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Abstract
A key function of a software system is its ability to facilitate the manipulation of data, which
is often implemented using a flavour of the Structured Query Language (SQL). To develop
the data operations of software (i.e, creating, retrieving, updating, and deleting data), devel-
opers are required to excel in writing and combining both SQL and application code. The
problem is that writing SQL code in itself is already challenging (e.g., SQL anti-patterns are
commonplace) and combining SQL with application code (i.e., for SQL development tasks)
is even more demanding. Meanwhile, we have little empirical understanding regarding the
characteristics of SQL development tasks. Do SQL development tasks typically need more
code changes? Do they typically have a longer time-to-completion? Answers to such ques-
tions would prepare the community for the potential challenges associated with such tasks.
Our results obtained from 20 Apache projects reveal that SQL development tasks have a
significantly longer time-to-completion than SQL-unrelated tasks and require significantly
more code changes. Through our qualitative analyses, we observe that SQL development
tasks require more spread out changes, effort in reviews and documentation. Our results also
corroborate previous research highlighting the prevalence of SQL anti-patterns. The soft-
ware engineering community should make provision for the peculiarities of SQL coding, in
the delivery of safe and secure interactive software.
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1 Introduction

Database storage and operations are key components of any software project requiring data
persistence, ranging from small to large scale applications. Relational database manage-
ment systems (RDBMSs) normally use the Structured Query Language (SQL) to access and
manipulate data (Melton and Simon 1992). SQL has reached such a degree of importance
that despite developments in NoSQL DBMSs, SQL still remains a popular data manipula-
tion mechanism (Gaspar and Coric 2017). Evidence of the importance of SQL is that some
NoSQL DBMSs have adapted to support SQL or SQL-like languages (Gaspar and Coric
2017). Other researchers have explored ways of bridging NoSQL to SQL through mid-
dleware (Rith et al. 2014; Mason and Lawrence 2005). Altogether, SQL code consistently
remains a vital part of persistent data storage and is used for a variety of tasks. Thus, poorly
written SQL can be the root cause of performance issues in applications (Faroult and Robson
2006), especially in resource-constrained environments, such as in mobile apps (Lyu et al.
2019).

Recognizing the importance of SQL code, researchers have studied SQL in general
(Edmundson et al. 2013; Muse et al. 2020; Karwin 2010; de Almeida Filho et al. 2019). A
main line of research is the study of SQL anti-patterns, which are recurrent mistakes when
writing SQL (Nagy and Cleve 2015). The term SQL anti-pattern can also be interchangeably
used with SQL bad smell or SQL code smell (Muse et al. 2020).

The prevalence of SQL anti-patterns (Muse et al. 2020; de Almeida Filho et al. 2019)
hints that developing SQL is a complex task within the already cognitive-heavy task of
software development (Walenstein 2002; Mens 2012). Further evidence that writing SQL
code is not trivial is that there are roles dedicated to the development of SQL code (e.g.,
database administrators) (Yilmaz et al. 2015; Miller and Voas 2008). On the other hand,
a full-stack developer, who writes and mixes both SQL and application code, faces the
unique challenge of excelling in both worlds when performing SQL development tasks (i.e.,
development tasks that involve both application and SQL code). However, we have little
empirical knowledge regarding the characteristics of SQL development tasks. For example,
do SQL development tasks require more code changes than non-SQL development tasks?
Do SQL development tasks take longer to be completed than non-SQL development tasks?
Do SQL development tasks require different dimensions of development effort? Knowing
these characteristics is important to inform software development tools and practices. For
instance, if SQL development tasks typically require more code changes, quality assurance
(QA) teams may use this information to adjust their code-reviewing priorities. As observed
by Kononenko et al. (2018), code size has a statistically significant association with code
review time. Another area that could potentially benefit from our study is the area of
software estimation (Usman et al. 2014), as understanding the characteristics of SQL devel-
opment tasks could benefit the reasoning behind estimating story points for user stories that
involve SQL. Finally, empirical research like ours is important to better understand special
characteristics of atypical software development tasks. In this regard, our study strives to
better understand software development tasks, but focuses on SQL development tasks given
their importance.

To investigate the characteristics of SQL development tasks, we performed an
exploratory Mining Software Repository (MSR) study informed by qualitative document
analyses (Bowen 2009; O’Leary 2017). Through a study of 20 carefully selected Apache
projects, we performed comparisons between SQL and non-SQL development tasks. In the
quantitative part of the study, we investigated two characteristics of SQL development tasks:
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time-of-completion and size of changes (Mende and Koschke 2010; Kamei et al. 2010; Weiss
et al. 2007; Giger et al. 2010). In the qualitative part of our study, we analyzed a stratified
sample of 687 issue reports to better understand the nature of efforts invested in both SQL
and non-SQL development tasks.

– RQ1: How many changes and how much time do issues require to be addressed
when SQL code is involved? Issue reports can describe bugs, enhancements, or new
features to be addressed (da Costa et al. 2014). Among our main observations are the
fact that SQL-related issues may take slightly longer to be addressed when compared
to SQL-unrelated issues. Regarding the size of changes, we observe a clear trend that
SQL-related issues require significantly more changes than SQL-unrelated issues.

– RQ2: How many changes and how much time do pull requests require to be
merged when SQL code is involved? Another core activity in software development,
especially in open source projects, is the review of pull requests (also known as merge
requests). Our results do not reveal a clear trend whether SQL-related pull requests
have a longer time-of-completion when compared to SQL-unrelated pull requests.
Although most projects reveal that SQL-related pull requests take longer to be com-
pleted, two projects show the opposite trend. Regarding the change size of SQL-related
and SQL-unrelated pull requests, we did not observe significant differences in our data.

– RQ3: Are the dimensions of effort invested in SQL development tasks different
from those of non-SQL development tasks? We qualitatively investigate a represen-
tative sample of 687 issue reports to better understand the dimensions of effort invested
in SQL-related and SQL-unrelated tasks. Our main observation is that SQL-related task
are more likely to have a larger scope when compared to SQL-unrelated tasks.

Our paper is organized as follows. In Section 2, we survey the research related to our
work. In Section 3, we describe the methodology of our empirical study. We present our
obtained results in Section 4 and discuss them in Section 5. In Section 6, we reflect on the
threats to validity of our study and we conclude our paper in Section 7.

2 RelatedWork

In this section, we explore two research themes that are closely related to our work: SQL
anti-patterns detecting tools or anti-pattern automators, and empirical studies analysing SQL
code and anti-patterns.

2.1 Tools or Anti-Pattern Automators

Identifying anti-patterns in source code is a time consuming task. Therefore, much research
have invested in the creation of new tools to help automate the process of identifying SQL
or Object-Relational Mapping (ORM) anti-patterns.

Chen et al. (2014) proposed a framework for detecting anti-patterns in ORM usage. They
also identified the most common anti-patterns that have a performance impact. These anti-
patterns are “one-by-one processing” and “excessive data” (Chen et al. 2014). In a follow-up
study, Chen et al. (2016) investigated the impact of redundant data on performance in Java
applications, further emphasising how inefficiencies in data access, retrieval, and storage
can impact performance in a system. Cheung et al. (2013) aimed to optimize how SQL is
used in software projects. They proposed a tool that parses source code and locates areas
where code could be moved into the database layer rather than being carried out in the
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application code, since it is a costly operation to communicate from the application to the
database.

Nagy et al. (2015) designed a tool for locating the parts of source code where SQL
queries are sent to the database. The tool can be a potential solution to the problem of not
being aware of the query that is executed by the database, which can mask the complexity
of the query. Lyu et al. (2018) investigated the Repetitive Autocommit Transaction (RAT)
anti-pattern, which involves repeated database transactions rather than batch transactions in
mobile applications. This anti-pattern can have a significant impact on performance, so they
proposed a tool which identifies this anti-pattern and refactors instances that can be changed
without causing deadlocks.

