analysis on the mined
posts, with techniques from grounded theory. This allows us to capture contextual infor-
mation and describe in detail activities and solutions that engineers make when migrating
towards microservices. Also, we identify the potential courses of action in migrating towards
microservices and enrich the already identified migration journey from the interviews.

This inductive approach in the analysis allows us to make observations from an additional
source that contains more concrete details on what engineers do than the interviews (which
discuss on a more abstract level the general approach).

3.2.1 Data Gathering

The first step, was to identify which sites and forums are in the scope of this study. Specif-
ically, Stack Exchange at the time of writing maintains data from Q&A websites of 175
communities.' Due to the authors knowledge on the topic from interviews, previous expe-
riences and exposure to the relevant literature, we were able to identify that relevant topics
such as microservices, migrations, DevOps, architectural transitions and data decentraliza-
tion are most commonly discussed in the StackOverflow community. Hence, we limit our
data collection to this community.

In the second step, we gathered data from Stack Exchange and created a data-set for
analysis using SQL queries in the platform’s Data Explorer. The queries were designed
to gathering questions that initiate discussions on the topic of microservices migrations
(Fig. 1, sub-step (e)). Therefore, the keyword combinations “microservice” AND “monolith,
migration and transition” were searched in the title or body of posts. The initial search resulted
to 265 question posts. As acceptance criterion, we used only posts with a positive total voting
score and which have received at least one answer, reducing the number of question posts to
76. Hence, we only include posts were the content is validated and discussed by at least one
peer engineer, having potential to contain useful information. Also, the presence of answers
allows us to get more information about concrete solutions and when we gathered the answers
of the 76 questions our dataset formed into 215 posts in total.

1 https://meta.stackexchange.com/questions/289233/how-many- sites-are- there-on- stack-exchange

@ Springer

https://meta.stackexchange.com/questions/289233/how-many-sites-are-there-on-stack-exchange

Empirical Software Engineering (2023) 28:85 Page 11 of 50 85

Table 3 Descriptive statistics of the 76 questions and discussions under questions gathered for analysis

Average answers Average words Standard deviation Users
Questions 1.83 224 +/- 135 words 74
Discussions - 354 +/- 282 words 141

The gathered data is of textual format and varies in length from post to post. Typically,
questions entail descriptions that are 1-3 paragraphs long and the answers entail one to five
posts, without a clear pattern in their size, as shown on Table 3. The resulting format of the
posts from querying the Data Explorer was suitable for manual and in-depth analysis of the
contents from each post.

As the third step, we gathered the answers of each question post. Therefore, we run a
second SQL query (per question) in the Data Explorer to download the entire discussion
(Figure 1, sub-step (f)). Each discussion includes all the answers that were linked to the
respective question. All the resulting queries can be seen in our replication package (Michael
Ayas et al., 2022).

3.2.2 Data Pre-processing and Analysis

We imported the gathered posts into the tool N vivo?, which is suitable for qualitative analysis
of unstructured data. Doing so, we transform the query results from the CSV format to text
files, creating one file per question. The answers for each question were added in a separate
file. Answers to the same question were analysed together (also with the question at hand),
in order to keep track of the entire discussion’s contextual information and topic.

For the analysis of the data we used the techniques of coding, sorting of codes and iden-
tifying patterns (Fig. 1, sub-step (g)). The starting point of this analysis was the migration
journey derived from the interviews. Specifically, the first author read each question and cre-
ated topical codes. Then, each code was assigned to one activity from the migration journey
developed from the interviews. In this way, the theory about the migration journey devel-
oped from the interviews was evaluated with further empirical data (Fig. 1, sub-step (h)).
Specifically, the posts confirmed the relevance of the previously identified activities.

Next, the first author read each answer of the question at hand and coded the potential
solution outcomes, to enrich our knowledge about the activities of the migration journey
(Fig. 1, sub-step (i)). The whole team held weekly meetings to discuss the allocation of
codes to activities and deliberate on the content of the derived migration journey. In these
weekly sessions, axial coding was performed in order to derive what activities practition-
ers discussed, based on the support that practitioners’ requested from the StackOverflow
community. In addition, the contextual information of these activities, based on the details
given in their posts, and the different solutions that were discussed in the posts were
extracted.

This also led to modifications on the initially recorded migration journey. The modifica-
tions were along the lines of:

1. Claritying the scope of each mode of change. For example, we specified that the systemic
mode of change concerns mainly architects, management and senior engineers.

2 https://www.gsrinternational.com/nvivo-qualitative-data-analysis-software/home/

@ Springer

https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home/

85 Page 12 of 50 Empirical Software Engineering (2023) 28:85

2. Clarifying the scope of the identified phases of the migration journey and merging them
into three distinct phases. For example, we merged into one phase the initial phases of
“Setting up supporting artifacts” and “Implementing technical overhead”.

3. Merging activities that included solutions with similar nature or with similar scope. For
example, in the last phase of the systemic migration we merged the activities into one that
contains multiple solution outcomes.

The boundaries of activities are defined with the following rules:

1. Grouping solution outcomes that have a similar contextual scope. Specifically, focusing
on a specific part of the system (i.e. backend, frontend etc.) or focusing on the business
aspect of changing to microservices (e.g. Clarifying migration drivers).

2. Grouping solution outcomes that have a similar working task scope. For example, setting
up communication between services or addressing cross-cutting concerns throughout the
system altering the software systematically in a similar way across services.

In our analysis, we first identified solution outcomes of each activity and then we inferred
from the data whether the solution outcome is an alternative outcome (mutually exclusive)
or not.

3.2.3 Resulting Changes to Initial Theory

Posts from StackOverflow contributed in identifying new information on detailing descrip-
tions of activities and solutions. In addition, this step enriches the identified migration journey
by altering some of the interview results. Specifically, the analysis of StackOverflow posts
lead to merging the initially four derived phases of a migration iteration into three phases
(described in the results section). In addition, some activities identified in the interviews
were merged, resulting to the description of 14 activities (from initially 18). However, the
most significant impact that StackOverflow posts have in the results is the identification and
addition of 53 solution outcomes, describing the detailed internal elements of each activity.
Consequently, the differences on this step are reconciled by extending in detail the descrip-
tions of activities on the one hand, and scoping the focus of activities to specific solutions
discussed in StackOverflow.

4 Results

Our analysis results in a migration journey that materializes in different modes of change
within the migrating organization. In this study, we describe the process that comprehensively
covers the migration from structural changes to specific changes that take place in the work
of engineers. Specifically, we first describe the overall organizational migration journey that
takes place in two modes of change. We refer to modes of change to indicate that MSAs
migrations take place at different levels of an organization. Modes of change can be structured
in phases. In these phases, we specify the journey with migration activities, that a migrating
organization performs. Migration activities are high-level actions that realize the migration. In
addition, we further derive and aggregate solution outcomes. They concretely describe what is
performed during a migration activity. We differentiate /) potential solution outcomes (nice-
to-have or required designs) and 3) alternative solution outcomes that are mutually exclusive.
Note that of course not all identified activities will be executed during every migration project.
Whether an activity needs to be executed depends on the infrastructure, requirements, and
artifacts that are already in place.

@ Springer

Empirical Software Engineering (2023) 28:85 Page 13 0of 50 85

4.1 Overview of Migration Journey

As depicted in Fig. 2, microservices migration is an iterative process entailing two modes of
change.

Modes of change The identified modes of change are, as presented in Fig. 2, 1) the long-term
Jjourney, which we refer to as the systemic migration and 2) the short-term journey, referred to
as the technical migration. The systemic migration is about the structural, organizational and
business-oriented aspects of the migration. Additionally, the scope of the systemic migration
is on the global software architecture transition that is required when an organization commits
toa MSA migration. The technical migration is on a narrower scope, focusing on the technical
realization of a migration towards MSA. Often the technical migration considers only the
specific technical changes or one application on a subsystem. Specifically, it is about the
evolution of a software system and changing its artifacts (e.g., concrete system architecture,
monitoring solutions, etc.). Neither of the two modes of change should be understood as a
one-time process. Instead, both modes of change are repeated in an iterative manner (in the
case of the technical migration on the same or different technical systems), until the migration
is completed. Note that this end point does not necessarily imply that all subsystems have
been migrated. Based on our observations, many organizations will consider a migration
completed even if some elements of the system remain in the old form.

The two modes of change typically happen in parallel (even though they are connected
and influence each other). Each iteration of the systemic migration has a long-term scope
and often contains multiple iterations of the technical migration, as will be illustrated in the
example case below. For example, interviewees I1, 13, I5 and 16 mention that system designers
and business analysts were inexperienced with microservices and needed some iterations to
grasp the new concepts, during the first migration attempt. A common denominator across
most investigated migration cases is that the migration project is more of an on-going and
re-occurring project rather than a one-off execution of steps. On the one hand, a migration
can be taking place in different parts of the system simultaneously on different teams. On
the other hand, a migration also happens in increments or sprints from the same team, when
evolving the same part of the system.

Both modes are different from each other concerning /) the involved roles and 2) their
responsibilities. During the systemic migration, roles such as senior engineers, system

ﬁchnical ﬁchnical
migration migration
sprint sprint

echnical
migration
sprint

Technical
migration
sprint

Initiating
Migration
Systemic Systemic Systemic

migration sprint migration sprint|

migration sprint

‘ Migration planning - Executing migration ‘ Setting up Supporting Artifacts

Fig.2 The iterative nature of the migration journey along the two different modes of change

@ Springer

85 Page 14 of 50 Empirical Software Engineering (2023) 28:85

architects and managers are responsible for making decisions about the overall direction
of the migration, the targeted architecture, and the tooling that will be used. On the other
hand, the technical migration takes place in the daily work of engineers, who are responsible
for changes closer to technical implementation.

Phases We use three thematic phases for structuring both, the systemic and technical migra-
tion, as shown in Fig. 2. The phase of Migration planning is about planning and preparing
for how the migration will be executed. The activities of this phase take place at the start of
a (systemic or technical) iteration. The phase of Executing the migration is about modifying
the software architecture (systemic migration) and source code (technical migration). Finally,
the phase of Setting up supporting artifacts is about setting up additional infrastructure for
the development and other technical artifacts required to support the microservices paradigm.

lllustrative example In the following we use a running example, which is an imaginary
construction of a case migration, based on our experiences from the interviews. We use
the profile of an organization that has a system with a couple of decades in prior software
development. This software was firstly developed to support the organization’s business, but
evolved into a crucial value adding part of its core business. Multiple departments and teams
are working in different parts of the software and the entire organization needs to synchronize
for updating it. As the organization grows with more customers and more features, the
software grows to the extend that it is difficult to manage, maintain and run with reliability.
This imaginary organization considers the option of generally restructuring their software
and specifically migrating towards microservices. The migration organization will follow an
iterative approach, with several systemic change cycles that each of them contain several
technical change cycles. The organization’s management, enterprise architects and senior
software engineers investigate the overall systemic change that will be taking place on the
long term. Software developers investigate how their software artifacts will change in a more
immediate time frame.

4.2 Systemic Migration

The systemic migration has two activities in the phase of Migration planning, three in the
Migration execution phase, and one in the phase of Setting up supporting artifacts, as shown
in Fig. 3. Each activity has a set of solution outcomes that are described in detail subsequently.

4.2.1 Clarify the Migration Drivers

Context The first identified activity in the studied migrations is to clarify the migration
drivers, being business drivers or technical drivers. Clarifying the business and technical
drivers is needed to align with all stakeholders on the requirements of the migration. In most
migration cases we investigated in the interviews, there was a large process of deliberation
in which different stakeholders, with different concerns and interests, had to exchange their
views and align with each other. According to some highly experienced interviewees (110,
113 and 117), this is the ideal phase to obtain a critical stance on microservices and consider if
itis really a good fit for the overall objectives at hand. In fact, I17 described how missing this
discussion at this stage made it costly later on to abort the migration and revert to a previous
architecture once again. After all, and as 12 also discussed, MSA is not suitable for all types
of systems.

@ Springer

Empirical Software Engineering (2023) 28:85 Page 150f 50 85

Design of MS based Design of a MS
on Business based on current|

Function prominence
I o i Gne-to-one mapping
T T Design a Service Continuous esigns for Designs for between business
cut spit process | | , Stateless services e "
interactions | |communications unctions an
o " technical artifacts
‘ > 8

Setup continuous :y’ h 4
extraction

P sy smm—— DUild a shell API

Designs for | [Middleware between
graceful client || client and backend with
facing services encapsulating layer
ntegration Plan on services
Define Criteria Multple staging and communications and
environments per,
for P deployment recording their
<7 Decomposition _ Setup P environment interaction
Guidelines for | [Guidelines for | [Guidelines for P independent O
Effortbased | |Execution-flow-| | - Size-based deployment and
spliting based splitting

T 1
splitting integration U
20 selecion of | [Infrastiucture] [pepioyment | [Testing
Clarify for multiple
and tools_ | repositories

F migration
Development teams (InYformal Difvers
involving business internal
representatives glossal

- Migration planning - Executing migration -Semng up Supporting Artifacts
& Interviews ©ICases * Q&A discussions references

Potential outcomes m Alternative outcomes

Fig.3 The seven activities in the Systemic Migration towards a MSA with their solution outcomes

“It depends on the type of the product, the audience, time constraints. [If] I should
build now a system for a small company, I would build something monolithic. There’s
no serious reason to start building in microservices for that company.” - 12

Addressed problems - Engaging top management in the migration initiative to align with

business benefits and ensure the budget of the migration, which is not always easy to get.

