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Abstract
Offline model-level testing of autonomous driving software is much cheaper, faster, and
diversified than in-field, online system-level testing. Hence, researchers have compared
empirically model-level vs system-level testing using driving simulators. They reported the
general usefulness of simulators at reproducing the same conditions experienced in-field,
but also some inadequacy of model-level testing at exposing failures that are observable
only in online mode. In this work, we replicate the reference study on model vs system-
level testing of autonomous vehicles while acknowledging several assumptions that we had
reconsidered. These assumptions are related to several threats to validity affecting the orig-
inal study that motivated additional analysis and the development of techniques to mitigate
them. Moreover, we also extend the replicated study by evaluating the original findings
when considering a physical, radio-controlled autonomous vehicle. Our results show that
simulator-based testing of autonomous driving systems yields predictions that are close to
the ones of real-world datasets when using neural-based translation to mitigate the real-
ity gap induced by the simulation platform. On the other hand, model-level testing failures
are in line with those experienced at the system level, both in simulated and physical
environments, when considering the pre-failure site, similar-looking images, and accurate
labels.
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1 Introduction

Self-driving cars (SDCs) are autonomous cyber-physical systems capable of sensing the
environment and moving safely within well-established and pre-defined scenarios. SDCs
deployed on public roads embed a large amount of software (estimated as +100 million lines
of code (Many cars have a hundred million lines of code 2012)), among which advanced
Deep Neural Networks (DNNs) used as perception units to process digital images repre-
senting driving scenes and predict the driving control parameters of the vehicle (Bojarski
et al. 2016; Pei et al. 2017; Tian et al. 2018; Zhang et al. 2018). This complexity makes half
of the entire development budget attributed only to testing (How Software Is Eating the Car
2021). Due to the virtually unlimited number of driving scenarios that DNN-based SDCs
should support, this cost is expected to grow when testing new vehicle models and versions.

In the literature, two main approaches are used to test DNNs that perform driving tasks.
The first approach is model-level testing — also referred to as offline testing, whereas the
second approach is called system-level testing, or online testing (Codevilla et al. 2018; Haq
et al. 2020). In model-level testing, the DNN is used as an independent unit of computation,
and it is fed with a set of labeled driving images retrieved from the real-world, or artificially
generated, e.g., by a driving simulator. The DNN predicts values that are compared to the
ground truth labels, which serve as an oracle. The difference between the prediction and the
ground truth label is called error, and a test is considered failed (model-level failure) when
such an error is higher than some predefined threshold.

Differently, in system-level testing, the DNN is embedded within the operational ecosys-
tem in which it is designed to operate, such as a physical vehicle or a driving simulator.
While the DNN still processes a stream of (unlabeled) driving images captured by the
onboard camera, its predictions have an immediate effect on the overall system behavior,
as each prediction and driving decision influence future driving decisions. Thus, the indi-
vidual DNN’s prediction errors become not only less meaningful but also uncomputable,
because it is not possible to associate a ground truth label to incoming data. As such, failing
tests are characterized in terms of the misbehavior of the whole system in response to the
DNN’s predictions. A system-level failure is experienced when the system no longer fulfills
its safety requirements, such as excessive departure from the driving lane.

While both testing approaches are adopted for ensuring the reliability of DNN-based
SDCs, traditionally model-level testing has been more prevalent because of the availabil-
ity of open-source driving datasets that can be readily used, such as Udacity’s (Udacity
self-driving challenge 2 2016) or Waymo’s (Waymo LLC 2021). Moreover, it does not
necessitate the effort of embedding the DNN within a driving simulator (or a real vehicle),
a time-consuming and daunting process.

Researchers have compared the two testing levels and highlighted their differences
(Codevilla et al. 2018; Haq et al. 2020; 2021). In particular, the paper by Haq et al. (2020)
compares model/system failures within the PreScan simulator. In their work, the authors
first assess that virtual tests can be considered an adequate proxy for on-road testing, as their
reproduction of the real-life driving conditions of the Udacity dataset (Udacity self-driving
challenge 2 2016) within PreScan yields similar external behavior of the DNNs (i.e., steering
angle prediction errors) as the real-world. Second, they evaluate two deep neural networks
vs an autopilot with global knowledge at driving different scenarios to assess the level of
agreement between model and system-level failures. Their results show high disagreement
between the failures detected by the two testing levels. More specifically, the paper reports
a large number of false negatives, i.e., failing system-level scenarios in which the individual
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model-level prediction errors were found to be acceptable. The authors explain that these
failures are caused by an accumulation of errors during online driving that is not observable
during model-level testing.

We identified three main threats to validity in the work by Haq et al. (2020). First, when
comparing real-world and simulated behaviors, driving scenarios are matched by the simi-
larity of the predicted steering angles, not by comparing the images used by the DNNs to
make their predictions. Second, when comparing model and system failures, the matched
driving scenarios are likely to contain remarkably different input images because the dif-
ferent technologies involved, i.e., DNN vs autopilot with global knowledge, may have
different driving behaviours and hence may follow different trajectories. As a consequence,
the ground truth provided by the autopilot is a quite imprecise proxy for the real ground
truth that the DNN should target. Third, when comparing model and system failures, error
metrics are averaged on the entire scenario (deep neural network’s and autopilot’s), instead
of considering the behavior of the DNN/autopilot in the immediate proximity of the system
failure, when model-level errors are more likely to occur.

In this paper, we replicate the study by Haq et al. (2020), improving the experimental set-
ting of the original paper to address the identified threats to the validity. More in detail: (1)
to improve the association between simulated and real-world images, on which to compare
the DNN behavior, we take advantage of neural translation techniques. (2) To mitigate the
false negatives possibly due to error metric averaging over the entire test scenario, we focus
the comparison only on a sequence of online images that precede the failure (pre-failure
window). (3) To retrieve accurate labels, we perform visual similarity matching between
corresponding pairs of online/offline images. Moreover, our work doubles the comparison
between model- and system-level failures as we consider both a DNN operating in a simu-
lator and a DNN driving a radio-controlled (RC) physical self-driving car. Our extension to
the physical dimension is a novel contribution to the literature.

We reproduced the same results and obtained similar conclusions as the replicated paper
(Haq et al. 2020) on the usefulness of the simulator to produce comparable offline prediction
errors as in the real world. Thanks to our improvements in the matching of images between
simulated and real-world, we obtained error distributions that are, in many cases, statisti-
cally indistinguishable. In the original study, the compared distributions were significantly
different, with a large effect size, despite the small prediction error differences. Hence, our
study provides stronger statistical support to the findings of the original paper.

