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Abstract

Differential testing is a useful approach that uses different implementations of the same
algorithms and compares the results for software testing. In recent years, this approach was
successfully used for test campaigns of deep learning frameworks. There is little knowl-
edge about the application of differential testing beyond deep learning. Within this article,
we want to close this gap for classification algorithms. We conduct a case study using
Scikit-learn, Weka, Spark MLIib, and Caret in which we identify the potential of differ-
ential testing by considering which algorithms are available in multiple frameworks, the
feasibility by identifying pairs of algorithms that should exhibit the same behavior, and the
effectiveness by executing tests for the identified pairs and analyzing the deviations. While
we found a large potential for popular algorithms, the feasibility seems limited because,
often, it is not possible to determine configurations that are the same in other frameworks.
The execution of the feasible tests revealed that there is a large number of deviations for
the scores and classes. Only a lenient approach based on statistical significance of classes
does not lead to a huge amount of test failures. The potential of differential testing beyond
deep learning seems limited for research into the quality of machine learning libraries.
Practitioners may still use the approach if they have deep knowledge about implementa-
tions, especially if a coarse oracle that only considers significant differences of classes
is sufficient.

Keywords Machine learning - Software testing - Differential testing

Communicated by: Shaukat Ali

B4 Steffen Herbold
steffen.herbold @uni-passau.de

Steffen Tunkel
steffen.tunkel @stud.uni- goettingen.de

Faculty of Computer Science and Mathematics, University of Passau, Passau Germany

Institute of Computer Science, University of Goettingen, Goettingen, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10273-9&domain=pdf
http://orcid.org/0000-0001-9765-2803
mailto: steffen.herbold@uni-passau.de
mailto: steffen.tunkel@stud.uni-goettingen.de

34 Page2o0f38 Empir Software Eng (2023) 28:34

1 Introduction

With differential testing, multiple implementations of the same algorithm! are executed
with the same data. Inconsistencies between the results are indicators of bugs. In recent
years, this idea was adopted to define test oracles for deep learning (e.g., Pham HV et al.
2019;Wang Z et al. 2020; Guo Q et al. 2020; Asyrofi MH et al. 2020) . This works well,
because there are multiple versatile frameworks, such as PyTorch (Paszke A et al. 2019) and
TensorFlow (Abadi et al. 2016) that allow the definition of exactly the same neural network
structures and training procedures. Beyond deep learning, this idea was also successfully
applied to linear regression (McCullough BD et al. 2019), to cases where the optimal solu-
tions were known as oracles beforehand. Due to the importance of linear regression as a
basic technique, there are many powerful implementations of this, which enabled the defi-
nition of differential testing. Moreover, the known optimal solution served as an additional
test oracle. However, even though differential testing was successful for deep learning and
linear regression, it is not obvious that this should also be the case for other machine learn-
ing algorithms. For example, while the general concept of random forests (Breiman L 2001)
is well-defined,? other aspects depend on the implementation, e.g., which decision tree
algorithm is used and how the sub-sampling can be configured. Whether we can expect ran-
dom forest implementations to behave the same depends on how developers navigate these
options, e.g., if they implement the same variants in a hard-coded way or if they expose con-
figuration options through hyperparameters. Due to this, it is unclear if and how different
implementations of the same algorithms can be directly compared to each other. With deep
learning, this problem does not exist: network structures, training procedures, loss func-
tions, and optimization algorithms are all configured by the user of the framework through
the API. Moreover, while some deviations are always expected with randomized algorithms
like the training algorithms for (deep) neural networks, other algorithms are deterministic
and should lead to exactly the same results, which was also not yet considered.

Thus, while we know that differential testing can be useful to define pseudo oracles
(Davis MD and Weyuker EJ 1981) for the quality assurance of algorithms, we lack simi-
lar knowledge for other types of machine learning tasks beyond deep learning and linear
regression. Within our work, we close this gap for classification algorithms and investigate
the following research question.

Research Question What is the potential, feasibility, and effectiveness of differential test-
ing for classification algorithms beyond deep learning, i.e., for techniques like decision
trees, random forests, or k-nearest neighbor classification?

We investigate our research question within an exploratory case study of four machine
learning frameworks: Scikit-learn (Pedregosa et al. 2011), Weka (Frank et al. 2016), Spark
MLIib (Meng et al. 2016), and Caret (Kuhn M 2018). We use a methodology with three
phases within our study. First, we identify for which algorithms we find multiple implemen-
tations. Through this, we evaluate the potential, i.e., for how many algorithms differential
testing could possibly work, due to the availability of multiple implementations in large
frameworks. Second, we compare the algorithms in detail to understand if it is possible

!Following ISO/IEC/IEEE 24765:2017, an implementation is the translation of a design into software com-
ponents (ISO/IEC/IEEE 2017). In our case, the design is the (often abstract or mathematical) definition
of an algorithm, the software components are the executable code for an algorithm in a machine learning
framework that operationalizes an algorithm.

Zpootstrap sampling of instances, subsets of features for decision
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to configure them in the same way using their public interfaces through the definition of
appropriate hyperparameters. Through this, we evaluate the feasibility, i.e., if we can actu-
ally exploit the potential because implementations are sufficiently similar to serve as pseudo
oracles and identify inconsistencies. Third, we implement differential testing for the algo-
rithms for which we are able to find identical configurations. Through this, we evaluate the
effectiveness of differential testing, i.e., the capability to find inconsistencies with the goal
to reveal potential bugs.
Through this study, we contribute the following to the state-of-the-art.

—  We found that while there is a large potential for differential testing, due to different
implementations of the same algorithms, it is difficult to harness the potential and find
feasible combinations of algorithms that should behave the same. This is due to the
diversity in hyperparameters between the implementations.

