Empirical Software Engineering (2023) 28:48
https://doi.org/10.1007/510664-022-10281-9

®

Check for
updates

Android decompiler performance on benign
and malicious apps: an empirical study

Ulf Kargén' © . Noah Mauthe? - Nahid Shahmehri'

Accepted: 19 December 2022 /Published online: 20 February 2023
© The Author(s) 2023

Abstract

Decompilers are indispensable tools in Android malware analysis and app security audit-
ing. Numerous academic works also employ an Android decompiler as the first step in
a program analysis pipeline. In such settings, decompilation is frequently regarded as a
“solved” problem, in that it is simply expected that source code can be accurately recov-
ered from an app. On the other hand, it is known that, e.g, obfuscation can negatively
impact a decompiler’s effectiveness. Therefore, in order to better understand potential fail-
ure modes of, e.g., automated analysis pipelines involving decompilation, it is important to
characterize the performance of decompilers on both benign and malicious apps. To this
end, we have performed what is, to the best of our knowledge, the first large-scale study
of Android decompilation failure rates, using three sets of apps; namely, 3,018 open-source
apps, 13,601 apps crawled from Google Play, and an existing collection of 24,553 mal-
ware samples. In addition to the state-of-the-art Dalvik bytecode decompiler Jadx, we also
studied the performance of three popular Java decompilers. Furthermore, this paper also
presents the findings from a follow-up study on 54,945 malware apps, where we addition-
ally performed an analysis of the reasons for decompilation failures. Our study revealed
that decompilers generally have very low failure rates, and that few failures on benign apps
appear to be related to obfuscation. On malware, however, obfuscation appears to be a more
prominent cause of failures, although the vast majority of malicious apps could still be fully
decompiled by an ensemble of decompilers.

Communicated by: Rick Kazman, Marouane Kessentini, Yuanfang Cai

This article belongs to the Topical Collection: Special Issue on Software Analysis, Evolution
and Reengineering (SANER) 2021

< Ulf Kargén
ulf kargen @liu.se

Noah Mauthe
noah.mauthe @cispa.de

Nahid Shahmehri
nahid.shahmehri @liu.se

Link&ping University, Linkoping, Sweden
2 CISPA, Saarbriicken, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10281-9&domain=pdf
http://orcid.org/0000-0002-3009-4314
mailto: ulf.kargen@liu.se
mailto: noah.mauthe@cispa.de
mailto: nahid.shahmehri@liu.se

48 Page 2 of 30 Empir Software Eng (2023) 28:48

Keywords Android - Mobile apps - Decompilation - Obfuscation - Reverse engineering -
Malware

1 Introduction

Decompilers, i.e., tools that can reconstruct the source code from a program binary, are ubig-
uitous aids when reverse-engineering malware or performing software security auditing. On
the Android platform, decompilers are also used extensively to lift the Dalvik bytecode of
Android apps into Java source code, prior to manual or automated inspection (Gamba et al.
2020; Chen et al. 2019; Shan et al. 2018; Tian et al. 2018; Pauck et al. 2018; Xue et al. 2017;
Cen et al. 2015).

Compared to native-code decompilation, reconstructing source code from Dalvik byte-
code is, generally speaking, significantly less challenging. This is because many of the
hurdles of decompiling native machine code are eliminated due to the constraints placed
on Dalvik bytecode by the Android system. For example, simply recovering a correct
assembly-code listing from a native binary is an undecidable problem in itself, since code
and data can be interspersed (Linn and Debray 2003). Moreover, as a consequence of the
relatively loose structure of common file formats for executables, it can be challenging to
identify all functions (as well as their bounds) in a native binary (Pang et al. 2021). Neither
of these problems exist in the Dalvik bytecode setting, since all methods are encapsulated in
a highly-structured container format called DEX (Dalvik Executable format). An additional
challenge often faced when attempting to decompile native code is control-flow obfuscation,
which is frequently used by both malware authors and legitimate software developers to pre-
vent decompilation or disassembly (Roundy and Miller 2013; Junod et al. 2015). Similarly,
several obfuscation techniques exist for the Java virtual machine (Chan and Yang 2004;
Hou et al. 2006), which are able to prevent decompilation of Java bytecode back into leg-
ible source code. Such obfuscation techniques rely on introducing “fake” branches, which
do not affect runtime semantics, but which prevent reconstruction of high-level control-flow
constructs (e.g., by making the static control-flow graph irreducible) (Collberg et al. 1997).
Applying such obfuscation techniques on Dalvik bytecode, however, is technically much
more challenging (albeit not impossible), due to the so-called register-type conflict prob-
lem (Balachandran et al. 2016), which we briefly describe in Section 2. For this reason, it
is more common to instead apply data-obfuscation techniques, such as identifier renaming
or string encryption, to Android apps. Such techniques primarily aim to hide clues about
program semantics from human analysts, rather than preventing decompilation per se.

As a consequence of the differences discussed above, the typical usage models of decom-
pilers differ for native code and Dalvik bytecode: while it is generally recognized that
native-code decompilers in many cases fail to reconstruct syntactically and semantically
correct source code, and are therefore best used as an aid for manual reverse engineer-
ing, Dalvik bytecode decompilation is frequently regarded as a “solved” problem, where
it can simply be expected that correct Java source code can be fully reconstructed from
a DEX file. This sentiment is often reflected in the Android literature, where, for exam-
ple, many works (Chen et al. 2019; Li et al. 2017; Wang et al. 2015; Gibler et al. 2012;
Martin et al. 2017; Enck et al. 2011) use decompilation as the first step in an automated
analysis pipeline. However, previous work (Harrand et al. 2019) has shown that decompil-
ers for the Java virtual machine (JVM) frequently produce code with subtle syntactic or
semantic errors, raising the concern that such problems also exist when decompiling Dalvik
bytecode. While systems that use decompilation to extract features for approximate app

@ Springer

Empir Software Eng (2023) 28:48 Page30f30 48

similarity metrics (e.g., Li et al. (2017), Wang et al. (2015), Martin et al. (2017), and Cen
et al. (2015)) might be able to tolerate minor correctness errors without critical degradation
of functionality!, another potential cause for concern is the completeness of decompilation
results. For example, a small-scale preliminary study on 151 open-source Android apps by
Jang et al. (2019) indicated that popular decompilers frequently fail altogether to decompile
a significant portion of methods in an app. Such completeness errors could potentially be
even more detrimental to the reliability of automated analysis methods than minor syntactic
or semantic decompilation errors.

It is clear from the above discussion that both the correctness and completeness of
Android decompilation must be studied further. In this work, we have focused on the latter.
As such, the first and primary research question (RQ1) that we have sought to answer is To
what degree can we expect decompilers to successfully recover source code from Android
apps?

Moreover, while control-flow obfuscation is presumably more rarely encountered in
Dalvik bytecode than in native code, due to the aforementioned register-type conflict prob-
lem, the question remains: to what degree is decompilation-breaking obfuscation a concern
when analyzing malware or commercial apps for the Android platform? We address this as
our second research question (RQ2).

Here, it should be noted that Android apps can also contain native code components,
whose decompilation are subject to the same challenges as with other native-code binaries,
and which can also be subjected to control-flow obfuscation. However, because the limita-
tions of native-code decompilation has already been well-studied, and because of the very
different usage model for native-code decompilation, we have chosen to limit our focus to
Dalvik bytecode decompilation in this study.

Our third research question concerns the performance of individual decompilers. The
study by Harrand et al. (2019) showed that various idiosyncrasies of JVM decompilers can
cause significant differences in relative performance between decompilers, depending on
the program being analyzed. In a follow-up study (Harrand et al. 2020), they also showed
that decompilation results can be combined to improve the overall correctness of recov-
ered code. Similarly, the small-scale study by Jang et al. (2019) indicated that the same also
holds true for Android decompilers. To determine if these preliminary results can be gen-
eralized, we have sought to answer the question: Do different Android decompilers tend to
systematically fail on the same methods, or do their results complement each other? (RQ3)

We have addressed the three research questions above in a previous study (Mauthe et al.
2021). In addition to providing an extended presentation of the findings from that study, this
paper also presents the results from a follow-up study on a large set of Android malware
samples. Since our original results indicated that many decompilation failures appeared
to be caused by implementation-level deficiencies, rather than fundamental limitations of
the decompilation algorithms, we wanted to further study the reasons why decompilers
fail. Therefore, in addition to analyzing the new dataset in the context of our original
research questions, we also introduced a fourth research question: To what degree does
implementation-level limitations, in contrast to fundamental algorithmic limitations, con-
tribute to decompilation failures? (RQ4) Below, we summarize the contributions of our
original study, as well as the new contributions presented in this paper.

'For example, both Cen et al. (2015) and Martin et al. (2017), who use decompilation as part of their
respective malware detection systems, mention explicitly that they don’t expect recovered source code to be
completely accurate.

@ Springer

48 Page 4 of 30 Empir Software Eng (2023) 28:48

Original Contributions

— We have performed a large-scale study of the decompilation success rate (i.e., the ratio
of methods for which the decompiler reports successful decompilation) for Android
apps using four different decompilers. Our original evaluation was performed on three
datasets, consisting of, respectively: 3,018 open-source apps from the F-Droid repos-
itory, 13,601 apps from a recent crawl of Google Play, and a collection of 24,553
Android malware samples collected between 2010 and 2016.

— We have characterized the differences in decompilation success rate between the
datasets, and performed a preliminary analysis of potential causes of these differences.

— Furthermore, our statistical analysis was complemented with a manual analysis of a
number of Android apps.

New Contributions

— We recognized, as a threat to the validity of our original study, that many samples in the
original malware set was quite old. Therefore, we have repeated the statistical analysis
for research questions RQ1-RQ3 on an additional large set of more up-to-date Android
malware, consisting of 54,945 apps, and report on how the results differ from those of
the old malware set.

— We have complemented the results for RQ3 with a more in-depth analysis of decom-
piler co-failure rates.

— Finally, as the largest new contribution of this work, we have performed data-mining
on all error messages emitted by decompilers, when run on the new malware dataset, in
order to gain better insights into the reasons for decompilation failures (RQ4).

Additionally, we make our implementation and collected data available in the interest of
open science?.

The rest of the paper is structured in the following way: In Section 2, we provide some
background on Android decompilation and obfuscation techniques. We outline the method-
ology for our study in Section 3, and present our results in Section 4. The results of our
follow-up study on reasons for failures are presented in Section 5. We discuss the findings
and potential threats to validity in Section 6, and survey related work in Section 7. Finally,
Section 8 concludes the paper.