Much research in this area involve SQL static code analyzers, which automate the extrac-
tion of SQL code or anti-patterns from a source code repository. The tool Alvor is an
Eclipse IDE plug-in that checks whether SQL statements embedded into code are syntacti-
cally correct, through a static analysis of the code to find SQL statements (Annamaa et al.
2010). Wassermann et al. (2007) presented a technique to evaluate dynamic SQL queries.
SQLInspect, designed by Nagy and Cleve (2018), is another Eclipse plug-in that extracts
SQL queries and finds anti-patterns (based on Karwin (2010) anti-patterns). The authors
used benchmark projects and compared the performance against Alvor and other similar
tools. SQLCheck, developed by Dintyala et al. (2020), is a similar tool that extracts SQL
queries and detects anti-patterns. However, SQLCheck adds further functionality by rank-
ing the anti-patterns based on their impact in the application, and fixing the anti-patterns by
suggesting alternative approaches. The authors used SQL queries from real-world contexts
to evaluate SQLCheck.

In contrast to previous research, we are not interested in detecting anti-patterns in
SQL code, but in understanding whether development tasks that involve both SQL and
application code (i.e., SQL development tasks) have special characteristics (e.g., a longer
time-to-completion or different dimensions of effort). These investigations can help us
further improve software development processes and practices.

2.2 Empirical Studies on SQL Anti-Patterns

Recent studies have conducted empirical analyses of SQL anti-patterns. Lyu et al. (2019)
examined the impact of SQL anti-patterns on code performance in mobile applications.
To compile a list of anti-patterns, the authors conducted an extensive literature review.
They then used a benchmark design with values for performance-affecting factors and
anti-pattern instances from a sample of Google Play applications. They tested whether
performance improved by measuring changes in resource consumption. They found the anti-
patterns “unbatched-writes” and “loop-to-join” (Lyu et al. 2019) to be prominent in terms
of performance impact.

The anti-patterns outlined by Karwin (2010) provided a turning point in SQL anti-pattern
research. Eessaar (2015) investigated 12 of Karwin’s SQL anti-patterns, both logical and
physical. To investigate the anti-patterns, they ran SQL queries based on a test database with
design flaws and investigated the Information Schema tables to analyze the design of the
database. The authors were able to identify the majority of the anti-patterns. The purpose
of the study was not to test the performance impact of these anti-patterns but rather find
methods for detecting them.

Nagy and Cleve (2015) parsed a dataset of STACK OVERFLOW posts related to MySQL.
They extracted code snippets and filtered for SQL keywords. Next, they used a pattern
detector, which involved breaking the elements into a tree structure and sorting nodes into
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buckets based on their similarity. The authors did not find particular patterns that were likely
to lead to errors.

Another source of data for empirical investigations is OSS projects hosted on GITHUB.1

Studies conducted by de Almeida Filho et al. (2019) and Muse et al. (2020) used GITHUB

to collect their data. de Almeida Filho et al. (2019) investigated SQL anti-patterns in
PL/SQL projects. They studied 20 popular GITHUB projects and found that certain anti-
patterns tended to be highly correlated with one another and that they tended to fall into
clusters around syntax bad smells and code structure bad smells. Muse et al. (2020) used
SQLInspect (Nagy and Cleve 2018) to extract SQL anti-patterns. They also extracted
traditional code smells to measure correlations between SQL anti-patterns and traditional
code smells. They found that “implicit columns” was the most common SQL anti-pattern.
They also found that SQL anti-patterns tended to persist throughout iterations of the project.
Given that Muse et al. (2020) used an automated approach to identify SQL anti-patterns,
their investigations were limited to only four anti-patterns.

The existing empirical research on SQL anti-patterns has shown that SQL anti-patterns
are indeed prevalent. However, what is missing is a closer analysis regarding the devel-
opment process when it comes to SQL development tasks. For instance, are developers
exerting as much effort when it comes to performing SQL development tasks? Our study,
for the first time, provides an in-depth analysis regarding the characteristics of SQL devel-
opment tasks. Our qualitative analysis helps us better understand the effort invested in
development activities involving SQL code.

3 Methodology

In this section, we review our subject projects and explain how the data used in this study
were collected. We subsequently outline our research questions and associated measures.

3.1 Subject Projects

To perform our empirical investigations, we studied Apache projects (ASF 2019). We
selected Java Apache projects because Java has been the main language used by Apache.
Apache projects have been frequently used in prior software engineering research (Rigby
and Hassan 2017; Roberts et al. 2006; Neto et al. 2018; Vandehei et al. 2021). We chose
Apache projects for our study as a strategy to avoid the inclusion of toy, personal, or non-
engineered projects that can be found among GITHUB projects (Kalliamvakou et al. 2014;
Pickerill et al. 2020).

Another goal related to studying Apache projects is to control for quality, since the
Apache Foundation has a thorough process to select its contributors (i.e., committers).2 For
example, Apache works as “a meritocracy. Once someone has shown sufficient sustained
commitment to a project by helping out and contributing work to it (and the ASF), the
project may vote to invite that person to become a committer.”3 Moreover, Apache has led

1https://github.com/
2https://www.apache.org/foundation/getinvolved.html#become-a-committer
3https://infra.apache.org/new-committers-guide.html
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Fig. 1 High-level overview of steps involved in our study

the development of open source software for 22 years, including the implementation of Java
Specification Requests (JSRs), such as the Java Persistence API, or simply JPA.4,5

Provided that we can ensure a certain level of professionalism in software development
by selecting Apache projects, the second aspect of our project selection is to study projects
with a substantial number of SQL queries. In this regard, we aim to carefully select projects
with a substantial number of meaningful SQL statements. We explain the steps to select
such projects in the next subsection.

3.2 Procedure and Data Collection

The first step to answer our research questions was to collect the required data. Each of the
following steps refers to the corresponding heading in Fig. 1.

Step 1: Data Collection. We used the GHTORRENT database (Gousios 2013) to obtain
the names of all the Apache projects that have repositories available on GITHUB. From
here, we cloned each repository to a local computer and scanned each repository for SQL
query keywords including SELECT, DELETE, UPDATE and INSERT. This initial keyword
scan of projects provided a baseline filter that we built upon later with additional regular
expression filters. This formed a subset of Java Apache projects that are likely to contain
SQL. The commands to perform this initial scan can be found in our replication package.6

Step 2: Project Selection. Similar to de Almeida Filho et al. (2019), we selected 20
Apache projects to perform our empirical study. We believe 20 is a reasonable number
because our goal was to include all projects in our analyses, including the qualitative
analyses of SQL development tasks in RQ3.

Our protocol for sampling our 20 Apache projects is as follows. First, we found 2,100
projects related to Apache on GITHUB. We excluded 1,100 projects as they were not mainly
written in Java. We also excluded forks and kept only original repositories. Next, we scanned
projects based on SQL keywords. Projects for which SQL keywords could not be found
were excluded (778 projects were excluded). To select our final set of projects we counted
the number of Java files in each of the remaining 208 projects. We observed that some

4https://www.jcp.org/en/jsr/detail?id=317
5http://openjpa.apache.org/
6https://zenodo.org/record/7343828#.Y55ttXZBxPZ
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projects contained an exorbitant number of files (e.g., Netbeans with about 37,500 files).
As in this first research we do not intend to base our empirical observations on extreme
cases, we removed outlier projects based on the upper limit of the inter quantile range of file
counts, i.e., the same process used by boxplots to infer outliers (4 projects were removed).
Finally, we selected the top 10 projects (in terms of file counts) and the 10 projects right
above the median file count. This last step was intended to enrich our dataset with projects
of different sizes and applications.

Step 3: SQL Extraction. We developed a Python script to obtain all the string literals
in the Java files of the selected projects. Our intention was to find queries written in native
SQL. The script created a dataset of string literals, alongside details of what file and line
number the string literal was from, and which project. The intention was to ensure that we
could later revisit the context in which the SQL query was found, which is important for our
analyses in answering RQ3.