Our experimental results also show that violations of the offline oracle (i.e., the occur-
rence of a high model-level prediction error) have a small number of system-level false
positives (i.e., non-corresponding system-level failures) and a small number of false neg-
atives (i.e., system-level failures missed by the model level oracle), suggesting a high
agreement between model vs system-level testing. These findings are in contrast with one of
the findings of the replicated paper by Haq et al. (2020): “Offline testing is more optimistic
than online testing because the accumulation of errors is not observed in offline testing.”
In fact, by considering the pre-failure window and by accurately matching pairs of images
using visual similarity, we were able to observe an accumulation of offline errors in most
image sequences leading to an online failure.

The paper is structured as follows. Section 2 reports background information. Section 3
describes the replicated study and the threats to validity. Section 4 illustrates the empirical
study in which we report our mitigation strategies to the threats to validity affecting the
original paper, our extension to a physical SDC, and detailed statistical analysis. In Section 5
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we provide a qualitative analysis of our results. Section 6 gives an overview of the related
work, while Section 7 concludes the paper.

2 Preliminaries

2.1 Autonomous Driving Software

Most existing SDCs are vehicles equipped with specific sensors (such as cameras, LIDAR
and GPS) used to perform different prediction and control tasks, such as lane-keeping,
object avoidance, and path planning, to name a few. SDCs use the information collected by
the sensors during a supervised data collection process to train DNNs at predicting control
values that are sent to the car’s actuators to perform the actual maneuvers (e.g., steering).

In this work, we study SDC models that perform imitation learning for lane-keeping, i.e.,
a supervised learning task in which the DNN learns how to keep the position of the vehicle
in lane, by predicting the steering angle control from a dataset of driving scenes labeled
during a driving session with a human driver.

Our focus is the comparison between model (offline) and system (online) testing on
a closed-loop track, a widely adopted industrial practice that precedes on-road testing on
public roads (ISO 2011; Thorn et al. 2018; Media 2018; Cerf 2018; Waymo Driver 2021;
Waymo Secret Testing 2017).

2.2 Model-Level Testing

After the training process, DNN models are tested by measuring evaluation metrics on test
datasets (Riccio et al. 2020) such as accuracy or mean squared error (see Fig. 1).

We refer to this modality of testing as model-level testing (Riccio et al. 2020), because
the model is tested as a standalone component, evaluating only the predictions the DNN
makes on individual images. This level of testing is comparable to unit testing for tradi-
tional software and can be useful to reveal faults in the training process (e.g., suboptimal
learning rate), or in the quality of the data used for training (e.g., training data imbalance)
(Humbatova et al. 2020).

For lane-keeping DNNs, error metrics measure the difference between the DNN’s pre-
dictions and the ground truth values, e.g., by computing the mean squared error or the mean
absolute error. Let us take a driving sequence d composed of n images. The mean absolute
error (MAE) is given by:

MAE(d) = 1

n

n∑

i=1

|yi − f (xi)|

Fig. 1 Model-level testing of autonomous vehicles
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where xi denotes the ith image in the driving sequence d, f (xi) the output of the DNN, and
yi the ground truth value. A failure of the DNN, in model-level (offline) testing, is defined
by a MAE above a certain threshold ε.

Failure(d) =
{

T rue, if MAE(d) ≥ ε

False, otherwise

Thresholds confine the maximum tolerable prediction error within validity ranges that
are defined based on the domain knowledge of test engineers for the possible classes of
images (i.e., straight roads, bends, weather conditions).

The main advantages of model-level testing rely upon its simplicity and low requirements
needed to execute it. The disadvantages consist in being stateless, which makes it ineffective
at revealing faults occurring when the DNN is deployed in production. Indeed, when the
DNN model is tested within a vehicle, the whole system can compensate for some high
DNN inaccuracies or, on the contrary, it might be affected by the accumulation of small
DNN inaccuracies over time.

2.3 System-Level Testing

To overcome the limitations of model-level testing, system-level testing requires embedding
the DNN within a SDC to test the whole decision-making process. System-level testing is
stateful as it allows to observe the effects that the predictions made by the DNN have on the
behavior of the entire system (Fig. 2).

With system-level testing, it is possible to gather concrete values of system quality met-
rics (Jahangirova et al. 2021), such as the speed or the position of the vehicle. Thus, a
system-level failure (or online failure) is characterized as one of the system quality metrics
being higher than a threshold determined by the environment (e.g., the road width), by the
regulations in which the system operates (e.g., the speed limit), or by safety requirements
(e.g., the vehicle drives off-road or causes harm to other vehicles, to the environment, or
people).

The main advantages of system-level testing consist in the exposure of actual requirement
violations, as failures are associated with the external behaviour of the software in response
to the DNN predictions. Extensive system-level testing is pivotal when the final goal is the
deployment of the SDC on public roads, which is subject to strict regulations (ISO 2011;
Thorn et al. 2018). However, the main disadvantage of system-level testing consists in its
high execution cost, as it necessitates embedding the DNN within a driving simulator or
a real vehicle, in addition to the time required to run extensive test-driving sessions (both
virtual or in the field).

Fig. 2 System-level testing of autonomous vehicles

Page 5 of 26    73



Empir Software Eng (2023) 28:73

3 Replicated Study

This paper is a replication and extension of the work by Haq et al. (2020) presented at the
International Conference on Software Testing, Validation and Verification (ICST) in 2020.
An extended version of the paper has been published in the Empirical Software Engineering
journal (Haq et al. 2021). In this paper, we consider the conference version of the work.

The work by Haq et al. (2020) (replicated paper, hereafter) aims to test a lane-keeping
DNN trained with real-world data of the Udacity dataset (Udacity self-driving challenge
2 2016), both at model and system level. The authors consider simulation-based testing
within the driving simulator PreScan. The capability of PreScan to reproduce the real-world
conditions of the Udacity dataset (Udacity self-driving challenge 2 2016) is assessed in the
first research question:

RQ0: Can we use simulator-generated data as a reliable alternative source to real-world
data?

The authors performed a visual assessment of the Udacity dataset (Udacity self-driving
challenge 2 2016) to infer the road characteristics and environmental conditions. Then, they
instrumented PreScan to generate driving scenarios that are in line with the retrieved char-
acteristics. Finally, they selected sequences of simulator-generated scenarios that are similar
to the real-world data. In their work, the similarity was measured by means of heuristics
that consider only the DNN’s prediction, i.e., the steering angle predicted by the DNN
either on simulated or on real images. A pair of real and simulated scenarios is considered
matched if the scenarios have the same length and the average difference between pairs of
predicted steering angles is lower than a threshold ε (set to 2.5◦). The authors report that the
large majority of computer-generated “scenarios (92/100) could match subsequences of the
Udacity real-life test dataset”.