2 Background

In order to make the paper self-contained, we will start by providing some brief background
information on a few important concepts.

Android App Runtime Model Android apps are developed in the Java or Kotlin languages,
and compiled to Dalvik bytecode. Apps are distributed in the form of Android Applica-
tion Packages (APKs), which contain one or more files of the DEX format. DEX files in
turn contain a number of classes, including Dalvik bytecode for each method of a class. On
Android versions prior to 5.0, Dalvik bytecode was interpreted by a virtual machine. Mod-
ern versions of Android instead use the Android Runtime (ART), which avoids the overhead

2https://github.com/NoahMauthe/decompilation_analysis

@ Springer

https://github.com/NoahMauthe/decompilation_analysis

Empir Software Eng (2023) 28:48 Page50f30 48

of interpretation by pre-compiling the Dalvik bytecode to native code when an app is first
installed.

Android Decompilation In addition to native Dalvik decompilers®, Java decompilers can
often also be used on Android apps by first converting the Dalvik bytecode into equivalent
bytecode for the JVM, using a tool such as ded (Enck et al. 2011) or dex2jar®. Since the
Kotlin language is designed to be fully interoperable with Java, apps written in Kotlin can
generally also be decompiled into Java source code.

Android Obfuscation Android apps frequently make use of obfuscation to prevent intel-
lectual property theft, such as redistribution of paid apps, or ad-fraud. (The latter implies
repackaging apps with modified identifier tokens for ad services, in order to gain ad revenue
based on other developers’ work.) One of the most common types of obfuscation is identifier
renaming, wherein human-readable identifiers for, e.g., methods or variables, are replaced
with meaningless strings. This obfuscation is sometimes also applied to open-source apps,
since it tends to make the final APK smaller. Another common obfuscation method is string
encryption, which works by removing strings from a DEX file and replacing them with an
encrypted variant. Decryption routines are then injected at the places where strings are used
in the code, so that the strings can be decrypted on-the-fly during runtime. A more advanced
form of obfuscation is class encryption, whereby an entire class is stored in encrypted form
and reconstructed at runtime using Java’s reflection API. Packing is a similar approach to
obfuscation, where all the Dalvik code of an app is stored in encrypted form, and decrypted
at runtime using a wrapper program.

A common form of control-flow obfuscation works by inserting “fake” branches to
random or invalid code locations, where the branches are guarded by so-called opaque pred-
icates (see for example (Collberg et al. 1997; Linn and Debray 2003)). Such predicates are
hard to evaluate statically, but always give the same outcome at runtime. This kind of obfus-
cation is applicable both to native code and to bytecode for the JVM, and provides a strong
defense against decompilation, as it often cannot be automatically broken without resort-
ing to prohibitively expensive methods, such as symbolic execution (Ming et al. 2015). On
Android, however, this technique is considerably harder to implement due to the register-
type conflict problem. While the JVM is stack based, the Dalvik virtual machine is register
based. During compilation to native code, the ART compiler will check that there are no
instances where a register holds data of conflicting types along any control-flow path in a
method. (For example, if an integer is written to a register at some point, and at a later point
that register is read as a floating point number, a register-type conflict is reported, and com-
pilation is aborted.) “Fake” branches stemming from control-flow obfuscation frequently
cause this type of conflict. While methods for partially overcoming this problem have been
described by Balachandran et al. (2016), it is unclear to what degree, if any, this type of
anti-decompilation technique is used in the wild for Dalvik bytecode.

3Note that we here use the term “native decompiler” to mean a decompiler designed specifically to decompile
Dalvik bytecode, which is native to the Android system. This should not be confused with term “native code
decompiler”, which is a decompiler for machine code.

“https://github.com/pxb1988/dex2jar/

@ Springer

https://github.com/pxb1988/dex2jar/

48 Page 6 of 30 Empir Software Eng (2023) 28:48

3 Methodology

In this section, we outline the methodology of our work. We begin with a detailed descrip-
tion of the approach used in our original study, followed by a discussion of some of its
limitations. Finally, we describe the methodology used in our follow-up study.

3.1 Original Study

As depicted in Fig. 1, we begin by gathering APKs from three different sources, in order
to study decompilation characteristics of different kinds of apps. We collected 3,018 open-
source apps from the F-Droid repository> and 13,601 apps from the Google Play store.
Finally, we used the existing Android Malware Dataset (AMD) compiled by by Wei et al.
(2017), consisting of 24,553 Android malware samples collected between 2010 and 2016.
While the samples in this dataset are quite old, a benefit of the AMD dataset is that each
sample is labeled with its family, allowing us to compensate for bias due to some families
being over-represented in the dataset.

3.1.1 Gathering Apps

Retrieving apps from the F-Droid repository is quite straightforward, as all apps can simply
be enumerated and downloaded. The Google Play store, however, does not allow download-
ing apps in bulk. Therefore, similarly to previous works, we had to implement a custom
crawler by partially reverse-engineering the internal Google Play API. As our aim was
to collect the most popular applications in the store (i.e., the ones with the largest user-
exposure), we used an approach similar to, e.g., Backes et al. (2016) and crawled Google
Play by category. Our crawler first retrieves the current set of thematic categories present
in Google Play and then goes on to query each of those for their respective subcategories.
These subcategories are not thematic, but instead are of a commercial nature, displaying the
highest grossing, highest selling and most popular applications. As we only want to include
free applications in our dataset®, we omit crawling the highest selling applications and focus
on the other two subcategories. The crawler then queries the store API for all applications
contained in each subcategory, and downloads all of them. This way, our set of apps will
consist of the most popular apps in each category.

As the top grossing categories may still contain paid apps and some applications are
present in multiple subcategories, we needed to do further pruning of duplicates and apps
that failed to download as we did not purchase them. After pruning, we ended up with the
aforementioned number of unique apps from 34 categories.

3.1.2 Measuring Decompiler Success Rate

In the next step, each app is decompiled with four different decompilers. In addition to
the state-of-the art native Android decompiler Jadx’, we also used the three popular Java

Shttps://www.f-droid.org/

OWe deemed this a reasonable restriction, considering that only 3.9% of all Google Play
apps were paid at the time we collected the apps, according to https://www.appbrain.com/stats/
free-and-paid-android-applications.

7https://github.com/skylot/jadx

@ Springer

https://www.f-droid.org/
https://www.appbrain.com/stats/free-and-paid-android-applications
https://www.appbrain.com/stats/free-and-paid-android-applications
https://github.com/skylot/jadx

Empir Software Eng (2023) 28:48 Page 7 of 30 48

/ Analysis tool \

Sources /m Java tools
APKs jar files
AMD Dataset a ﬂ) J |

fernflower 1

cote e _M
o _n

PKS — APKiD
b

Fig.1 An overview of our analysis approach

procyon -

soanjeusis porIajN

[Somyeusts poyyaTy
=
)

Signature
Matching

Results

decompilers CFR®, Fernflower® and Procyon'?. Before invoking the Java decompilers, we
convert each app’s Dalvik bytecode to JVM bytecode using dex2jar. In case of failures, the
error messages from each decompiler are fed to a custom parser that records the methods
that failed to decompile. When the analysis of one app is complete, all output artifacts,
such as log files and decompiled source code, are discarded in order to avoid excessive
disk usage. Since decompilation sometimes takes a very long time for some apps, it was
necessary to implement timeouts. We used a timeout of 5 minutes for dex2jar, and also set
the timeout for each decompiler to 5 minutes.

Since packing effectively hides an app’s code from static analysis, decompilation is of
little use for packed apps, unless the app is first unpacked by manual analysis. For this
reason, we also wanted to detect if an app had been obfuscated with a packer. To this end,
we use the APKiD tool!!, which can detect signatures of many popular packers.

In order to compare the per-method performance of the decompilers, the final step of our
approach is to unify decompiler outputs. We first extract signatures for every method in an
app, using apkanalyzer'? from the Android SDK. We use this list of method signatures as a
reference point, and match these signatures with the failed methods of each decompiler. The
total number of methods per app, and the size of each method (i.e., the size of the method’s
bytecode) is also determined using apkanalyzer. Since all decompilers use slightly differ-
ent formats for method signatures in their error reporting, we first preprocess the failed
signatures to have a unified format. We also had to modify CFR somewhat, so that it out-
puts sufficient information about methods that it failed to decompile. Finally, we perform a
simple textual matching of the unified signatures.

Our analysis platform was implemented in around 3,800 lines of Python. Crawling the
datasets took about one week, and performing the analysis of all apps required around 4
weeks when running in parallel on three machines, each fitted with an 8-core Intel 9700K
CPU.

8hittps://www.benf.org/other/cfr/
9https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
10https://bitbucket.org/mstrobel/procyon/

Uhttps://github.com/rednaga/ APKiD
12https://developer.android.com/studio/command-line/apkanalyzer

@ Springer

https://www.benf.org/other/cfr/
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://bitbucket.org/mstrobel/procyon/
https://github.com/rednaga/APKiD
https://developer.android.com/studio/command-line/apkanalyzer

48 Page 8 of 30 Empir Software Eng (2023) 28:48

3.1.3 Limitations

One general limitation of our approach is that we only match failed methods between the
decompilers. In other words, we assume that a decompiler will always either successfully
decompile a method, or emit an error message in a predictable format. If there are cor-
ner cases where this assumption does not hold, i.e., where decompilers silently “ignore”
methods, we would not detect this as a failure, but would simply assume that the method
(as reported by apkanalyzer) was successfully decompiled. The reason why we did not opt
for the opposite approach of matching successfully decompiled methods is that this would
be considerably more technically challenging, as it would require parsing the decompiled
source code. Apart from substantially increasing the processing time required for each app,
accurately recovering method signatures from the reconstructed source code could also
potentially prove challenging, since the decompilation output would likely not always be
fully compliant Java code.

There are also some problems that stem from limitations in the tools we use. These are
summarized below.