In order to extract the SQL from the string literals, we crafted regular expressions. A
different regular expression was made for each of the following cases: a SELECT state-
ment, an UPDATE statement, an INSERT statement, and a DELETE statement. These were
executed using the SQL regex tool to match the patterns. The regular expressions were vali-
dated by the first and second authors using the OODT project, which is close to the median
with 143 extracted SQL queries. A manual analysis was performed in this project by ana-
lyzing all the Java files and counting the number of SQL queries. Next, we compared the set
of SQL queries from the manual analyses with those found by the regular expressions. The
regular expressions performed well with a precision of 96.5% and recall of 97.9%. While
we validated our regular expressions on only one Apache project, due to the high accuracy
obtained, we are fairly confident that the majority of SQL queries can be extracted. More-
over, we also performed another manual validation of the SQL queries found by our regular
expressions at a later stage in answering RQ3.

Table 1 shows the statistics related to our selected projects, i.e., the number of SQL
statements, number of SQL-related issues and pull requests (PRs), and number of SQL-
unrelated issues and pull requests. Overall, our selected projects contain a mean of 722 SQL
queries, with a maximum of 6,010 queries (Hive) and a minimum of 5 queries (Tuscany).
These numbers suggest that our studied projects are data-intensive systems (Muse et al.
2020).

Step 4: Data Mining. After obtaining our list of projects, we collected additional data
related to pull requests (from GITHUB) and issue reports (from JIRA). We collected pull
requests marked as closed or closed and merged and considered only pull requests that have
been merged to the main branch for the quantitative analyses as we are interested in comput-
ing time-of-completion and change size metrics only for those pull requests that eventually
made it to the end users. Additionally, even if any of those pull requests involved other
branches, because the work has eventually been merged to the main branch, we did not
lose information when computing the time-to-completion for such pull requests. Regard-
ing issue reports, we collected reports marked as closed and fixed. This is because our
goal is to investigate the time taken for pull requests and issue reports to be marked as
closed. These collection tasks were facilitated using Python libraries such as PyGithub
and jira.

3.3 Research Questions

We reiterate below our three research questions along with their motivations, approaches
and measures.
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Table 1 General characteristics of our selected Apache projects

Project SQL-Statements SQL-rel. issues SQL-unrel. issues SQL-rel. PRs SQL-unrel. PRs

CLOUDSTACK 1,049 93 2,329 353 7,599

ASTERIXDB 18 4 187 2 16

GEODE 4,356 172 3,404 16 6

HADOOP MAP-REDUCE 37 6 621 – –

GROOVY 58 19 3,812 12 3,260

HARMONY 406 – 110 – –

HIVE 6,010 697 6,803 556 1,840

KARAF 67 3 436 27 3,551

TOMEE 230 5 263 57 1,955

FLINK 354 198 5,254 269 5,111

KNOX 11 5 1,124 16 1,216

LUCENE-SOLR 325 116 9,301 49 3655

MANIFOLDCF 108 – 4 – 23

MARMOTTA 34 2 253 2 6

NIFI 933 – 31 193 3,726

OODT 143 2 24 5 121

SYNAPSE 24 – 42 1 32

OOZIE 262 97 1,364 12 28

OPENWEBBEANS 6 2 724 – 5

TUSCANY 5 4 835 – –

Note that some projects, such as Harmony and Tuscany, did not have any pull requests in their GITHUB

repositories at the time our dataset was collected

RQ1: How many changes and how much time do issues require to be addressed when
SQL code is involved? Issue reports can describe bugs, enhancements, or new features to be
addressed (da Costa et al. 2014). Therefore, addressing issue reports sits at the core of the
software development endeavour. We study the time-of-completion and size of issue reports
to better understand whether there are significant differences when issue reports involve
SQL code. This is our preliminary investigation to understand whether SQL development
tasks are addressed in a different manner when compared to non-SQL development tasks.

RQ2: How many changes and how much time do pull requests require to be merged
when SQL code is involved? Another core activity in software development, especially
in open source projects, is the review of pull requests (also known as merge requests).
Pull requests are normally reviewed by other (typically more experienced) members of the
project development team (Rahman and Roy 2014). In RQ2, we study time-of-completion
and size of pull requests to better understand whether there are significant differences when
pull requests involve SQL code. As in RQ1, RQ2 help us better understand whether SQL
development tasks are addressed differently when compared to non-SQL development tasks.

RQ3: Are the dimensions of effort invested in SQL development tasks different from
those of non-SQL development tasks? We further investigated our data to better under-
stand why the time-of-completion and change size of SQL development tasks significantly
differ from those of non-SQL development tasks. This investigation is important not only
to triangulate the results obtained in RQ1 and RQ2 but also to provide deeper insights
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for researchers and practitioners. For example, although the time-to-completion of SQL
development tasks is typically longer when compared to non-SQL development tasks, the
difference could arise either because (i) SQL development tasks are less important, taking
longer to receive attention from developers; or because (ii) SQL development tasks require
more effort from developers, thus taking longer to complete. The goal of RQ3 is to shed
more light on discussions of a similar nature as (i) and (ii).

4 Results

RQ1: How many changes and how much time do issues require to be addressed when
SQL code is involved?

Approach. To find which issues were related to SQL, we linked GITHUB commits to issue
reports from JIRA. We used an approach repeatedly used in previous research (Posnett
et al. 2011; da Costa et al. 2016; Neto et al. 2018; Yatish et al. 2019) to link JIRA issues
with commits. For example, for the project OODT, we used Python scripts to search each
commit message for “OODT-” followed by a number, which is the convention used by
Apache projects to refer to issue IDs within commit logs.7 Afterwards, for each commit,
we ran our SQL regular expressions on only the patches for Java files. If any SQL queries
were found within a patch, the issue was marked as containing SQL. To measure the time-
to-completion of issue reports, we measured the difference between the date that an issue
report was opened and the date that the issue report was fixed. To compute the size of an
issue report, we summed all the added and removed lines in the commits linked to that issue
report.

We used beanplots to visualize the distributions of time-to-completion and size
(Kampstra 2008). To check whether distributions were statistically different (i.e., between
SQL issues vs. non-SQL issues ), we used the Mann Whitney Wilcoxon (MWW) test
(Wilks 2011) and the Cliff’s delta effect-size measurement (Cliff 1993). Both MWW and
Cliff’s delta are non-parametric, as Shapiro-Wilks tests indicated the non-normality of our
data (Shapiro and Wilk 1965). The MWW test checks whether two distributions come from
the same population and the Cliff’s delta measures the probability that a randomly selected
value of one distribution is higher (or lower) than another distribution (Fig. 2).

Results. SQL-related issues have a slightly longer time-to-completion when compared
to SQL-unrelated issues. Figure 2 shows the distributions of time-to-completion for SQL-
related issues versus SQL-unrelated issues. The left-hand distribution of each beanplot
represents issues not involving SQL, whereas the right-hand distribution represents issues
that involve SQL. We observe that, in terms of time-to-completion, SQL-related issues take
slightly longer to be completed. For issues, we obtained p = 5.33 × 10−54 and Cliff’s delta
d = 0.241, indicating a small but significant difference (Table 2).

SQL-related issues involve substantially more code modifications than other issues
Fig. 3 shows the distributions of change size (i.e., the sum of code additions and code
deletions) for SQL-related issues versus SQL-unrelated issues. We observe that SQL-related
issues receive significantly more code modifications than SQL-unrelated issues: p = 1.45×
10−230 and d = 0.507, indicating a large significant difference between the distributions.

7https://issues.apache.org/jira/browse/OODT-1031
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Fig. 2 Time-to-completion in minutes. SQL-related issues and pull requests both take longer to be fixed in
our studied projects

Table 3 shows descriptive statistics for the distributions shown in Fig. 3. In line with
the results above, we observe a large difference between the medians when it comes to
issue reports: 422 lines modified for SQL-related issues against 68 lines modified for SQL-
unrelated issues. These results suggest that SQL-related issues typically involve more code
modifications than other issues.

Per project analysis (time-to-completion). Our observations made so far concern the
general trend of our data, i.e., we considered all projects in an aggregated manner. Although
it is valuable to know the general trend in the data, it is also important (especially in software
engineering) to understand the specificities and contextual profiles of each project, since
each project uses different processes, tools and are from different domains.