Figure 3 shows an example of image match used in the original paper, from which it
is evident that visual similarity of the matched images is low (e.g., shadow or cloudy sky
are not represented in the real-world image). Despite the generally low resemblance of
simulator-generated sequences, empirical results show that the DNN’s “prediction error dif-
ferences between simulator-generated datasets and real-life datasets are less than 0.1, on
average”. Thus, the authors “conclude that we can use simulator generated datasets as a
reliable alternative to real-world datasets for testing DNNs”.

Fig. 3 Example of simulator-generated driving image from PreScan corresponding to a real-world image
(Haq et al. 2020)
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Threat RQ0-T1: poor visual similarity between real and simulated road images The
authors recognize the poor visual similarity between real-world and simulator-generated
data in the threats to validity. One goal of our replication is to address the main threat to
validity affecting the original authors’ findings for RQ0: the poor visual similarity between
real and simulated road images. Indeed, when poor visual similarity affects the compari-
son, the compared DNNs will learn features that are quite different between real-world and
simulated images as DNNs used for driving make use of convolutional layers as feature
extractors. For instance, considering Fig. 3, a DNN will extract geometrical features both
from the double solid yellow lines on the left as well as the single solid white line on the
right for the real-world image. The simulated image does not represent lane conditions, as
the right lane is occluded by a shadow, not present in the real-world, and the left lane is a
single broken white line. In our paper, we address such a threat by adopting an automated
approach based on neural image translation (see Section 4.4.4).

The second and main research question of the replicated paper focuses on the comparison
between model- and system-level testing on the simulation platform:

RQ1: How do offline and online testing results differ and complement each other?

The authors extended the set of conditions that can be generated by PreScan, including
weather effects to create unseen scenarios that could expose failures of the DNNs under
test at the system level. Then, they generated 50 random scenarios and used the autopilot
module of PreScan to generate a ground truth driving trajectory (i.e., sequence of steering
angles). We contacted the first author and asked for clarifications about the computation of
the ground truth steering angles; the response was quick and detailed.

They executed two pre-trained DNNs models from the literature, Autumn (Bojarski et al.
2016) and Chauffeur (Team Chauffeur 2016), on the same 50 random scenarios, to col-
lect predicted steering angles, as well as the Maximum Distance from the Center of Lane
(MDCL). For a large set of the generated scenarios (87%), system-level failures occur based
on the observed MDCL, which was above a threshold of 0.7 (corresponding to approxi-
mately 1.5 meter). Then, for each generated scenario (both failing and non-failing), they
computed MAE, as the mean difference between the sequence of predicted steering angles
and the sequence of ground truth steering angles from the autopilot’s driving trajectory.
A MAE above 0.1 (2.5◦) was regarded as a model-level failure. Scenarios in which the
MAE/MDCL are both above or both below their respective thresholds are said to be in
agreement, otherwise, they are regarded as being in disagreement. The authors found large
disagreement in the case of system-level failures, in contrast to the high agreement for the
non-failing conditions, or for model-level failures.

We have identified two main threats to the validity of the original experimental design
that we wish to address in this work. We use a graphical support to illustrate our hypothesis.
Figure 4 (left) shows a typical generated test scenario with a road characterized by an initial
road segment, a curve on the right followed by a curve on the left. Figure 4 (right) shows
the trajectories taken by the autopilot with global knowledge, which is used as a reference
for the ground truth steering angles, and by the DNN-based SDC under test.
Threat RQ1-T1: different driving conditions experienced by autopilot vs DNN
Although the driving scenario, among the 50 that have been generated, is kept the same
when autopilot or DNN are driving, the sequence of images captured and processed by the
autopilot is likely to be quite different from the sequence of images captured and processed
by the DNN. Indeed, from the replicated paper, it is reported that, for 87% of the cases, the
outcome of the simulation diverges between the autopilot and the DNN, as the autopilot is
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Fig. 4 Scenario-level matching may cause different sets of images to be compared as it typically combines
both nominal and failing sub-scenarios

expected to exhibit no failures, thanks to its access to global knowledge. Hence, the labels
by the autopilot are not reliable because they have been obtained on a set of images that
are different from the ones experienced by the DNN, especially during near-failing sub-
sequences of the test scenarios (see Fig. 4 right). Thus, for the computation of the MAE,
more reliable labels should be used for assessing offline DNN failures.

In our work, we address RQ1-T1 as follows: we perform a search using a state-of-the-art
visual matching algorithm, Structural Similarity Index (SSIM) (Wang et al. 2004), to match
each individual driving frame observed by the DNN within the pre-failure sequence with
the closest labeled driving frame available in the training set. We use the label of such a
matching frame from the training set as the ground truth steering angle for the calculation
of the MAE.
Threat RQ1-T2: MAE computed on entire driving scenario In the results tables of the
original paper (Haq et al. 2020), the case “MAE < 0.1 and MDCL ≥ 0.7” is the second most
prevalent, while it becomes the most prevalent in the journal extension of the replicated
paper (Haq et al. 2021). This can be interpreted as most DNN predictions being correct
even when the vehicle is departing from the road. The authors motivate this as “Offline
testing is more optimistic than online testing because the accumulation of errors (eventually
causing a critical lane departure) is not observed in offline testing.” Haq et al. (2020). While
the motivation provided by the authors is intuitive, we hypothesize another explanation for
these results.

Since it is not possible to retrieve the ground truth for each individual image observed and
processed by the DNN, because the autopilot might have never seen exactly the same image,
the authors rely on a coarse-grained matching, performed by considering the entire sequence
of steering angles in the same scenario driven by both autopilot and DNN (threat RQ1-T1).
Correspondingly, MAE values are computed as the average over all the images observed
in an entire driving scenario and a model-level failure occurs only when such average is
above the threshold 0.1. This has the disadvantage to include in the comparison also many
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images in which the car is not yet deviating from the lane, along with the corresponding
(presumably) correct steering angles. While in this case the frames in which the DNN-
based vehicle is not yet deviating are likely to be more similar to the reference autopilot’s
frames, both nominal driving and pre-failure driving sub-scenarios are considered within
the same sequence-level comparison (see Fig. 4). If the nominal sub-scenario dominates
the pre-failure sub-scenario, the MAE would result below the threshold even for failing
scenarios.

To address RQ1-T2, we adopt the following mitigations: we restrict the computation of
MAE to a pre-failure sub-scenario, which occurs before off-road driving. While a precise
identification of the pre-failure window may be challenging in most real-world settings, our
experimental framework allows us to have full control. Specifically, our driving simulator
logs each frame with the position of the car on the track. Concerning real-world data, the
position of the car is estimated by a DNN trained for that purpose (Stocco et al. 2022). Thus,
we can identify precisely the first driving frame in which the car departs from the drivable
road section. Based on this precise definition of system-level failure, we isolate a pre-failure
window of driving frames, as well as the associated predictions, that precede each system-
level failure. Then, we utilize only the pre-failure window when performing the comparison
between model vs system-level testing oracle violations.