—  We observe many deviations between implementations that should yield similar results.
The number of deviations indicates that there is a large number of noise in the results,
which makes it impossible for us to pick up a reliable signal to identify possible bugs.
Experts that want to test specific algorithms could possibly use a lenient test oracle that
only considers if the classifications are significantly different, but it is unclear if such
an oracle is sufficiently powerful to detect bugs.

The remainder of this article is structured as follows. We define our terminology and
notations in Section 2, followed by a discussion of the related work in Section 3. Then, we
present our case study in Section 4, including our subjects, methodology, and results for
each of the three phases. We discuss the implications of our results in Section 5, followed
by the threats to validity in Section 6, before we conclude in Section 7.

2 Terminology and Notations

Within this article, we focus on binary classification. Formally, we have instances x; =
(Xi 1y ey Xim) € F € R™ with labels y; € {0,1} fori = 1,...,n. We say that F is the
feature space. The binary set {0, 1} represents the classes and we note that the classes are
considered as categories and can be replaced by any other binary set, e.g., { false, true} or
{-1, +1}. A classification model tries to find a function f : F — {0, 1} such that f(x;) = y;.
Often, this is done by estimating scores for both classes ¢ € {0, 1} as f<.,., : F — R such
that f(x;) = argmaxce(o,1} fyeore (Xi). We note that the scores are often probabilities of
classes and the class assignment can also be optimized using different thresholds for scores.
However, neither the question if the scores represent probabilities nor the optimization of
thresholds is relevant to work and not further discussed.

Based on the above definitions, a classification algorithm A is an algorithm that

takes as input training instances (X4l yirainy — (xlrain ytraimy . — . ptrain
and outputs functions f, fycore = A(X'T4", Yr4in) We further define (X'¢7, Y'*") =
(x[t y'ety i = 1,...,n'" as test data. When we discuss the comparison of two algo-

rithms, we refer to them as A' and A? with the respective functions f!, fL . f2, and
fszcore as result of the training. Moreover, we use the notation L condition for the indicator
function, which is one when the condition is fulfilled and zero otherwise.

We note that we use the terms false negative and false positive not with respect to the clas-
sification of the algorithms, as is common in the literature about machine learning. Instead,
we use these terms in their common meaning in the software testing literature: a false
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positive is a software test that fails, even though there is no wrong behavior and, vice versa,
a false negative is a software test that misses wrong behavior it should detect.

3 Related Work

We restrict our discussion of related work to other studies that utilize multiple implemen-
tations of the same algorithms for the definition of software tests. There are several recent
surveys on software engineering and software testing for machine learning, to which we
refer readers for a general overview (Zhang JM et al. 2020; Braieck HB and Khomh F
2020; Giray G 2021; Martinez-Fernandez et al. 2021). This includes other approaches for
addressing the oracle problem for machine learning, like metamorphic testing (i.e., system-
atic changes to input data such that the expected changes in output are known,( e.g., Murphy
et al. 2008; Xie X et al. 2011; Ding J et al. 2017), using crashes as oracle (e.g., Herbold
S and Haar T, 2022), defining numeric properties that can be checked (e.g., Karpathy A,
2018) or trying to map the performance of predictions to requirements to derive tests (e.g.,
Barash G et al., 2019). Further, there is also a different type of differential testing approach
that is used for the testing of the robustness of models (e.g.,Pei K et al. 2019; Guo J et al.
2021), i.e., similar deep learning models or inputs were used as pseudo oracles. However,
such tests of specific models are not within the scope of our work, which considers the
testing of the underlying libraries that implement machine learning algorithms and not the
testing of learned models.

One method to solve the test oracle problem of machine learning (e.g.,Murphy C et al.
2007; Groce A et al. 2014; Marijan and Gotlieb 2020) is to implement a differential testing
between multiple implementations of the same algorithm (Murphy C et al. 2007) and use
the different implementations as pseudo-oracles (Davis MD and Weyuker EJ 1981). While
this idea is not new for machine learning and was already shown to work for the MartiRank
algorithm (Gross P et al. 2006) by Murphy C et al. (2007), there was only little follow up
work in this direction until recently.

Most notably, this idea gained traction for the testing of deep learning frameworks.
(Pham HV et al. 2019) developed the tool CRADLE, which used, e.g., TensorFlow (Abadi
et al. 2016) and Theano (Theano Development Team 2016) as backends. The comparison
of results of outputs between different implementations was effective at finding errors, even
though only few different deep learning models were used. Following this study, there were
many papers that build upon this work, e.g., LEMON by Wang Z et al. (2020) that pro-
poses a mutation approach to cover more different network architectures during the testing,
AUDEE by Guo Q et al. (2020) that uses a genetic algorithm to generate effective tests,
and CrossASR by Asyrofi MH et al. (2020) which applies a similar concept for the test-
ing of automated speech recognition models. Beyond deep learning, the idea was also used
by McCullough BD et al. (2019) for the comparison of different implementations of linear
regression algorithms and was shown to be effective. However, we note that while McCul-
lough BD et al. (2019) compared different implementations to each other, they use analytic
solutions as ground truth, i.e., they did not really use the implementations themselves as
pseudo oracles.

In comparison to prior work, our focus is not on the differential testing of a single algo-
rithm (Murphy C et al. 2007; McCullough BD et al. 2019) or deep learning. Instead, we
consider this question broadly for classification algorithms. With the exception of multi-
layer perceptrons, we exclude deep learning, which can also be used for classification, as
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these are already studied.> We further note that neither Murphy C et al. (2007) nor McCul-
lough BD et al. (2019) studied classification algorithms, but rather a ranking algorithm and
a regression algorithm. To the best of our knowledge, this is, therefore, the first work that
considers differential testing for non-deep learning classification algorithms.

4 Case Study

Within this section, we discuss the main contribution of our work: a case study about four
machine learning libraries that explores the usefulness of differential testing for classifica-
tion algorithms. In the following, we first discuss the subjects of our study, followed by a
description of our methodology, including the variables we measure and the research meth-
ods we use. Then, we proceed with the presentation of the results for each phase of our
case study. We provide our implementation of the tests and additional details through our
replication kit online (Tunkel S and Herbold S 2022).