Table 4 shows the median time-to-completion of SQL-related issues versus SQL-
unrelated issues in each of our studied projects. Table 4 also shows whether the results
are statistically significant (i.e., as indicated by the MWW tests and Cliff’s delta values).

Table 2 Descriptive statistics for time-to-completion (in minutes)

Time-to-Completion of Issues (All projects)

SQL-related SQL-unrelated

Minimum 2 0

Median 25,897 (17.9 days) 10,161 (7 days)

Mean 121,427 (84 days) 93,368 (65 days)

Maximum 3,888,797 6,129,740
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Fig. 3 The size of changes (additions plus deletions). SQL-related issue reports receive more code changes

Four projects (NIFI, SYNAPSE, HARMONY, and MANIFOLDCF) were not included in the
per-project analysis as we could not find SQL-related issues in these projects.

Out of 16 analysed projects, 5 projects obtained significant p-values (GEODE, HIVE,
FLINK, LUCENE-SOLR, and OOZIE). FLINK obtained the smallest effect-size (i.e., consid-
ered negligible) whereas LUCENE-SOLR obtained the highest effect-size (i.e., considered
medium). Although not all projects obtained a significant p-value, 12 out of 16 projects had
a longer time-to-completion when it comes to SQL-related issues, which may explain why
the general trend of time-to-completion (i.e., considering all the projects together) indicated
a small but significant difference in the time-to-completion between SQL-related issues and
SQL-unrelated issues. Overall, our per-project analysis suggests that the time-to-completion
of SQL-issues may be slightly higher than SQL-unrelated issues in certain projects.

Per project analysis (size of changes). In Fig. 3, we observed a large significant dif-
ference in the size of changes between SQL-related issues and SQL-unrelated issues. To
gain further insights, we study the differences in the size of changes in each of our analysed

Table 3 Descriptive statistics for change size (number of lines)

Size of Issues (All projects)

SQL-related SQL-unrelated

Minimum 2 0

Median 422 68

Mean 4,338 790

Maximum 1,115,413 1,810,320
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Table 4 Time-to-completion of issues per project

Median time-to-completion of issues in days

SQL-unrelated SQL-related p-value Cliff’s delta

ASTERIXDB 18.4 83.2 0.29 —

CLOUDSTACK 6 4.6 0.92 —

GEODE 9.9 20.7 7.82e−09 0.26 (small)

GROOVY 7.1 19.9 0.07 —

HADOOP-MAPREDUCE 27.9 51.3 0.20 —

HIVE 7.1 17.9 9.01e−32 0.27 (small)

FLINK 8.9 14.6 0.003 0.12 (negligible)

KARAF 2.9 0.4 0.86 —

KNOX 0.1 39.5 0.09 —

LUCENE-SOLR 5.8 48.8 8.40e−13 0.39 (medium)

MARMOTTA 7 1.5 0.41 —

OODT 2.2 52 0.89 —

OOZIE 15 26.9 0.01 0.15 (small)

OPENWEBBEANS 1.9 62.2 0.49 —

TOMEE 0.3 12.5 0.32 —

TUSCANY 4 28.1 0.11 —

projects. Table 5 shows the median change size (for both SQL-related and SQL-unrelated
issues) as well as the p-values obtained through our statistical tests.

Our results revealed a clear trend of SQL-related issues requiring significantly more
changes than SQL-unrelated issues. It is observed that 75% of our projects ( 12

16 ) obtained
a significant p-value with (at least) medium effect size measurements. Indeed, 9 projects
obtained a large difference according to their effect size measurements. Our results suggest
that SQL-related issues indeed require significantly more changes in order to be addressed.

RQ2: Howmany changes and howmuch time do pull requests require to be merged
when SQL code is involved?

Approach. To identify whether pull requests were related to SQL, we ran our regular
expressions on the commits associated with each pull request (again, only on patches for
Java files). To compute the time-to-completion of each pull request to be merged or closed,
we computed the difference between the date that a pull request was submitted and the
date it was closed or merged. To compute the size of a pull request, we summed all the
added and removed lines in the commits associated with that pull request. As in RQ1, we
used beanplots to visualize the distributions of time-to-completion and size. We also use the
MWW test and the Cliff’s delta measurement to compare our distributions.

Results. SQL-related pull requests have a slightly longer time-to-completion when
compared to SQL-unrelated pull requests. Figure 4 compares the distribution of time-
to-completion between SQL-related pull requests and SQL-unrelated pull requests. We
obtained a p = 6.14 × 10−22 and a d = 0.28, indicating a small but significant difference.
The descriptive statistics for our distributions of time-to-completion are shown in Table 6.
Our results suggest that SQL-related pull requests may take slightly longer to be completed
when compared to their SQL-unrelated counterparts.

69   Page 12 of 33



Empir Software Eng (2023) 28:69

Table 5 Size of issues per project

Median size of addressed issues

SQL-unrelated SQL-related p-value Cliff’s delta

ASTERIXDB 208 3017 0.008 0.77 (large)

CLOUDSTACK 18.4 83.2 3.23e−13 0.45 (medium)

GEODE 85 854 1.72e−41 0.61 (large)

GROOVY 50 293 3.75e−07 0.67 (large)

HADOOP-MAPREDUCE 92 836 0.006 0.65 (large)

HIVE 77 406 4.61e−84 0.45 (medium)

FLINK 82 403 1.37e−28 0.46 (medium)

KARAF 27 133 0.08 —

KNOX 45 1,117 0.09 —

LUCENE-SOLR 90 529 0.001 0.80 (large)

MARMOTTA 87 968 0.06 —

OODT 24 19,239 0.02 0.90 (large)

OOZIE 41 384 1.36e−24 0.62 (large)

OPENWEBBEANS 91 16,241 0.01 0.97 (large)

TOMEE 92 661 0.02 0.59 (large)

TUSCANY 77 356 0.11 —
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Fig. 4 Pull requests. Time-to-completion in minutes. SQL-related issues and pull requests both take longer
to be fixed in our studied projects
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Table 6 Descriptive statistics for time-to-completion (in minutes)

Time-to-Completion of Pull requests (All projects)

SQL-related SQL-unrelated

Minimum 0 0

Median 9,588 (7 days) 4,086 (3 days)

Mean 36,940 (26 days) 25,265 (17 days)

Maximum 757,374 1,731,191

SQL-related pull requests have a negligible difference in terms of change size when
compared to SQL-unrelated pull requests. Figure 5 shows the comparison of change size
between SQL-related pull requests and SQL-unrelated pull requests (i.e., added lines plus
removed lines within patches). We observe that SQL-unrelated pull requests received a
slightly higher amount of code modifications compared to SQL-related pull requests. How-
ever, while the p-value for the comparison is significant (p = 6.42×10−5), our Cliff’s delta
measurement indicates a negligible difference (d = 0.12), meaning that the observed dif-
ference is likely inconclusive. Table 7 shows the descriptive statistics of the size of changes
for our pull requests.

Per project analysis (time-to-completion). To better understand the general distribution
of time-to-completion shown in Fig. 4 we compare the distributions of time-to-completion
in each studied project. In this per-project analysis, we did not include the TUSCANY,
HADOOP-MAPREDUCE, HARMONY, MANIFOLDCF, and OPENWEBBEANS projects. In
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Fig. 5 Pull requests. The size of changes (additions plus deletions). SQL-related issue reports receive more
code changes to be addressed
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Table 7 Descriptive statistics for change size (number of lines)

Change size of Pull requests (All projects)

SQL-related SQL-unrelated

Minimum 0 1

Median 218 446

Mean 18,124 29,300

Maximum 1,563,226 8,434,616

the cases of TUSCANY, MANIFOLDCF, and OPENWEBBEANS, we could not find SQL-
related pull requests, whereas there were no closed pull requests in HADOOP-MAPREDUCE

and HARMONY. Table 8 shows our obtained results for the per-project analysis (i.e., median
time-to-completion and p-values).

We observed that 60% of the analysed projects ( 9
15 ) obtained statistically significant

difference. While the majority of these projects tend to have a longer time-to-completion
for SQL-related pull requests, two projects (GEODE and SYNAPSE) show the opposite trend
(i.e., SQL-unrelated pull requests have a longer time-to-completion than SQL-related pull
requests).