4 Empirical Study

In our empirical study, we compare model- and system-level testing of both physical and
virtual SDCs. The goal of the study is to assess whether the results from the replicated study
(Haq et al. 2020) hold when improving the experimental setting and when considering the
physical platform Donkey Car (Donkey Car 2021) in addition to its digital twin.

4.1 Research Questions

We consider the same research questions of the replicated study (Haq et al. 2020), which
have been briefly presented in Section 3:
RQ0: Can we use simulator-generated data as a reliable alternative source to real-world
data?

In the replicated study, the authors rely on a stationary dataset of real-world images, for
which driving quality metrics (i.e, MDCL) are not available. Moreover, the authors could
not reproduce the same driving conditions on a real-world vehicle, because they relied on
Udacity’s pre-collected images. For this reason, they first investigate whether they could
rely on the virtual images from a simulator to test a DNN trained with real-world data.

Differently, in our work, we consider on-road system-level testing with a physical vehi-
cle (hardware-in-the-loop), instead of relying on the stationary dataset of images provided
by Udacity (Udacity self-driving challenge 2 2016). This obviates the need of demon-
strating the representativeness of simulator-generated data as we can directly measure, or
estimate, the in-field quality metrics for system-level testing. Nevertheless, we study RQ0
by addressing RQ0-T1 through unsupervised image neural translation techniques for the
reconstruction of real-world scenes within a simulator.

RQ1: How do offline and online testing results differ and complement each other?

RQ1 is the main research question of the paper. We take advantage of the Donkey Car
framework to compare the failure profiles observed in the virtual vs the physical world, both
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at the model- and system-level, by addressing RQ1-T1 and RQ1-T2 through pre-failure
window selection and visual similarity matching.

4.2 Self-Driving Car Models

We test the same two DNN-based SDCs of the replicated study (Haq et al. 2020): Autumn
(Team Autumn 2016) and Chauffeur (Team Chauffeur 2016). These publicly available SDC
models scored high rankings in the Udacity challenge and they have been used as experi-
mental subjects in several testing works (Jahangirova et al. 2021; Pei et al. 2017; Stocco and
Tonella 2020; 2021; Stocco et al. 2020; Tian et al. 2018; Zhang et al. 2018). Autumn con-
sists of three convolutional layers, followed by five fully-connected layers (Team Autumn
2016). Chauffeur uses six convolutional layers to extract the features of input images,
two-dimensional dropout layers, and a fully connected layer (Team Chauffeur 2016).

4.3 The Platform

While full-scale testing of SDC is still impractical for most academic settings as it presents
severe time, space, and cost constraints (Bulsara et al. 2020; Verma et al. 2021), small-
scale vehicles represent an interesting alternative. Frameworks such as Donkey Car (Donkey
Car 2021) or AWS DeepRacer (AWS Deepracer 2021) are derived from remote-controlled
(RC) cars and provide an electrical engine and a battery as a main power unit. Although
these are small-scale vehicles, they reach considerably high speeds and accelerations for
their size (Betz et al. 2022). RC cars are adopted at the early stages of testing autonomous
driving algorithms as they retain relevant photorealistic conditions of the driving environ-
ments which are experienced also by full-scale cars (Verma et al. 2021). These platforms
are increasingly used by researchers who want to experiment their solutions on real vehi-
cles for the purpose of testing newly developed autonomous driving software (Balaji et al.
2019; Betz et al. 2022; Jain et al. 2020; Mahmoud et al. 2020; Sinha et al. 2020; Viitala
et al. 2020; Zhang and Du 2019; Zhou et al. 2021).

In our study, we adopt the Donkey Car™ open-source framework (Donkey Car 2021).
Donkey Car includes an HSP 94186 Brushed RC car with self-driving capabilities, a Python
framework supporting training and testing of SDCs that perform lane-keeping, and a simu-
lator developed with Unity (Unity3d 2019), a popular cross-platform game engine, in which
the real-world DonkeyCar’s actuators are modeled with high fidelity. Donkey Car is one of
the reference platforms for studies comparing the autonomous driving testing of small-scale
SDCs (Viitala et al. 2020), because of its open-source nature. In our study, we leverage the
Donkey Car framework to perform model-level vs system-level testing of SDCs, both in the
virtual and in the real world, with the latter being a totally novel contribution of this study.

4.3.1 Testing Tracks

Our testing track is an 11m long track, printed on a mat of size 3.0m × 4.54m. The road
section is 52 cm wide. Clockwise, the track features three curves on the right and one on
the left. The Donkey Car simulator features a scene that resembles our real-world track in
terms of the road’s shape, colors, and proportions (Stocco et al. 2022).

In our setting, the car follows the middle line on a two-lane road (as if it were a single-
lane, one-way road) and moves only forward. We use the lateral position, or cross-track error
(XTE), to assess the lane-keeping capability of SDC models. XTE measures the distance
from the center of the car to the center of the road (Stocco and Tonella 2020). The MDCL
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metric used in the replicated paper measures the distance of the center of the car from the
center of the lane of a two-lane, two-way road (instead of the center of the road). Hence, we
consider a thresholded XTE (i.e., a Maximum XTE) as comparable to MDCL.

4.4 RQ0: Procedure and Results

4.4.1 SDCs Data Collection

For each testing environment (virtual and physical world), we collect two training sets by
manually driving on both the virtual and physical tracks, incentivizing the vehicle to stay
close to the centerline of the track. We followed the guidelines by Tawn Kramer (2022)
for generating driving sequences for the DNN. In particular, we followed the suggestion
to generate both nominal and near-failing driving sequences (Bojarski et al. 2016; Tawn
Kramer 2022). Nominal driving sequences are those that incentivize the vehicle to stay on
track. Near-failing driving sequences are used to teach the DNN how to recover the vehicle
back to track. Both driving styles are needed for the training of a robust lane-keeping DNN
(Bojarski et al. 2016; Tawn Kramer 2022), in order to make the DNN able to cope with
different driving conditions possibly occurring in the same track sector. We kept a constant
throttle value of 0.3, resulting in a maximum driving speed of 3.1 mph (5 km/h, or 1.40 m/s)
during data collection. Images are acquired from the front-facing camera at 21 frames per
second (FPS), labeled with the ground truth steering angle of the human driver.

Figure 5 shows the distributions of steering angles of our training sets for both testing
environments. Average steering angles are 0.314±0.461 for simulated and 0.316±0.431 for
real-world training sets, respectively.