4.1 Subjects

We used purposive sampling (Patton 2014) for our case study based on four criteria. First,
we wanted to use subjects implemented in different programming languages. One important
use case of differential testing is to validate the behavior of new implementations of algo-
rithms, which includes the implementation in a new programming language. Second, all
subjects should be implemented by, to the best of our knowledge, independent project teams.
Overlap between teams could have an adverse effect on our study of differential testing,
because our results could be affected by the same developers working on multiple imple-
mentations. There is a non-negligible likelihood that such a developer would make similar
design and implementation choices, which could lead to an overestimation of similarities
between independent implementations. Third, subjects should cover multiple algorithms.
If our subjects are too small, this would negatively affect our research as the likelihood of
finding the same algorithms multiple times would decrease. Fourth, the libraries should not
focus on deep learning. Since our goal is to provide a perspective beyond deep learning,
we specifically exclude libraries whose main use case is deep learning, even if the methods
provided by these libraries could also be used to implement, e.g., a linear logistic regression
model. Based on these criteria, we selected four such libraries, as shown in Table 1.

4.2 Methodology

Our case study was conducted in three phases, as depicted in Fig. 1. Each phase provides
insights into a different aspect of the usefulness of differential testing. Moreover, each phase
builds on the results of the previous phase.

In the first phase, we evaluate the basic assumption of differential testing: we have mul-
tiple implementations of the same algorithm. To evaluate this, we analyze each framework
and extract the classification algorithms. We then compare these lists to each other to deter-
mine overlaps. The number of overlaps determines the potential for the differential testing,
because this means that multiple implementations are available. For all frameworks, we

3Multilayer perceptrons are commonly found in general purpose machine learning libraries but do not provide
the same flexibility as deep learning frameworks.
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Table 1 Overview of the machine learning libraries selected for our study

Framework Version Language Description

Scikit-learn 1.0.1 Python Scikit-learn (Pedregosa et al. 2011) is a popular machine learn-
ing library for Python and one of the reasons for the growing
popularity of python as a language for data analysis.

Weka 3.8.5 Java Weka is a popular machine learning library for Java which had
the first official release in 1999. The library is very mature and
has been used by researchers and practitioners for decades and
is, e.g., part of the Pentaho business intelligence software.*

Spark MLLib 3.0.0 Scala Spark MLLib (Meng et al. 2016) is the machine learning com-
ponent of the rapidly growing big data framework Apache
Spark (Zaharia M et al. 2010) that is developed with Scala.

Caret 6.0-90 R Caret (Kuhn M 2018) provides common interfaces for many
learning algorithms implemented in R. Through this, Caret
provides a harmonized Application Programing Interface
(API) that allows using many learning algorithms that are
implemented with different APIs as part of different R pack-
ages. Thus, Caret greatly reduces the difficulty of trying out
different algorithms to solve a problem.

“https://www.hitachivantara.com/en-us/products/data- management-analytics/pentaho-platform.html

exclude pure meta-learners from our analysis. meta-learners are wrappers around other clas-
sifiers (e.g., generic boosting (Freund Y and Schapire RE 1997) or bagging (Breiman L
1996)), i.e., they propagate the learning to other classifiers called base classifiers. Thus,
meta-learners require special consideration: we must first establish that there are other equal
algorithms, because otherwise it would be unclear if differences observed when comparing
meta-learners are due to deviations between the meta-learners, or due to differences between
the base classifiers.

In the second phase, we evaluate if we actually manage to implement differential tests.
This is non-trivial due to the hyperparameters of algorithms. Hyperparameters allow the
users of a machine learning algorithm to configure the training and/or the resulting model,
e.g., by restricting sizes, enforcing regularization, or even by selecting which variant of an
algorithm is used. While the same is true for deep learning, there is a big difference: with
deep learning, every user of a library has to configure the hyperparameters for each neu-
ral network and training. On the one hand, this increases the burden on the developers, as
this is not pre-configured. On the other hand, there are no restrictions and thus, defining an
equivalent set of hyperparameters is not problematic. This is different with other algorithms.
For example, there are many different decision tree variants, such as CART (Brieman et al.
1984), ID3 (Quinlan 1986), and C4.5 (Quinlan 1993). A random forest could be based on
each of these variants, in which case the random forests could not be directly compared.
However, even the same variant of a decision tree is not always the same, as concrete imple-
mentations may not implement the original specification or they may have added more
features, e.g., for avoiding overfitting through limiting tree depths or requiring a certain
number of instances to make decisions. Thus, within the second phase, we compare differ-
ent implementations based on their API documentations and determine for which overlaps
we manage to find matching configurations. For Caret, we also included the API documen-
tation of the R packages that are providing the implementation that is wrapped by Caret in
our analysis. Furthermore, our analysis also includes the reasons for cases where we fail to
match the hyperparameters.
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Run differential tests
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Results of differential testing |

Fig.1 Methodology overview

In the third phase, we implement a simple differential testing approach. We use four data
sets as input.

— UNIFORM: 200 randomly generated instances, with ten features that are uniform in the
interval [0, 1] with two classes, such that 50% of the data are in each class. The separa-
tion between the classes is based on a 10-dimensional rectangle, i.e., a clear separation
between the classes is possible.

— RANDOM: 200 randomly generated instances, where the features are uniform within
the interval [0, 1] with two classes that are randomly assigned. Thus, no reasonable
classification is possible.

—  BC: The breast cancer data from the UCI repository has 569 instances with 30 numeric
features for cancer prediction. The features are normalized to the interval [0, 1].

—  WINE: The wine data from the UCI repository has 178 instances with 11 numeric
features for wine quality prediction. The features are normalized to the interval [0, 1].