— Resolving doubts about whether microservices are a suitable architecture to achieve the
organization’s goals.

Solution outcomes Related to this activity, we identify two possible solution outcomes (see
Fig. 4). The first (S1), is the design of an internal terminology to communicate effectively
among people with different backgrounds. Microservices migrations often entail modernizing
systems and, more often than not, require new synergies among people from different disci-
plines, who have not worked together before. The Domain-Driven-Design-based strategies
that are prominent in microservices (Newman, 2015) require domain specialists. The inter-
views also revealed that business people and software engineers from different specializations
need to work together on complex tasks. This multidisciplinary collaboration requires defin-
ing a common vocabulary. We characterize this solution outcome as management-oriented
because it is about managing a smooth collaboration between people with different back-
grounds.

The second solution outcome (S2) in this activity is a change of the structure of the devel-
opment team, such that the business perspective is represented. A prominent way to do
this is to include business representatives into the teams. We have observed multiple posts
from engineers claiming that this is an essential element in order to achieve domain-driven-
decomposition and business-centric design of the software architecture. Including a person
who takes a business perspective, can enable a team to perform a decoupling of processes
based on business logic, minimize synchronized responses and, therefore, allowing a more
stateless design early in the migration. This solution outcome is characterized as organiza-
tional because it has to do with how teams are structured in the organization.

@ Springer

85 Page 16 of 50 Empirical Software Engineering (2023) 28:85

S1 (In)formal internal glossary of terms Management

/ S2 | Development teams involving business representatives | Organizational

Clarify migration
Drivers

Fig.4 Possible solution outcomes for the activity “Clarify business and technical drivers”

“Not only do you need to ensure that the motivation behind replacing monoliths with
microservices is sound, but also you need to step outside the monolith and revisit the
actual business and begin partitioning that instead.” - StackOverflow Discussion’

Execution challenges - Successfully defining migration drivers requires alignment between
business and technical teams. Finding this consensus is time-consuming and entails a
learning curve.

— Estimating the returns on investments of a migration is essential to constructing the busi-
ness case for the migration. However, such estimations naturally entail high uncertainty
and guesswork.

In this activity, the example organization investigates the market forces
that create needs to enable faster releases. First, there are attempts
to understand the extent to which new services are needed to be de-
livered to clients, in which frequency of delivery and to what extent
these services are client-individual or generic-purpose of their product.
Therefore, S2 from Fig. 4 is used to link business with technical un-
derstanding. Furthermore, there seems to be limited technical control
and transparency on parts of the system, leading to unknown ineffi-
ciencies, mainly because engineering teams developed solutions in an
ad-hoc manner, without standardization in reusing these solutions. S2
from Fig. 4 enables teams with diverse experiences to have a common
glossary and align their solutions in order to have higher transparency
and a common, systematic way of addressing issues.

4.2.2 Define the Criteria for Decomposition

Context Once alignment among core stakeholders is achieved comes the activity to define
the criteria for decomposition. This step uses the input from stakeholders to define the goals
of the migration and a service decomposition rationale. For example, both IS5 and I8 mention
how the migration is driven by two groups: management, which tries to market the company’s
technology as modern, and the software development teams, who try to eliminate dependen-
cies and bottlenecks in development. The objective of this activity is to estimate the (business)

3 https://stackoverflow.com/questions/44949367/microservices-dependencies-and-events

@ Springer

https://stackoverflow.com/questions/44949367/microservices-dependencies-and-events

Empirical Software Engineering (2023) 28:85 Page 17 of 50 85

S3 | Guidelines for Size-based splitting Technical

S4 | Guidelines for Execution-flow-based : Technical
iy Alternative
splitting
Define Critorta S5 | Guidelines for Effort-based splitting Management

for
Decomposition

Fig.5 Possible solution outcomes for the activity “Define criteria for decomposition”

impact of deciding how to pursue the migration and translate the migration’s motivation into
concrete guidelines. Common points of discussion in the data revolve around which parts of
the system should be seen in isolation to accommodate (among others) business, regulatory
and security requirements.

Addressed problems — A lack of clear criteria for decomposition can lead to individual
teams prioritizing their own needs at the expense of others’ needs. Criteria for decompo-
sition can serve as a way to communicate to teams which non-functional properties are
particularly important and should be prioritized.

— Existing Best Practices are often perceived as unclear, generic or challenging to fol-
low Waseem et al. (2021). Hence, this activity is needed to interpret existing practices
and adapt them to the specific company or project context.

Solution outcomes The solution outcomes in this activity relate to defining the principles in
which the architecture will be split. In this activity three different solution outcomes emerged,
which can be seen as alternative decomposition “rules of thumb”, that prioritize size, execu-
tion flow, or effort, as indicated in Fig. 5. Decomposing based on size (S3) entails defining
an “ideal” size (measured, for instance, in the number of lines of code that a microservice
should have), whereas decomposing based on execution flow (S4) is about using patterns
of dependencies on the state of components to merge them into one microservice, or split
them accordingly. Both S3 and S4 need a technical understanding of the system, to develop
pragmatic guidelines. Finally, decomposing based on effort (S5) is visible when prioritizing
microservices split outweighs the effort required to perform the split. Therefore, in the solu-
tion, engineers estimate the potential impact of the split and the effort required to achieve
the impact and decide accordingly. This potential outcome requires input from management
regarding the effort threshold that should determine whether it is worth to perform a split.

“You definitely don’t want to implement complex, hardly maintainable logic for object
creation just to be able to handle more requests than your system would ever have” -
StackOverflow Discussion*

Execution challenges — Achieving consensus between different stakeholders in prioritiz-
ing different metrics is a challenging task. There are many constraints to take into
consideration Gysel et al. (2016); Mazlami et al. (2017); Fritzsch et al. (2019), and
likely no decision will make all stakeholders happy.

4 https://stackoverflow.com/questions/55986736/how-to-create- a- short-readable-uuid-in-a-microservices-
distributed-environment?rq=1

@ Springer

https://stackoverflow.com/questions/55986736/how-to-create-a-short-readable-uuid-in-a-microservices-distributed-environment?rq=1
https://stackoverflow.com/questions/55986736/how-to-create-a-short-readable-uuid-in-a-microservices-distributed-environment?rq=1

85 Page 18 of 50 Empirical Software Engineering (2023) 28:85

ﬁ

Build a shell
API

S6 | Middleware between client and backend with encapsulating layer | Technical

S7 | Designs for graceful client facing services Technical

Fig.6 Possible solution outcomes for the activity “Build a Shell API”

In this activity, the migrating example organization aims to combine
domain-driven-decomposition, whose basis is established in the earlier
activity, with the pragmatic issues that come across and can halt the
project with unclear tactics on how to move forward. Specifically, there
are trade-offs that need to be balanced, between addressing business
requirements and accommodating technical limitations of decoupling
certain services. To balance these trade-offs, the example organization
establishes a decomposition rationale that aims for strict domain-driven
splits of their system, no matter of how much technical changes need
to take place. In order to develop this rationale, software architects set
the criteria that engineers should use to split the system. Such criteria
include no restriction on effort that is needed for the splitting strategy
but prioritizing the execution flow that the system has.

4.2.3 Build a Shell API

Context Once migration requirements are clear and decomposition criteria are defined, most
interviewees mentioned the need to manage the old system during the migration. This
includes, for example, investigating how the (new) microservices will communicate with
the legacy system during the transition phase. A way in which this takes place is by building
a shell API around the old system. In some cases, microservice migration takes place by
building an entirely new system from scratch (e.g., I1, 13, 16). However, even in these cases
a shell API around the previous system’s data layer is required, enabling the usage of data
from the old system. This activity is on the systemic migration because 1) it is about the
overall structural change of the system and 2) influences the global architecture of the system
that will emerge during the migration. The focus is on standardizing the communications
between services.

Addressed problems - Isolate (parts of) the system to maintain existing core behavior as
the system architecture is refactored.
— Maintain a controlled starting point, but also controlled intermediary stages of the archi-
tecture until it reaches its microservices structure Knoche and Hasselbring (2018).

Solution outcomes For this activity, two solution outcomes emerged, as shown in Fig. 6,
that both require technical input on the systemic change. The potential outcome (S6) of this

@ Springer

Empirical Software Engineering (2023) 28:85 Page 19 of 50 85

activity is an encapsulating layer that maintains the behavior of the application, in order
to achieve a seamless experience while changing. For example, I11 (among others) built a
middleware that acted as an internal API around the legacy system, and did not use any data
coming from any other place. However, this was only possible with dedicating development
time in maintaining and evolving this middleware.

“The first step was to take the backend as a whole, as one piece |[...] connect it with a
linked library that is imported in the Ul, and then we built an API around it.” - 111

Hence, building a shell API is creating a layer between client side and the backend data
calls. This allows to maintain the behavior of the application the same and gradually change
the way the backend is called.

“Create a ‘collation layer’ that exposes queries to return global views for the client
[...] The collation layer can protect the end client from such changes.” - StackOverflow
Discussion’

The second potential outcome (S7) is about ensuring that the behavior of the application
is maintained the same while changing. This way, it is intended to to achieve a seamless
experience to the clients while changing the software architecture that structures the system.
Software architects in this stage, design and communicating requirements to engineers that
all client facing functionality should change gracefully. Meaning that the change is not visible
to the customers unintendedly.

“Some of the services might go down because of disruption or deployment, in which
case you have to think about handling these situations gracefully (for example apply
circuit breaker” - StackOverflow Discussion®

Execution challenges — Building the shell APIrequires engineers with intimate knowledge
of the original system’s behavior to lead the initiative. These engineers need to be given
sufficient time to develop a reliable API that retains the original behavior as precisely as
possible.

The example case organization is initiating a migration towards
microservices. Currently, the system communicates mainly through
method invocations and a joined relational database. This leads to
coupling and needs to change. Therefore, in order to enable the change
without disrupting the behavior of the system, a shell API is built
around the entire system that handles data requests. This way, data
can be exchanged and aggregated without having a completely final
master data model that is optimal, but at the same time enabling con-
tinuous improvements and updates. Management requires the system
to run without changes in its behavior to the clients and therefore,
engineers maintain a middleware and data aggregating services before
the frontend to support its seamlessness.

5 https://stackoverflow.com/questions/69482127/how-to-implement-read- side- across-multiple-
microservices-or-modules-in-modular

6 https://stackoverflow.com/questions/45400096/migrating- multi- module- project- to- microservices

@ Springer

https://stackoverflow.com/questions/69482127/how-to-implement-read-side-across-multiple-microservices-or-modules-in-modular
https://stackoverflow.com/questions/69482127/how-to-implement-read-side-across-multiple-microservices-or-modules-in-modular
https://stackoverflow.com/questions/45400096/migrating-multi-module-project-to-microservices

85 Page 20 of 50 Empirical Software Engineering (2023) 28:85

Design a
service cut

S8 | Design of a cut based on a service’s prominence Technical

Alternative
S9 | Design of cut based on Business Function Technical

Fig.7 Possible solution outcomes for the activity “Design a service cut”

4.2.4 Design a Service Cut

Context Asshown in Fig. 7 the first decomposition takes place by designing a service cut for
extracting one service or performing a first split, sometimes in combination with developing
a new microservice. The activity is about designing the architectural split of the system and
drafting the future architecture. Also, it includes the documentation of the first split of the
system, in order to use it as a Proof-of-Concept or template in future splits and during the
technical migration. In this activity we find evidence for two alternative ways that can be
executed and, typically, only one of them is followed. This can result in a hybrid architecture
with a small monolith within the MSA, according to 12 and I11. It is worth noting that a hybrid
architecture does not necessarily appear when a new architecture is developed in parallel to
the existing one. A trade-off of this activity is balancing upfront investment with the need for
an immediate design split.

Addressed problems — Decide which parts of the system to start decomposing.
— Scope the discussions to a realistic level of granularity, which can be achieved in the
current stage of the migration.

Solution outcomes Designing a service cut can lead to two alternative solution outcomes.
Here, the guidelines selected in activity “Define the criteria for decomposition” are used. The
first alternative solution outcome (S8) is about designing the extraction of one service on the
basis of a prominent system part. For example, the extraction can take place on a big part of
the system or on a commonly used part. For example, when extracting a large, cohesive part
of the existing system as a microservice. However, we noticed that the question, what a large
partis, is relative to the current size of the existing software. The designed microservice can be
subjectto further cuts in future iterations. The alternative (S9) is about designing the extraction
based on a clearly defined business function. Hence, the extraction takes place solely based
on business requirements on the responsibilities of the services. Engineers mentioned that
they make service cuts from the frontend until the database to isolate a feature that should
be provided as a service. These vertical cuts are designed with either of the two approaches
(S8 or S9) and used in the technical migration to guide the technical split.

“Microservices should be more of a vertical partitioning of your application and not
a horizontal one. In my opinion it’s better to think in terms of business function parti-
tioning rather than “converting” an existing monolith.” - StackOverflow Discussion’

7 https://stackoverflow.com/questions/44949367/microservices-dependencies-and-events

@ Springer

https://stackoverflow.com/questions/44949367/microservices-dependencies-and-events

Empirical Software Engineering (2023) 28:85 Page 21 of 50 85

S10 | Continuous split process Management
S11 | Designs for Stateless interactions Technical
S12 | Designs for services communications Technical
S13 | One-to-one mapping between business functions and technical artifacts | Business

Fig.8 Solution outcomes for the activity “Setup continuous extraction”

Execution challenges — Decide on the starting point for the decomposition is inherently
challenging. Starting with core functionality is often difficult due to a plethora of depen-
dencies, but adds most direct value. Starting from more peripheral functionality requires
less effort but is also perceived as less useful.