4.4.2 SDCs Model Setup & Training

For each DNN (Autumn, Chauffeur), we trained an individual SDC model on each training
set (virtual and real-world), for a total of four models. Following the guidelines by Bojarski
et al. (2016) for the hyper-parameters, the number of epochs was set to 500, with a batch
size of 64 and a learning rate of 0.0001. We used early stopping with a patience value of
30 and a minimum loss change of 0.0005 on the validation set. The DNNs use the Adam
optimizer to minimize the MSE between the predicted steering angles and the ground truth
values. As common practices require, we cropped the images to 140 × 320 by removing
100 pixels from the top, which allows the DNN to focus on the part of the image relevant
for lane-keeping. We used data augmentation (e.g., translation, brightness) to increase the
diversity in the training data.

4.4.3 SDCs Sanity Check

After training, we assessed that the four trained models are robust enough to be considered
in the subsequent testing phase. We let them drive in their corresponding testing tracks
multiple times and observed that they can drive without crashing or going off-road. For
the physical vehicle, we also controlled the discharge of the Donkey Car’s battery and we
recharged the battery if the voltage was found to jeopardize the overall quality of driving.
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Fig. 5 Steering angles distributions for the virtual (left) and real-world (right)

4.4.4 Mitigating RQ0-T1 with CycleGAN

The distribution of real-world images can be different from the distribution of simulator-
generated images (Afzal et al. 2021) (threatRQ0-T1), undermining the validity of our study.
To mitigate RQ0-T1, we use a generative adversarial network (GAN) called CycleGAN
(Zhu et al. 2017) to generate real-world driving images from the corresponding simulated
ones. CycleGAN is a cycle-consistent adversarial generative network that performs an unsu-
pervised and unpaired image-to-image translation. The two datasets of images do not need
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Fig. 6 Neural-generated driving image corresponding to a real-world image

to be paired, yet they should represent analogous driving data images (respectively, images
from the simulated track and images from the real-world track). Starting from two sets
of images with analogous latent features, CycleGAN learns two image-to-image encoder-
decoder functions that share the latent space, so that, given an image from one domain
(e.g., a virtual driving scene), it is possible to generate not only a similar image in the same
domain but also the corresponding image in the other domain (e.g., a real-world driving
scene). Figure 6 shows an example of neural translation in which we use a CycleGANmodel
to convert a real-world image (left) into a virtual image (right).

4.4.5 Comparing Real-World vs Virtual Driving

From the replication package provided by the authors (Haq et al. 2020), we were able to
obtain the predictions, ground truth, and MAE values of 31/92 sequences. Correspondingly,
we collected 31 real-world scenarios by manual driving: these scenarios are labeled with
humanly produced ground truth steering angle values, for a total of 7,906 real-world images.
We used CycleGAN to translate them into 31 corresponding virtual scenarios. Usage of
CycleGAN ensures a high visual similarity between the real-world image and its translation
into a simulated image, which was not the case of the replicated study (Fig. 3).

We executed our SDC models in offline mode, and we compared the obtained steering
angle predictions with the ground truth steering angles to obtain per-frame absolute errors.
We performed a statistical comparison between the prediction error distribution obtained
for real-world scenarios and the prediction error distribution for the simulated scenarios.
We assess the statistical significance of the differences between real-world and simulator
errors using the non-parametric Mann-Whitney U test (Wilcoxon 1945) (with α = 0.05),
the magnitude of the differences using the Cohen’s d effect size (Cohen 1988), and the
statistical power with aMonte Carlo power analysis (Burch and Yang 1992) with 80% power
target as our data is not normally distributed.

4.4.6 RQ0: Results

Table 1 reports the results about the prediction error differences between simulator-
generated data and real-world data. For each SDC model, we report the input type used
during training (Train) and testing (Test), the average MAE difference between real-world
and reconstructed virtual scenarios, and the percentage of simulations for which the MAE
difference was below the threshold ε = 0.1 (2.5◦) used in the replicated study.
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Table 1 RQ0: prediction error differences between simulator and real-world data

Input type Avg MAE Simulations < ε

Train Test Diff %

Our Study

Autumn Virtual Virtual 0.01 68

Chauffeur Virtual Virtual 0.02 100

Autumn Real-world Virtual 0.06 39

Chauffeur Real-world Virtual 0.02 90

Replication of Haq et al. (2020)

Autumn Real-world Virtual 0.08 74

Chauffeur Real-world Virtual 0.06 84

The first observation is that all models attain an average MAE difference < 0.1, which is
consistent with the results reported in the replicated study (Haq et al. 2020). This happens in
our improved experimental setting, which mitigatesRQ0-T1with neural translation, as well
as in our replication of the imprecise image matching described in the replicated study (Haq
et al. 2020) (last two rows of Table 1). As expected, the MAE difference is higher when
offline testing a DNN-based SDC trained on real-world data onto the simulation platform.

Concerning the statistical analysis of prediction error distributions (not done in the orig-
inal paper (Haq et al. 2020)), Table 2 classifies the simulations of Table 1 according to
whether the distribution of prediction errors was different with statistical significance (p-
value< 0.05) and those for which it was the same for real-world and for translated simulator
images (i.e., p-value ≥ 0.05, divided by low/high statistical power). Results are further
divided by effect size (negligible, small, medium, large). We can notice from Table 2 that
in our replication of the original study, the majority of the simulations have prediction

Table 2 RQ0: statistical analysis of the prediction errors between real-world driving sequences and their
virtual reconstruction

Negligible Small Medium Large

p < .05 p ≥ .05 p < .05 p ≥ .05 p < .05 p ≥ .05 p < .05 p ≥ .05

pow pow pow pow

< .8 ≥ .8 < .8 ≥ .8 < .8 ≥ .8 < .8 ≥ .8

Our Study

Autumn 1 16 5 3 0 5 1 0 0 0 0 0

Chauffeur 10 10 7 0 0 4 0 0 0 0 0 0

Autumn 1 4 7 13 0 6 0 0 0 0 0 0

Chauffeur 5 24 0 2 0 0 0 0 0 0 0 0

Replication of Haq et al. (2020)

Autumn 0 1 0 0 0 0 0 0 0 30 0 0

Chauffeur 3 3 2 5 0 2 3 0 0 13 0 0
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errors distributed quite differently from those obtained from real-world, Udacity images,
with statistically significant differences and large effect size. Only 3% for Autumn and
23% simulations for Chauffeur have a negligible/small effect size, and only 13% are sup-
ported by power analysis. Actually, for Autumn, 30/31 simulations (97%) and 24/31 (84%)
simulations in the case of Chauffeur have a large effect size.

In our improved experimental setting, which takes advantage of neural translation,
prediction errors tend to be closer between simulated and real images, in most cases.
When DNN models are trained on simulated images, the two prediction error distributions
(obtained on simulated vs real images) exhibit negligible differences in 84% (Autumn) and
68% (Chauffeur) of the cases. When DNN models are trained on real-world images, predic-
tion errors have negligible differences in 55% (Autumn) and 77% (Chauffeur) of the cases
(with a negligible effect size, power analysis requires a huge number of samples to reach
the threshold of 0.8).