The first two data sets are reused from our prior work (Herbold S and Haar T 2022) for
the smoke testing of algorithms. With UNIFORM, we can test if different implementations
perform the same, for data that is relatively easy to learn based on informative features. With
RANDOM, we test if the implementations also yield the same results, in case the data is
not informative. This scenario can be considered “more difficult”, as the resulting model is
more or less random. Still, the “randomness” should depend on the algorithm and, ideally,
different implementations still yield the same results. The other two data sets are popular
data sets that are often used as examples for using machine learning models. All data sets
are randomly split into 50% training data and 50% test data.

The data we use have two aspects in common: they have two classes and the features are
within well-bounded and numerically not problematic feature spaces. Consequently, we are
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implementing a relatively simple differential testing scenario, i.e., we do not intentionally
stress the algorithms.> Our rationale for this is that we want to test the general feasibility
of differential testing to find errors due to deviations between implementations. If our data
would target corner cases, our results could overestimate the effectiveness because differ-
ences might be larger for extreme data or be polluted by algorithms crashing failures due
to numeric issues. Moreover, classification with more classes either uses exactly the same
algorithms (e.g., decision trees and neural networks) or a combination of multiple binary
models (e.g., one-vs-follower approach with support vector machines). However, we may
also underestimate the difference between algorithms for multiple classes.

We use four criteria to evaluate the outcome of the differential tests for two algorithms
Al and A?. The first two criteria measure if the results are equal, i.e., if two different imple-
mentations yield the same results. To evaluate this, we consider the number of differences
between the classes predicted by the two algorithms defined as

n
A= Ly
i=1 (D

as the first criterion and the number of deviations between the scores defined as

n
Ascore = D Ll )£ fure)
i=1 2
as the second criterion. Please note that we consider scores to be equal, if the difference is
less than 0.001. Smaller differences are almost always irrelevant and may easily be due to
differences in how floating point operations are implemented. If we were to enforce exact
equality of scores, this could inflate the false positive test results.

Additionally, we often cannot expect that two results of different implementations are
exactly the same, e.g., because an aspect of the algorithm is randomized. However, the
results should not differ too much and we should still get roughly the same result in terms
of overall performance. We evaluate this by looking at the significance of the differences
between the classes and scores and derive the two remaining criteria. The third criterion
considers the differences in the scores. Since the scores are continuous values and we cannot
make general assumptions regarding their distribution, we use the Kolmogorov-Smirnoff
test. Thus, we check if the scores of the two models have the same distribution. The fourth
criterion applies this concept to the classes. Similarly, we use the Chi-Squared test to com-
pare the classes to check if the differences in classifications are significant. We reject the
null hypotheses of the tests (no difference) if we observe a p-value of less than 0.05. We
do not conduct any correction of repeated tests, as this correction would be dependent on
the number of tests that are executed, i.e., become a parameter of the test campaign. This
is hard to implement in practice. However, this means that we expect about 5% of the sig-
nificant differences we observe to be false positives, because the p-value follows a uniform
distribution if the null hypothesis is true. If and how this affects the differential testing will
be discussed based on our results.

While it may seem counterintuitive that we use four criteria to evaluate the effectiveness
of software tests, these criteria allow us not only to answer the general question if differential
tests are effective, but also how lenient the comparison of the results must be in order to not

SThis is also the reason why we only use the test cases UNIFORM and RANDOM from our prior work
(Herbold S and Haar T 2022). Our analysis of crashes showed that such data does not lead to crashes, which
would make the analysis of the effectiveness of the differential testing more difficult.
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yield false positives. This is due to the nature of machine learning. Figure 2 shows two cases,
where correct implementations of the same algorithm can yield different optimal outcomes.
In both examples, the absolute differences we observe (the first two criteria) are not suitable
to determine that a test failed, i.e., one result is wrong. However, the differences between
the outcomes should not be statistically significant. Ideally, we hope to see the limits of
both absolute comparisons (criteria one and two) and statistical comparison (criteria three
and four) for the differential testing as criteria for passing or failing differential tests.

Additionally, we apply all four criteria to both the training and the test data. Both training
and test data have advantages and disadvantages. The training data has the advantage that it
is readily available. However, software tests that only rely on training data may miss cases in
which the implementations do not correctly generalize beyond the training data. This is the
advantage of test data, as the computed functions for scoring and classification are evaluated
on an independent data set. However, this may also be prone to more false positives, because
equally good results on the training data may lead to different results on the test data (see
Fig. 2). Since we use the same amount of training and test data, the likelihood of differences
between implementations on the training and test data is not impacted by the amount of data
available.

4.3 Phase 1: Overlap of Algorithms

Table 2 shows the overlapping algorithms of the four machine learning frameworks we
found using the API docs. We grouped the algorithms by their underlying paradigm, e.g.,
Naive Bayes or Decision Tree. The first row demonstrates the reason for this. While Scikit-
learn provides unique classes for different variants of Naive Bayes, Spark MLIib has only a
single class. However, the implementation in Spark MLIib can be configured to use different
variants, e.g., Gaussian Naive Bayes or Multinomial Naive Bayes. Our data shows that there
is a significant overlap:

— Naive Bayes, Decision Trees, Random Forest, Support Vector Machines, Multilayer
Perceptrons, and Logistic Regression can be found in all frameworks;

— atrivial classifier, k-Nearest Neighbor, and Gradient Boosting in at least three of the
frameworks; and

Two equally good linear separations between

20 Two equally good linear separations of four points disjunctive point clouds
i
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1.0 + i - - +
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1 L 1-'_
0.5 1 1 + Y
. o 5
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Fig. 2 Two examples of data sets, where the dotted and dashed lines represent possible linear separations
of the data that could, e.g., be computed by a logistic regression. Both models are equally good in terms of
accuracy
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Input: Al, AZ’ (Xtrain’ Ytruin)’ (Xtest’ Ytest)