Challenging Java Language Features The way decompilers handle some specific features
of Java reduces the accuracy of our signature matching. Inner classes is one such case.
While apkanalyzer reports the fully quantified names of inner classes, some of the decom-
pilers only report the method name and containing source code file of a failed method in an
inner class. Therefore, we are forced to over-simplify in these cases, and consider all meth-
ods of inner classes with the same name in one file as matching, by omitting the inner class
quantifier reported by apkanalyzer. This sometimes leads to an over-approximation of fail-
ures, namely when there are methods in multiple inner classes whose signatures match a
decompilation failure. For example, consider a class A with two inner classes 1 and 2 where
all three classes define a method void m(boolean). This might seem like an artificial
case, but it often happens if classes 1 and 2 extend class A. In this case, apkanalyzer
would output three different quantified method signatures:

A void m(boolean)
AS1 void m(boolean)
AS2 void m(boolean)

However, two of the decompilers in our study, namely Fernflower and Procyon, would
report the same signature A void m(boolean) for a failure in any of the three classes.
When matching the failures using our simplification, this leads to three recorded failures
instead of one. While this is not a problem when computing the overall failure rate of an app
(since we know the total number of methods and failures), a method-by-method comparison
of decompiler performance will inevitably suffer from some imprecision.

Generics also pose a problem for our signature matching. Some of the decompilers
replace any generic they identify with java.lang.Object, whereas others leave the
generic identifier unchanged, (e.g., E, T, R or V). This leads to mismatches between
decompilers. An additional issue that further exacerbates the problem is that apkanalyzer
sometimes manages to infer the type of a generic statically, while none of our decompil-
ers have that ability. In contrast to the problem with inner classes, we cannot deal with
this problem by over-approximation, since our text matching approach simply cannot deter-
mine whether an identifier is a generic’s denomination or a class name. For this reason, if a
method using generics fails to decompile, the failure will not be recorded, and the method
will be incorrectly reported as successfully decompiled. Similarly to the problem with inner
classes, only method-by-method comparisons will be affected by this problem.

@ Springer

Empir Software Eng (2023) 28:48 Page 90f30 48

Other Tool Limitations During our experiments, we encountered several cases where
dex2jar or apkanalyzer failed with an error message. (Presumably, this happens mostly for
obfuscated apps). Since we use the method listing produced by apkanalyzer as a reference
for unifying results, we simply excluded apps where apkanalyzer failed from the study. For
apps where dex2jar failed, we could only record results for Jadx.

A more severe problem, which we discovered during our manual analysis of apps, is that
these tools sometimes seemingly process an app successfully, while in fact producing an
incorrect or incomplete result. apkanalyzer occasionally fails to include methods, or some-
times entire classes, in its output. Since we base our matching and unification approach on
the output from apkanalyzer, this inevitably leads to a few methods being missed. We also
discovered an undocumented failure mode of dex2jar. Apparently, in some cases when the
tool cannot convert a method from Dalvik to JVM bytecode, it simply emits a “stub” method
with the same signature as the original method, but where the body is replaced with a single
throw-statement, throwing a custom exception. We discovered that dex2jar sometimes, but
not consistently, emits a warning in its log file when this happens. Since the stub methods
are likely much easier to decompile than the original method, this error presumably leads
to false negatives in the reporting of decompilation failures for our three Java decompilers.
Moreover, since both the exception type and the accompanying error message string differ
from case to case, it is not possible to reliably detect the error in an automatic way. We only
spotted this problem for one of the manually analyzed malware apps, which appeared to be
heavily obfuscated. We describe this case in more detail in Section 4.6.

To estimate how much the above limitations influence the efficacy of our matching algo-
rithm, we investigated the number of cases in which we either failed to match any method
(due to the problem with generics), or where we had several matches (due to the problem
with inner classes). In all of the 14,256,783 decompilation failures we encountered, there
were 670,035 (5%) failures with no match, 349,585 (2%) methods with more than one
match (3.83 matches per method on average), and 13,237,163 (93%) methods with exactly
one match. Unfortunately, the number of cases in which apkanalyzer fails to report methods
cannot be quantified with our currently implemented approach.

3.2 Follow-Up Study

One limitation of our original study is that the malware dataset was a few years old, and
might not fully reflect the current Android malware landscape. For this reason, we have
conducted a follow-up study on a more up-to-date dataset. Specifically, we have used a
subset of apps in the AndroZoo dataset by Allix et al. (2016), which is a continuously
updated set of Android applications, consisting of more than 16 million apps at the time
of writing. The apps in our subset were selected based on the criteria that they had been
flagged as malware by at least 30 antivirus products when submitted to VirusTotal'3 (i.e.,
about half of the available antivirus products at VirusTotal). This resulted in a set of 54,945
apps, which are, with very high likelihood, malicious. According to the VirusTotal scan date
(provided with the AndroZoo dataset), the oldest app in our subset was added in 2012, and
the newest in 2021, with the majority being added 2018 or 2019.

The AndroZoo apps were analyzed using the same methodology as outlined in the sec-
tions above. As our original study indicated that many decompilation failures appeared to
be due to implementation-level limitations rather than fundamental algorithmic limitations,

Bhttps://www.virustotal.com/

@ Springer

https://www.virustotal.com/

48 Page 10 of 30 Empir Software Eng (2023) 28:48

we additionally wanted to study the reasons for decompilation failures in more detail. To
this end, we saved all the error messages emitted each time a decompiler failed to recover
source code for a method. We considered several different data-mining techniques for clus-
tering error messages into semantically meaningful groups. However, after observing that
error messages typically included the name of the exception that caused the failure, we
concluded that grouping based on the exception type would be a natural way to achieve a
precise and meaningful clustering. We performed a regular expression search of all error
messages and extracted words ending with “Error” or “Exception”. (We also verified that
no error message mentioned more than one exception type.) In order to detect exception
types not following the typical naming nomenclature, we also scanned the source code of
each decompiler to find definitions of classes that extended a class ending with “Error” or
“Exception”. This yielded two additional custom exception types, which were also included
in the regular expression pattern.

For each decompiler, we furthermore classified exceptions as “anticipated” or “unex-
pected”. We elaborate on the classification criteria in Section 5, in conjunction with the
presentation of the results of this part of the study.

4 Results

In this section, we present the results of our empirical study, beginning with our original
work. In the interest of brevity, we also present the corresponding analysis results for the
AndroZoo dataset alongside the results for the three datasets in the original study.

4.1 Basic Dataset Statistics

Table 1 shows some basic properties of our four app datasets. We see that quite a large num-
ber of malware apps could not be analyzed with apkanalyzer, while dex2jar instead fails on
almost 400 apps from Google Play. As previously mentioned, the apps where apkanalyzer
failed were excluded from the study.

As can be seen from the table, only about 100 apps were recognized by APKiD as hav-
ing been packed in each of the Google Play and AMD datasets. None of the open-source
apps were reported as packed. This is unsurprising, as open-source developers would have
little incentive to obfuscate their code. For our new malware dataset from the AndroZoo
collection, however, we see a proportionally much greater number of apps being detected
as packed.

The number of timeouts for each dataset and decompiler are shown in Table 2. The native
Dalvik decompiler Jadx performs the best with only 15 timeouts. CFR also performs well
with only a few timed-out apps. Fernflower, on the other hand, experiences a very large

Table 1 Dataset characteristics

Dataset Total Failed apkanalyzer Failed dex2jar Processed Packed (APKiD)
F-droid 3,018 0 0 3,018 0

Google 13,601 7 394 13,594 127

AMD 24,553 1,220 33 23,333 131

Androzoo 54,945 1,087 15 53,843 2106

@ Springer

Empir Software Eng (2023) 28:48 Page 110f30 48

Table 2 Timeout statistics for the 4 decompilers

Dataset CFR Fernflower Jadx Procyon
F-droid 1 164 0 37
Google 21 7652 4 1419
AMD 8 1955 1 130
Androzoo 12 4988 10 165

number of timeouts. On the Google Play dataset in particular, Fernflower stands out by
timing out for more than half of the apps.

The inaccuracies introduced by the limitations described in Section 3.1.3 are broken
down in Tables 3 and 4. While Fernflower and Procyon had many superfluous matches,
Jadx and CFR were not affected by this problem. This is because Jadx and CFR (after our
modifications) provide information about inner classes in their error messages.

On the other hand, a large number of the methods Jadx reported as failed were unmatch-
able due to the problem with handling Java generics. For example, more than one third of
the failures on Google Play apps could not be matched to a corresponding method reported
by apkanalyzer. As previously mentioned, however, these problems only affect the accuracy
of method-wise comparisons.

4.2 Decompiler Performance

Here, we report on the performance of individual decompilers. Figure 2 shows the failure
rate distributions of the three decompilers. In order to make a fair comparison, here we
have only included cases where all decompilers actually produced any output. That is, we
have excluded all apps where at least one decompiler timed out, as well as the apps where
dex2jar failed. Table 5 shows the corresponding mean failure rate percentages. The last row
shows the weighted average of all datasets (i.e., the mean of the dataset means). It is evident
that Jadx outperforms the other (non-native) decompilers by a broad margin. The weighted
average method failure rate is only around 0.04% for Jadx, which is almost two orders of
magnitude lower than that of CFR and Fernflower. We can also see that all decompilers
performed differently on different datasets, with most decompilers having a significantly
higher mean failure rate on the malware datasets. We elaborate on this further in Section 4.4.

For completeness, Table 6 shows the failure rates when timed-out apps are included.
These apps are considered as having a failure rate of 100%.

Table 3 Percentage of reported failed methods that were superfluous matches (due to inner classes)

Dataset CFR Fernflower Jadx Procyon
F-droid 0.0 29.255 0.0 24.874
Google 0.0 13.650 0.0 14.274
AMD 0.0 16.905 0.0 22.154
Androzoo 0.0 8.699 0.0 6.677

@ Springer

48 Page 12 of 30

Empir Software Eng (2023) 28:48

Table 4 Percentage of failed methods that were unmatchable (due to Java generics)

Dataset CFR Fernflower Jadx Procyon
F-droid 4.378 0.140 13.551 8.685
Google 6.443 0.331 34.030 8.212
AMD 1.586 0.036 2.649 1.670
Androzoo 0.915 0.035 0.277 2.816
f-droid google AMD androzoo
§10.0-] 1
S 7.5 - 1
o
<
]
g 5.07 . 1
3
= 2.5 - é 1
[T
0.0 'i"; — %é —= I —— AL L
T x §y x ¢ x § X < x § X < x 5 X <
o S O w S O w S O [S O
OEgegy OZ&g UFmEF CO3Feg
T8 £ £ £
9 9] 9] 9]
[T [T [T [T

Fig. 2 Failure rate distributions for the 4 decompilers, excluding timeouts and dex2jar failures. Whiskers
show the upper and lower 5th percentiles

Table 5 Mean failure rates in percent for the 4 decompilers, excluding timeouts and dex2jar failures

Dataset CFR Fernflower Jadx Procyon
F-droid 0.686 0.562 0.005 0.293
Google 0.844 1.051 0.011 0.321
AMD 1.751 1.459 0.047 1.078
Androzoo 2.964 1.154 0.104 1.546
Weighted avg. 1.561 1.057 0.042 0.809

Table 6 Mean failure rates in percent for the 4 decompilers, including timeouts, but excluding dex2jar

failures

Dataset CFR Fernflower Jadx Procyon
F-droid 0.741 5.966 0.005 1.522
Google 1.032 58.418 0.019 11.006
AMD 1.838 9.726 0.044 1.672
Androzoo 3.011 10.311 0.119 1.867
Weighted avg. 1.656 21.105 0.047 4.017

@ Springer

Empir Software Eng (2023) 28:48 Page 130f30 48

4.3 Failure Rate Diversity

In this section we explore the failure rate diversity of the 4 decompilers, i.e., the degree to
which they complement each other in terms of successfully decompiling methods.