4.5 RQ1: Procedure and Results

In RQ1 we perform a comparison between model and system-level testing, for the virtual
and real-world SDC separately.

4.5.1 Generating Test Scenarios

As our SDC models are constructed to be failure-free in nominal conditions, similarly to
the replicated study, we test them by injecting unknown conditions (i.e., conditions different
from those in the training set) onto the existing tracks in real-time during driving.

We use the black-box image corruptions proposed by Hendrycks and Dietterich (2019),
commonly used to test DNNs that process imagery data. The paper proposes 18 corruptions
belonging to five classes, namely noise, blur, weather, luminance, and resolution reduction.

We test each SDC using 36 scenarios, of which 18 failure-inducing scenarios and 18
failure-free scenarios. The former were obtained from 72 one-lap simulations (for a total
of 4,665 images) by enabling the corruptions for each model Autumn (sim and real) and
Chauffeur (sim and real) in their respective environments (virtual and real). All such simu-
lations (4,665 images overall) experienced a system-level failure (Section 2.3) due to image
corruption. These failing simulations are used to assess the true alarms reported by model-
level testing. The latter were obtained from four one-lap simulations with no corruption
enabled, one for each model, Autumn (sim and real), and Chauffeur (sim and real) in their
respective environments. All such simulations experienced no system-level failures and are
used to assess whether false alarms are reported by model-level testing.
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Fig. 7 Pre-failure window selection

4.5.2 Mitigating RQ1-T2 with Pre-Failure Window Selection

We recall that in our setting, a system-level failure occurs during off-road driving episodes.
The simulator automatically flags the car as off-road if the car’s position deviates by more
than half of the track’s width (i.e., |XT E| > 2.2, as XT E = ±2.2 marks the lane borders,
whereas XTE = 0 represents the middle of the lane). In the real world, we use an existing
telemetry estimator from the literature (Stocco et al. 2022) to automatically retrieve the XTE
value for real-world images. Thus, for both settings, based on our definition of system-level
failure, we are able to isolate the pre-failure sub-scenario of driving frames (and predictions)
that precedes each system-level failure, which mitigates threat RQ1-T2.

Figure 7 illustrates an example from our empirical study. In the figure, the Chauffeur
model drives on our simulated version of the testing track from right to left. An image
corruption of type “fog” is automatically injected onto the original camera frame (corrupted
images). Each image is labeled with the steering angle (SA) predicted by Chauffeur and the
XTE value. The simulation fails when |XT E| > 2.2, which occurs for the leftmost frame of
the figure. We refer to this frame as the first failing image. Thus, we consider a sequence of
images preceding the first failing image as the potential candidate for the root cause of the
failure, i.e., the sequence in the vicinity of the failure site in which most wrong predictions
are expected to have occurred. We have considered a pre-failure sub-scenario of 3 seconds,
corresponding to 63 frames (Section 4.4.1), a reasonable value found during preliminary
experiments, given the relative shortness of our testing track. We refer to such sequence as
the pre-failure window.

4.5.3 Mitigating RQ1-T1 with Visual Similarity Search

To mitigate threat RQ1-T1, we perform pre-failure window selection, needed to find the
most similar image with a ground truth label, using a visual similarity metric called SSIM
(Wang et al. 2004) (structural similarity index). SSIM simulates the high sensitivity of the

73   Page 16 of 26



Empir Software Eng (2023) 28:73

human visual system to structural distortions while compensating for non-structural distor-
tions. It is considered a more reliable measure to the per-pixel metrics such as Euclidean
distance. SSIM is a floating-point number that ranges from 0 (no similarity) to 1 (perfect
match).

We calculate the SSIM score between each image in the pre-failure window and each
image in the subset of the training set that is related to the portion of the track in which
the pre-failure window occurs. Thus, we select the image with the highest visual similarity
(i.e., highest SSIM score) as the reference image to use as the ground truth. To lower the
chance of false matches, we make sure to match frames that belong to the same part of the
track. Our tracks are divided into five distinct logical sectors. Our simulation platform labels
each image with the corresponding track sector. For real-world images, such information
is not available, thus we manually assigned each image to the sector they belong to in our
real-world closed-loop testing track.

4.5.4 Configurations

For each scenario, we calculated the per-frame absolute error value, both for the virtual
and the real-world scenarios. We also replicated in our setting the scenario-level matching
of the replicated study, by matching entire sequences instead of individual frames. Since
autopilot modules are not available in our framework, we produced two one-lap simulations
by manually driving the tracks, both in the virtual and real-world, to obtain a reference
driving trajectory (ground truth steering angles) that can be used for computing the MAE
over the entire scenario.

4.5.5 RQ1: Results

Table 3 reports the results for our proposed matching technique (visual search on pre-failure
window) on both environments (simulation and real-world). For each configuration, the
table reports the number of cases in which model-level and system-level testing are in agree-
ment (i.e., MAE < 0.1 in nominal scenarios, or MAE ≥ 0.1 in pre-failing scenarios) and the
number of cases in which they are in disagreement (i.e., MAE < 0.1 in pre-failing scenarios
scenarios, or MAE ≥ 0.1 in nominal scenarios).

Overall, our results show a high agreement between model and system-level testing and
are not consistent with the results presented by the original authors. We believe this is due
to our refined experimental setting. In the simulated environment, the agreement rate is

Table 3 RQ1: results of the comparison between model and system level testing

Visual search on pre-failure window

virtual real-world

Autumn Chauffeur Autumn Chauffeur

MAE<0.1 MAE≥0.1 MAE<0.1 MAE≥0.1 MAE<0.1 MAE≥0.1 MAE<0.1 MAE≥0.1

Nominal 18 0 18 0 14 4 13 5

Pre-failing 2 16 0 18 2 16 2 16

Total 20 16 18 18 16 20 13 23
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Table 4 RQ1: our replication of RQ1 (Haq et al. 2020)

virtual

Autumn Chauffeur

MAE < 0.1 MAE ≥ 0.1 MAE < 0.1 MAE ≥ 0.1

Nominal 18 0 18 0

Pre-failing 11 7 9 9

Total 29 7 27 9

94% for Autumn and 100% for Chauffeur. The model level oracle exhibits only two false
negatives (i.e., missed system-level failures) for Autumn. In the real-world physical envi-
ronment, the agreement rate is 83% for Autumn and 86% for Chauffeur. The model level
oracle exhibits two false negatives for Autumn, as well as four false positives (wrong expec-
tations of system-level failures, due to high model-level MAE). For Chauffeur, model-level
testing reports no false negatives, but five false positives.

Concerning our replication of the results by Haq et al. (2020), we were able to reproduce
the results of the original paper (i.e. no false positives) using the scenario-level matching
proposed by the authors (Table 4). Model vs system-level testing disagreement is 50% for
Autumn (100% of false negatives, no false positives) and drops to 22% for Chauffeur (44%
of false negatives, no false positives).