Overall, our results suggest that more projects need to be investigated to draw stronger
conclusions related to the time-to-completion of pull requests. For example, reflecting on
our previous analysis regarding issue reports, although not all projects obtained signifi-
cant p-values, the results were consistent (i.e., all projects had a longer time-to-completion
for SQL-related issue reports). However, when it comes to the per-project analysis of pull
requests, GEODE and SYNAPSE revealed an opposite trend from the general trend shown in
Fig. 4. Lastly, given that we did not observe a significant difference between SQL-related

Table 8 Time-to-completion of pull requests per project

Median time-to-completion of issues in hours

SQL-unrelated SQL-related p-value Cliff’s delta

ASTERIXDB 4.4 within 1 hour 0.16 —

CLOUDSTACK 170 465 5.40e−8 0.17 (small)

GEODE 1,179 within 1 hour 0.001 0.97 (large)

GROOVY 32 82 0.75 —

HIVE 435 568 0.10 —

FLINK 72 142 6.64e−11 0.23 (small)

KARAF 20 14 0.77 —

KNOX 15 86 0.001 0.45 (medium)

LUCENE-SOLR 121 2,801 1.09e−13 0.37 (medium)

MARMOTTA within 1 hour within 1 hour 1 —

OODT 53 125 0.30 —

OOZIE 294 66 0.03 0.42 (medium)

SYNAPSE 30 within 1 hour 7e−4 0.98 (large)

NIFI 52 186 2.53e−16 0.25 (small)

TOMEE 48 175 0.01 0.18 (small)
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and SQL-unrelated pull requests when it comes to the size of changes, we do not perform a
per-project analysis regarding the size of changes for pull requests.

RQ3: Are the dimensions of effort invested in SQL development tasks different
from those of non-SQL development tasks?

Approach. To answer RQ3, we pushed beyond the quantitative realm and used a qual-
itative approach known as document analysis (Bowen 2009; O’Leary 2017). Analyzing
documents entails coding their content into themes (similar to how interview transcripts
would be analyzed) (Bowen 2009). One of the main advantages of document analysis is that
documents are “non-reactive,” meaning that documents can be read and revisited multiple
times without being changed by the research process ((Bowen 2009), p. 31). As the input
for our document analysis, we used digital issue reports and their related documents, e.g.,
pull requests (from all branches), code review boards, or commit logs related to the issue
reports. From the total of 38,160 issue reports obtained from our 20 studied projects, we cre-
ated two representative samples: one containing issue reports involving SQL code, and the
other containing issue reports that do not involve SQL code. Considering a confidence level
of 95% and a confidence interval of 5%, we obtained 304 issue reports involving SQL code
and 383 issue reports not involving SQL code. Instead of simply building random samples,
we used a Stratified Random Sample (SRS) strategy because of the variability in the num-
ber of issue reports involving SQL per project in our population (Lohr 2009). Therefore, the
number of issue reports involving SQL code per project in our samples is representative of
the number of issue reports per project in the original population. To calculate the size of
each stratum, we used the formula nh ≈ nWh, where nh is the sample size of stratum h; n is
the size of the sample; and Wh = Nh/N where N is the population size and Nh is the size
of stratum h in the population (Podgurski et al. 1999).

To investigate whether our representative sample maintained the properties of its pop-
ulation (i.e., the 38,160 issue reports), we show in Figs. 6 and 7 the comparisons
regarding time-to-completion and size of changes (which are equivalent to Figs. 2 and 3).
Indeed, the statistical properties hold as both comparisons exhibit a similar behaviour, i.e.,
p = 2.53x10−9 with d = 0.27 (small) for time-to-completion and p = 3.43x10−24

with d = 0.45 (medium) for size of changes. Therefore, we proceeded with our document
analysis.

Figure 8 shows an overview of our document analysis process. Our document analysis
consists of two main steps. In the first step, the goal is to find different dimensions of effort
invested to address the issue reports within each sample. This inductive approach generates
a set of themes related to the different dimensions of effort invested in addressing issue
reports. In this step, the first author (“main coder” in Fig. 8) analyzed all the issue reports
from both samples and created themes based on the observed dimensions of effort invested
to address the issue reports. For instance, if an issue report required intense discussions
before a solution was proposed (which can be observed in the comments section of an
issue report), the theme “intense discussions” was created (more details are provided in
the results). Once the entire set of themes was generated and documented through several
iterations and reflections (see Appendix A for the complete set of themes), the main coder
discussed the themes and their meanings with two other authors (“secondary coders”). The
secondary coders then used the existing set of themes to code the issue reports from both
samples. At this step, the secondary coders had the opportunity to suggest new themes.
Next, all coders collaboratively discussed the generated themes (e.g., merging themes, or
accommodating new themes), producing a final set of themes.
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Fig. 6 Time-to-completion of the issues in our representative sample
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Fig. 7 The size of changes (additions plus deletions) of our representative sample
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Fig. 8 An overview of the document analysis process

It is important to note that our goal with the inductive analysis is to widen our under-
standing regarding the effort invested in addressing the investigated issue reports instead of
finding an absolute truth regarding what would be the most accurate themes produced in
our data. For this reason, we position our inductive approach as a reflexive thematic anal-
ysis (Braun and Clarke 2020; 2019) and, hence, we are not interested in coding reliability
at this stage (e.g., measuring inter-rater reliability). Instead, we are interested in generating
qualitative results that can help us better reflect on the phenomenon of effort invested in the
addressed issues.

Once the set of themes is created, the second step is to use the generated themes as a
guide for our deductive analysis. The goal of our deductive analysis is to obtain a sense of
the intensity of effort invested to address the issue reports. In this deductive analysis, three
authors (i.e., three coders) assessed all issue reports separately. Each coder used a five-point
Likert scale to indicate their perception of the intensity of effort invested in addressing an
issue report; one of “very low”, “low”, “medium”, “high”, or “very high.” In contrast to the
previous step, at this stage, we are interested in measuring the accuracy of our perception of
exerted effort within an issue report. For this reason, we used the weighted kappa (Cohen
1968) as our inter-rater reliability measure. We chose the weighted kappa because it is
sensitive to the distance between disagreements, e.g., a disagreement between “very low”
and “low” does not have the same weight as a disagreement between “very low” and “high.”
Finally, we compared the required effort for issues involving SQL code to that of issues that
do not involve SQL code.

Results. Figure 9 visualises the dimensions of effort (i.e., the themes) that emerged
from our inductive analysis (see Section 3.3). The central (or root) theme is the perceived
effort, which is the main object of analysis in this RQ. The second-level (or axial) themes
comprise effort related to: scope & size, discussions, specification, test & debugging,
complexity level, backward compatibility, reoccurring issue, side-effects, and side-efforts.
The third level themes are more specific and are grouped based on their relationship with
the second-level themes. For instance, the theme known location refers to issues where the
developers already knew where to fix the problem from the start. Therefore, the known
location theme falls within the complexity level axial theme, since already knowing where
the problem is located from the start indicates that the issue is not complex after all.
Another example is the discussions axial theme, which groups all themes related to effort
invested into discussions (e.g., discussing the design of a solution thoroughly as in the
design thinking theme). In Appendix A, we provide in-depth details about each theme that
emerged from our inductive analysis.
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Fig. 9 An overview of the dimensions of effort (themes) that emerged from our inductive analysis

SQL development tasks require more widely spread modifications with a larger scope
than non-SQL development tasks. In the next step of our analysis, we compare the themes
for issues that involved SQL code versus issues that did not involve SQL code. Figure 10a
visualises the key themes for SQL development tasks. The thickness of the edges and size
of nodes are based on the number of times a theme occurred over the total number of theme
occurrences.8 For example, the theme several/spread modifications has the highest number
of occurrences (188 times) within issues involving SQL code. Hence, the node and edge
for several/spread modifications is the thickest in Fig. 10a. Regarding the high-level themes
(i.e., the root theme and the Complexity Level, Discussions, Specification, Scope & Size,
Side Effort, and Test & Debug themes), we consider their number of occurrences as 1 (one),
since their role is mostly to communicate how the lower level themes are related to each
other.