Table 7 shows the percentage of apps that could be fully decompiled, i.e., where the
decompiler did not time out or experience other errors, and where no method decompila-
tion failures were reported. Using Jadx alone (column 2), it was possible to fully decompile
about 75% of the open-source apps, while only 21% of Google Play apps could be fully
decompiled. This is probably due in part to Google Play apps having a much larger mean
number of methods (63,748 methods on average for Google Play apps, versus 13,532 for
F-Droid apps). Interestingly, around 80% of the apps in both the malware datasets could
also be fully decompiled by Jadx. The fact that the malware apps had significantly fewer
methods on average (5,142 and 3,667 for AMD and AndroZoo, respectively), compared
to the other datasets, could partially explain this. (It should be noted, however, that many
of the excluded apps for which apkanalyzer failed would probably also fail to decompile
completely. These apps comprised about 5% and 2% of the respective datasets.) For com-
pleteness, Table 8 shows the corresponding figures also for the other three decompilers.
Clearly, Jadx outperforms the other decompilers also in terms of how many apps that can
be fully decompiled.

The next column in Table 7 shows the number of apps that could be fully decompiled by
combining the results from all decompilersm. We see that, even with an ensemble, it was not
possible to fully decompile all apps in any of the datasets. However, the ensemble improved
the success rate significantly, especially for the Google Play dataset. The last column shows
the percentage of apps that could be fully decompiled by all decompilers. These figures are
negligible for the Google Play and AMD datasets, but, interestingly, quite high for the new
AndroZoo dataset.

Another way to characterize the diversity of decompilers is to measure their co-failure
rate. It should be noted that, since here we have to make comparisons between decompilers
on a method-by-method basis, the aforementioned method matching limitations will influ-
ence the results. For this reason, the figures presented here must be taken as indicative,
rather than exact. Furthermore, the large number of timeouts for some decompilers com-
plicates the analysis of the co-failure rate. Therefore, we have chosen to include co-failure
rates both for the case when timeouts are treated as failures!'d, as well as the case when only
actual failures are considered.

Table 9 shows the co-failure percentages for each decompiler, on each of the datasets.
The table should be interpreted in the following way: One row shows, for the corresponding
decompiler, out of the methods for which that decompiler failed, the percentage of those
methods that the other decompilers also failed on. For example, we see from the part of the
table that includes timeouts that, out of all methods that Jadx failed to decompile in the F-
droid dataset, Fernflower also failed to decompile 30.89% of those methods. (Note that the
co-failure relation is not symmetric.)

We can observe from the table that the co-failure rates are typically quite modest,
explaining the improved performance of the ensemble. (The low co-failure rates of other

14In our original publication, there was an error in the calculation that made this number appear smaller than
it really was. This has been corrected here, and some of our conclusions at the end of the paper have been
updated accordingly.

131 e., all methods are treated as failed in apps that the decompiler timed out on.

@ Springer

48 Page 14 of 30 Empir Software Eng (2023) 28:48

Table 7 Percent of all apps where all methods were successfully decompiled by, respectively, Jadx, an
ensemble of all decompilers, and individually by all decompilers

Dataset Jadx Ensemble All decompilers
F-droid 74.52 98.31 8.65

Google 21.02 89.97 0.15

AMD 78.81 85.91 0.60

Androzoo 84.97 96.15 16.00

decompilers compared to Jadx are explained by the much lower overall failure rate of Jadx.)
We can also observe that excluding timeouts affects the co-failure rates significantly. It is
especially interesting to study this phenomenon for CFR and Jadx, who themselves have
very low timeout rates. The large decrease in co-failures when timeouts are excluded could
indicate that many error-conditions that CFR and Jadx handle “gracefully” (i.e., by report-
ing an error and aborting decompilation for the affected method), instead cause excessive
computation times in the other two decompilers.

In order to better understand how common it is for several decompilers to fail for a
given method, Table 10 shows the multi-co-failure percentage. Here, we have only con-
sidered the F-Droid dataset, since we expect the (presumably non-obfuscated) open-source
apps to be less likely to trigger the undocumented failure mode of dex2jar that we describe
in Section 3.1.3. For each decompiler, the tables shows the percentage of cases where,
respectively, at least 1, 2 or 3 (i.e., all) other decompilers also failed on a method that the
decompiler in question failed to decompile. (Here we also consider timeouts as failures.)
For example, in 72% of cases where Jadx fails to decompile a method, at least one other
decompiler also fails on that method. This figure is lower for all other decompilers, which
can be explained by their overall higher failure rates.

An interesting finding is that, despite Jadx drastically outperforming the other decom-
pilers, in about 96% of cases where Jadx fails to decompile a method, at least one other
decompiler succeeds.

4.4 Differences Between Datasets

When investigating differences between the datasets in more detail, we choose to use only
results from the native Jadx decompiler, as it provides the most comprehensive coverage of
apps and generally outperforms the other decompilers. Figure 3 shows the mean Jadx failure
rates for the datasets. Here, we have included those cases where dex2jar failed. However,
this only marginally changes the results compared to those shown in Table 5. We note that
the mean failure rate of Google Play apps is roughly twice that of the open-source apps,

Table 8 Percent of all apps where all methods were successfully decompiled by the non-native decompilers

Dataset CFR Fernflower Procyon
F-droid 11.20 13.39 14.61
Google 0.20 0.21 0.38
AMD 7.04 6.01 6.51
Androzoo 23.10 23.21 23.15

@ Springer

Empir Software Eng (2023) 28:48 Page 150f30 48

Table9 Co-failure percentages for decompilers on the different datasets

CFR Fernflower Jadx Procyon

Including timeouts

CFR 100 35.47 0.51 16.69 f-droid
Fernflower 1.34 100 0.01 7.98

Jadx 58.74 30.89 100 8.62

Procyon 3.21 40.55 0.01 100

CFR 100 98.67 0.26 94.36 google
Fernflower 13.11 100 0.04 26.83

Jadx 77.11 81.67 100 71.52

Procyon 42.03 89.92 0.11 100

CFR 100 53.71 1.24 56.59 AMD
Fernflower 5.97 100 0.14 6.19

Jadx 86.51 86.34 100 80.96

Procyon 40.84 40.25 0.84 100

CFR 100 50.45 0.23 42.73 androzoo
Fernflower 3.54 100 0.05 3.51

Jadx 7.04 22.32 100 11.89

Procyon 33.47 39.19 0.31 100

Excluding timeouts

CFR 100 17.07 0.53 12.35 f-droid
Fernflower 18.70 100 0.05 11.47

Jadx 58.69 535 100 3.09

Procyon 37.07 31.41 0.08 100

CFR 100 7.12 0.43 13.71 google
Fernflower 17.47 100 0.03 10.97

Jadx 40.58 1.00 100 0.90

Procyon 47.85 15.61 0.03 100

CFR 100 28.41 0.38 36.96 AMD
Fernflower 31.08 100 0.24 32.79

Jadx 58.04 33.27 100 40.26

Procyon 52.66 42.70 0.38 100

CFR 100 22.26 0.23 39.11 androzoo
Fernflower 39.84 100 0.15 37.66

Jadx 7.99 2.90 100 3.41

Procyon 66.69 35.88 0.17 100

while for the AMD apps, the mean failure rate is roughly one order of magnitude higher.
The malware in the new AndroZoo dataset shows even higher failure rates.

As seen above in Fig. 2, the failure rates vary significantly between different apps.
Therefore, sampling error might be a concern when characterizing differences between the

@ Springer

48 Page 16 of 30 Empir Software Eng (2023) 28:48

Table 10 Decompiler multi-co-failure percentages on the F-Droid dataset

Decompiler >0 other failed >1 other failed All other failed
CFR 40.9549 11.6763 0.0378
Fernflower 8.8871 0.4419 0.0014
Jadx 71.9225 21.9917 4.3338
Procyon 41.5437 2.2230 0.0073

datasets. In order to quantify the effect of sampling error, we have computed 95% con-
fidence intervals (shown as error bars in Fig. 3), using bootstrap sampling over all three
datasets. We used 1,000 resamplings for our computations. As can be seen from the figure,
there is a statistically significant difference between all four datasets.

Another potential concern is that the distribution of samples over different malware fam-
ilies is highly skewed in the AMD set of malicious apps (since we do not know the families
for the AndroZoo malware, we cannot tell if such a skew exists also in that dataset). For
example, around one third of the AMD apps belong to the same family. This could intro-
duce bias in our results, since members of the same malware family are often highly similar.
For this reason, we have also included a weighted mean, which is computed by taking the
mean of the family-wise mean failure rate. As can be seen from the figure, bootstrapping
over the family means revealed a very large variation in decompilation failure rate between
different malware families.

We also investigated the differences between Google Play apps with and without ads
(according to the Play Store metadata), and found that apps with ads had roughly 50%
more decompilation failures on average. Specifically, apps with ads had a mean failure rate
of 0.0135%, while the same figure for non-ad-supported apps was 0.00861%. Bootstrap
sampling revealed that the difference was statistically significant.