Once the migrating organization abstracts data requests and maintains
a stable behavior of the system, they can start designing the extraction
of the first service. The first alternative for designing the new structure
is to find the busiest and most commonly used part of the system
and wrap it into a different service. This is an approach in which the
core functionality is consisting a new service and communicates with
the rest via an API. The second alternative that the organization can
follow is finding a coherent business function that it is easy to isolate
from the rest of the system and extract it with API communications.
For example, they can select all customer management functionality
and start viewing it as an individual service.

4.2.5 Setup Continuous Extraction

Context Senior engineers and software architects use their newly acquired knowledge from
the first split and then typically define the granularity of the services and repeat the extraction.
This activity is about setting up a continuous extraction process that can be executed by
engineers in subsequent splits of microservices, for example in the technical migration.
Therefore, it includes defining the granularity and planning the re-extraction of services.

“is a continuous problem defining how big the area of concern is [...] I have some
functionalities and are these one service, multiple services or something to be added
in an existing service?” - 115

Addressed problems — Propagating the migration to the entire organization, with a sys-
tematic way of making technical decisions (Waseem et al. 2021).
— Propagating the new software development mindset to the organization, via setting up a
process that individual development teams who are not experienced with microservices
can follow throughout the organization.

@ Springer

85 Page 22 of 50 Empirical Software Engineering (2023) 28:85

Solution outcomes As shown in Fig. 8 the first solution outcome (S10) is a continuous split
process that can be given to engineers (in the technical migration). The process helps them
to accelerate the extraction of service, when executing the decomposition of different parts
of the system that are similar. Four Stack Overflow posts support the need to standardize and
organize tasks that have to do with decoupling the software, as migration projects evolve.
Consequently, we characterize this outcome as management-related.

The solution outcome S11 seems popular among engineers that are in more advanced
migrations, and it is about developing refined execution flows of services that eliminate "state-
fulness’ as much as possible. Re-designing parts of the systems with the mindset/objective of
eliminating stateful interactions between its constituent elements can lead to creating more
independent services and therefore, reduce coupling (i.e. direct connections that bypass end-
points or waiting for chained services). The solution outcome S12 is about designing data
aggregating services to start abstracting communication to an architectural level rather than
a program level. Data aggregating services need to be designed for facilitating the APIs
developed in earlier activities. These services are responsible for gradually taking over the
communication between services in a structured and controlled manner. Both S11 and S12
need input from technically astute senior engineers.

Finally, S13 is a one-to-one mapping between business functions and technical artifacts.
The emergent idea of this solution is to isolate the scope of technical artifacts to a clearly
defined unit of business and limit the scope of a business unit to one artifact. The objective
is to develop the self-containment of services and help in reducing their coupling as well as
the achievement of solution S11.

“The ideal Self-Contained System would be completely independent of other Systems,
would cover one or more highly cohesive business functions (in full depth from the
Ul to Persistence!), and would be not calling any other system synchronously.” -
StackOverflow Discussion®

Execution challenges — Changing the software development mindset of engineers requires
time. In addition, the coordination of all involved stakeholders is not trivial. Partic-
ularly, having technical knowledge is necessary but not sufficient. Knowledge of the
microservices-based software development paradigm needs to be conveyed to engineers
effectively so that they can start performing the migration in different parts of the system.

The first split is designed and the migrating organization needs to re-
peat the activity to further decompose the architecture. A process is
established for repeating the extraction in a similar manner until the
system is completely structured into microservices. The process is es-
tablished as a starting point and in future iterations it will be refined
based on knowledge acquired. This process entails the mapping of value
propositions with source code features. Also, it can be given to engi-
neers in the technical migration, that can follow it as best practice of
future microservices extractions.

8 https://stackoverflow.com/questions/43069858/orchestrated- vs-choreographed- service-oriented-
architecture-in-large-scale

@ Springer

https://stackoverflow.com/questions/43069858/orchestrated-vs-choreographed-service-oriented-architecture-in-large-scale
https://stackoverflow.com/questions/43069858/orchestrated-vs-choreographed-service-oriented-architecture-in-large-scale

Empirical Software Engineering (2023) 28:85 Page 23 of 50 85

4.2.6 Setup Independent Deployment and Integration

Context Increasing the number of microservices results in a need for setting up support-
ing artifacts for new development, integration and deployment issues that are surfacing
with the adoption of microservices. Such artifacts are deployment environments, testing
processes and logging or monitoring. This activity is about designing and configuring the
infrastructure for integrating and delivering microservices individually. The activity needs to
accommodate a distributed system with independently developed sub-systems. The scope is
the software release architecture that is going to be used in the technical migration. This
scope requires prior experience in introducing a new tool chain and changing the cur-
rent status quo of development. Hence, this activity is also about deciding the detailed
elements of the automated release architecture that the technical migration will use to
independently deploy and test services. Consequently, this leads organizations to facili-
tating independent and dynamic testing and deployment for rolling-out new versions of
the application.

Addressed problems — This activity, helps to avoid an un-standardized delivery by estab-
lishing the central infrastructure that supports integration and deployment of multiple
individually developed and loosely coupled, autonomous services. Setting up indepen-
dent deployment and integration, establishes a unified model for running the software
and for its composition to the complete system.

— In addition, this activity intends to unburden developers from the required configurations
to integrate their services to the entire system.

Solution outcomes We identified the solution potential outcome S14, as shown in Fig. 9
which is about planning for configuring in each individual service the infrastructure for
coordinated integration and deployment with the rest of the system. The outcome is a standard
way of having these environments in order to achieve a coordinated and consistent way of
releasing different microservices into one system. This outcome paves the way for developing
capabilities that enable the seamless merging of multiple deployment environments of sub-
systems. For example, with setting up CI and CD pipelines and writing scripts that will make
the integration happen in a systematic way. These capabilities enables to integrate different
individual services, in different versions with each other.

“We do weekly release cycles. Each service/component located in the separate git
repository. 'A release’ - is several features that we put into wild. Usually only several
components should be updated.” - StackOverflow Discussion’

The second solution outcome (S15) is about configuring the part of the infrastructure in
which the different individually developed services (e.g., in a release train) get integrated. A
solution that appeared in this activity is regarding the preparation of integration and deploy-
ment environments. This includes the configuration of development, testing and production
environments and mechanisms to manage the quick release and revert from different versions
of services to ensure compatibility. The solution here is basically the resulting DevOps archi-
tecture for releasing software. This solution requires a technical skillset of setting up such

9 https://stackoverflow.com/questions/30449278/automation- of-releases-of-microservices-based-
application

@ Springer

https://stackoverflow.com/questions/30449278/automation-of-releases-of-microservices-based-application
https://stackoverflow.com/questions/30449278/automation-of-releases-of-microservices-based-application

85 Page 24 of 50 Empirical Software Engineering (2023) 28:85

S14 | Multiple staging environments per service Technical
st $15 | Integration and deployment environment Technical
deployment &

integration S$16 | Plan on services communications and recording their interaction | Management

S17 | Selection of frameworks and tools Technical

S18 | Infrastructure for multiple repositories Management

S19 | Deployment mechanisms Technical

820 | Testing mechanisms Technical

Fig.9 Possible solution outcomes for the activity “Setup infrastructure for integration”

automatic environments that control releases. This includes setting up staging environments
and processes, dynamic testing and delivery processes. Such processes include both auto-
mated structures but also more manual activities such as setting the communication among
services.

“we have some automated testing [...], when everything is OK, the service is deployed
on a staging Kubernetes cluster to be tested, and if everything is OK, it is promoted to
production.” - 13

In S16 we identify a solution outcome about planning how to record interactions between
services. Logging is perceived to be more crucial in the context of microservices than for
other architectures, as a lack of it leads to often unexplained system behaviors. For example,
both, I1 and 12, described how their systems behaved unpredictably and had unknown bugs
surfacing frequently, in initial migration attempts. In these attempts, a proportion of the
code was reused without adding any logging. Hence, the systems became non-transparent
making them hard to maintain. The outcome is about facilitating cross-service communication
through managing the execution complexity and altering execution flows in order to achieve
asynchronous communication between services (as described by the answers to Post #73).

The identified solution outcome S17, shown in Fig. 9, is a required design where engi-
neers with a portfolio of experiences in different types of tools select the most appropriate
ones for their case. The focus is mainly on identifying frameworks and tools that will enable
independent testing and deployment. This includes the selection of frameworks (in connec-
tion to the technical migration) that are more suitable for independent testing like Angular
libraries or tools that will help in managing independent deployment like Azure’s Service
Fabric or hosting Lambda functions in different CloudFronts to achieve high availability
across different time-zones. The management-oriented outcome in this activity is S18 which
is also a required design. S18 is about setting up the general infrastructure changes that
are needed for individual repositories (to be used in technical migration). Its appearance is
quite prominent in StackOverflow discussions and it is about preparing multiple repositories
for individual services. This allows the independent deployment but also requires setting
continuous integration pipelines and keeping track of costs that might arise.

“We where putting each micro-service in a separate repository as the Jenkins pipeline
was build in a generic way to build them that way|...] This was helping us in some
cases. In general you should also consider the cost.” - StackOverflow Discussion'®

The solution outcome S19 is about introducing deployment mechanisms, including the
ways that applications are run in different virtual machines and the development of circuit

10 https://stackoverflow.com/questions/56696750/how-do-i-manage- micro-services- with-devops

@ Springer

https://stackoverflow.com/questions/56696750/how-do-i-manage-micro-services-with-devops

Empirical Software Engineering (2023) 28:85 Page 25 0f 50 85

breaking to manage downtime without influencing the entire system. Finally, the solution
S20 is regarding seting up testing mechanisms, including the different ways that engineers
use for testing containerized code, software behavior with load balancing and integration
(e.g., using Consumer-Driven-Contract testing). An interesting approach on testing in S10
included the need to mock all cross-microservices calls to allow the execution of unit and
integration tests.

“For testing purposes you should mock all cross micro-service calls and not block your
Unit/Integration test by other services. This is a common approach in micro-services
systems. This way your tests will not depend on other micro-service.” - StackOverflow
Discussion!!

Execution challenges — Setting up independent deployment and integration entails the
(often complicated) configuration of infrastructure solutions Waseem et al. (2021). This
infrastructure does not in itself add functionality to the product. Therefore, stakeholders
might not perceive the activity as directly value-adding.

As the system is getting split, each microservice is assigned to a differ-
ent team that develops it independently. The migrating organization
realizes that all these sub-systems need to reach production in a con-
trolled and coordinated manner, especially in intermediary stages of
the migration where not all integration capabilities are set. Therefore,
they configure for every team a standardized pipeline for developing,
testing and releasing to production their microservice. This pipeline is
also configured to automatically integrate the different microservices
into a system that is delivered as one. Now that the infrastructure
for continuous development is designed and developed, the migrating
organization needs to administer it to some of the other developed mi-
croservices. For this, they make a selection of the platform that will
host the development and they prepare for each microservice its own
repository. In this repository, there is a standard configuration to be
followed that includes deployment and testing mechanisms in different
stages. Since the organization has hundreds of features, they perform
this activity for the first 10 microservices in the first iteration of the
migration in the systemic migration and plan for configuring more in-
dependent development in subsequent iterations.

4.3 Technical Migration

On the second level of microservice migration, the technical migration, we dive into how the
software itself changes in time, as shown in Fig. 10. Technical migration iterations are more

11 https://stackoverflow.com/questions/64789123/how-to-design-a-microservice- that-needs- to-
communicate-with-others

@ Springer

https://stackoverflow.com/questions/64789123/how-to-design-a-microservice-that-needs-to-communicate-with-others
https://stackoverflow.com/questions/64789123/how-to-design-a-microservice-that-needs-to-communicate-with-others

85 Page 26 of 50 Empirical Software Engineering (2023) 28:85

short-running — typically, multiple iterations of technical migration are repeated during one
complete iteration of the systemic migration.

Our analysis reveals that activities in the systemic migration are on a too high level of
abstraction for technically realizing the migration. Thus, they need to be complemented for
defining the specific technical activities that will implement the change on a technical level.
The activities on the technical migration operationalize those of the systemic migration. The
technical migration has one activity in the phase of Planning, three in the phase of Executing
and five in the phase of setting up supporting artifacts.

4.3.1 Understand and Analyze System

Context First, development teams start from understanding and analyzing the system, which
is the contextual information of the application and its purpose. This activity is on the technical
migration because it is about understanding in detail the specific parts of the system and
planning for the technical changes that will take place. In addition, in this activity we list
outcomes that are specific about microservices and have to do with migrating an existing
system that is already developed. The analysis of the interviews did not reveal many details
on this activity. However, posts from StackOverflow often described this problem extensively.
These details are presented in the form of four solution outcomes.

Addressed problems — The activity helps engineers to maintain a perspective in which
the technical constraints and goals of the technology are not the dominating factors, but
rather the means to achieve business outcomes.