Figure 10b visualises the key themes for non-SQL development tasks. The most notable
difference compared to Fig. 10a is in the scope & size theme: while SQL development
tasks require more several/spread modifications (i.e., the changes involved different files,
classes, or packages, or several code changes), non-SQL development tasks require more
localized modifications (i.e., the changes were mostly within a file, or, even if they were

8https://github.com/neo4j-contrib/neovis.js/
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(a) SQL dev-tasks. (b) non-SQL dev-tasks.

Fig. 10 Dimensions of effort

in different files, they were only a few), simple workarounds (i.e., quickly crafted but not
ideal solutions) or even one-liner modifications (Karampatsis and Sutton 2020) (i.e., mod-
ifications that required only one line of code). This last theme (one-liner) emerges mostly
for non-SQL development tasks. Indeed, because the themes several/spread modifications
and localized modifications are, in essence, mutually exclusive, we perform a χ2 test of
independence (McHugh 2013). Our goal was to check whether there exists a significant dif-
ference in occurrences of several/spread modifications and localized modifications between
SQL and non-SQL development tasks. We obtain a p = 1.161 × 10−18 indicating that the
observed difference is indeed significant — Table 9 shows our 2x2 matrix used to compute
our χ2 test. Other interesting differences are related to the complexity level and side-effort
themes. For example, SQL development tasks require different kinds of side-effort from
non-SQL development tasks, such as checking SQL standards, effort in configuration, and
infrastructure bumps. For instance, in issue HIVE-15982,9 a developer comments “I tested
it on Postgres and it agrees with Oracle. So, its [sic] worth rechecking the standard for
this.” They then proceed to check the standard and report back on the results. As for the
differences in complexity level, we observe that non-SQL development tasks can involve
problems for which the location is known from the start as well as problems that require no
source-code changes.

Development tasks that involve SQL require a higher amount of effort compared devel-
opment tasks that do not involve SQL. Figure 11 shows the result of our deductive analysis
through stacked bar charts. We observe that SQL development tasks involve a substantially
higher proportion of issues (53%) rated as “high” or “very-high” in terms of perceived
effort compared to non-SQL development tasks (14%). In terms of inter-coder agreement,
we obtained a weighted Kappa of 0.49, which signifies a good agreement beyond chance
(Cohen 1968).

9https://issues.apache.org/jira/browse/HIVE-15982
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Table 9 2x2 matrix used
to compute our χ2 test
of independence

Several/Spread modifications Localized modifications

Non-sql 89 204

Sql 188 90

5 Discussion and Implications

Interpreting time-to-completion and change size. In RQ1, we observed that issue reports
involving SQL code have a slightly longer time-to-completion and a significantly higher
change size when compared to issue reports not involving SQL. In RQ2, we did not
observe results that are as conclusive as the results of RQ1, since some projects revealed
opposite tendencies in terms of time-to-completion of pull requests. Notwithstanding these
observations, one has to be careful when interpreting time-to-completion and change size.
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Fig. 11 The perceived effort invested in SQL development tasks vs. non-SQL development tasks.
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Fig. 12 The relationship between the perceived effort and the size of changes of issues

In terms of a longer time-to-completion, the interpretations can take opposite directions.
A task may deliberately take longer simply because the task has a lower priority instead of
being more complex. As for change size, while a higher change size may indicate that more
effort has been invested, the nature of the changes also plays a role. For example, even if
a high number of changes have been made, if they were mostly copies of the same piece
of code (i.e., represented by the theme repeated changes in RQ3), the higher number of
changes is not necessarily indicative of higher effort. We can see a practical example of this
issue where the HIVE-1928 issue report received a perceived effort rating of “medium” in
our analysis in RQ2 despite having a high number of code changes, as most of the changes
were repetitive (e.g., changing the function priv.getPriv() to priv.toString()
in different locations).10 Otherwise, we probably would have classified HIVE-1928 as
“high” perceived effort.

Given the prudence required to interpret time-to-completion and change size, we
further analyse the relationship between our perceived effort (from RQ3) and the time-to-
completion and change size of our representative sample. Figure 12 shows the distributions
of change size (y-axis) per category of perceived effort (x-axis).

It is interesting to observe that the size of changes required by issues tend to increase
as our perceived effort also increases. Indeed, an issue deemed as requiring a high effort
may need fewer code modifications than a medium one (as one can note from the varia-
tions of the distributions), which can be explained by those issues that, despite not requiring
as many code changes, involved more intense discussions or other type of efforts (e.g.,

10https://issues.apache.org/jira/browse/HIVE-1928

69   Page 22 of 33

https://issues.apache.org/jira/browse/HIVE-1928


Empir Software Eng (2023) 28:69

effort in reviews). We ran a Kruskal Wallis test (Kruskal and Wallis 1952) to check
whether the different distributions (i.e., very-low, low, medium, high, and very-high) are
significantly different from one another. We obtain a statistically significant outcome
p = 6.127×10−94, indicating that the distributions are likely different. We then ran several
pair-wise Wilcoxon tests — using Bonferroni-Holm corrections to counteract the problem
of multiple comparisons) — and observed that all distributions are statistically different
from one another.

Figure 13 shows the distributions of time-to-completion (y-axis) per category of per-
ceived effort (x-axis). Indeed, the time-to-completion tends to be longer as the perceived
effort increases. Again, given the variations in the distributions, a very-low effort issue could
take longer than a high effort issue, which can be explained by those cases where, although
an issue would be easy to fix, the priority of such an issue may not be high. Another inter-
esting observation is that the variation in distributions tends to reduce as the effort increases.
For example, it is more likely that a very-high effort issue will take a longer time to be
addressed, whereas a very-low effort issue may be addressed very quickly or may equally
take a longer time. Our Kruskal Wallis test hints that the distributions are statistically signif-
icantly different from one another (p = 4.595 × 10−24). Next, our pair-wise Wilcoxon tests
reveal that, when performing pair-wise comparisons, only the very-low vs. low and high vs.
very-high distributions are not statistically different.

Overall, these result helps us triangulate the results obtained in RQ1. For example, it is
less likely that the difference in change size or time-to-completion in issue reports involving
SQL code is solely due to issues being less important or of a lower priority. Overall, we
believe that we have sufficient evidence to conclude that SQL development tasks require
more effort from developers.
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Fig. 13 The relationship between the perceived effort and the time-to-completion of issues
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Interpreting the spread-out nature of SQL-related issues. In RQ3, we observe that
SQL-related issues require more changes and/or are more spread-out when compared to
SQL-unrelated issues. One might argue that SQL-related issues require more changes not
necessarily because of the amount of code changes involved but because they may co-occur
with changes in UI and configuration files (i.e., involving HTML or XML code), which can
even involve auto-generated code. Due to this reason, we show in Fig. 14 a comparison of
change sizes similar to RQ1 (issues) and RQ2 (pull requests), but considering Java code
changes only.

In terms of issues, we obtain a significant p-value (p = 1.071 × 10−222) with a large
effect-size (d = 0.55), meaning that the discrepancy in the difference between SQL-
related issues and SQL-unrelated issues actually increased when compared to the difference
observed in RQ1 (see Fig. 2). Regarding pull requests, we obtain an insignificant p-value
(p = 0.789), which is a comparable result to the one observed in RQ2.

Implications for practice and research. The general trend of our results has implica-
tions for practice. For instance, developers, being aware that changes involving SQL code
may take longer (or need more coding), may prioritise these changes accordingly (e.g., when
prioritising the tasks to tackle in the next sprint). More developers may be added to these
tasks, or they may be tagged for enhanced oversight. Another implication of our results is
that, knowing that SQL-related tasks may involve more code changes, developers or project
managers can consider this information when creating and communicating software estima-
tions (e.g., when playing planning poker, rules may be carefully followed to ensure the most
reliable estimates are entered on the system). The software estimation aspect is particularly
important because accurate estimations are directly related to the delivery of a successful
software project (Whigham et al. 2015; Shepperd 2014). Additionally, if an issue is likely
impacting SQL code, developers may consider this information in their decision to prioritise
the code review of the changes involved in such an issue.