We similarly compared mean failure rates for apps that were recognized as packed by
APKIiD, compared to the other apps. For Google Play, there was a statistically significant
difference, with packed apps having 0.126% failures on average, compared to 0.0104% (a
factor of 12) for non-packed apps. We also observed a similar statistically significant differ-
ence for the AndroZoo malware: 0.854% for packed apps versus 0.0694% for non-packed
apps (also a factor 12). For the AMD malware, the corresponding figures were 0.154% and
0.0436%, respectively. This difference was not statistically significant, however. Since the
wrapper code of many packers is often heavily obfuscated to frustrate manual unpacking,

Failure rate (/ogio)
10~ 1073

L R | L R A | L
f-droid |
google o]
AMD 4 e
AMD fam. means }—0—{
androzoo e

Fig.3 95% confidence intervals for Jadx mean failure rates

@ Springer

Empir Software Eng (2023) 28:48 Page 17 of 30 48

we expected the figures to be higher for packed apps, compared to other apps. However, we
were surprised to find that almost all methods in packed apps could often be decompiled.

4.5 Exploring Reasons for Differences

Here, we attempt to shed some light on the underlying reasons for the observed differences
between the three datasets. As the results in this section required analysis at the granularity
of individual methods, the aforementioned method-matching limitations also apply here.
Our primary hypothesis to explain the differences between datasets was that they exhib-
ited differing prevalence of obfuscation. However, as preliminary analyses indicated that
the likelihood of decompilation success depended on the size of a method’s byte code, we
wanted to rule out the alternative hypothesis that the differences were simply due to dif-
ferent method-size distributions. To this end, we divided all methods based on their size
into logarithmically-spaced bins, and investigated the per-bin failure rates. The upper part
of Fig. 4 shows the results. Especially for the benign apps, a strong, roughly linear depen-
dence between method size and failure rate is evident in the log-log scale bar chart. The

Failure rate

ittt

Size distribution

Dataset
0.4 Il f-droid
[google
0.3 s AMD
E androzoo
0.2+
0.1+
0.0
CD
[ee]
(o]
—
|
o
<
O

Fig.4 Jadx failure rate as a function of binned method sizes (top), and the distribution of method sizes, using
the same bins (bottom)

=P =
o o o
I

=
=}
b

Failure rate (logig)

[
o
&

Method fraction

1K = 2K+ |

2K — 4K |

4K — 8K/
8K — 16K |

326 - 648 | T

16B — 32B{ "
512B — 1K/ [
16K — 32K/ \
32K - 64K |

128B — 256B | .

2568 — 5128 { [y,

64K — 128K { |
128K — 256K |

@ Springer

48 Page 18 of 30 Empir Software Eng (2023) 28:48

failure rate of methods in the 8—16 kB bin is, for example, more than three orders of magni-
tude higher than for small methods in the 32—-64 B bin. The error bars are again computed
by 1,000-fold bootstrap sampling, and show the 95% confidence intervals. Since methods
of several kB or more are very rare, the confidence intervals are generally very wide for the
corresponding bins.

The method size distributions for the datasets are shown in the lower part of Fig. 4. Here,
we see that the distributions are quite similar for all three datasets. In particular, we see
that for the two most common method size intervals (32-64 B and 64—128 B), comprising
around 70% of all methods, the failure rates of the AMD dataset is about one order of
magnitude higher compared to the other datasets, while the AndroZoo malware has almost
two orders of magnitude higher failure rates. This corresponds well with the results shown
in Fig. 3. This suggests that the differences cannot be explained by different method size
distributions.

For our last analysis, we wanted to make an exploratory study of the class names asso-
ciated with frequent decompilation failures. For each method reported by apkanalyzer, we
extracted the fully qualified name of the containing class, i.e., the package and class names.
We then divided the string into tokens by splitting on the “.” (period) symbol. For each
token, the number of method signatures in which the token appeared was recorded sepa-
rately for each dataset, along with the percentage of those method occurrences that Jadx
failed to decompile. Since we were interested in tokens associated with many failures, we
filtered out tokens with less than 1% associated failure rates. Finally, we sorted the tokens
on the total number of (method) occurrences, and picked the top 20 tokens for each dataset.
Tables 11 and 12 show the results for the benign and malicious apps, respectively.

Several interesting patterns can be identified. We see that S1idingWindowKt and
windowedIterator, which are both class names from the Kotlin standard library, are
associated with a large number of failures in both the F-Droid and Google Play datasets.
Since the Kotlin standard library is open source, it is unlikely to be obfuscated. Instead, this
finding might suggest that Jadx is less effective at decompiling some bytecode compiled
from Kotlin source code.

ReaderBaseddsonParser and NonBlockingJdsonParser, which are names
from the open-source Jackson parsing library, are also among the top 5 most
failure-prone tokens in both F-Droid and Google Play apps. Similarly, the tokens
JSONLexerBase and JSONLexer from another JSON parsing library are among
the top 20 for Google Play. We also see several names associated with pars-
ing of various data formats in the top 20 for the AMD dataset (ZLDTDParser,
ReaderBasedParser, Utf8StreamParser, WoxmlParser). Similarly, several
tokens associated with cryptography or encoding, or with known crypto libraries, are present
in the top 20 for all datasets (ASN1Set, ASN1Object, ConstructedOctetStream,
DSAParametersGenerator, Encoder, baseé64). This suggests that the decompiler
has difficulties handling methods containing large chunks of code with complex computa-
tions and/or control flow, which are common in both parsing and cryptographic code, and
that this type of code is a major contributor to decompilation failures.

The above findings indicate that a major part of the decompilation failures observed in
our study are not due to deliberate attempts at preventing static analysis, but simply due to
limitations of the decompilers. However, we also observed several tokens that appear to be
associated with obfuscation. The Apptimize library, which is at the top of the list for Google
Play, was found to be heavily obfuscated during our manual analysis (see Section 4.6). The

@ Springer

Empir Software Eng (2023) 28:48 Page 190f30 48

Table 11 Top 20 class/package identifier tokens associated with Jadx decompilation failures for benign apps

F-droid Google

Token Failures Frequency Token Failures Frequency
Windowedlterator 183 20.29% apptimize 2595 1.72%
SlidingWindowKt 183 9.30% SlidingWindowKt 1901 9.14%
ReaderBasedJsonParser 83 1.56% windowedIterator 1863 19.49%
NonBlockingJsonParser 48 3.52% ReaderBasedJsonParser 1390 1.60%
MergerBiFunction 37 27.41% NonBlockingJsonParser 1112 3.48%
ASNISet 28 1.48% BaseListBitmapDataSubscriber 849 30.53%
ConstructedOctetStream 28 12.17% zzdfh 772 5.54%
ConverterSet 28 6.22% MergerBiFunction 664 22.13%
FixedPeriodTicker 25 7.91% ConverterSet 553 8.42%
FlowKt__DelayKt 25 1.24% zzdph 485 2.24%
Fx 23 3.01% zzdbm 446 2.69%
InterruptibleTask 22 4.12% zzdme 422 3.67%
LDAPStoreHelper 19 1.44% zzdha 332 1.05%
X509LDAPCertStoreSpi 19 3.63% JSONLexerBase 290 3.37%
BaseListBitmapDataSubscriber 18 31.58% InterruptibleTask 283 3.09%
AbstractListeningExecutorService 14 1.88% ASNISet 241 2.31%
DSAParametersGenerator 12 1.46% MethodWriter 236 1.31%
TokenStream 11 1.14% JSONLexer 205 2.52%
ASNI1Object 10 1.69% fixedPeriodTicker 198 6.32%
NioClientManager 10 7.69% zzflf 160 38.37%

2,595 failed methods attributed to the library constitute around 3% of all observed Google
Play failures. We also noted a number of tokens that seemed to be the result of identifier
renaming (“zzdfh”, etc.) in the Google Play dataset. Since several of these tokens have a
high associated failure rate, we speculate that they stem from code that has been subjected
to some form of control-flow obfuscation, in addition to the identifier renaming.

Another third-party library, which appears to be a large sole contributor to decompilation
failures in the AMD dataset, is BugSense. The BugSenseHandler token is associated
with 2,034 failures, or about 21% of all failed methods in the dataset. Since this library is
open-source, it is unlikely that it is distributed in obfuscated form. Instead, it seems that
some of the code in this library is simply difficult to decompile.

The results for the AndroZoo dataset stand out from the other datasets by only having a
single token associated with encoding, decoding, or parsing. Instead, many tokens appear
related to various electronic-payment services, particularly for the Chinese market. Also, the
roothelper token (the name of a library for performing privileged operations on rooted
Android devices) have a very high failure-frequency. More than 95% of methods whose
name included the token failed to decompile. These results more strongly point towards
obfuscation being a factor for failures, since there is nothing about most of the tokens (com-
paring with the other datasets) that would suggest that the corresponding methods would be
inherently harder-than-average to decompile.

@ Springer

48 Page 20 of 30 Empir Software Eng (2023) 28:48

Table 12 Top 20 class/package identifier tokens associated with Jadx decompilation failures for malicious
apps

AMD Androzoo

Token Failures Frequency Token Failures Frequency
BugSenseHandler 2034 1.50% upay 17016 1.82%
Encoder 544 2.33% billing 13727 1.46%
ZLDTDParser 438 50.00% heju 8863 4.31%
ReaderBasedParser 426 3.30% umpay 5141 3.34%
Jianmo 283 1.07% huafei 4828 2.67%
Igexin 251 1.24% huafubao 4118 2.74%
Utf8StreamParser 216 1.02% anrd 1906 3.58%
Imobile 142 1.75% Encoder 1867 6.17%
Base64 107 1.63% upay-sms 1630 2.11%
Provider 98 2.38% html 1563 5.27%
WbxmlParser 60 1.15% tdx 1548 93.65%
SDK 52 2.10% roothelper 1548 95.50%
Products 52 10.18% sysservices_t 1393 2.66%
Inigma_sdk 52 10.18% tk 1275 5.70%
Threegvision 52 10.18% system 1215 1.17%
Rc 49 3.38% Silen 825 27.17%
QueueDetails 49 7.40% ck_mdo 759 4.21%
QueueOverview 49 5.94% he_danji 735 2.49%
FaultTolerantNegotiator 48 7.10% yinlian 734 1.20%
Qgmagic 42 3.20% tenpay 725 2.27%

4.6 Manual Analysis

In this section we describe the complementary manual analysis performed on the F-Droid,
Google Play and AMD datasets in our original study.

For the analysis, we selected the 5 apps with the highest Jadx failure rate from each of
the F-Droid and Google Play datasets. For the AMD dataset, we instead picked the sample
with the highest failure rates from each family, and then selected the top 5 within this list.
We used this approach in order to avoid potentially getting 5 very similar samples from the
same family. Also, as decompilation is of little use for packed apps (since only the wrapper
code can be decompiled), we omitted apps that were flagged as packed by APKiD.