Solution outcomes The identified solution outcomes, presented in Fig. 11, cover both busi-
ness, technical and management aspects of a technical migration iteration. The first outcome
(S21) is a design split, which is referred to in 20 Q&A discussions. The designed split is
derived from analyzing the domain, for example based on a master data model, execution
flows, and usage metrics of specific parts of the system. This way, engineers gain a data-driven
understanding of the system’s domains. Additionally, engineers often need to estimate the

Temporary | (Shared and suitable | [Service level| (Data denormalization
databases in individual Data engine data for distributed 19 &
servjces databases 9 aggregation management 16 = Ve
- Front-end Ul'to API
. = correspondin
I Split Data 58 p 9

database orios gateway
/X

, Decompose <

Frontend

Prepare 12 @f’ 138 Tndidual Service
Backend Joge 05 & projectfor || oriented dev. Cw?mer- Rebl:ase
Data request | [Data request| | Wrapped ﬁ w29 19 & each MS framework ization gs
listener handler generic jobs Setup

DevOps

Understand RERG0) 7
&analyze |KPES] ’
o A panfor Tt system IR ‘ APl gatoways || oo GraphQL || Messaging
mental boundary knowledge A"(’,'r"sp;ia‘ 15 & development setup system
image services base 13 = Cos“;'lfgi';:ion
R | orchestration
I] Redundancy || Load balancer || Search || Service
through queues || ~ capabilities index || discovery
[ROE] Setup
Q&S] Monitoring
k-l & Loggin
9 & N g 2 Authentication || Distributed Monitoring
8 mechanisms logging mechanisms
6 Handle
Artifacts
Repostory for |~ Contion
system code in Replications
with flags

versions libraries

W) Vigration planning MM Executing migration I Setting up Supporting Artfacts

G Interviews £53Cases 5% Q&A discussions references

@Potential outcomes @Altemative outcomes

Fig. 10 The nine activities in the technical migration to microservices

@ Springer

Empirical Software Engineering (2023) 28:85 Page 27 of 50 85

» S21 | A proposal for split in the design

Understand &
s ey S22 | Informal knowledge base of known examples

S23 | Aplan for distributed deployment and boundary services

S24 | Joint mental image of seamless client facing flows

Fig. 11 Solution outcomes for the activity “Understand and analyze system”

impact of the potential number of connections per microservice to estimate the complexity
and overhead in development and maintenance. This solution outcome uses information from
the activity Define criteria for decomposition. Also, S21 uses the designed service cuts from
the systemic migration and details them with the complete set of technical artifacts that will
be altered.

The second outcome (S22 in Fig. 11) is about forming an informal knowledge base
about existing practices and experiences from other migrations. This allows engineers to
analyzing in depth the business logic and see parallels to other projects. Another solution
outcome (S23 in Fig. 11) is a plan for defining the boundaries of the split services and
their deployment. This outcome is about planning for distributed deployment and devel-
opment of boundary services. The focus is on mapping the existing business logic to the
new deployment paradigm and preparing the organization for it. For example, anticipat-
ing and planning task-based user interfaces that are developed separately and integrated
together. The last solution outcome (S24 in Fig. 11) of the activity is (based on the internal
glossary of terms (S1)) establishing a common view on the required seamless client facing
flows.

“If the customer quickly hits refresh - he expects to see his new name, as we don’t want
to explain to the customers what’s eventual consistency” - StackOverflow Discussion!2

Execution challenges — Migration initiatives are often fragmented, taking place when
there is some time left, next to the development of new features. Thus, it might
be challenging to maintain a momentum in the change. Therefore, in this activity,
involved stakeholders need to /) take into account the required flexibility of the migra-
tion project, and 2) prioritize what parts of the system need to be re-engineered first
and what can wait for future iterations of the change. Finally, unclear communica-
tion and knowledge sharing can make the migration dependent on some individual
engineers.

12 https://stackoverflow.com/questions/6936044 1/designing-event- based- architecture-for- the-customer-
service

@ Springer

https://stackoverflow.com/questions/69360441/designing-event-based-architecture-for-the-customer-service
https://stackoverflow.com/questions/69360441/designing-event-based-architecture-for-the-customer-service

85 Page 28 of 50 Empirical Software Engineering (2023) 28:85

In the example migration case an engineering team is responsible to
split a part of the software application into microservices. The part
of the application has a backend, a database and a frontend. The en-
gineering team first tries to understand the business domain of the
application and plan its reengineering. The responsible team analyzes
the requirements and investigate how it links with the existing database
schema. Also, an engineer is responsible to chart all the internal con-
nections between modules of the system. Another is reading from open
source projects to understand successful practices that can be adopted.
The team decides not to alter the frontend initially.

4.3.2 Prepare the Backend for Decomposition

Context Inthe nextactivity, teams need to prepare the backend for decomposition. According
to the interviews analyzed, we observe that the backend is often the starting point of the
migration. This is in line with engineers’ discussions, seemingly due to the already organized
nature of the backend and middleware. This activity takes the designs developed in the
systemic migration and translates them into technical change in the system (being designs
for a shell API or a service cut for example).

Addressed problems — Define the often unclear functional area of the software to start
decomposing different services. In preparing the backend, the software can start getting
decomposed and organizing its structure for making it less coupled and more controlled.

Solution outcomes The solutions to the activity for preparing the backend are related to the
way that the application is getting structured and they are among the most discussed solutions
in StackOverflow.

Prepare
Backend

Wrapped generic jobs

S26 | Data request handler

S27 Data request listener

Fig. 12 Solution outcomes for the activity “Prepare the backend for decomposition”

@ Springer

Empirical Software Engineering (2023) 28:85 Page 29 of 50 85

The first potential outcome (S25 in Fig. 12) identified regarding the backend is the wrap-
ping of generic jobs of the application. Specifically, engineers try to separate functionalities
that are commonly implemented and used in the application, in order to expose them for
reuse. These functionalities can be based on usage from the rest of the system, as well
as basic functionalities that are in required in multiple places (e.g. authentication). In this
solution, the boundaries of services start to get defined in the backend and more extensive
structuring starts to take place.

The solution outcome S26 in Fig. 12 is preparing designs and implementation with the
architectural style of having a data request handler (e.g. in the form of APIs) that manage
the communications between services. A data request handler as derived from the analysis
is basically the way of facilitating communication between services via a single entity that
manages all data requests and distributes responses to the requesting service. The predominant
ways of implementing such an entity is via a (central) service that manages all data requests
from adjacent services and aggregates their data, or an API gateway that refers to the requested
data sources with a unique address and manages the data aggregation. This solution has the
benefits of a more organized structure and being easier to manage, since data aggregation
takes place in a single place. On the other hand this also results in having a central point of
failure in the application and also a potential bottleneck that might compromise performance
in certain cases.

Another solution outcome (S27 in Fig. 12) is preparing designs and implementation
that follow an event-driven style and have a distributed implementation across services
on how to exchange data with each other. The design of having data request listeners is
facilitating a more direct communication between services via event-driven techniques in
which services call each other directly. This approach can have the benefits of stronger
performance if developed correctly. However, it can result in a less structured approach,
that is easier to lose track of in large systems. Losing track of connections between ser-
vices can lead in coupling through synchronized calls in certain cases. Since both designs
have their own merits, many engineers mention that often a combination of the two is
ideal.

“In microservices each micro-service can talk to another base on two different
communication style:Sync (REST is suggested) or Async (via message brokers)” -
StackOverflow Discussion'?

Execution challenges — Taking decisions on how to split certain parts of the system can be
complex, considering that coupling might be quite high, source code might be unclear
and, in many cases, the original developers are not available to answer questions about
the system anymore.

— Preparing the backend may be revisited and re-designed as the engineering teams learn
new solutions and set-up new infrastructure (e.g. in subsequent iterations). Therefore,
engineers often mentioned the critical challenge of maintaining the flexibility required
to update and extend the software’s structure later on.

13 https://stackoverflow.com/questions/40377377/micro-services-communication

@ Springer

https://stackoverflow.com/questions/40377377/micro-services-communication

85 Page 30 0f 50 Empirical Software Engineering (2023) 28:85

An engineering team is working with the migration and they start
with the backend of the system. First of all, they used their analysis to
decompose into an individual microservice the “user authentication”
functionality, that is implemented in multiple places of the application
and is used by different features. Next, they prepare the API endpoints
of the microservices at hand and enable them to communicate directly
with each other, using a design of data request listeners. Finally, they
also develop a central API that aggregates data centrally, using a design
of data request handler, for external communication with third party
systems.

4.3.3 Split the Data and Data Migration

Context Preparing the backend is often followed or takes place in parallel with splitting
the data and data migration. This activity entails the reorganization of the entity relation-
ships between data and also splitting the data into multiple databases. Also, since relational
databases are fundamentally structured around coupling, many interviewees (e.g., I1,12,111)
described how such databases are not always a good fit for microservices.

Addressed problems — As part of the microservices migration, coupling in the data layer
often has to be reduced or eliminated, while at the same time maintaining data integrity Wu
et al. (2022). This activity initiates the discussion about removing coupling through
service-level data aggregation as well as selecting the right data engine.

Solution outcomes As shown in Fig. 13, five solution outcomes are identified in this activity
from which two are required designs, one is an solution outcome and two are alternative
from each other. S28 in Fig. 13 is about denormalizing data that are going to be stored and
structured differently in the new distributed architecture. This is a mandatory outcome because
the data management layer will change at least on the ways that interacts with the application.
Specifically, this solution is about splitting the database schema into independent data sources,
that are separated from each other, suitable to feed individual services. This solution is what
establishes the separation of data in order to enable service-level data aggregation (S29).

“Given a database that consists entirely of related tables, how does one denormalize
this into smaller fragments (groups of tables) so that the fragments can be controlled
by separate microservices?” - StackOverflow Discussion'*

S29 in Fig. 13 is about the design and development of service level data aggregations and
moving data aggregation from coupling on the data management layer, to controlled/regulated
aggregation on the service layer. Specifically, this potential outcome is derived from 30 post
references in StackOverflow. A natural consequence of data decoupling is that aggregation
of data that would normally happen with simple ‘JOIN’ functions now needs to take place

14 https://stackoverflow.com/questions/27007353/how-does-data-denormalization- work- with- the-
microservice-pattern

@ Springer

https://stackoverflow.com/questions/27007353/how-does-data-denormalization-work-with-the-microservice-pattern
https://stackoverflow.com/questions/27007353/how-does-data-denormalization-work-with-the-microservice-pattern

Empirical Software Engineering (2023) 28:85 Page 31 0f 50 85

/ i \ D Name
S28 | Data denormalization for distributed management

S29 | Service level data aggregation

S30 | Suitable Data engine

S31 | Shared and individual databases

- - Alternatives
S32 | Temporary databases in services

Fig. 13 Solution outcomes for the activity “split the data and data migration”

on a higher level of abstraction (the service level). Aggregating data on the service levels
is a paradigm of data management that is different from the fundamentals of “databases-
thinking” that most engineers learn. Therefore, it is sometimes perceived as a radical change
for engineers.

Furthermore, S30 is aiming for an overhaul database engines upgrade towards modern
ways of data storage. Specifically, since data are managed in a distributed manner, there is
more flexibility in how different parts of the data are stored. Also, often the existing database
engines are no longer suitable for the smaller-scoped services, the possibility (or need) to
perform data-joins on a service level and the potential structure of data. Via changing the
database engine, it is easier to initiate the often required data-schema refactoring process for
decoupling.

Finally, S31 and S32 are alternatives to each other, and they are about either maintaining
a shared database along with individual ones or maintaining temporary, often read-only
databases in different services. S31 is having shared and individual databases. Specifically,
engineers in their discussions mention that for microservices that have very frequent and
performance critical data exchange, or large volumes of data exchange, it is sometimes
virtually impossible to have separate databases and therefore, one could consider having
shared databases with extreme caution. In addition, there is the need of estimating the potential
costs of having data duplicates and compare with other alternatives, which is relevant for the
business for budgeting the migration project. S32 is having temporary (read-only) databases
of other microservices. This means that a microservice also stores data from downstream
microservices in order to unburden the software from unnecessary requests. A request is
considered unnecessary if it asks for mostly stable data that does not change often. This
approach of database replicas is often described as a preferred compromise, compared to
allowing coupling between services.

“It’s not a bad practice to keep duplicated data of other services if you are going to
achieve loose coupling.” - StackOverflow Discussion!?

Execution challenges — Introducing and developing databases that are tolerant to failing
microservices is quite challenging, but also crucial for maintaining data consistency and
predictable behavior. This challenge is well known in literature and practice Wu et al.
(2022), but is unavoidable in the transition to the stateless design that microservices
entail.

— Data denormalization, particularly in legacy systems with complicated relationships
between data entities, takes time, effort, and expertise. Furthermore, technical debt in

15 https://stackoverflow.com/questions/54862355/data-replication-in-microservices/54864010

@ Springer

https://stackoverflow.com/questions/54862355/data-replication-in-microservices/54864010

85 Page 320f50 Empirical Software Engineering (2023) 28:85

existing database models, such as redundancies, misplacement, inconsistencies and var-
ied formatting of data, can make data migration even more challenging.

The backend of the software is split and some data are unstructured
and more suitable to be stored in a non-relational database. Therefore,
the development team changes the database engine and the data are
denormalized from an engineer for the new non-relational database.
Also, the team realizes that a microservice uses data from a downstream
microservice frequently and therefore, it stores a read-only version of
other service as well.

4.3.4 Decompose the Frontend

Context Once the backend and data layer are split, at least partially, organizations can
start decomposing the frontend. The frontend comes later, since ususally its decomposi-
tion depends on the other parts of the application. Hence, the frontend is often detached first
from the rest of the application and only at a later stage (potentially) decomposed.