4.6 Threats to Validity

4.6.1 Internal Validity

One threat to internal validity concerns our custom implementation of the SDCs, with cus-
tom training sets. To mitigate this threat, we implemented best practices (Bojarski et al.
2016; Tawn Kramer 2022) to make sure to train robust SDC models that exhibited no fail-
ures in nominal conditions. Another threat is that the pre-failing images may not find a
match in the training set if this does not contain diverse trajectories. However, this scenario
never occurred in our experiments.

Lastly, the replicated study uses a simulator in which the car drives on a specific lane of
a two-lane road whereas in our setting the car follows the middle line on a two-lane road
(as if it were a single-lane, one-way road). While the MDCL used in the replicated paper
is a measure of distance from the center of the lane (instead of the center of the road), we
consider a thresholded XTE (i.e., a Maximum XTE) as comparable to MDCL.
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4.6.2 External Validity

The use of the Donkey Car framework poses a threat in terms of the generalizability of our
results. While Donkey Car has been used in similar studies for DNN testing (Mahmoud
et al. 2020; Verma et al. 2021; Viitala et al. 2020; Zhou et al. 2021), generalizability to
other physical settings is not guaranteed. We considered only one physical track, instead of
open-source datasets of labeled driving images. However, this was unavoidable, as we are
not aware of ways to reliably import real-world driving data within a simulation platform,
or within the Donkey Car.

4.6.3 Reproducibility

We make our data, results, and the Donkey Car simulator available (Code artifacts 2022).
The techniques and heuristics proposed in this paper do not need necessarily a physical
platform and can be applied, for instance, to stationary datasets as Udacity’s (Udacity self-
driving challenge 2 2016). For a complete replication of our study, two open-source physical
assets are needed, i.e., the Donkey Car and a racing track with the characteristics described
in Section 4.3.1.

5 Qualitative Analysis

The Autumn DNNmodel exhibited 4 false positives (see Table 3) when driving the physical
Donkey Car. Although this is a small number compared to the true positives and true nega-
tives (resp. 16 and 14), we have investigated them qualitatively in-depth, to understand the
core reasons behind a high offline prediction error when the car can drive safely in nominal
conditions. Figure 8 reports some meaningful examples from our experiments.

Plot/image show a case in which, during a straight road segment, the human driver
had to correct the trajectory after a bend, due to the high speed of the vehicle (green curve).
The SDC model, on the other hand, predicts a steering angle near zero (red curve), which is
in line with the average steering angle learned from the training set distribution for straight
road segments of this kind (see Fig. 5). Hence, the prediction error is large.

Plot/image show a case in which the human driver applies a moderate steering angle
on the right (≈0.6, or 10◦) and travels a right bend at the center of the road. The SDCmodel,
on the other hand, predicts a steering angle near 1.0 (16◦) which means full steering on the
right, in line with the average steering angle learned from the training set distribution for
right road segments, causing a large prediction error.

Fig. 8 Examples of wrong predictions causing false positives
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Finally, plot/image show a case in which the SDC model predicts left steering
angle commands a few frames before the human driver. This anticipating behavior can be
explained by the fact that the DNN has learned a conservative behavior towards certain
challenging conditions, which deviate substantially from the human ground truth angle.

Overall, we observed a different driving style between humans and DNN, despite the
latter is imitating the former. This might generate offline errors that do not correspond to
any system-level failure (false positives).

Another finding of this study concerns the generalizability of the results obtained on a
simulation platform to the physical environment. We have two main explanations for this:
(1) our simulated platform is a digital twin of the physical car (i.e., a faithful virtual replica
of the vehicle and its sensors) and (2) we maintained the same experimental setting across
virtual and real environments.

6 RelatedWork

6.1 Model vs System Testing Comparison

Codevilla et al. (2018) investigate the relation between model-level vs system-level testing
metrics for SDCs. They use the simulation environment CARLA (Dosovitskiy et al. 2017),
finding that offline prediction errors are not correlated with driving quality. Moreover, they
report that two DNNmodels with analogous error prediction rates may differ substantially in
their driving quality. In our paper we instead found that offline prediction errors do correlate
with online driving quality metrics, but only if an accurate scenario matching technique
is adopted, capable of computing the pre-failure site, similar-looking images, and accurate
labels.

We have extensively discussed the work by Haq et al. (2020), of which this study is a
replication. The authors have extended the original paper in a journal version (Haq et al.
2021) in which they consider one more SDC model to the study (Komanda) and further cor-
relation analysis. However, the threats to validity identified in our study were not addressed.
Thus, our results and findings also hold for the extended version of the paper.

6.2 Model and System Testing Approaches

Most approaches to testing DNNs that perform autonomous driving are at the model level
(Deng et al. 2020; Pei et al. 2017; Tian et al. 2018; Zhang et al. 2018). For example, DeepX-
plore (Pei et al. 2017) uses white-box testing to synthesize inputs that maximize both neuron
coverage and behavior diversity. Kim et al. (2019) propose several white-box test adequacy
criteria based on surprise, defined as the distance in DNN’s behaviour between a new, can-
didate test input and the training data. Inputs should be generated to cover all ranges of
surprise, from low to high surprise. DeepTest (Tian et al. 2018) uses affine transformations
from computer vision to produce new inputs that cause the DNN to misbehave. DeepRoad
(Tian et al. 2018) proposes the usage of GANs to generate more realistic driving inputs
from streams of real-world data. ThirdEye (Stocco et al. 2022) uses the attention maps from
the explainable AI domain to predict misbehaviours of self-driving cars. Deng et al. (2020)
study the robustness of DNN driving models with respect to different adversarial attacks.
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Kong and Liu (2019) generate realistic adversarial billboards within real-world images that
are able to confound the vehicle. In our work, we also use universal adversarial perturba-
tions at the system-level, finding comparable results in terms of virtual/physical robustness.
However, the focus of our study is on the model vs system level testing comparison.

Concerning system-level testing techniques for SDCs, researchers proposed techniques
to generate driving scenarios procedurally (Abdessalem et al. 2018; Ben Abdessalem et al.
2016; 2018; Mullins et al. 2018; Riccio and Tonella 2020; Stocco et al. 2020). For instance,
SilGAN (Parthasarathy and Johansson 2021) uses GANs to generate driving maneuvers
for software-in-the-loop testing. Mullins et al. (2018) use Gaussian processes to drive the
search towards yet unexplored regions of the input space. Abdessalem et al. (2018), Ben
Abdessalem et al. (2016), and Ben Abdessalem et al. (2018) combine genetic algorithms
and machine learning to test a pedestrian detection system. Li et al. (2020) use ontologies for
automatically generating combinatorial test suites for testing automated driving functions.
Riccio and Tonella (2020) propose a model-based test generator that uses Catmull-Rom
splines to characterize the road shape and generate inputs that are at the behavioural fron-
tier of a SDC model. Arrieta et al. (2017) use a genetic algorithm to generate tests for
cyber-physical systems that optimize requirements coverage, test case (dis-)similarity and
test execution time. Riccio et al. (2021) use mutation adequacy-guided test generation to
augment existing test suites for SDCs.