We performed a detailed analysis of 10-20 methods in each app by comparing the output
from decompilation (in cases where at least one decompiler succeeded) with the corre-
sponding Dalvik bytecode, which was disassembled using baksmali'®. In cases where all
decompilers failed, we attempted to manually reverse-engineer the method from the byte-
code. When necessary, we also made a more cursory investigation of other methods and
classes. Methods were prioritized based on the number of failing decompilers. For apps with
many failed methods, we took a random subset of methods where more than two decompil-
ers failed. If an app had only a small number of failed methods (this was the case for the

16https://github.com/JesusFreke/smali

@ Springer

https://github.com/JesusFreke/smali

Empir Software Eng (2023) 28:48 Page 21 0f30 48

F-Droid apps), we picked the methods that had the largest number of failing decompilers.
During the analysis, we attempted to investigate causes of decompilation failures, and also
specifically looked for signs of obfuscation. The results for each dataset are summarized
below.

F-Droid We found no evidence of obfuscation in any of the open-source apps. The failures
we investigated appeared to be caused by very deep levels of nesting, and by complex con-
trol flow. In two apps, failures appeared to be caused by methods declared in anonymous
inner classes, nested within several levels of other anonymous inner classes. In the three
other apps, failures were caused by complex control flow inside switch-case constructs.

Google Play In four of the Google Play apps, we discovered that the decompilation failures
were due to the third-party library Apptimize, which we mentioned above. The library is
obfuscated by moving most of the logic of each class into a large static block. The control
flow of the static blocks is highly complex, with many nested loops containing break
statements that appear to be protected by opaque predicates. We also found at least one case
of dead code insertion. Jadx reports the same error for all of these static blocks: “JADX
OVERFLOW ERROR: regions count limit reached”.

The fifth app was also obfuscated, using a weak form of opaque predicates and excessive
variable reassignments. In contrast to the Apptimize library, however, only a subset of the
methods appeared to be obfuscated.

AMD All five malware apps were obfuscated with identifier renaming. However, obfusca-
tion appeared to be the cause of decompilation failures for only one of the apps. This app had
a Jadx failure rate of 63%, the highest among all apps across the three datasets. The other
decompilers, however, reported much lower failure rates. This led us to discover the undoc-
umented failure mode of dex2jar that we describe in Section 3.1.3. The failures appeared to
be caused by a particularly intrusive form of obfuscation, which caused baksmali to crash
due to unrecognized opcodes. We believe that the application may use an internal translation
layer and altered bytecode that is only translated at runtime!”.

One of the most prominent causes of decompilation failures among the other four sam-
ples was excessive use of try-catch blocks for I/O or network error handling. We also
found that decompilers often failed on conditionals that could be represented as ternary if-
statements (i.e., conditionals that were translated to ternary if-statements by the non-failing
decompilers).

5 Reasons for Failures

Both the statistical and manual analyses performed in our original study indicated that most
decompilation failures were caused by imperfections in the decompiler tools, rather than
by obfuscation. In most cases where we observed failures, the decompiler would emit error
messages suggesting that the cause was some kind of internal resource-exhaustion (e.g.,
hitting some internal “limit”). This was often caused by very complex control flow, or very
deep nesting levels of various kinds (e.g., inheritance, inner classes, conditional statements,

17Since some of the samples in the AMD dataset predate the introduction of the ART system, it is possible
that this app uses an obfuscation method that is only compatible with older versions of Android, and that it
would fail the more strict verification performed by the ART compiler.

@ Springer

48 Page 22 of 30 Empir Software Eng (2023) 28:48

etc.). The strong relationship between decompilation failure rate and method size, shown in
Fig. 4, further suggest that resource exhaustion is a major cause of decompilation failures. In
our follow-up study on reasons for decompilation failures, we wanted to quantify the degree
to which resource exhaustion and other implementation-level deficiencies contributed to
decompilation failures. The results of our analysis is presented here.

5.1 Classification of Exceptions

We collected all exception types mentioned in error messages, as described in Section 3.2.
Table 13 shows the frequencies of each exception type, for each of the decompilers.

The table also shows which exception types we have classified as “anticipated”. While
this classification is necessarily somewhat subjective, we consider exceptions accompanied
by a meaningful error message, describing the reason why decompilation was aborted for
the particular method, as anticipated. Error messages not mentioning an exception are also
considered as anticipated. On the other hand, exceptions accompanied by either no message,
or a non-meaningful message'®, were considered as unexpected.

The rationale for our classification approach is that we found that each decompiler
consistently used a specific (small) set of exception types (either built-in or custom) for
reporting “gracefully” handled errors, while the remaining exception types appeared to be
the result of some unhandled corner case, e.g., passing invalid or illegal parameters to the
interface of some abstract data type. There also appeared to be little overlap between the two
classes, i.e., a given exception type tended to either always be accompanied by a meaningful
error message, or never be.

Turning our attention again to Table 13, we see that CFR is the only decompiler that
predominantly excludes the exception name from error messages. Moreover, it is the decom-
piler with the highest number of errors classified as anticipated (over 99%). In contrast, out
of the errors reported by Fernflower, about 29% are classified as unexpected. It should be
noted, however, that Fernflower does not provide any details of errors in its error messages.
Instead, it simply emits a Runt imeExcept ion with the message “parsing failure!”, mak-
ing classification hard. Most of Fernflower’s unexpected errors are due to null pointer
exceptions.

The best-performing decompiler Jadx had the greatest percentage of unexpected errors,
around 80%, the vast majority of which are null pointer exceptions. Jadx uses several custom
exception types for reporting errors, and also shows the greatest diversity in the exceptions
it throws.

Finally, Procyon, which mostly uses the built-in I11egalStateException to report
anticipated errors, had around 35% unexpected failures.

5.2 Differences in Co-Failure Rates
Table 14 breaks down co-failures on the AndroZoo dataset into anticipated and unexpected

failures. The top of the table shows, for each decompiler, the percentage of anticipated
failures that coincided with a failure (of either class) in the other decompilers. The bottom

18For example, the following error message was frequently emitted by Jadx: “NullPointerException in pass:
Simplify Visitor, details: java.lang.NullPointerException: null”.

@ Springer

Empir Software Eng (2023) 28:48

Page 23 0f30 48

Table 13 Exception counts for the different decompilers on the AndroZoo dataset. (Custom exception types
are highlighted in italics)

Decompiler Exception Count Anticipated
CFR ArrayIndexOutOfBoundsException 8,986
ClassCastException 3,604
ConfusedCFRException 582,274 v
IllegalStateException 8,764 v
IndexOutOfBoundsException 211
NullPointerException 12
NumberFormatException 1
UnsupportedOperationException 1,365
MESSAGE 2,655,306 v
Fernflower ArrayIndexOutOfBoundsException 85
IndexOutOfBoundsException 2
NullPointerException 525,298
OutOfMemoryError 1,101
RuntimeException 1,295,330 v
Jadx ArrayIndexOutOfBoundsException 3,614
BufferUnderflowException 15
CodegenException 1,655 v
DecodeException 8 v
Illegal ArgumentException 1,133 v
IndexOutOfBoundsException 11
JadxOverflowException 3,371 v
JadxRuntimeException 11,845 v
NegativeArraySizeException 22
NullPointerException 68,608
StackOverflowError 2,129
StringIndexOutOfBoundsException 4
MESSAGE 582 v
Procyon AdaptFailure 463
ArrayIndexOutOfBoundsException 355
ConcurrentModificationException 21,486
Illegal ArgumentException 1 v
IllegalStateException 1,234,464 v
IndexOutOfBoundsException 583,076
NullPointerException 56,617
NumberFormatException 241
StackOverflowError 178
UnsupportedOperationException 15,330

@ Springer

48 Page 24 of 30 Empir Software Eng (2023) 28:48

Table 14 Co-failure rates of anticipated and unexpected failures on the AndroZoo dataset

CFR Fernflower Jadx Procyon

CFR 100 22.31 0.23 39.19 Anticipated
Fernflower 47.67 100 0.17 44.77

Jadx 26.38 3.02 100 7.35

Procyon 60.93 31.07 0.11 100

CFR 100 10.64 0.13 20.42 Unexpected
Fernflower 20.57 100 0.10 20.16

Jadx 3.40 2.87 100 243

Procyon 77.18 44.63 0.27 100

part of the table shows corresponding figures for unexpected failures. We do not consider
timeouts as failures in this analysis.

Comparing with Table 9 (Excluding timeouts), we see that for all decompilers except
Procyon, the co-failure rates are higher for anticipated errors, compared to the overall co-
failure rate, and vice versa for unexpected errors. For Procyon, the opposite is true, although
the relative differences compared to the overall co-failure rate are not that big for either
class of failures.

Based on these figures, it would appear that a major part of the diversity between decom-
pilers discussed in Section 4.3 is due to unexpected errors. That is, the predominant reason
why an ensemble improves the decompilation success rate is due to various corner-cases,
which might result in unexpected failures in one decompiler, but be successfully handled
by other decompilers. On the flip-side, decompilers differing in their view of what consti-
tutes “impossible-to-decompile” code, appears to be a less prominent reason for decompiler
diversity.

5.3 Resource-Exhaustion Failures

To quantify the frequency of the aforementioned resource-exhaustion problems, we gath-
ered and manually checked each unique error message containing any of the words “heap”,
“memory”, “overflow”, “limit”, or “recursion”, looking for errors such as reaching a max-
imal recursion-depth, stack overflows, or out-of-memory errors. CFR had no such errors,
while Fernflower had 1,342 (0.07% of all decompilation failures). Jadx had the proportion-
ally greatest number of resource-exhaustion problems: 5,762 or 6.2%. Finally, Procyon had
only 294 such errors, or 0.02% of all failures.

While Jadx exhibited a fair number of resource-exhaustion problems on the Andro-
Zoo malware apps, this turned out not to be the major cause of failures. The main cause
instead appeared to be other types of unhandled corner-cases, leading to unanticipated erros.
Null-pointer exceptions, for example, comprised more than 70% of all Jadx’s decompila-
tion failures. The other decompilers exhibited very few or no resource-exhaustion errors. It
should be noted, however, that both Fernflower and Procyon had a large number of time-
outs on several datasets. This could also be indicative of some kind of resource-exhaustion
problem in those decompilers

@ Springer

Empir Software Eng (2023) 28:48 Page 250f30 48

6 Summary and Discussion

In this section, we first summarize our findings. We then discuss some threats to validity,
and finally outline some directions for future work.