“The frontend didn’t get split (yet). It’s doing one thing and there is high customization
without it being overwhelming” - 111

Addressed problems — The frontend part of applications is often subject to particularly
high coupling, often due to having highly standardized visuals across different interac-
tions with a system. In addition, the design and development of a decoupled frontend has
to consider both the interactions between individual services, but also interactions with
the backend.

Solution outcomes We extracted a set of solution outcomes that engineers adopt in this
activity and they are presented in Fig. 14. The identified potential outcome S33 is that of
maintaining a frontend data-model. In this solution a replica is made of the needed data from
services for direct usage in the frontend. This is a very similar approach to maintaining a
temporary database in a service (S32) or a cache (S42). The solution outcome S34 in Fig. 14
is about structuring the front end by allowing every piece of the front end to communicate
directly to a corresponding service for getting data and aggregating the view in the User
Interface. This enables more flexibility in a seamless experience for users, but comes with
more complexity in implementing, and often with an overhaul update of the frontend’s code.
In contrast, S35 in Fig. 14 is a User Interface structure with a combined API that enables a
single point of maintaining the frontend.

Execution challenges — Frontends are customer facing and therefore, highly critical. Alter-
ing the part of the system that interfaces with customers needs to happen in a seamless
manner to avoid service disruption.

— The code structure of frontends inherently entails the use of shared libraries and tight
coupling in the used script-based frameworks. The unique and intertwined structure of
frontend software requires more effort and time to decompose, which might not be viable

@ Springer

Empirical Software Engineering (2023) 28:85 Page 33 0of 50 85

S33 | Front-end database

S34 | Ul to corresponding services

Alternative
S35 | Ul to API gateway

Fig. 14 Solution outcomes for the activity “decompose the frontend”

considering that technologies used and customer interaction design might anyway change
in time.

The migration advances and now the frontend has a solid basis to start
changing. The team realizes that the frontend has too many lines of
code and connections to analyze effectively. Therefore, they decide not
to change it but to create an API gateway that serves it and manages
the split architecture of the backend. In the next development migration
iteration, they plan to extract modules that will directly connect to the
already split services from the backend.

4.3.5 Set up DevOps Capabilities

Context Many organizations indicated that when microservices are decomposed and the
distributed system grows, it needs to be managed considering all the new attributes of the intro-
duced architecture. Hence, there is typically an alteration in DevOps practices. This includes
the structures that organize development and testing of microservices. Testing mechanisms
are altered to support the distributed nature of the new architecture. Specifically, testing
now takes place on different levels, starting from simple unit tests, to integration tests and to
deployment tests. This activity materializes practically the designs developed in the activities
of setting up integration, testing and deployment from the systemic migration.

“testing specific combinations of microservices is super hard to achieve [...] I know
that we are doing a lot of manual work, individual tricky solutions and hacks to make
our test frameworks do what we want to test this complexity.” - 118

Addressed problems — Setting up DevOps capabilities is the activity that helps manage
the changing infrastructure of the system. The ways that software is stored, organized,
and even deployed are changing and this activity helps to introduce and maintain the
required elements for running and managing microservices. This activity addresses the
need to allocate the required effort and engineering resources to setting up the required

@ Springer

85 Page 34 of 50 Empirical Software Engineering (2023) 28:85

DevOb S36 | Individual project for each MS (organized files)

S37 | Service oriented development framework

S38 | Containerization

S39 | Release Tags

Fig. 15 Solution outcomes for the activity “setup DevOps capabilities”

capabilities for the organization’s DevOps. In addition, the activity provides the basic
starting point for the required infrastructure to be in place.

Solution outcomes Mainly based on discussions from StackOverflow, we identified S36 in
Fig. 15 which is, organizing and structuring each microservices’ files into their individual
projects. In this, engineers have to create one individual project directory for each microser-
vice (especially in cases that the existing system is stored in one big project). Worth noting,
is that in migrations, it is typically important and effortfull to organize files rigorously, even
if monorepo approaches are used. Hence, this solution outcome is a required design, manda-
tory to migrations. This includes the organization of files that are used by the application
(e.g. stored in the cloud) or the files that compose the system (e.g. source code, individual
libraries etc.).

“So yes, ideally your each micro-service is a separate Django project. The best way to
break this, first list down all the possible modules in your site or app.” - StackOverflow
Discussion!©

The potential outcome S37 in Fig. 15 is identified jointly from online discussions and
interviews and it is about having a service oriented development framework. For example,
this includes a difference in development in which engineers are no longer required to have
a local version of the entire application on which they develop. Instead, small parts of the
software - microservices - can be developed separately and then get deployed in a staging
server, following a predefined process. This introduces some new practices, including the
development and management of APIs and independent services.

A popular solution outcome (S38 in Fig. 15) of transitioning towards microservices is
containerizing different parts of the application. Posts referring to this included the way
of encapsulating different parts of the system into a container, but also the organization
of development and deployment of these containers into microservices. Therefore, quite
naturally this solution includes the orchestration of containers in more advanced migrations
using tools like Kubernetes.

Another solution outcome (S39 in Fig. 15) identified in this activity is regarding the inte-
gration and deployment of multiple independent services that are asynchronously developed
and have different levels of maturity in their development. Therefore, release tags can be
used to characterize components in production and clarify updates on new versions of the
system.

16 https://stackoverflow.com/questions/56585409/how-to-break-a-django- website-into-microservices/
56586168#56586168

@ Springer

https://stackoverflow.com/questions/56585409/how-to-break-a-django-website-into-microservices/56586168#56586168
https://stackoverflow.com/questions/56585409/how-to-break-a-django-website-into-microservices/56586168#56586168

Empirical Software Engineering (2023) 28:85 Page 350f 50 85

“You can also save some time with automatic git-tagging script for all your deployable
components. The script would check if anything has changed in the master since the
last tag, and, if it has, it would stick a new git tag on the repo.” - StackOverflow
Discussion!’

Execution challenges — Setting up DevOps requires specialized expertise and knowledge
of DevOps concepts Waseem et al. (2020). As many interviewees mention, teams
often lack previous expertise and experience on DevOps when they start migrating. In
addition, configuring the required infrastructure inherently entails multiple governance
challenges Wu et al. (2022).

The engineering team that made a microservices split find systemat-
ically all the individual files that the two services need and organize
them to remove any coupling that they have missed. They have suffi-
cient time to do a clean solution without douplicates. Also, now that
they have multiple microservices, they standardize their service discov-
ery system. Finally, a load balancer is developed in order to be prepared
in cases that will have a high number of external data requests. The
split microservices need to be deployed now with the rest of the sys-
tem and the team introduces containerization to wrap them up. They
also configure multiple staging for testing the microservices in future
development based on their functionality but also integration.

4.3.6 Configure Communication and Orchestration Capabilities

Context Moreover, there are additional technical artifacts that introduce an overhead in
development, that are needed to support the new architecture. Once the application is decom-
posed, teams come across the need of developing Communication and orchestration between
services. Many teams mention how a microservice-based architecture propagates the com-
plexity of different pieces of software to the communication layer. Therefore, the way that
microservices communicate with each other needs to be carefully designed.

Addressed problems — Microservices that are developed and run independently need to
communicate and coordinate to compose the complete system. There are many ways to
facilitate their communication and this activity initiates the configuration of the required
tooling for communication and service orchestration.

Solution outcomes A solution outcome identified (S40 in Fig. 16) is establishing commu-
nication via APIs that act as interface between services. As systems grow, such an outcome
becomes a requirement in order to handle all communications between services. The second
potential solution in this activity (S41 in Fig. 16) is caching in session-oriented connections,

17 https://stackoverflow.com/questions/30449278/automation- of-releases-of-microservices-based-
application/30452220

@ Springer

https://stackoverflow.com/questions/30449278/automation-of-releases-of-microservices-based-application/30452220
https://stackoverflow.com/questions/30449278/automation-of-releases-of-microservices-based-application/30452220

85 Page 36 of 50 Empirical Software Engineering (2023) 28:85

S40 | API gateways development

S41 | Caching

S42 | GraphQL setup

S43 | Messaging system

Configure
Communication/ S44 | Redundancy through queues
orchestration

S45 | Load balancer capabilities

S46 | Search index

S47 | Service discovery

Fig. 16 Solution outcomes for the activity “implement communication and orchestration capabilities”

to keep temporarily data that might need to be used. Caching is a mechanism often used to
implement the earlier solutions of having temporary data storage in services (i.e. S32) and
a frontend database (i.e. S33). A suitable format that is used across engineers for exchang-
ing data between communicating services is setting up GraphQL (S42). Another potential
solution (S43 in Fig. 16) with high popularity is that of a messaging system that enables the
publishing of event messages that await to be consumed. This often requires to have queuing
systems that register event messages (S44). Also, another element in this paradigm is devel-
oping a load balancer (S45) that will help the scale out of applications through clusters of
nodes. Search indexes (S46 in Fig. 16) can be used to access data from all services that need
to be communicated. A reoccurring theme of these solution outcomes is their aim to achieve
eventual consistency reliably, in order to maintain a more stateless and asynchronous flow.
Finally, as the amount of microservices grows, is typically required to develop a way of find-
ing them in an inventory and orchestrating their execution. The solution outcome identified
for configuring communication and orchestration is to establish capabilities to process dif-
ferent requests that services do. This solution outcome aims at data requests processing and
forwarding. For example, through setting up a load balancer (S44) that manages traffic and
help to manage costs of servers. Also, it can be done with service discovery capabilities (S47
in Fig. 16). That is because when microservices are deployed independently and potentially
in different and varied machines, a mechanism is required to automatically finding the right
address to communicate with.

“So eventual consistency is the only data consistency option in a microservices-based
architecture, and if you need strong-consistency guarantees, then you need to build
work-arounds (compensating operations), like retry flows, which will add additional
complexity.” - StackOverflow Discussion'®

Execution challenges — New tools and technologies (about communication and orchestra-
tion) that are introduced with microservices are often perceived as challenging to adopt
and learn by the engineers Waseem et al. (2021). In addition, it is a challenge to assess the
suitability of different technologies for services communication, without prior experience
and attempts to design an optimal architecture.

18 https://stackoverflow.com/questions/65217718/best-practice-to-make-client-handle-eventual-
consistency-of-microservices/66852136

@ Springer

https://stackoverflow.com/questions/65217718/best-practice-to-make-client-handle-eventual-consistency-of-microservices/66852136
https://stackoverflow.com/questions/65217718/best-practice-to-make-client-handle-eventual-consistency-of-microservices/66852136

Empirical Software Engineering (2023) 28:85 Page 37 of 50 85

As the amount of microservices grows, engineers realize that they need
an efficient way of communication between microservices. Hence, they
develop a publish-subscriber messaging system that exchanges events
between certain microservices that are served from a downstream mi-
croservice. Also, they configure a caching system for a more clean so-
lution in storing temporary data.

4.3.7 Setup Monitoring, Logging and Authentication Mechanisms

Context Furthermore, a migration often includes the development of different Monitoring,
logging and authentication mechanisms. This activity is about those cross-cutting concerns
that appear in a distributed manner throughout the system, often affecting all microservices.
The cross-cutting concerns take place in all services. These aspects have a different nature
from other configurations (e.g., about setting up infrastructure) in the sense that they might
affect the implementation as well (e.g. source code might need to be added for registering
logs). For example, monitoring and logging have a different nature in MSAs, which needs to
be designed accordingly. Specifically, interviewee 12 mentioned that putting proper excep-
tion handling to propagate errors correctly was not essential and entirely in place before.
However, in microservices managing error messages and exceptions and propagating them
to the entire system are vital for being able to locate issues and bugs inside a complex network
of microservices.

Addressed problems — This activity helps to isolate crucial aspects of governance that
require specialized knowledge, introduced with microservices Wu et al. (2022).

Solution outcomes The solution outcome S48 in Fig. 17 of setting up an authentication
mechanism is regarding developing a unified way in the application for users to gain access
and navigate across services. We categorize authentication into 1) user authentication for
managing users’ access, 2) microservices authentication for manage access from different
features (e.g. internal/admin features have different access than external ones), and 3) authen-
tication protocols for the governance of the system’s authentication and authorization. The
solution outcome for distributed logging (S49 in Fig. 17) is regarding setting up distinctly

S48 | Authentication mechanisms

S49 | Distributed logging

S50 | Monitoring mechanisms

Setup
Monitoring &
Logging

Fig. 17 Solution outcomes for the activity “setup monitoring, logging and authentication mechanisms”

@ Springer

85 Page 38 0f 50 Empirical Software Engineering (2023) 28:85

bounded services that generate information on how they execute and communicate with each
other in a transparent way, but without interfering with each other’s execution.

Finally, a solution for monitoring is crucial in order to have visibility on the faults and
bugs that might happen in the application. The overall objective is to comprehensively keep
track of shortcomings, especially in early stages of the migration.

“Make sure you have a good setup for monitoring and alerts of any failure.” - Stack-
Overflow Discussion

Execution challenges — No specific and non-trivial challenges are identified for this activ-
ity, other than the fact that related tools and technologies are perceived novel and require
a learning curve (Waseem et al. 2021).

One of the challenges that the team faces is managing authorization of
users across multiple microservice, without bothering the user again.
Therefore, they improve the way that user data are encoded into an
access token and passed throughout the microservices. Also, they con-
figure a dashboard which visualizes gathered information on the exe-
cution of the application, in order to have some transparency of the
distributed calls.