Regarding implications for research, our work opens interesting avenues for future
studies and the development of approaches. For example, research has been invested in
predicting which issues and pull requests should be addressed next (i.e., prioritisation)
(Zhao et al. 2019; Van Der Veen et al. 2015). It would be interesting to investigate whether
the presence of SQL-code in a patch associated with an issue (or in a pull-request) could help
such models to improve their predictions. While this has not been previously considered a
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Fig. 14 Distributions of change size for Java-only changes
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pertinent issue, our evidence suggests that it is worth consideration, at least for evaluating
relevance.

Lastly, when considering other contexts, such as in open source development, contrib-
utors should be patient that SQL-related issues may take a bit longer or may require more
changes to be addressed. Evidence for RQ3 somewhat supports the added challenges pre-
sented by SQL-code, including at times the need to consult with SQL standards. This has
implications for times when such standards are not readily available too, and so, teams
should organise to ensure that project resources are visible to everyone to reduce delays.

6 Threats to Validity

In this section, we discuss the threats to validity of our work.
Construct validity concerns how our conclusions are based on our evidence. The main

construct threat of our work is related to the information that we cannot see. For example, as
discussed in Section 5, the results obtained in RQ1 can have several interpretations, one of
which is that issue reports may take longer to be addressed because they are less important.
However, it is challenging to gauge the importance of an issue report. For instance, develop-
ers do not always express their opinion about the importance or urgency of an issue report,
which makes it harder for researchers to extract this information from the data that is avail-
able. For example, in issue GROOVY-3832, a developer commented “John, any chance
you’ll be able to look at this in time for 1.7.2 (approx 1 week away) otherwise I’ll attempt
to take a look.”11 Such a statement can be indicative of some urgency, but it is challeng-
ing to identify the degree of urgency or whether the absence of such a statement in other
issue reports is indicative of less urgency. To mitigate the limitations related to construct
threats, we use both quantitative and qualitative analyses, including inductive and deductive
approaches as explained in Section 3.3.

An additional construct threat is the regular expressions we developed to capture SQL
statements within source code repositories, which support our investigations throughout this
work. These regular expressions may not return all the SQL code in every project (false
negatives) and they may return some false positives, which are pieces of code identified as
SQL without actually having any SQL code. However, based on the high precision (96.5%)
and recall (97.9%) of our reliability checks, we expect this risk to be low.

Another threat is related to the relevancy of the SQL code within commits. For exam-
ple, one may question whether the SQL code included in the commits was relevant to
the changes represented by these commits or whether the inclusion of the SQL code in
the patch was inconsequential (e.g., the changes in the commit spanned areas with SQL
code, but did not actually change the logic of the queries). In this regard, we note that
80% of the SQL-related tasks in our data (i.e., this is the case for both issues and pull
requests) contain direct changes to SQL code (i.e., SQL code was directly involved in dele-
tions/additions/modifications). On the other hand, for the cases where the SQL statements
were not directly involved in modifications (i.e., they were present in the patch but within
context lines), there is no direct way to determine whether the changes were completely
inconsequential, unless we were able analyse the patches case by case and had the domain
knowledge of the studied projects to do so.

11https://issues.apache.org/jira/browse/GROOVY-3832
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Nevertheless, to account for this threat, we examined 72 of the issues (i.e., a
sample with 95% confidence level and 10% confidence interval) where SQL state-
ments were not directly involved but were present in the context lines of the fix-
ing patches. We observed that for 90% ( 65

72 ) of these issues, developers are required
to understand the SQL statement in the vicinity, meaning that these changes fixing
these issues can still be regarded as SQL-related changes. For example, in change
a206ef9ea1126cb4ab3239853633546e93b6f3f8, which fixed issue HIVE-862,
a developer introduced the code d.run(cmd).getResponse(), where cmd is a string
holding a SELECT query. It is reasonable to conclude that the developer must understand
the query as they introduced code that executes such a query. Another interesting obser-
vation is that 19% ( 14

72 ) of these issues have fixing commits that actually directly changed
SQL statements but were not identified as such by our regular expressions. For example,
in change b6218275b00b64aed7efaf470784cc0441464f67, which fixed issue
HIVE-4924, a developer modified a multi-line SQL-query. However, because the begin-
ning of the query, (i.e., the part containing the SELECT * FROM) was not involved in the
change, our regular expression did not identify such a change as directly modifying an SQL
statement, but as having an SQL statement in its vicinity instead. As such, we are confident
that our results are unlikely to suffer from bias and are properly based on true SQL-related
changes.

Lastly, we acknowledge that addressing pull requests and addressing issue reports can be
an interconnected process, i.e., before marking an issue report as addressed a developer may
need to merge a pull request related to that issue report. Nevertheless, for the purpose of
our research, we studied issue reports and pull requests separately because our investigated
projects do not use pull requests and issue reports in a consistent manner. For example, in the
GEODE project, developers tend to link a pull request to an issue report.12 However, in the
CLOUDSTACK project, commits are performed directly to the code-base and are mentioned
in issue reports, i.e., not necessarily via pull requests.13 Thus, although there may be an
overlap between the tasks represented by issue reports and pull requests, we analysed issue
report and pull requests separately to avoid the intricacies of different projects’ processes.

External validity concerns the extent to which we can generalize our results to other
environments (e.g., other software projects). A clear limitation of our research is that we
only used Apache projects to conduct our study. Because of this, our conclusions are less
generalizable to a wider population of projects and communities. For instance, it may be the
case that because Apache projects adhere to a certain rigour in their development process,
their SQL code is more stable than in projects of other communities. This potential higher
stability of SQL code may influence our results, since SQL code would only be touched by
tasks of higher impact and scope.

However, we weighed the choice of studying only Apache projects against the issues of
selecting GITHUB projects more randomly and the possibility of selecting small or unusual
projects. An interesting future work would be to investigate a greater variety of projects or to

12See the “links to” section on https://issues.apache.org/jira/browse/GEODE-4894
13See comments section of https://issues.apache.org/jira/browse/CLOUDSTACK-4146
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compare and contrast two different OSS communities. Different open-source communities
may have different practices. For example, in the Mozilla open-source community, they
specifically mark performance bugs, whereas in the Apache community there is no option
for this in JIRA (Jin et al. 2012).

Another limitation is focusing only on OSS communities. It is possible that closed soft-
ware communities have entirely different practices altogether. For example, closed source
communities tend to have a few dedicated testers (Bachmann and Bernstein 2009) rather
than the more crowd-sourced approach to testing that is seen in OSS projects. This could
mean issues are not fixed as quickly or pull requests are not merged as quickly, thus
producing different results to our research.

Lastly, although our Apache projects have a substantial number of SQL queries, they
cover very different domains. For example, SQL-related tasks developed for Groovy (a pro-
gramming language) may be different in nature from SQL-related tasks developed for Hive
(a data warehouse project). Nevertheless, in this study, we are interested in studying the
general trends in the characteristics of SQL-related tasks. Studying whether the character-
istics of SQL-related tasks are different for projects of different domains is an interesting
possibility for future work.

Internal validity is generally concerned with the potential confounding factors involved
in the relationship between independent and dependent variables (especially in the case of
causal relationships).

In this research, we are not necessarily interested in investigating causal relationships
between a dependent variable and its explanatory variables. Instead, our study is more
exploratory in the sense that our aim is to better understand the characteristics of SQL devel-
opment tasks (i.e., tasks that involve both SQL code and application code). In RQ1 and RQ2,
the dependent variables were change size and time-to-completion and the independent vari-
ables were SQL development task or non-SQL development task. Nevertheless, we refrain
from drawing a causal relationship in RQ1 and RQ2, tapping into more qualitative investi-
gations in RQ3 to help us collect enough evidence to explore the relationship between SQL
development tasks and development effort.