6.1 Summary of Results

Here, we summarize the main findings of our work, in the context of our research questions.

RQ1: 7o what degree can we expect decompilers to successfully recover source code
Jrom Android apps?

The native Android decompiler Jadx performed very well in our study with a (weighted)
average of 0.04% failed methods per app, while the Java decompilers had mean failure rates
of around 1%. The failure rates varied substantially between our three datasets, however,
with Jadx having mean failure rates that, compared to the open source apps, were around 2x
and 20x, for Google Play and malware apps, respectively. Moreover, Jadx could successfully
decompile every method (as reported by apkanalyzer) in around 75% of the open-source
apps. Interestingly, around 80% of the malware apps could also be fully decompiled. How-
ever, for the Google Play apps, which tended to be larger and have more methods, only
about one app in five could be fully decompiled by Jadx.

RQ2: To what degree is decompilation-breaking obfuscation a concern when analyz-
ing malware or commercial apps for the Android platform?

Our manual analysis revealed several cases of code that could not be decompiled because
it was obfuscated. Moreover, the increased failure rates of commercial apps, and even higher
failure rates of malware, which could not be explained by other factors, would indicate
that obfuscation is a factor. Likewise, the higher failure rates of ad-supported apps, whose
developers would have a stronger incentive to protect their code from, e.g., ad-fraud, also
points towards obfuscation being a factor. A similar increase in incidence for packed apps
could also be seen, especially for the new AndroZoo dataset. As commercial packers are
known to make heavy use of obfuscation (Duan et al. 2018; Yang et al. 2015; Zhang et al.
2015), this is another sign pointing towards obfuscation being a factor.

During the manual analysis performed in the original study, we found that most failures
due to obfuscation appeared to be caused by the same decompiler limitations that cause fail-
ures on unmodified code, rather than by a deliberate attempt to prevent decompilation. This
conclusion was also corroborated by the fact that, in several cases where a decompiler failed
due to obfuscation, at least one other decompiler succeeded on the same code. In particu-
lar, we discovered no cases of advanced control-flow obfuscation using “fake” branches to
invalid code locations, which are commonly encountered in obfuscated native or JVM code.

Our follow-up study on the set of malicious apps from AndroZoo, on the other hand,
indicated more strongly that code obfuscation might be a problem when analyzing Android
malware. This dataset had an overall significantly higher failure rate than all the other
datasets. Furthermore, in our analysis of tokens associated with failures (Section 4.5), the
other three datasets displayed a pattern of failures indicating that encoding or parsing code
was a major contributor to failures. The fact that this pattern was not observed for the
AndroZoo apps makes obfuscation more likely as a culprit. It should be noted, however,
that despite the stronger evidence of obfuscation in this dataset, 96% of all apps in the set
could still be fully decompiled by an ensemble of decompilers. Therefore, our conclusion
is that, decompilation-breaking obfuscation is a potential concern that must be taken into

@ Springer

48 Page 26 of 30 Empir Software Eng (2023) 28:48

account when analyzing Android malware. However, for the vast majority of malware sam-
ples, complete decompilation of all methods can still be achieved, at least when using an
ensemble of decompilers.

It should be noted, however, that it was much more common for apkanalyzer to fail on
the malware than on the benign apps (in around 5% and 2% of cases, respectively, for the
AMD and AndroZoo sets). This kind of failure is a strong indicator of obfuscated or oth-
erwise manipulated APKs. Likewise, while packing was rarely encountered for the other
datasets, around 3.5% of AndroZoo malware matched a packer signature. As packing com-
pletely prevents static analysis of an app’s code, it is obviously a strong deterrent against
decompilation.

Finally, it should also be noted that successful decompilation of a method does not
necessarily imply that the result is useful for subsequent manual or automated analyses.
Advanced obfuscation techniques, such as the one suggested by Balachandran et al. (2016),
which route control flow through a large number of try-catch blocks, can effectively
hide a method’s static control flow, even if the source code can be completely recovered by
decompilation.

RQ3: Do different Android decompilers tend to systematically fail on the same
methods, or do their results complement each other?

In our experiments, an ensemble of decompilers was able to improve the decompilation
success rate, so that between 85% and 98% of all apps could be fully decompiled, depending
on the dataset. Even though Jadx outperformed the other decompilers by a broad margin,
our results showed that in 96% of cases where Jadx failed to decompile a method, at least
one of the other decompilers succeeded. Our analysis of co-failure rates indicated that, in
many cases, code that induced excessive computation times in some of the decompilers
would instead be detected as erroneous, and lead to a reported failure, in some of the other
decompilers. Our follow-up study also indicated that the predominant reason for decompiler
diversity is that decompilers differ in their ability to handle various corner cases that might
cause unexpected failures in some decompilers, but be successfully handled by others.

RQ4: To what degree does implementation-level limitations, in contrast to fundamen-
tal algorithmic limitations, contribute to decompilation failures?

Our follow-up study on the AndroZoo dataset revealed that, among the four decompilers,
a varying degree of failures appeared to be caused by unhandled exceptions (i.e., bugs).
CFR had only a very small amount of such failures, while Fernflower and Procyon both had
around 30% unexpected failures. For the best-performing decompiler Jadx, 80% of failures
appeared to be due to unexpected exceptions being thrown.

While our original study indicated that various resource-exhaustion problems could be
a common cause of failures, our follow-up study revealed only a small amount of such
failures. However, given the large number of timeouts exhibited by some decompilers, it is
possible that our 5S-minute timeout limit might have masked some resource-exhaustion bugs.

6.2 Threats to Validity

The limitations of our methodology, which we have already discussed in Section 3.1.3, pose
a threat to the internal validity of our results. However, we believe that the imprecision
introduced by these shortcomings does not invalidate the main conclusions of our work.

A potential threat to the external validity of our original study was the representative-
ness of datasets, where our main concern was that the AMD dataset was a few years old,
and might no longer fully reflect, for example, obfuscation techniques used in present-day
malware. We have sought to remedy that problem in this work by including a more recent

@ Springer

Empir Software Eng (2023) 28:48 Page 27 of 30 48

malware dataset. However, even with a recent collection of malicious apps, it is difficult
to know the degree to which the dataset is a representative subset of current in-the-wild
malware.

Finally, we observed in our study that code in third-party libraries was a major contribu-
tor to decompilation failures. As libraries are often of less interest when using a decompiler
to analyze an app, including them in the analysis might make the results less representa-
tive of decompiler performance in practice. Moreover, the same library could contribute to
decompilation failures in several apps.

6.3 Future Work

One direction of future work would be to improve the matching accuracy of our approach
by not relying on textual matching of method signatures. Since DEX files contain unique
identifiers for each method, which a decompiler must access at some point, we could use
this to achieve better unification of results. As this would require an in-depth understanding
of the code-base for all studied decompilers, and likely also non-trivial modifications to
their source code, we left it for future work in this study.

In this work, we only considered whether or not a decompiler reported a method as
unsuccessfully decompiled. Another topic of interest for future work is to assess the correct-
ness of recovered source code, as has already been done by others (Hamilton and Danicic
2009; Kostelansky and Dedera 2017; Harrand et al. 2019) for JVM bytecode decompilation.

As noted in the preceding section, third-party libraries could introduce imprecision in the
results of our study. Therefore, one direction for future work could be to integrate existing
techniques (Backes et al. 2016; Li et al. 2017) for detecting third-party libraries into our
analysis platform.

Finally, as we discuss in the introduction (Section 1), apps can also contain native code
components. Putting functionality in native-code libraries, potentially in combination with
obfuscation, is an effective way to hinder decompilation. In particular, many commercial
packers are known to implement their unpacking logic in obfuscated native code Xue et al.
(2017). As the use of native-code components is widespread in modern Android apps (for
example, around 60% of the apps in the Google Play dataset and around 45% of the Andro-
Zoo malware contain native-code components), studying the effectiveness of decompilers
or disassemblers'® on native app code would be an interesting avenue of future work.

7 Related Work

An early study of Java decompilation correctness was performed by Hamilton and Danicic
(2009). Kostelansky and Dedera (2017) performed a similar study, and concluded that the
correctness of state-of-the-art decompilers had improved significantly between 2009 and
2017. Naeem et al. (2007) proposed several metrics for measuring decompiler performance.
Gusarovs (2018) compared the success rate and correctness of four Java decompilers on a
number of manually-crafted test cases. Harrand et al. (2019) performed a large-scale study
of 8 Java decompilers, in which they assessed both the syntactic and semantic correctness
of recovered source code. Their study revealed that the best decompiler (CFR) could only

19Similar to, for example, the works of Andriesse et al. (2016) and Pang et al. (2021) for x86 Linux and
Windows executables, and Jiang et al. (2020) for ARM binaries (including Android system libraries).

@ Springer

48 Page 28 of 30 Empir Software Eng (2023) 28:48

produce syntactically correct code for 84% of classes. Similar to our results for decompi-
lation success-rate, however, the study also showed that this figure could be significantly
improved by combining the output from several decompilers.

Jang et al. (2019) recognized that popular Android decompilers failed to decompile a
significant portion of methods in many apps, and proposed the Kerberoid system, which
uses an ensemble of three Android decompilers to improve decompilation success rate.
While their method was only evaluated on 151 open-source apps, our large-scale study on
a wider range of apps confirmed their finding that an ensemble of decompilers can often
improve the success rate significantly. A notable difference between our results and theirs,
however, is that we found failures to be much more rare. (They reported, for example, that
Jadx only managed to recover half of the methods for 10% of the apps, and that it could
recover all methods of an app in only 8% of cases.) We suspect that this might be due
to differences in the way success rate was measured. While we recovered the signatures
of failed methods from error messages and matched those against the method signatures
reported by apkanalyzer, Jang et al. appears to have used the opposite approach of scanning
for successfully decompiled methods in recovered source code (which we opted against,
due to the many corner cases and potential failure modes, as discussed in Section 3.1.3).

A more advanced version of the decompiler-ensemble concept was proposed by Harrand
et al. (2020) in a follow-up to their previous study. They introduce meta-decompilation
as way to merge the results from several Java decompilers, in order to improve overall
decompiler correctness.

Dong et al. (2018) performed a large scale study of the prevalence of Android obfusca-
tion. While we were mainly concerned with anti-decompilation obfuscation in this work,
they instead focused on identifier renaming, string encryption, Java reflection, and packing.
Out of those obfuscation techniques, only string encryption stood out as significantly more
common in malware.