4.3.8 Handle Reused Artifacts

Context Finally, more often than not, there are artifacts being reused from the old version of
the system in a specific service. Hence, there is a need to design the ways for handling any
reused artifacts.

Addressed problems - This activity triggers the discussion on how legacy code is man-
aged effectively, which is often challenging. Sometimes, a fully optimal solution that
implements all principles from microservices might not be the most practical and real-
istic option, given its costs and expected benefits, and compromises need to be made.
In addition, engineers need to find a way of maintaining a coherent architecture without
disrupting functionality that is already working properly and for which there is no real
benefit from migrating it to microservices.

Solution outcomes This happens for example, using libraries and APIs around smaller mono-
lithic parts within the microservices. According to the analyzed discussions of engineers, this
activity also includes the solution outcome of maintaining a repository that stores previous
versions of the system’s parts (S51 in Fig. 18). For example, in order to navigate back to
previous knowledge that might be useful in future versions.

The solution outcome (S52 in Fig. 18) of reusing technical artifacts via extracting common
code to libraries is validated from the analyzed discussions. Also, the discussions revealed

@ Springer

Empirical Software Engineering (2023) 28:85 Page 39 of 50 85

S51 | Repository for system versions

S52 | Common code in libraries

S53 | Replications with flags

| o

Fig. 18 Solution outcomes for the activity “handle reused artifacts”

another solution for reusing technical artifacts. S53 is about creating replications of func-
tionality with flags that indicate that they are in an intermediary stage of design.

Execution challenges — In order to reuse artifacts practitioners will sometimes need to
violate certain microservices principles, such as the principle of not using shared libraries.
Choosing when to follow, and when to deviate from, best practices and microservices
principles is non-trivial to decide.

Finally, the team realizes that it is unavoidable in this stage to have
some common library packages between services. Hence, they organize
a controlled way of doing so temporarily, until later migration sprints
that they will have more time to further decouple the system. Also,
they maintain a history of the versions they developed, in order to use
it as reference in future splits of different services.

5 Discussion

In our analysis we deconstruct migrations to their detailed elements. We provide a com-
prehensive picture of microservices migrations, with 2 connected modes of change that are
pursued from different roles and responsibilities across a migrating organization. The migra-
tion journey entails a process of change, derived from empirical analysis (Ralph, 2019). In
this study we identify the different elements that constitute a migration, showing how com-
plex such an endeavour can be for the entire migrating organization. Another contribution, is
that we start deciphering this complexity in a way that it is possible to indicate its constituent
elements in the form of activities and solution outcomes. Our deconstruction of migrations
is an important step to the direction of understanding and explaining migrations towards
modern software architectures such as MSA.

19 https://stackoverflow.com/questions/39063 178/architecture- patterns-for-low- traffic-and-high-
availability-web-application/39068799

@ Springer

https://stackoverflow.com/questions/39063178/architecture-patterns-for-low-traffic-and-high-availability-web-application/39068799
https://stackoverflow.com/questions/39063178/architecture-patterns-for-low-traffic-and-high-availability-web-application/39068799

85 Page 40 of 50 Empirical Software Engineering (2023) 28:85

5.1 Theoretical Relevance and Future Work

Our study shows that microservice migration is complex including a multitude of activities
and solutions. In the following, we discuss references that the reader can use to learn more
about how the different activities can be executed. In addition, we discuss gaps and necessary
future work, where our study revealed aspects of activities that are not yet detailed in related
work. This discussion is summarized in Tables 4 and 5.

We identified those activities that have been discussed in the interviews and SO. However,
it is possible that there are additional activities that we did not capture yet. For example,
activities to validate the correctness and performance of the migrated system or activities to
rollback to the old architecture, if the migration does not work well. Future work can extend
the journey presented in this paper by uncovering such additional activities.

On the one hand, our results pave the way for researchers’ future work to use the derived
modes of change for systematically reviewing existing literature that addresses the individual
topics of activities. On the other hand, our contribution paves the way for future research in
each activity to be studied in detail empirically for reaching more complete lists of solution
outcomes in each step of a migration. Specifically, one future direction is to investigate
in more detail what roles typically appear in microservices migrations and what are their
responsibilities.

5.1.1 Systemic Migration

It is crucial to systemically re-architect the system in an iterative manner. Even though this
is in-line with guidelines on decomposing microservices (Fritzsch et al., 2018; Newman,
2019), there is room for more empirical investigations focusing on the gradual evolution of
systems until they reach a MSA.

Current research describes benefits of migrating towards microservices, being technical
or economic (Taibi et al., 2017; Singleton, 2016). Our findings on the activity “clarifying
migration drivers” enriches this current research with first insights on the need to align
different backgrounds and concerns of stakeholders. This needs to be further studied in
future work.

Furthermore, there are existing approaches, patterns, and processes to decompose ser-
vices detailing on the activities “define criteria for decomposition”, “build a shell API”,
“design a service cut”, and “setup continuous extraction” (Mazlami et al., 2017; Fritzsch
et al., 2018; Knoche and Hasselbring, 2018; Taibi and Lenarduzzi, 2018; Newman, 2019;
Gysel et al., 2016; Waseem et al., 2021; Michael Ayas et al., 2021a). However, empirical
evidence is required to further evaluate existing metrics to inform a decomposition rationale.
Furthermore, there is still a need to compare different patterns to implement the structuring of
intermediary architectures. Existing approaches for service decomposition focus on automat-
ing the decision instead of supporting engineers in their decision making. Hence, there is a
gap in studying the human factors in designing service cuts. To the best of our knowledge
there is also a lack of research on how to transform stateful systems parts to stateless services.

There are so far only little guidelines on designing additional technical artifacts and setting
up Continuous Integration and Continuous Deployment capabilities (Waseem et al., 2020;
Balalaie et al., 2016; Soldani et al., 2018). Researchers can use the findings to investigate how
software engineers develop their skillset in the new paradigm of development and operations.
For example, there is room to empirically study the learning process of engineers that need
to newly setup CI/CD pipelines.

@ Springer

Page 41 of 50 85

Empirical Software Engineering (2023) 28:85

swiSipered sdoaaq
MU Q) U JIS[[Is 1oy dojaaap
SIOOUISUD 9IEMIJOS MOY 9JeSTISOAU]

$Q01A19s Sumds
Ul S9[0I SSAUISNQ SUIPUBISIAPUN pUL
SSO[AJL)S SPIBMO) SISO SUTUONISURI],
SUOISTOAP
IND 9OIAISS UT SIOUISUL Funeidayuy

VSN 2anjeur
© [IUnN SoINOIYdIe AIRIPauLIuUI

Jo Sunmonns oy} Judwdrduwr
ued Jey) sAem JUAIYIp aredwo))
uoneISI € JO SaSe)s JUAIQHIp Ul
dreuoner uonisodwoodp e wIojul
0] pasn 2q ued Jey) sorjow Apnig

SUIIOUOD PUB SPUNOIIYORq
JUIQJJIP U9MIAq JuawuI Y

(0zoT
B 19 WAISBA ‘810 T8 19 TUBp[OS)
(120t
1@ 39 WAASBAN 81 ()T ‘1ZZnpreud]
PUB IQIR], {1 7OT T8 10 WIasepy)
(810T "B 19
09sa0URIL] I(J 91T “Te 12 [9SAD)

(8107 ‘Sutiqasseyq
pue dydo0ouy ‘6107 ‘UBWMIN)

(6102
e 30 YOSz (L 10T T 10 IWe[ZeIA])
(L10T ‘T8 19
1qre], S070T I8 19 1ZZnpIeud] :610T
“[® 32 YISZILL] (9] (T ‘U0[3UIS)

suonerado 10J peayIano
uonemn3yuod pue juswdoaaap
[RUONIIPPE JOJ PA3U PIUONUIIA

SOITAIOSOIDTUI Y)TM
QW02 Jey) JOPISUOD 0 SJUIW[S pue
SQIIAISSOIOIW SUTOBIXI 10§ SSAI0IJ

(191N5 201A13S '39)
soyoroidde uonisodwodop SAIIAINS

opeoej
901A19s pue waped 3y 19[Fueng

)0

0130] ‘sade) [[BD ‘OpOJ ‘SUIBd) ‘9ZIS
:uo paseq sayoeoidde uonisodwodsoq

VSN 03 Suneidiut Jo 3goqyo2], uo
'3°9) yoedwI pue syyouaq (SIWOUOIY)

juowkodop pue Sunsay
‘uonei3ayur juopuadopur dnjeg

uonoenxs snonunuod dmog

IND AJTAIAS B USISA(

IdV [I°ys ® p[ing

uon1sodwodap I0j BLILID duyaq

SIQALIP uoneIsiu AJuer)

yiom aumpn,y / dvo

20U2ID2Y

YLOM SunsIxXy

sauanoy

QINEIANI[SUNSIXA 1M UONRISIW JIa)IsAS Jo sonianoe Suiddey ¢ 3|qe]

pringer

Qs

Empirical Software Engineering (2023) 28:85

85 Page 42 of 50

joeduwr aanisod
QABY] UBD SYSIA UT S2010RIJ
159¢ 0] SUONBJOIA JBYM QUIULINRJ

Sunndwod

pnoo woij saonoeld sisA[eue

Qoueutojrad Sunsixa jdope
srouonnoeid djoy o1 moy 2)e3nsaAuf

wiSipered uonesIUNWWOD
SAOIAIOS MAU B JAJIYOR
0) yor)s AS0[0UYD) AJe[NWNIIY

SQOTAIOSOIOTW UT JOSpUTW
pue swSipered Sutsourdus oy
oFueyd s1odooadp moy puessiopun)

Sw)SAs Jo sjuouoduwod
Suroej-juar(d jo sseooxd Surdueyo
) uo uonednsaaur [eorndwryg

SuONN[OS JUSWATBULW BIRP
1oy xSt s1ouonnoeld moy releq

SATAIS [INIOANTYOIE
Surugisap jo ssao01d ayy 9)e3nseAuy
suoneIgu
SQOIAIRSOIOIW JnOqe A[[eoy1oads
SurouISua sjuowaInbar aeoy

(20T
“e 30 SOJUAIN {0Z0T “Te 32 1q7e])

(1T0T '8 12 Waasep)

(0T0T T8 19 Wwaasep qL10T
‘UUBULIOWIWTZ, (Q1()T “[& 12 IpIYswey)

(0TOT “'Te 19 WAseAy)

(S10T ‘uewWIMON)

(120T "¢ 39 BEnINOT '610C
I8 39 SOJUAIN 1Z0T TP 10 WIdASBAY)

(120t
“Te 19 NOY7Z 10T T8 10 WIISLA)

(00T
“Te 10 ueSSeH 610 ‘STOT ‘UBWMIN)

SAOTAISSOIOTW
ur Surpdnod Surpie3ar suone[oIA
pue suraped-nue jo Kwouoxe],

VSN Sunuswordwod
s10BJ1IE UO siouonnoeld
Jo 2anoadsiad oy uo sySisuy

UONBINSAYIIO PUB UOHILIIUNWOD
SQOIAIRS JO uonejuaw[dwr 10§
pasn 2q ued Jey) sAISo[ouydd) JO SIS

VSIA 10J S[00) puE suonn[os
‘swa[qoxd sdQAd(T Jo uoreOYISSE[)

SOOTATISOIOTW

ur oe[d soye) Juowdooaap
PUSIUOIJ MOY UO OUEPINS [BIOUID)

soonoeld pue suonnjos
juoweSeuew ejep poINqInsI(|

wo)SAS oY)

Jo sy0rInIE [Ro1Uyo9) J1[ds pue yoen
0) MOV UO 9OUEPINS/[OPOW [RULIO]

suonnjos unsixa [enudjod pue
urewop ‘o130[ssaulsnq A1B3NSIAUT

SJORJI)IE PASNaI A[puBy

Sui33o] pue Sunojtuow dnjog
UOEISAYDIO
pUE UOTEIIUNWIWOD AINFYUOD)

sdoadq dnjeg

pujuoy asodwodaq

ereq nds

puayoeq aredaig

WRISAS 9zA[eue pue pue)sIopun

YoM aumn,g / dpo

20U2422Y]

YLoM SUnSIXg

sauanoy

QIMEIAI] SUNSTXd YIIM uoneIsiu [edruydd) Jjo sanianoe surddejy g 9jqel

pringer

as

Empirical Software Engineering (2023) 28:85 Page 43 of 50 85

5.1.2 Technical Migration

The activity and solution outcomes regarding “analyzing the system” and available practices
can use existing research and the plethora of current tools and frameworks that describe prac-
tices for transitioning to microservices (Hassan et al., 2020; Waseem et al., 2020). However,
there is still a gap in investigating what are the requirements for migrating towards a MSA.

There are some formal models on how to track and split technical artifacts of the system
(Waseem et al., 2021; Zhou et al., 2021). However, even though there is knowledge about
the two architectural styles, data request handler and data request listener, we do not know
much about the process of implementing them.

Furthermore, there are existing solutions and practices for distributed data management
(Loukiala et al., 2021) that link to the activity of “split data”. However, there is still a need
to further investigate what engineers specifically do when splitting their data models when
migrating their data management solutions. Interestingly, one of the solutions identified in
this study about combining shared and individual databases is not completely in line with
existing literature on MSAs best practices (Newman, 2015). It is understandable why this
takes place in intermediary designs, and this indicates the need to investigate further the
intermediary designs of microservices migrations. In addition, researchers can start giving
more attention in empirically investigating the changing process of client-facing components
of systems, relating to the activity of “decomposing the frontend”.