Output: Number of differences A4 Afest  Alrain -alest and p_values

! h . ] scores Pscore
train tes train est
Pks ’Pstpxz apxz

// Run training

fl, fslcore «— Al(Xtral:n7 Ytrat:n)

f2’ fslcore < A2(Xtrazn’ Ytratn)

// Criterion 1: Absolute differences between classes

trai n . .
Alram o Zi:] 1f1(xl_lratn)7$f2(xl{ram)

test

Atest <« Z?:l ]lfl()(;“l)?éfz(xge”)

// Criterion 2: Absolute differences between scores

train

. train
Atram Z’l trai (rai
score i=1 fslcore (Ximm)#frzmre (X[ raln)
test
Atmt < n 1 test test
score Zl:l fslcore(xi“ )#f:zmre(xi“ )

// Criterion 3: Significance of difference between scores
pt[gtg‘ln <« KS.test( 1 (Xtram)’fXZLlore(eraM))

score

Ptf? <~ KS'teSt(fslcore(Xw”)’ fszcore(XwSt))

// Criterion 4: Significance of difference between
classifications

p;rzain <« XZ.[esl(fl(X”ain), fZ(Xtrain))

p;e;t « Xz.test(fl(Xr”t),f2(XteSl))

Algorithm 1 Differential testing algorithm

— a Perceptron, Stochastic Gradient Descent, Gaussian Process, LDA, QDA, Nearest
Centroid, Extra Trees, and Logistic Model Trees are present in two frameworks.

— Additionally, there are 47 algorithms that are only implemented by a single framework
(see Table 5 in the appendix).

While we are not aware of any scientific data regarding this, the eight algorithms that
can be found in all frameworks are all well-known and frequently mentioned in lists of tech-
niques that should be learned.® There seems to be a link between the potential for differential
testing and the popularity of approaches. Intuitively, this makes sense, because develop-
ers of machine learning frameworks likely implement popular methods first. For example,
Scikit-learn has a popularity/maturity based inclusion criterion based on the number of cita-
tions.” Another interesting aspect is that there are sometimes multiple implementations for
the same algorithm within a single framework. For Scikit-learn, Weka, and Spark MLIib,
these are different variants of an algorithm.8 For Caret, this is not the case. The reason for
this is that Caret is a meta-framework, i.e., a framework that wraps the implementations of

6Some examples from Kaggle.com: https://www.kaggle.com/general/253858 https://www.kaggle.com/
getting-started/96750 https://www.kaggle.com/getting-started/268971
7https://scikit-learn.org/stable/faq.html#what- are-the-inclusion-criteria-for-new- algorithms

8For every rule, there is an exception, in this case the RidgeClassifier from Scikit-learn, which is a special
case of the LogisticRegression.
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different R packages to provide a common API. Due to this, there are sometimes imple-
mentations from different R packages for the same algorithm, e.g., in the first row from the
packages naive_bayes and nb. Consequently, there is even a possibility for differential
testing within the Caret package, without even using other frameworks.

There is a large potential for differential testing beyond deep learning. This poten-
tial is strongest for well-known and popular algorithms, while newer or specialized
algorithms are not good candidates for differential testing.

4.4 Phase 2: Feasible Subset

Table 3 reports the feasible combinations of algorithms that we believe should be the same,
based on the API documentation. Overall, we identified three variants of Naive Bayes
(GNB, KDENB, MNB), two variants of the random forest (RF1 with fixed depth and RF2
without fixed depth), three variants of Support Vector Machines (LSVM with a linear ker-
nel, PSVM with a polynomial kernel, and RBFSVM with a RBF kernel), the Multilayer
Perceptron (MLP), the trivial classifier (DUMMY), the k-Nearest Neighbor (KNN) algo-
rithm, and three variants of Logistic Regression (LR without regularization, RIDGE with
ridge regularization and LASSO with lasso regularization).

This means we found feasible combinations for all candidates with implementations in
at least three of the four frameworks, with the exception of the gradient boosting trees. The
reason we failed here is that the Spark MLIib API does not specify which kind of decision
tree is implemented. Even beyond this, while we identified many different decision trees
when analyzing the potential, we could not find any feasible combination of implemen-
tations. For CART this almost worked, but was not possible because Caret did not allow
passing the appropriate parameters to the underlying library. Another issue was the options
that were configurable through hyperparameters (incl. defaults) and hard-coded values. In
all cases, we needed to carefully consider the hyperparameters to set them to appropriate
values to behave the same as with the other frameworks. There was no case, where the
out-of-the-box default parameters between two implementations were equal for all imple-
mentations. As part of this analysis, we tried to identify hyperparameters, that can be set
with all implementations and that should have the same effect. We tried to maximize the
number of such equal hyperparameters, but often only found few, if any. In case the hyper-
parameters were not available in all frameworks, we tried to determine which value was
used by the implementation from the API. Often, this was impossible because such implicit
assumptions on the algorithm configuration that are not exposed to users through the API
as configurable hyperparameters are also not documented. Overall, this means that the fea-
sible subsets do not cover the full capabilities of the frameworks, i.e., it is not possible for
any of the algorithms to test the full set of hyperparameters within our case study.

A notable aspect of finding feasible combinations is that a good knowledge about the
algorithms is required. For example, the different implementations of the RIDGE group
use different variants to define the strength of the regularization. While the Scikit-learn
implementation LogisticRegression uses the inverse regularization strength ﬁ all other
implementations, including the Scikit-learn implementation RidgeClassifier directly use o
as regularization strength. Without understanding the underlying mathematical principles,
deriving suitable tests is not possible. However, we do not believe that this is, in practice, a
restriction on the feasibility of such tests: developers who actively work on such algorithms,
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either through quality assurance or development, should have the required background on
the techniques anyways.

The potential for differential testing can often be operationalized in form of feasi-
ble combinations that should yield the same behaviour. However, such tests can only
cover a subset of the implemented functionality, because of differences between the
configuration options that are exposed as hyperparameters.