Finally, a recent study by Hammad et al. (2018) showed that applying advanced obfusca-
tion techniques, such as control-flow obfuscation, frequently tended to break apps, so that
they would fail to install or run. This is in line with our findings, which indicate that such
techniques are rarely used in the wild.

8 Conclusion

In this work we have presented the results of a large-scale study of the decompilation success
rate of four different compilers on four large sets of Android apps. While the state-of-the-
art Android decompiler Jadx achieved a very low failure rate of only 0.04% failed methods
on average, it still failed to fully decompile many apps. We also corroborated earlier results,
which indicated that decompilers exhibit a great deal of diversity in the apps and methods
that they fail on. Our follow-up study revealed that the dominant reason for this diversity
appear to be decompiler bugs, which cause unexpected failures due to unforeseen corner
cases, and that decompilers differ in terms of which corner cases they can handle. Finally,
our empirical results and complementary manual investigation indicate that deliberate anti-
decompilation obfuscation is not a major cause of decompilation failures in commercial
apps. Instead, it appears that most failures on such apps happen because current decom-
pilers have technical limitations that sometimes prevent them from successfully processing
methods that are large, have complex control flow, or exhibit deep levels of various kinds of

@ Springer

Empir Software Eng (2023) 28:48 Page 29 of 30 48

nesting. For malicious apps, however, code obfuscation might be more of a concern, even
though the vast majority of malware apps in our study could still be fully decompiled.

Acknowledgements This work was partially supported by the Swedish Graduate School in Computer
Science (CUGS) and the Excellence Center at Linkoping — Lund in Information Technology (ELLIIT).

Funding Open access funding provided by Linkoping University
Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

References

Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) Androzoo: collecting millions of android apps for
the research community. In: Proceedings of the 13th international conference on mining software
repositories, ACM, pp 468-471

Andriesse D, Chen X, Van Der Veen V, Slowinska A, Bos H (2016) An in-depth analysis of disassembly on
full-scale x86/x64 binaries. In: 25th USENIX security symposium (USENIX security 16), pp 583-600

Backes M, Bugiel S, Derr E (2016) Reliable third-party library detection in Android and its security applica-
tions. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security,
pp 356-367

Balachandran V, Tan DJ, Thing VL et al (2016) Control flow obfuscation for android applications. Comput
Security 61:72-93

Cen L, Gates CS, Si L, Li N (2015) A probabilistic discriminative model for android malware detection with
decompiled source code. IEEE Trans Dependable Secure Comput 12(4):400-412

Chan JT, Yang W (2004) Advanced obfuscation techniques for java bytecode. J Syst Softw 71(1-2):1-10

Chen S, Fan L, Chen C, Su T, Li W, Liu Y, Xu L (2019) StoryDroid: automated generation of storyboard
for android apps. In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE),
pp 596-607

Collberg C, Thomborson C, Low D (1997) A Taxonomy of Obfuscating Transformations. Tech rep
Department of Computer Science. The University of Auckland, New Zealand

Dong S, Li M, Diao W, Liu X, Liu J, Li Z, Xu F, Chen K, Wang X, Zhang K (2018) Understanding android
obfuscation techniques: a large-scale investigation in the wild. In: Security and privacy in communication
networks. Springer international publishing, pp 172-192

Duan Y, Zhang M, Bhaskar AV, Yin H, Pan X, Li T, Wang X, Wang X (2018) Things you may not know about
android (un) packers: a systematic study based on whole-system emulation. In: Network and distributed
system security symposium

Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security. In: USENIX
security symposium

Gamba J, Rashed M, Razaghpanah A, Tapiador J, Vallina-Rodriguez N (2020) An analysis of pre-installed
android software. In: 2020 IEEE symposium on security and privacy (SP), pp 1039-1055

Gibler C, Crussell J, Erickson J, Chen H (2012) AndroidLeaks: automatically detecting potential privacy
leaks in android applications on a large scale. In: Trust and trustworthy computing, Springer Berlin,
Heidelberg, Berlin. pp 291-307

Gusarovs K (2018) An analysis on java programming language decompiler capabilities. Appl Comput Syst
23(2):109-117

Hamilton J, Danicic S (2009) An evaluation of current java bytecode decompilers. In: 2009 Ninth IEEE
international working conference on source code analysis and manipulation, pp 129-136

Hammad M, Garcia J, Malek S (2018) A large-scale empirical study on the effects of code obfuscations
on android apps and anti-malware products. In: Proceedings of the 40th international conference on
software engineering, pp 421431

Harrand N, Soto-Valero C, Monperrus M, Baudry B (2019) The strengths and behavioral quirks of Java
bytecode decompilers. In: 2019 19th International working conference on source code analysis and
manipulation (SCAM), pp 92-102

Harrand N, Soto-Valero C, Monperrus M, Baudry B (2020) Java decompiler diversity and its application to
meta-decompilation. J Syst Softw 168:110645

@ Springer

48 Page 30 of 30 Empir Software Eng (2023) 28:48

Hou TW, Chen HY, Tsai MH (2006) Three control flow obfuscation methods for java software. IEE Proc-
Softw 153(2):80-86

Jang H, Jin B, Hyun S, Kim H (2019) Kerberoid: a practical android app decompilation system with multiple
decompilers. In: Proceedings of the 2019 ACM SIGSAC conference on computer and communications
security, pp 2557-2559

Jiang M, Zhou Y, Luo X, Wang R, Liu Y, Ren K (2020) An empirical study on arm disassembly tools.
In: Proceedings of the 29th ACM SIGSOFT international symposium on software testing and analysis,
pp 401-414

Junod P, Rinaldini J, Wehrli J, Michielin J (2015) Obfuscator-LLVM-software protection for the masses. In:
2015 IEEE/ACM st international workshop on software protection, IEEE, pp 3-9

Kostelansky J, Dedera L (2017) An evaluation of output from current java bytecode decompilers: is it android
which is responsible for such quality boost? In: 2017 Communication and information technologies
(KIT), pp 1-6

Li M, Wang W, Wang P, Wang S, Wu D, Liu J, Xue R, Huo W (2017) LibD: scalable and precise third-party
library detection in android markets. In: 2017 IEEE/ACM 39th international conference on software
engineering (ICSE), pp 335-346

Linn C, Debray S (2003) Obfuscation of executable code to improve resistance to static disassembly. In:
Proceedings of the 10th ACM conference on computer and communications security, pp 290-299

Martin A, Menéndez HD, Camacho D (2017) MOCDRoid: multi-objective evolutionary classifier for android
malware detection. Soft Comput 21(24):7405-7415

Mauthe N, Kargén U, Shahmehri N (2021) A large-scale empirical study of android app decompilation.
In: 2021 IEEE international conference on software analysis, evolution and reengineering (SANER),
pp 400-410

Ming J, Xu D, Wang L, Wu D (2015) Loop: logic-oriented opaque predicate detection in obfuscated binary
code. In: Proceedings of the 22nd ACM SIGSAC conference on computer and communications security,
pp 757-768

Naeem NA, Batchelder M, Hendren L (2007) Metrics for measuring the effectiveness of decompilers and
obfuscators. In: 15th IEEE international conference on program comprehension (ICPC *07), pp 253-258

Pang C, Yu R, Chen Y, Koskinen E, Portokalidis G, Mao B, Xu J (2021) SoK: all you ever wanted to know
about x86/x64 binary disassembly but were afraid to ask. In: 2021 IEEE symposium on security and
privacy (SP), pp 833-851

Pauck F, Bodden E, Wehrheim H (2018) Do android taint analysis tools keep their promises? In: Proceedings
of the 2018 26th ACM joint meeting on european software engineering conference and symposium on
the foundations of software engineering, pp 331-341

Roundy KA, Miller BP (2013) Binary-code obfuscations in prevalent packer tools. ACM Comput Surveys
(CSUR) 46(1):1-32

Shan Z, Neamtiu I, Samuel R (2018) Self-hiding behavior in android apps: detection and characterization.
In: Proceedings of the 40th international conference on software engineering, pp 728-739

Tian DJ, Hernandez G, Choi J1, Frost V, Raules C, Traynor P, Vijayakumar H, Harrison L, Rahmati A, Grace
M et al (2018) ATTention spanned: comprehensive vulnerability analysis of AT commands within the
android ecosystem. In: 27th USENIX security symposium (USENIX security 18), pp 273-290

Wang H, Guo Y, Ma Z, Chen X (2015) WuKong: a scalable and accurate two-phase approach to android app
clone detection. In: Proceedings of the 2015 international symposium on software testing and analysis,
association for computing machinery, ISSTA 2015, pp 71-82

Wei F, Li Y, Roy S, Ou X, Zhou W (2017) Deep ground truth analysis of current Android malware. In:
Detection of intrusions and malware, and vulnerability assessment, Springer international publishing,
pp 252-276

Xue L, Luo X, Yu L, Wang S, Wu D (2017) Adaptive unpacking of android apps. In: 2017 IEEE/ACM 39th
international conference on software engineering (ICSE), pp 358-369

Yang W, Zhang Y, Li J, Shu J, Li B, Hu W, Gu D (2015) Appspear: bytecode decrypting and dex
reassembling for packed android malware. In: Research in attacks, Intrusions, and Defenses, Springer
international publishing, p 359-381

Zhang Y, Luo X, Yin H (2015) Dexhunter: toward extracting hidden code from packed android applications.
In: Computer security — ESORICS 2015, Springer international publishing, pp 293-311

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Android decompiler performance on benign and malicious apps: an empirical study
	Abstract
	Introduction
	Original Contributions
	New Contributions

	Background
	Android App Runtime Model
	Android Decompilation
	Android Obfuscation

	Methodology
	Original Study
	Gathering Apps
	Measuring Decompiler Success Rate
	Limitations
	Challenging Java Language Features
	Other Tool Limitations

	Follow-Up Study

	Results
	Basic Dataset Statistics
	Decompiler Performance
	Failure Rate Diversity
	Differences Between Datasets
	Exploring Reasons for Differences
	Manual Analysis
	F-Droid
	Google Play
	AMD

	Reasons for Failures
	Classification of Exceptions
	Differences in Co-Failure Rates
	Resource-Exhaustion Failures

	Summary and Discussion
	Summary of Results
	Threats to Validity
	Future Work

	Related Work
	Conclusion
	Declarations
	References