There are classifications of DevOps problems, solutions and tools (Waseem et al., 2020),
lists of technologies that can be used for implementation of services communication and
orchestration (Jamshidi et al., 2018; Zimmermann, 2017b; Soldani et al., 2018), and lists of
artifacts that practitioners use when setting up monitoring and logging (Waseem et al., 2021).
However, many gaps are identified, especially on empirically understanding how engineers
transform their software development paradigms and mindset in microservices. In addition,
future research can accumulate all potential technologies that can be used to achieve a new
services communication paradigm. Finally there is a need to investigate how microservice
practitioners can adopt performance analysis practices that exist for cloud today.

Finally, we found that the way software engineers “handle reused artifacts” can be
described as violations of best practices regarding coupling in microservices (Taibi et al.,
2020; Ntentos et al., 2021) (e.g. through shared libraries). However, we believe that more
research is needed to determine whether violations to existing best practices in MSAs can
potentially have positive impact to the migration.

An interesting insight from our results is that setting up supporting artifacts often have an
even more prominent role than other activities in a migration iteration, with four identified
activities only for supporting artifacts (in comparison to four activities accounted for planning
and execution of microservices decompositions).

5.2 Modes of Change and the Reoccurring Phases of Migrations

Migration projects as continuous improvement initiatives This study indicates the impor-
tance of the iterative and continuous nature of migrations. Specifically, we see that it is not
a one-off project but a continuous endeavour that takes place in migration sprints. Many of
the investigated software development teams that migrate do not consider the change of the
system as a main value-adding project. Rather, they view the migration project as a necessary
sideline activity and they focus on developing new features and value adding artifacts. There-
fore, migrations are rather transformational and take place in parallel with other activities

@ Springer

85 Page 44 of 50 Empirical Software Engineering (2023) 28:85

and thus, there is sometimes a pause and revisiting to the project. Furthermore, since it is
such a complex and multidimensional endeavour, engineers need to keep in mind designing
and developing for future updates and extensions.

Distinguishing the technical implementation work from the overall architectural and
design activities can structure the work packages of engineers more effectively. To the best of
our knowledge, current research does not account for such comprehensive views that indicate
how different levels of abstractions in an organization connect to each other during a software
architecture overhaul change. The identified modes of change and their details showcase how
the long transformational journey that companies go through when migrating relate to the
smaller technical projects of altering the software architecture. Future research can further
investigate the connections between the technical and the systemic migration and explain
what is the interplay between the two modes of change.

Understanding the progress of migration projects One finding from our result is the impor-
tance of having visibility on the three phases of a migration sprint. This helps the engineers
migrating to have a positional awareness of the progress. As many changes take place in
organizations during migrations, there are different modes of change. We see how for dif-
ferent levels of the migration we have a different pace. It is challenging to know if sufficient
progress is made and to demonstrate it and placing the migration in one of the phases makes
it possible. Also this can be used to anticipate work ahead and avoid repetition of work or
taking wrong directions that would generate the need for a lot of work later on. For exam-
ple, completely neglecting logging and exception handling might not be a good idea if it
is anticipated to be an activity later on. Furthermore, this can bring awareness that using
microservices is not a silver bullet and has some flaws that is good to plan for.

5.3 Implications for Engineering Teams

Diverse skills required Based on our findings, engineers that started migrations had to edu-
cate themselves on the new technologies that microservices bring. This typically is taking
place through the studying of Best Practices and available material regarding the technolo-
gies. Of course their goal was always to have a mature architecture that works in the ways
that it is supposed to do. In addition, with microservices, concepts of individual service
ownership are introduced to the engineering teams. Consequently, teams need to have more
“T”-shaped abilities which means that more comprehensive and diverse skills are needed
for each microservice. Such skills include developing different parts of the system, but
also analysing business-wise the service, configuring tools and setting up the development
or orchestration environments. Teams get in a position of designing the business and the
software at the same time with development. Therefore, business-savvy programmers or
programming-savvy Business Analysts and System Designers are needed in teams. This is
often resolved by recruiting system architects or consulting services.

Shift of complexity from implementation to configuration However, one of the most impor-
tant realizations of teams is the shift from traditional development/programming to workflow
design and configuration. This entails the shift of complexity from implementation-level to
a level of communication amongst services. Sometimes, the lack of being up to speed with
the right skills, but also the growth of the microservices, lead to a discrepancy between the
design

@ Springer

Empirical Software Engineering (2023) 28:85 Page 45 of 50 85

or intended development processes and activities from the actual ones that the engineers
do in reality. For example, even though there is the perception that there is strong decoupling
in microservices, in reality there is sometimes a chain of microservices that leads to depen-
dencies and coupling, but on a different level of abstraction. Hence, there is a difference
between the intended and actual structures and processes. As in any architectural migration,
there are different constraints that have opposing implications and thus, trade-offs that need to
be balanced. Hence, there is a need for setting up the prioritization rules in deciding between
trade-offs.

5.4 Answering the Research Questions

RQI1: How are microservice migrations structured? One of the core insights of our study is
the observation that there seems to be two separate but connected modes of change going
on: the systemic and the technical migration. Both are driven by different roles in the orga-
nization and have a different focus and speed of a migration sprint. The systemic migration
is driven by management, architects and senior engineers whereas the technical migration
is driven by engineers, system administrators and team leaders. Nonetheless both modes of
change are connected and influence each other. Decisions made in the systemic mode, will
affect how the technical migration is performed. We further structured the two modes using
three conceptual phases. Interestingly these phases are very similar for the two modes: Plan-
ning, Executing, setting up supporting artifacts. Future work can test our iterative model of
conducting migrations to specific industries. Also, future work can try to separate which con-
cepts are generally regarding the change that comes with migrations and which are specific
to microservices migrations.

RQ2: What activities do the systemic and technical modes of change entail? Activities
in the systemic migration are concerned with clarification of drivers for the migration, but
also definition of decision criteria which affect the technical migration, such as criteria for
decomposition or criteria for the granularity of extraction. Besides that, the systemic migra-
tion entails activities for executing the migration and for building up an infrastructure to
facilitate the technical migration. This includes infrastructures for integration, testing and
deployment, logging and monitoring.

Activities of the technical migration utilize the infrastructure and decisions provided by the
systemic migration. This includes activities to understand the business logic, handle migration
in backend, data and frontend, setting up DevOps, testing, communication orchestration, and
monitoring, as well as handling reused artifacts. Future work can investigate the specific
activities with the aim to infer statistical correlations about their existence and their detailed
relationships/sequence with each other.

RQ3: What common solutions are available to realize these activities? Our study allowed
us to put many known solutions into the context of the overall migration journey towards
MSAs that are part of the migration activities. This way our results present an overview of
how solutions are connected and contribute to the overall migration journey.

Future work can investigate any potential connections between different solution out-
comes and different types of services or software. Specifically, we believe that practitioners
can benefit from further procedures and guidelines that will map different types of ser-
vices with common solutions to implement the identified activities for microservices
migrations.

@ Springer

85 Page 46 of 50 Empirical Software Engineering (2023) 28:85

6 Threats to Validity

We designed our research as a grounded theory study to empirically understand the phe-
nomena taking place in migrations towards microservices. Our theory stems from empirical
evidence and therefore, has a weight in its validity. However, some threats that are inherent
to our chosen study methodology remain, which readers should take into consideration.

External Validity Specifically, we cannot claim representativeness of our study demographics
for the software industry in general, as the sampled population for the interviews was mainly
through our personal network and using a voluntary, opt-in procedure. To address and mitigate
this threat, we selected interview participants that cover different sizes of companies, in
different industries, and across different geographical regions. Another mitigation to this
threat is the triangulation with discussions from StackOverflow, which are potentially from
a broader population when it comes to different industries and company sizes. However, due
to the selected platform, the posts are likely to reflect the voices of engineers stronger than
the perspective of the management. This limitation might lead to missing solution outcomes
in our results.

Internal Validity Furthermore, in terms of internal validity, an identified threat is that we
are somewhat pre-exposed to existing research through our previous interest in the field. In
addition, we also have practical experience and exposure to the extensive practitioner-focused
guidance on how to conduct microservice migrations. This may have biased our interview
design and analysis of the interviews and posts. In consequence some parts of the migration
journey may have been given less prominence or judged as unimportant during analysis.
For example, those not discussed in earlier work. However, we mitigate this issue by using
interviews and posts to confirm the presence of activities. Activities that were reoccurring
in both, interviews and posts, were more likely to be included, even if they have not been
discussed in earlier works.

Another threat concerns the extraction of details about solution outcomes from the posted
discussions, such as the characterization of solution types as well as migration stage. It is
possible that the identified categories of types and migration stages are too coarse-grained
and lack important distinctions. Future studies will be necessary to confirm or complete these
categories. To mitigate the threat, that single data points did not include enough information
for the analysis, we payed attention to analyse questions that received at least one answer
and an overall positive score. Both choices were made to increase the likelihood the question
itself will already contain necessary context information, as the StackOverflow community
systematically rewards this type of questions over those that lack context.

Finally, a limitation of our study design is that we cannot claim that the identified journeys
are the only way to successfully migrate towards microservices, but they are an aggregation
of activities from many real-world migrations.

7 Conclusion

MSAs are a popular contemporary architectural style incarnating modern service-oriented
organizations (Zimmermann, 2017b). MSAs promise benefits from changing several aspects
such as easier scalability, higher maintainability, improved time to market (Fritzsch et al.,
2019; Taibi and Lenarduzzi, 2018), or a natural way of transitioning to the cloud (Lin et al.,
2016). Most applications are not designed as MSAs from ground up and thus, migrations

@ Springer

Empirical Software Engineering (2023) 28:85 Page 47 of 50 85

towards a MSAs are becoming popular. However, such migrations are complex and multidi-
mentional (Michael Ayas et al., 2021a). In this study, we dwell into the complexity of such
migrations. We 1) give an overview of how they take place on a systemic and a technical
migration and 2) give fine grained details of what activities and solution outcomes appear in
MSA migrations.

Our analysis indicates the existence and connection between 2 different modes of change.
Our 2 different modes of change present the architectural migration towards microservices
from different perspectives. First, the perspective of managers, software architects and senior
engineers that see the software from a macro level. Second, the perspective of engineers that
see the migration from the specific technical steps that they have in their daily work.

In addition, we further describe in detail this journey with 14 high-level activities, that
take place from groups of people within the migrating organization. In addition, we organize
activities based on characteristics and in order to predispose development of supporting or
additional technical artifacts. Finally, the level of detail in which migration activities are
described provides an in-depth view of what actually happens in such a structural change.

We specify each activity with 53 concrete and detailed solution outcomes. The defined
constituent elements of the migration process, across different levels of abstraction is a
novel overview of how migrations towards microservices take place in an organization. The
accumulation in a single big picture and further detailing them empirically contributes to
the existing body of knowledge in understanding what are the actions of engineers in MSA
migrations. We also address a Software Engineering research gap in inductively explaining
phenomena of how software architectures are migrated from one state to microservices.

Acknowledgements This research has received funding from Vinnova (Sweden’s innovation agency) under
the grant number 2018-05010. We would like to thank the anonymous reviewers for their valuable input.

Funding Open access funding provided by Chalmers University of Technology. This research has received
funding from Vinnova (Sweden’s innovation agency) under the grant number 2018-05010. The funding agency
did not have input on the research design or analysis. In addition, Philipp Leitner (the second author) is an
editorial board member of the Empirical Software Engineering journal.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmad A, Babar MA (2014) A framework for architecture-driven migration of legacy systems to cloud-
enabled software. In: Proceedings of the WICSA 2014 Companion Volume, Association for Computing
Machinery, New York, NY, USA, WICSA ’14 Companion, https://doi.org/10.1145/2578128.2578232

Aver F, Lenarduzzi V, Felderer M, Taibi D (2021) From monolithic systems to Microservices: An assessment
framework. Information and Software Technology 137(January 2020):106600, https://doi.org/10.1016/
j-infsof.2021.106600, 1909.08933

Balalaie A, Heydarnoori A, Jamshidi P (2016) Microservices Architecture Enables DevOps: Migration to a
Cloud-Native Architecture. IEEE Software 33(3):42-52

Balalaie A, Heydarnoori A, Jamshidi P, Tamburri DA, Lynn T (2018) Microservices migration patterns.
Software - Practice and Experience 48(11):2019-2042

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2578128.2578232
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1016/j.infsof.2021.106600

85 Page 48 of 50 Empirical Software Engineering (2023) 28:85

Baltes S, Diehl S (2019) Usage and attribution of stack overflow code snippets in github projects. Empirical
Softw Engg 24(3):1259-1295. https://doi.org/10.1007/s10664-018-9650-5

Baltes S, Ralph P (2020) Sampling in software engineering research: A critical review and guidelines. https:/
arxiv.org/abs/2002.07764

Borges M, Barros E, Maia PH (2018) Cloud restriction solver: A refactoring-based approach to migrate
applications to the cloud. Information and Software Technology 95:346-365. https://doi.org/10.1016/j.
infsof.2017.11.014, www.sciencedirect.com/science/article/pii/S0950584917301799

Camilli M, Russo B (2022) Modeling performance of microservices systems with growth theory. Empirical
Software Engineering 27(2):1-44