4.5 Phase 3: Test Execution

We executed the tests for all pairs of algorithms we identified in the second phase, i.e.,
87 pairs of algorithms with the parameters defined in Table 6 in the appendix on the four
data sets with both training and test data for evaluation, i.e., we have 87 pairs - 4 data sets -
2 training/test data = 696 comparisons. We observed differences between the classifica-
tions for 457 pairs (65.6%), 67 (9.6%) differences were significant. Since some algorithms
cannot compute scores,” we only have 432 pairs with scores. We observed differences
between the scores for 313 pairs (72.4%) and 141 (32.6%) were significant. For better
insights, we looked at the results for each group of algorithms in detail. Table 4 summarizes
the results for each group. We refer to the algorithms by their framework. In case there are
multiple implementations per framework, we also provide the name of the implementations.

Overall, these results paint a complex picture regarding the effectiveness. For example,
we found no patterns regarding which frameworks often disagree with each other, except
for a tendency that the deviations between different implementations wrapped by Caret are
mostly not significant (Fig. 3). We also found no pattern regarding which data sets are
responsible for the deviations (Fig. 4). Moreover, there is no group of implementations in
which both classes and scores are equal. We observe so many absolute differences that we
cannot really conclude anything regarding concrete bugs. Nevertheless, we found a couple
of repeating aspects.

—  Perhaps unsurprisingly, non-deterministic algorithms like random forests or MLPs can
only be compared using statistical significance. This seems to work well for the classi-
fications using the X2 test. However, our results indicate that the scores should not be
compared, as the differences are very often significant.

—  Perhaps surprisingly, we often observe different classifications with deterministic algo-
rithms, even to the point where we cannot state which algorithms are likely correct.
For example, the small differences for GNB make it impossible to determine, without a
detailed triage of all involved algorithms, to infer if any of the implementations contain
a bug causing the small deviations, or if this is natural due to implementation choices.
Most of the time, these differences are not statistically significant, which further raises
the question if investigating these issues would be worth the effort.

—  Scores often depend on the implementation. Even for a “simple” algorithm like LR, we
observe significant differences. Thus, we cannot recommend to use differential testing
for scores, as there is a very large risk of false positives.

9 All algorithms in the groups LSVM, PSVM, RBFSVM, the algorithm ranger from the RF1 and RF2 groups,
and the algorithm RidgeRegression from the RIDGE group.
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Table4 Overview of the results of the execution of the differential tests

Group

Summary of test results

GNB

KDENB

MNB

RF1

RF2

LSVM

PSVM

RBFSVM

MLP

DUMMY

KNN

LR

RIDGE

LASSO

Classes are equal or almost equal, with small differences for Weka. Scores are almost
always different, except for the Caret-naive_bayes and Caret-nb, and the Spark MLIib and
Scikit-learn implementations, which are equal. No differences are significant.

Small but insignificant differences in classes and scores between the Caret-naive_bayes
and Caret-nb. Large differences to Weka, that are significant for both classes and scores
on about half of the data sets.

Classes and scores are equal, with one exception: the Scikit-learn implementation some-
times classifies one instance differently. These differences are in cases where the score
is almost exactly 0.5 and for one framework slightly smaller and for the other framework
slightly larger than 0.5, e.g., for Scikit-learn 0.499 and for Weka 0.501.

Results are never equal, with larger differences on test than on training data. The differ-
ences between classes are not significant, except in two cases on the RANDOM data,
where the classes are significantly different. The differences between the scores are
almost always significant.

Results are never equal, with larger differences on test than on training data. The differ-
ences of the classes are not significant, except in two cases on the RANDOM data. The
scores between Weka and Caret-rboist is only significant once on the WINE data. The
scores of Scikit-learn are significantly different most of the time.

Results are never equal, with mostly small and insignificant differences. The excep-
tion is Spark MLIib, which has a large difference to the other implementations that are
significant on the RANDOM and WINE data.

Scikit-learn and Weka are equal. Caret yields different results, but these differences are
only significant on the UNIFORM data.

Scikit-learn and Weka are equal. Caret yields different results and these differences are
almost always significant.

On the RANDOM and UNIFORM data, the classes are almost equal between all imple-
mentations with no significant difference. On the WINE and BC data there are large and
significant differences, where Weka disagrees with the other frameworks. The differences
between scores are always large and significant.

The classes are always equal, the scores depend on the implementation of the trivial
model: Caret and Weka have the same approach, Scikit-learn always disagrees.

The classifications are equal or almost equal between all implementations. The scores of
Scikit-learn and Caret are also equal or almost equal, with the exception of the WINE
data. Here, Caret is equal to Weka instead. On the other data sets, Weka has a large and
significant difference from the other implementations.

The classes are equal or almost equal. The scores are almost always equal, except on the
BC data, where we observe significant differences between all implementations.

The classes and scores of Weka, Scikit-learn-LogisticRegression, and Caret-plr are equal.
The other implementations have small and insignificant differences for the classes and
large and significant deviations for the scores.

The classifications of Caret and Scikit-learn are equal or almost equal. Spark MLIib has
large differences, but they are only significant on the RANDOM data. The scores between
all implementations are different. The differences between Caret and Scikit-learn are
mostly not significant, Spark MLIib is always significantly different.