In contrast, our work focuses on the comparison of model vs system-level testing of
SDCs, both on a simulated and a real-world environment. Our extension to a physical SDC
constitutes a novel contribution to the state of the art.

6.3 Challenges for Autonomous Driving Testing

Wotawa (2017) discuss the challenges in testing autonomous driving systems and high-
light the similarities and the differences with testing safety critical systems. Stellet et al.
(2015) discuss the testing of advanced driver assistance towards automated driving report-
ing as main drawback the high initial effort to build the simulation environment, but also
the quantification of the achieved degree of realism of such platforms. Riccio et al. (2020)
present a systematic mapping of the main challenges of testing machine learning-based
systems, including autonomous driving systems. A recent work by Zhang et al. (2022) pro-
vide a comprehensive taxonomy for critical scenario identification methods based on an
analysis of the state-of-the-art research, and identify open issues and directions for fur-
ther research. Wotawa et al. (2021) discuss verification and validation methodologies for
advanced driver-assistance systems.

Concerning the oracle problem, Kalra and Paddock (2016) calculate the number of miles
of driving that would be needed to provide clear statistical evidence of autonomous vehicle
safety. Jahangirova et al. (2021) evaluated 26 metrics related to the quality of driving of both
human and autonomous driving and showed their usefulness as functional oracles through
mutation testing (Humbatova et al. 2021). Evans et al. (2020) design a domain specific
language to express oracles for autonomous driving systems testing such as safety, liveness,
timeliness and temporal properties.

Our work compares model- and system-level based testing both in simulated and physical
environments, and discusses the conditions under which model- and system-level based
testing expose failures.
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6.4 Physical Testing of Autonomous Vehicles

The usage of physical RC vehicles has fostered substantial research in the domain of
autonomous racing, in which DNN malfunctions or deficiencies can have far-reaching
safety consequences (Betz et al. 2022). Verma et al. (2021) compare different scaled vehi-
cles concluding that such platforms allow the rapid exploration of many different test tracks
while retaining realistic environmental conditions, which provides further justification for
our choice to use Donkey Car. Researchers have been using Donkey Car (Mahmoud et al.
2020; Stocco et al. 2022; Viitala et al. 2020; Zhang and Du 2019; Zhou et al. 2021) to study
also reinforcement learning algorithms for autonomous driving (Balaji et al. 2019; Biagiola
and Tonella 2022; Kiran et al. 2021). Sinha et al. (2020) present a framework to predict the
vehicle’s future state with by experiments on small scale autonomous platforms. Mahmoud
et al. (2020) use image scaling for functional test of DNN SDC on the Donkey Car platform.
Chen et al. (2019) embed a real hardware control unit within a simulation platform to verify
the validity of self-driving DNNs in virtual scenes, including perception, planning, decision
making, and control. Sotiropoulos et al. (2017) report on an exploratory study of bugs in
outdoor robots navigation, showing how most of them can be revealed in low-fidelity sim-
ulation. Stocco et al. (2022) compare virtual and physical testing of autonomous driving
systems, reporting a 60% transferability between the two. El Mostadi et al. (2021) discuss
the drawbacks of virtual testing of advanced driver-assistance systems, including simula-
tion crashes, ill-controlled test executions, incorrect verdict assignments, and waste of time
in the running and analysis of useless tests.

Differently from described works, our comparison of model vs system-level testing of
SDCs using a real-world physical environment is a novel contribution to the studies using
physical platforms.

6.5 GAN-based Testing of Autonomous Vehicles

The main focus of existing GAN-based testing techniques is to inject perturbations into
a driving scene (e.g., to create realistic weather transition for the same image) for offline
testing (Zhang et al. 2018), or to estimate telemetry data that are unavailable in the field,
when driving a physical car (Parthasarathy and Johansson 2021; Yang et al. 2020; Stocco
et al. 2022). DeepRoad (Zhang et al. 2018) uses UNIT (Liu et al. 2017) to generate accu-
rate photo-realistic paired driving scenes for SDC testing, which were evaluated for their
capability of exposing individual prediction errors. SilGAN (Parthasarathy and Johansson
2021) uses GANs to generate driving maneuvers for software-in-the-loop testing. Surfel-
GAN (Yang et al. 2020) is a technique developed at Waymo to generate realistic sensor
data for autonomous driving simulation without requiring manual creation of virtual envi-
ronments and objects. Differently from existing works, we use CycleGAN, that requires
no pairing, to generate pseudo-real driving scenes to evaluate the prediction differences
between virtual and physical SDCs.

7 Conclusions

This paper replicates an existing study on the comparison between model (offline) and sys-
tem (online) level testing of autonomous driving systems, with a focus on supervised models
for lane-keeping. We discussed the main threats to the validity of the original study, and we
set up an experimental design that addresses them. Moreover, our study extends the original
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study, which was conducted only in simulation, with the physical dimension, in which we
consider a real-world small-scale self-driving vehicle.

Our experiments did not lead to a full replication of the original study. On the one hand,
our study confirms the original findings reported in the replicated study about the possibility
to use simulator-generated data as an alternative to real-world data. We obtain a comparably
low difference between simulator and real-world prediction errors, and statistical analysis
confirm that the distributions of such prediction errors have negligible differences. The
latter result does not hold for the data collected in the original study, possibly because of
the poor visual similarity affecting the images matched by the heuristic used by the original
authors. In our work, matches obtained by automated neural translation result in faithful
images across domains (simulator vs real-world).

On the other hand, our study does not confirm the original findings concerning the dis-
agreement between offline and online testing. The observed disagreements consisted of
false negatives, i.e., low offline errors associated with system failures. In our replication,
such a phenomenon was observed quite rarely and was not as prevalent as in the original
study, the main reason being the improved accuracy of our scenario matching technique,
which determines precisely the pre-failure sequence, the pairs of online/offline images to
match, and the accuracy of the ground truth assigned to each matching pair.

Our results provide strong justification for the ongoing research on simulation-based test-
ing and offline model-level testing since they are both highly correlated with the exposure
of real-world failures. Of course, this does not mean that online, in-field testing should be
neglected, as it is impossible to account for the variability of the real world in a simulator, or
offline. However, by investing in the early levels of testing, companies can reduce substan-
tially the risk of revealing potential deployment failures when approaching a new release of
self-driving car software.
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