Charmaz K (2014) Constructing grounded theory. sage

Chen Z, Cao Y, Liu Y, Wang H, Xie T, Liu X (2020) A comprehensive study on challenges in deploying
deep learning based software. In: Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Association for
Computing Machinery, New York, NY, USA, ESEC/FSE 2020, pp 750-762, https://doi.org/10.1145/
3368089.3409759

Di Francesco P, Lago P, Malavolta I (2018) Migrating towards microservice architectures: An industrial survey.
In: 2018 IEEE International Conference on Software Architecture (ICSA), pp 29-2909

Di Francesco P, Lago P, Malavolta I (2019) Architecting with microservices: A systematic mapping study.
Journal of Systems and Software 150:77-97

Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, Safina L (2017) Microservices:
Yesterday, Today, and Tomorrow. Springer International Publishing, Cham, pp 195-216

Dragoni N, Lanese I, Larsen ST, Mazzara M, Mustafin R, Safina L (2018) Microservices: How to make
your application scale. In: Petrenko AK, Voronkov A (eds) Perspectives of System Informatics. Springer
International Publishing, Cham, pp 95-104

Fritzsch J, Bogner J, Zimmermann A, Wagner S (2018) From monolith to microservices: A classification
of refactoring approaches. In: International Workshop on Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment, Springer, pp 128—141

Fritzsch J, Bogner J, Wagner S, Zimmermann A (2019) Microservices migration in industry: Intentions, strate-
gies, and challenges. In: 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp 481-490

Gholami MF, Daneshgar F, Beydoun G, Rabhi F (2017) Challenges in migrating legacy software systems to
the cloud - an empirical study. Information Systems 67:100-113. https://doi.org/10.1016/j.is.2017.03.
008, www.sciencedirect.com/science/article/pii/S0306437917301564

Gysel M, Kolbener L, Giersche W, Zimmermann O (2016) Service cutter: A systematic approach to service
decomposition. In: Aiello M, Johnsen EB, Dustdar S, Georgievski I (eds) Service-Oriented and Cloud
Computing. Springer International Publishing, Cham, pp 185-200

Hassan S, Bahsoon R, Kazman R (2020) Microservice transition and its granularity problem: A systematic
mapping study. Software - Practice and Experience 50(9):1651-1681, 1903.11665

Jain S, Chana I (2015) Modernization of legacy systems: A generalised roadmap. In: Proceedings of the
Sixth International Conference on Computer and Communication Technology 2015, Association for
Computing Machinery, New York, NY, USA, ICCCT ’15, pp 62-67, https://doi.org/10.1145/2818567.
2818579

Jamshidi P, Pahl C, Chinenyeze S, Liu X (2014) Cloud migration patterns: A multi-cloud service architecture
perspective. In: Toumani F, Pernici B, Grigori D, Benslimane D, Mendling J, Hadj-Alouane NB, Blake
MB, Perrin O, Saleh I, Bhiri S (eds) Service-Oriented Computing - ICSOC 2014 Workshops - WESOA;
SeMaPS, RMSOC, KASA, ISC, FOR-MOVES, CCSA and Satellite Events, Paris, France, November
3-6, 2014, Revised Selected Papers, Springer, Lecture Notes in Computer Science, vol 8954, pp 6-19,
https://doi.org/10.1007/978-3-319-22885-3_2

Jamshidi P, Pahl C, Mendonga NC, Lewis J, Tilkov S (2018) Microservices: The journey so far and challenges
ahead. IEEE Software 35(3):24-35

Knoche H, Hasselbring W (2018) Using microservices for legacy software modernization. IEEE Software
35(3):44-49

Lenarduzzi V, Lomio F, Saariméki N, Taibi D (2020) Does migrating a monolithic system to microservices
decrease the technical debt? https://doi.org/10.1016/].jss.2020.110710, 1902.06282

LinJ, Lin LC, Huang S (2016) Migrating web applications to clouds with microservice architectures. In: 2016
International Conference on Applied System Innovation, IEEE ICASI 2016, Institute of Electrical and
Electronics Engineers Inc

Loukiala A, Joutsenlahti JP, Raatikainen M, Mikkonen T, Lehtonen T (2021) Migrating from a centralized
data warehouse to a decentralized data platform architecture. In: Ardito L, Jedlitschka A, Morisio M,

@ Springer

https://doi.org/10.1007/s10664-018-9650-5
https://arxiv.org/abs/2002.07764
https://arxiv.org/abs/2002.07764
https://doi.org/10.1016/j.infsof.2017.11.014
https://doi.org/10.1016/j.infsof.2017.11.014
www.sciencedirect.com/science/article/pii/S0950584917301799
https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1016/j.is.2017.03.008
https://doi.org/10.1016/j.is.2017.03.008
www.sciencedirect.com/science/article/pii/S0306437917301564
https://doi.org/10.1145/2818567.2818579
https://doi.org/10.1145/2818567.2818579
https://doi.org/10.1007/978-3-319-22885-3_2
https://doi.org/10.1016/j.jss.2020.110710

Empirical Software Engineering (2023) 28:85 Page 49 of 50 85

Torchiano M (eds) Product-Focused Software Process Improvement. Springer International Publishing,
Cham, pp 3648

Mazlami G, Cito J, Leitner P (2017) Extraction of Microservices from Monolithic Software Architectures.
In: Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017, Institute of
Electrical and Electronics Engineers Inc., pp 524-531

Michael Ayas H, Leitner P, Hebig R (2021a) Facing the giant: a grounded theory study of decision-making in
microservices migrations. 2104.00390

Michael Ayas H, Leitner P, Hebig R (2021b) The migration journey towards microservices. In: Ardito L,
Jedlitschka A, Morisio M, Torchiano M (eds) Product-Focused Software Process Improvement. PROFES
2021, Lecture Notes in Computer Science, vol 13126. Springer, Cham, pp 20-35

Michael Ayas H, Leitner P, Hebig R (2022). Systemic and technical migrations. https://doi.org/10.5281/zenodo.
6422058

Newman S (2015) Building microservices: designing fine-grained systems. O’Reilly Media, Inc

Newman S (2019) Monolith to microservices: evolutionary patterns to transform your monolith. O’Reilly
Media

Ntentos E, Zdun U, Plakidas K, Schall D, Li F, Meixner S (2019) Supporting architectural decision making
on data management in microservice architectures. In: Bures T, Duchien L, Inverardi P (eds) Software
Architecture. Springer International Publishing, Cham, pp 20-36

Ntentos E, Zdun U, Plakidas K, Geiger S (2021) Semi-automatic feedback for improving architecture confor-
mance to microservice patterns and practices. In: 2021 IEEE 18th International Conference on Software
Architecture (ICSA), pp 36-46, https://doi.org/10.1109/ICSA51549.2021.00012

Papoutsoglou M, Kapitsaki GM, German D, Angelis L (2022) An analysis of open source software licensing
questions in stack exchange sites. Journal of Systems and Software 183:111113. https://doi.org/10.1016/
j-Jss.2021.111113, www.sciencedirect.com/science/article/pii/S0164121221002107

Ralph P (2019) Toward methodological guidelines for process theories and taxonomies in software engineering.
IEEE Transactions on Software Engineering 45(7):712-735

Singleton A (2016) The economics of microservices. IEEE Cloud Computing 3(5):16-20

Soldani J, Tamburri DA, Van Den Heuvel WJ (2018) The pains and gains of microservices: A systematic grey
literature review. Journal of Systems and Software 146:215-232. https://doi.org/10.1016/j.jss.2018.09.
082, www.sciencedirect.com/science/article/pii/S0164121218302139

Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: A critical review
and guidelines. Proceedings - International Conference on Software Engineering 14-22-May-2016(Aug
2015):120-131

Tahir A, Dietrich J, Counsell S, Licorish S, Yamashita A (2020) A large scale study on how developers
discuss code smells and anti-pattern in stack exchange sites. Information and Software Technology
125:106333. https://doi.org/10.1016/].infsof.2020.106333, www.sciencedirect.com/science/article/pii/
$0950584920300926

Taibi D, Lenarduzzi V (2018) On the Definition of Microservice Bad Smells. IEEE Software 35(3):56-62

Taibi D, Lenarduzzi V, Pahl C (2017) Processes, motivations, and issues for migrating to microservices archi-
tectures: An empirical investigation. IEEE Cloud Computing 4(5):22-32

Taibi D, Lenarduzzi V, Pahl C (2020) Microservices Anti-patterns: A Taxonomy. In: Microservices, Springer
International Publishing, pp 111-128, 1908.04101

Thones J (2015) Microservices. IEEE software 32(1):116-116

Waseem M, Liang P, Shahin M (2020) A Systematic Mapping Study on Microservices Architecture in DevOps.
Journal of Systems and Software 170:110798. https://doi.org/10.1016/].jss.2020.110798

Waseem M, Liang P, Marquez G, Shahin M, Khan AA, Ahmad A (2021) A decision model for selecting
patterns and strategies to decompose applications into microservices. In: Computing Service-Oriented,
International Springer (eds) Hacid H, Kao O, Mecella M, Moha N, Paik Hy. Publishing, Cham, pp
850-858

Waseem M, Liang P, Shahin M, Di Salle A, Médrquez G (2021) Design, monitoring, and testing of microservices
systems: The practitioners’ perspective. Journal of Systems and Software 182:111061. https://doi.org/
10.1016/j.jss.2021.111061, 2108.03384

Wen J, Chen Z, Liu Y, Lou Y, Ma Y, Huang G, Jin X, Liu X (2021) An Empirical Study on Challenges of
Application Development in Serverless Computing, Association for Computing Machinery, New York,
NY, USA, p 416-428. https://doi.org/10.1145/3468264.3468558

Wu M, Zhang Y, Liu J, Wang S, Zhang Z, Xia X, Mao X (2022) On the way to microservices: Exploring
problems and solutions from online q&a community. In: 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp 432-443, https://doi.org/10.1109/SANER53432.
2022.00058

@ Springer

https://doi.org/10.5281/zenodo.6422058
https://doi.org/10.5281/zenodo.6422058
https://doi.org/10.1109/ICSA51549.2021.00012
https://doi.org/10.1016/j.jss.2021.111113
https://doi.org/10.1016/j.jss.2021.111113
www.sciencedirect.com/science/article/pii/S0164121221002107
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
www.sciencedirect.com/science/article/pii/S0164121218302139
https://doi.org/10.1016/j.infsof.2020.106333
www.sciencedirect.com/science/article/pii/S0950584920300926
www.sciencedirect.com/science/article/pii/S0950584920300926
https://doi.org/10.1016/j.jss.2020.110798
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1109/SANER53432.2022.00058
https://doi.org/10.1109/SANER53432.2022.00058

85 Page 50 of 50 Empirical Software Engineering (2023) 28:85

Zhang Z, Yang H (2004) Incubating services in legacy systems for architectural migration. In: 11th Asia-Pacific
Software Engineering Conference, pp 196-203, https://doi.org/10.1109/APSEC.2004.61

Zhao JF, Zhou JT (2014) Strategies and Methods for Cloud Migration. International Journal of Automation
and Computing 11(2):143-152. https://doi.org/10.1007/s11633-014-0776-7

Zhou X, Peng X, Xie T, Sun J, Ji C, Li W, Ding D (2021) Fault Analysis and Debugging of Microservice
Systems: Industrial Survey, Benchmark System, and Empirical Study. IEEE Transactions on Software
Engineering 47(2):243-260. https://doi.org/10.1109/TSE.2018.2887384

Zimmermann O (2017) Architectural refactoring for the cloud: A decision-centric view on cloud migration.
Computing 99(2):129-145. https://doi.org/10.1007/s00607-016-0520-y

Zimmermann O (2017) Microservices tenets: Agile approach to service development and deployment. Com-
puter Science - Research and Development 32(3—4):301-310

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1109/APSEC.2004.61
https://doi.org/10.1007/s11633-014-0776-7
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1007/s00607-016-0520-y

	An empirical study of the systemic and technical migration towards microservices
	Abstract
	1 Introduction
	2 Related Work
	2.1 Benefits of Microservices
	2.2 Migrating towards microservices
	2.3 Architectural Migration
	2.4 Tools and Technology

	3 Methodology
	3.1 Interviews
	3.1.1 Participants
	3.1.2 Protocol
	3.1.3 Analysis

	3.2 Posts from StackOverflow
	3.2.1 Data Gathering
	3.2.2 Data Pre-processing and Analysis
	3.2.3 Resulting Changes to Initial Theory

	4 Results
	4.1 Overview of Migration Journey
	4.2 Systemic Migration
	4.2.1 Clarify the Migration Drivers
	4.2.2 Define the Criteria for Decomposition
	4.2.3 Build a Shell API
	4.2.4 Design a Service Cut
	4.2.5 Setup Continuous Extraction
	4.2.6 Setup Independent Deployment and Integration

	4.3 Technical Migration
	4.3.1 Understand and Analyze System
	4.3.2 Prepare the Backend for Decomposition
	4.3.3 Split the Data and Data Migration
	4.3.4 Decompose the Frontend
	4.3.5 Set up DevOps Capabilities
	4.3.6 Configure Communication and Orchestration Capabilities
	4.3.7 Setup Monitoring, Logging and Authentication Mechanisms
	4.3.8 Handle Reused Artifacts

	5 Discussion
	5.1 Theoretical Relevance and Future Work
	5.1.1 Systemic Migration
	5.1.2 Technical Migration

	5.2 Modes of Change and the Reoccurring Phases of Migrations
	5.3 Implications for Engineering Teams
	5.4 Answering the Research Questions

	6 Threats to Validity
	7 Conclusion
	Acknowledgements
	References