Regarding the qualitative analyses, especially those employed in the inductive analysis
of RQ3, there is always the potential for bias from the authors’ subjective experiences.
For example, had the authors had different experiences, the themes that emerged in RQ3
might have been different. Despite this potential threats we employed rigorous qualitative
methods to conduct our analyses (e.g., recruiting several coders and computing inter-rater
agreement measures). Regarding the inductive analysis in RQ3, we acknowledge that the
emergent themes may not be exhaustive and should be taken as a base framework that other
researchers can further improve or refine.

Lastly, we acknowledge that, as the authors of this work, we do not have the domain
knowledge of the investigated Apache projects in order to fully understand the code-base
and the decisions made in the design of these projects. Nevertheless, we are able to search
for “clues” that indicate the effort invested in an issue. Such clues are present in our scheme
described in Appendix A. Such a scheme for our manual analysis was developed through
our document analysis process described in the approach section of RQ3. To conclude,
although our approach is not perfect (in the sense that we do not have the same technical or
domain knowledge that a developer from our chosen projects would have), we are still able
to gauge the relative required effort when comparing issues.
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7 Conclusion

The goal of our research is to better understand the characteristics of SQL development tasks
(i.e., development tasks involving both SQL code and application code). For this purpose,
we set out to conduct an empirical study using 20 Apache projects to investigate whether
SQL development tasks have a longer time-to-completion or whether they require more
code modifications (as indicated by a larger change size) when compared to other develop-
ment tasks. Indeed, we observe that SQL development tasks may take slightly longer to be
completed and likely require more code modifications. To dive deeper into these findings,
we employ a document analysis strategy with two main steps: an inductive analysis and a
deductive analysis. As a result of our inductive analysis, we observe several dimensions of
effort related to SQL development tasks and non-SQL development tasks. The major dif-
ference in terms of dimensions of effort is that SQL development tasks require more spread
out changes and extra effort related to SQL-specific tasks such as checking SQL standards.
According to our deductive analysis, SQL development tasks also require more effort from
developers in general.

Overall, our empirical research suggests that SQL development tasks not only require
extra effort, but also different types of effort. As potential implications of our research, we
envision that software development practitioners may take into account the nature of SQL
development tasks when performing effort estimations (e.g., when using planning poker in
agile) or planning code reviews. Furthermore, those awaiting fixes for SQL-related issues
should anticipate the involvement of more rigour from reviewers. As future research, we
plan to investigate the interplay between developers’ experience and the effort required in
SQL development tasks. There is also scope for us to replicate this study using data sets
from other communities.

Appendix A: Dimensions of Effort: Themes

Below we explain the meaning of each of the themes found in the inductive analysis of our
document analysis (as explained in Section 3.3). The themes outlined below along with their
descriptions served as a guide to perform our deductive analysis, i.e., gauging the required
effort that was necessary to address a development task.

Several/spread modifications. Whether the changes involved different files (e.g., within
different classes or packages) or whether there were many code changes.

Several code patches. Sometimes fixes involve several patch iterations. This might indi-
cate a higher effort invested in the fix. However, several patches with trivial changes do
not indicate a high effort.

Code check. Whether the fix involved adding only a code check.
Debug effort. Whether there was a considerable effort related to debugging the problem.

This criterion can be mostly verified in the comments.
Intense discussions. Sometimes the issue does not require large code changes, but the

discussions revolving around the changes were intense (i.e., discussing alternative solu-
tions or ideas). This may indicate that the solution required a high effort (even if not
many lines of code had been changed).

Localized modifications. The opposite of Several/spread modifications. This criterion
indicates that the changes were mostly local (within a file), or, even if they were in
different files, they were only a few. This criterion normally denotes “low” effort.
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Offline discussions. Sometimes there is evidence that further discussions were taken
offline and not registered in the issue report itself. This criterion may help in judging
whether extra effort was required to fix the issue.

Effort in documentation. Sometimes, addressing certain issues requires not only new
source code, but also new documentation. This criterion represents the effort to produce
new documentation.

Effort in reviews. This criterion denotes when higher than usual effort was invested in
code review (e.g., they explicitly mention an external system where reviews were held
and many comments were placed there).

Backward compatibility. This criterion denotes when extra effort was needed to ensure
backward compatibility.

Specification effort. This criterion denotes when extra effort was needed to elaborate
on the problem at hand. For example, when a developer does not fully understand the
problem at hand, they might ask for more clarification. Consider the following quote as
a practical example of this criterion: “What’s VC, by the way? Venture Capital?”14 The
meaning was actually “virtual columns”.

Effort in configuration. This criterion denotes when there was more than usual effort in
creating or changing the configuration of the system.

Effort in integration. When there was more than usual effort required to integrate things
(e.g., the software suddenly broke because of the new patches or conflicting merges).

Big impact. This criterion emerges whenever there was an explicit indication that the
feature or bug fix would have a large impact on the current system. For example, the bug
fix or new feature would require a carefully thought out change.

Checking standards. Whenever there is effort in checking standards in order to address
the issue. For example, if the issue requires a new SQL function to be developed,
developers may need to check what the SQL standard says prior to deciding on a solution.

Corner cases. Whenever there was effort in covering corner/specific cases (usually in
tests) to increase the quality of the fix or the new feature.

Infrastructure bumps. Whenever there was a problem in the infrastructure (not neces-
sarily physical infrastructure, but also soft infrastructure, such as server containers, or
database servers) because of the issue. This criterion denotes that there was more than
usual effort in fixing/updating the infrastructure.

Trivial changes. This criterion is not much related to the size of the change, but denotes
when a change was “easy” to apply. For example, to address an issue, the develop-
ers exposed information that was already computed but had not been exposed before.
Another example is the addition of getters/setters, i.e., although the code changes can
be large, adding getters/setters is trivial and often automated by IDEs. This criterion
normally denotes “low” effort.

Effort in refactoring. Whenever there was extra effort in performing refactoring opera-
tions while fixing/addressing the issue.

Large scope. Whenever an issue required changes to several modules of the system. This
criterion is an exacerbated version of several/spread modifications.

Design thinking. Whenever there are clear discussions related to the design of a fix or
new feature. For example, one developer might argue that an inner class should be suffi-
cient to fix something, but another developer argues that actually creating a new package
would be best.

14https://issues.apache.org/jira/browse/HIVE-8186
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Unknown. Whenever there is not enough information on the issue report (normally this
criterion is only used when there are really no comments within an issue report).

Inter systems. Whenever the issue require developers to think of the communica-
tion/interaction/integration of diverse systems in order to propose a solution.

Thorough description. This criterion denotes when there was more than usual effort
to describe the issue at hand. For instance, a long description was provided with code
examples, etc.

Discussion on deprecation. Whenever there is additional effort in discussing whether
certain functionalities should be deprecated or not.

Effort in builds. Whenever there is additional (and more than usual) effort in creat-
ing/modifying the build system (or running the builds) of the software project.

One-liner. This criterion denotes when the issue was addressed with only one line of
code. This is an exacerbated version of localized changes. Other variations of this
criterion are two-liners or three-liners. This criterion normally denotes “very-low” effort.

Side effects. This criterion denotes when there was an additional problem/bug because
of the solution that was being developed for the issue at hand. Consider the following
excerpt as a concrete example: “I found a hidden bug in FieldSortedHitQueue that mate-
rialized when writing a TestCase for a SortField.BYTE sorting with custom parser (it
took me a long time to find out whats [sic] happening).”15

Example code. This criterion applies whenever there was extra effort in providing codes
examples in a discussion of an issue report.

Repeated changes. Although code changes may be numerous, they may only be repeti-
tions of the same code, which does not require as much effort. This criterion normally
represents lower effort.

Code removal. This criterion normally goes along with the known location criterion.
Code removal normally describes when an issue was addressed by only removing code—
normally the developer already knew the location of the code to be removed. This
criterion denotes “low” effort.

No source-code changes. This code refer to issues that were addressed without touching
any source code. This criterion normally denotes “low” effort.

Known location. When the developers already knew exactly where to change the code to
fix an issue. This criterion normally denotes “low” effort.

Reoccurring issue. When there is evidence that an issue keeps reoccurring even after
effort invested in potential fixes.
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