We also note that our choice to use a threshold for the p-value without correction is not
without consequences. For the Kolmogorov-Smirnoff tests between the scores, we have over
32% results in which we observe significant differences, i.e., far more than the expected
5% of false positives. Since there are too many differences between scores anyways, the
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Tests with deviations in classes by library Tests with significant y2-test results by library

CARET, CARET  (80)
CARET, SKLEARN (160)
CARET, SPARK  (72)
CARET, WEKA (152)
SKLEARN, SKLEARN  (8)
SKLEARN, SPARK  (64)
SKLEARN, WEKA (112)
SPARK, WEKA  (48)

0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 1.0

Percentage of tests Percentage of tests

Frameworks

Tests with significant Kolmogorov-Smirnoff-test
Tests deviations in scores by library results by library

CARET, CARET (32)
CARET, SKLEARN (88)
CARET, SPARK (48)
CARET, WEKA (96)

& SKLEARN, SPARK (48)
SKLEARN, WEKA (80)
SPARK, WEKA (40)

0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 1.0

Percentage of tests Percentage of tests

ameworks

Fig. 3 Differences observed for pairs of libraries. The labels show the pair of libraries and the number of
tests executed. For example, “CARET, SKLEARN (160)” means that we ran 160 tests where one classifier
was from either framework

impact of possible false positives is limited. For the Chi-Squared, we have only about 10%
significant difference. Consequently, the randomness of the p-value distribution, if the null
hypothesis is true, would explain about half of the significant differences we observe. This
adds another wrinkle to our already hard to interpret results. However, we would argue
that for deterministic algorithms, only very small differences are acceptable, and anything
large enough to be picked up as a significant signal by the Chi-Squared test actually points
towards a significant difference between deterministic implementations. For randomized
algorithms, a potential solution would be to use repeated tests, e.g., 100 different UNIFORM
samples. One could then observe if the number of significant deviations is less than the
expected false positive rate of 5%, which would indicate acceptable differences, or if it is
large, which would indicate a significant difference.

Due to these issues, we believe that differential testing may be used by developers
who already know the details of their implementation, to compare their work with other
implementations. However, whether this is more effective and/or efficient than directly
only debugging a single implementation is not clear without further study. Using differen-
tial testing as pseudo-oracle (Davis MD and Weyuker EJ 1981) to automatically drive test
campaigns between tools seems to have only a limited potential.

The results of the tests indicate that effective and efficient usage of differential test-
ing between implementations is mostly not possible on an absolute level, i.e., expecting
equal results. Tests for significant differences of classifications seem to be the only
feasible option, but should only be used with proper care regarding false positives and
require that testers are already experts for the implementations under test.
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Tests with deviations in classes by data set Tests with significant y2-test results by data set

BC

RANDOM

Data set
Data set

UNIFORM

WINE

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Percentage of tests Percentage of tests
Tests with significant Kolmogorov-Smirnoff-test
Tests with deviations in scores by data set results by data set

BC

RANDOM

Data set
Data set

UNIFORM

WINE

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Percentage of tests Percentage of tests

Fig.4 Differences observed with the data sets we used

5 Discussion

Overall, our results show that while we have a large potential, it is very difficult to find
feasible configurations of the algorithms. When we then execute these tests, we observe
that there are many differences, to the point where we cannot distinguish between possible
problems and normal deviations. We saw that especially the scores depend a lot on the
implementation. Even if we just consider whether the binary classifications are equal, we
observed too many differences. There is no reason to believe that this problem should not
exist for more classes as well. While we expected that there would be some differences
between the frameworks, the magnitude of these differences surprised us. We note that the
data sets we use are neither very large, nor known to be numerically challenging.

Consequently, we believe that differential testing is just not possible between frame-
works, unless a very lenient test oracle is used that avoids the large number of false positives,
e.g., using the Chi-Squared tests. However, this comes at the cost of a larger chance of false
negatives as well, because unexpected small differences between classes and any kind of
difference between scores cannot be detected. If such a lenient oracle would be sufficient to
detect bugs is, therefore, unclear. The cases where this would also be possible are rather the
exception than the rule. We can only speculate regarding the reasons for this. However, we
believe that there are four main drivers for the differences we observe:

—  The definition of the algorithms in the literature may not be sufficiently detailed to guar-
antee that everything is implemented in exactly the same way. While we believe that
this could sometimes be a reason, this cannot explain all differences we observe. For
example, LSVM has a clear mathematical definition which is well-known and should
lead to the same optimal result, except in few corner cases. In comparison, no two
implementations yield exactly the same results.
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— Itis possible that the API documentations are incomplete and there are hidden values of
hyperparameter that are hard-coded in the implementations but not visible through the
documentation. However, in this case, we should see clearer patterns in the deviations,
e.g., one algorithm deviating from the others on all data sets. While we sometimes
observe this, there are relatively few cases where only one implementation disagrees
with all others. Usually, many implementations disagree with each other within one
group.

—  Optimizations for the numerical stability, run-time, or memory efficiency could lead to
subtle changes in the algorithms, which could explain the deviations between the imple-
mentations. The pattern of deviations should be the same as before, i.e., one algorithm
disagrees with the others, which we often do not observe very often.

—  The different programming languages, including the libraries available, could also have
an impact. While, e.g., the different pairs for GNB indicate that this may be due to such
an effect, we also observe many cases that indicate that this is not an issue. For example,
the different R implementations that Caret offers often disagree with each other as well,
even though they are, presumably, based on the same native R features. Hence, while
this could be a factor, we believe that this only plays a minor role.

Unfortunately, we could only determine how often the above factors are the reason for
differences through an extremely time-consuming manual analysis of the source code of the
machine learning libraries, possibly even including libraries on which they are based, e.g.,
to understand the numerics involved. Such a large scale comparative audit is not possible
with our resources, because we would basically need to achieve similar skills as the core
developers for each of the four frameworks.

Regardless of our lack of evidence, we believe that all of the above reasons provide a rea-
sonable explanation for the results of our experiments. We believe that each of the reasons
is a driver for some of the cases in which we observe differences, especially those where we
do not observe significant differences. Unfortunately, this also means that the differential
testing is not effective as automated oracle, because we would need to invest a huge amount
of effort to conduct an in-depth analysis of differences between most pairs of algorithms,
which is not feasible. Consequently, this shows the limited capability of differential testing
to provide an exact “specification” through a second implementation that provides a reliable
oracle for deciding the correctness of software tests.

We also believe that our results are not contradicting that differential testing works well
with deep learning frameworks, e.g., PyTorch (Paszke A et al. 2019) and TensorFlow (Abadi
et al. 2015): exact equality is not expected, due to the randomized nature of the training,
equality of scores is also not expected because the decision boundaries of neural networks
can also easily slightly change with different initialization. Thus, there is a built-in uncer-
tainty in the training of neural networks which means that the differential testing is only
concerned with checking if the classification stays roughly the same, which we also found
to work. While these differences might be made slightly worse by the implementation dif-
ferences or similar as we describe above, they do not hinder the differential testing, because
exact equality is not the expectation, anyways.

This is also in line with the fairly randomized algorithms we have within our data set,
i.e., the random forest and the MLP. Thus, one can argue that the differential testing works
beyond deep learning, if the algorithms are randomized and the only expectation is that
the differences between classifications are not significant. However, subtle bugs that only
affect a small amount of data can likely not be detected this way. For the algorithms in
our data that are deterministic and often implement a formula or optimization approach, we
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should be able to observe a stronger type of equality, i.e., exactly the same results or even
scores, which is not the case due to the reasons listed above, which in the end mean that
the specification of the algorithms is imprecise. It follows that differential testing requires
either a relaxed view on the expected equality or stronger specifications of the behavior of
machine learning algorithms. Consequently, we answer our research question as follows:

While there is a large potential and it is possible to derive feasible tests, exhaustive
testing of all parameter combinations or algorithms is not possible. More importantly,
due to many false positive differences, the differential testing does not lead to a suitable
automated test oracle if exact or almost exact equality is expected. For randomized
algorithms, where some differences are expected anyways, differential testing can still
be effective, but only if bugs cause large differences.

6 Threats to Validity

We report the threats to the validity of our work following the classification by Cook TD
et al. (1979) suggested for software engineering by (Wohlin et al. 2012). Additionally, we
discuss the reliability as suggested by Runeson and Host (2009).

6.1 Construct Validity

There are crucial design choices in each phase of our case study that could affect our results.
We describe these threats below, including why we believe that the alternatives would not
lead to a better construct.

The construct of the first phase of our study is based on a coarse grouping of algorithms
by the general approach, e.g., grouping decision trees together. While we have a good reason
for this, i.e., that some algorithms have different variants in one implementation, while
others have these variants over multiple implementations, this construct may lead to an
overestimation of the potential. An indicator that this happens to some degree is the decision
tree, where we have a huge group for the potential, but no feasible variants. The alternative
design choice would have been a more fine-grained grouping (i.e., by concrete algorithm
variant) and then possibly repeating the same implementation multiple times. However,
we believe that this option has one major drawback, i.e., it would lead to merging aspects
of the second phase of our study with the first phase. The more fine-grained grouping is
only possible by studying the hyperparameters through the API documentation, which is
precisely what we do in the second phase, where we not only achieve a more fine-grained
grouping that accounts for algorithm variants, but at the same time check if the variants are
sufficiently similar to provide equal sets of hyper parameters.

The construct of the second phase of our study is based on studying the API documen-
tation of algorithms to find equal configurations. While we believe that this is the only
practically feasible choice, there is a certain risk involved with relying on the documenta-
tion. If the documentation does not document all parameters or fails to describe all relevant
aspects, we may miss feasible candidates. The alternative would be to directly check the
source code to understand all options (incl. hard-coded choices). However, this would essen-
tially be the same as an in-depth code review of the implementations under test, which we
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believe is not realistic, neither for us as researchers as part of a study, nor for practitioners
as part of a test campaign.

The construct of the third phase of our study is based on four different comparisons that
consider equality of scores and classes, as well as significance of differences. While we
believe that these are reasonable criteria to determine if a differential test fails, other options
might also work, e.g., considering the mean absolute deviation of scores. However, such an
approach has the drawback that a threshold is required that defines how much deviation is
acceptable. We believe that our approach based on statistical tests achieves a similar result,
but with a stronger mathematical foundation.

We could also have used a different approach for the statistical analysis. For example,
instead of using the x?2 test to compare statistical differences between implementations,
we could also have executed each implementation multiple times with the same data, but
different training and test splits. Then, we could have statistically compared the accuracy on
these splits, e.g., with Wilcoxon’s signed rank test (Wilcoxon F 1945), if we use the same set
of splits for each implementation or with the Mann-Whitney U test (Mann HB and Whitney
DR 1947) if we would use different splits. Possibly, such an approach could be more tolerant
to noise due to differences in how randomized components are implemented in different
frameworks. However, such an approach would have the disadvantage that our experiment
would be sensitive to the number of different train-test splits we use, as this constitutes
the sample size for the comparison of the accuracy. This could be counterbalanced by also
including effect sizes (e.g., Cliff’s delta (Cliff N 1993)) or by using a Bayesian signed
rank test with a Region of Practical Equivalence (ROPE) (Benavoli A et al. 2016). But
again, we would need to determine relevant effect sizes for this, which has a similar risk.
Consequently, we believe that our choice of statistical methods is suitable for our study, but
cannot rule out that other statistical approaches for differential testing may lead to different
results.

Another potential issue with our construct is that implementations may also randomly
lead to unstable results, even with the same data and hyperparameters (including a fixed
random seed). To account for this, we asserted that the results remain the same with ten
randomly generated data sets for all algorithms. We did not observe any deviations between
the classes and the scores.

6.2 Internal Validity

We do not believe that there are threats to our conclusions regarding the potential, feasi-
bility, or effectiveness, because these conclusions are directly derived from our quantitative
evidence. However, our discussion regarding potential reasons is not derived from this evi-
dence, but rather from our knowledge about software development and machine learning.
Consequently, we may overestimate or underestimate the issues we discuss as possible rea-
sons in Section 5 and also miss other reasons. However, we clearly state this limitation to be
transparent to readers of this article. The only feasible alternative would be not to discuss
the reasons for our results at all, which we believe would be a larger problem than possible
wrong speculative reasoning, if this is clearly marked as such.

6.3 External Validity
While we consider four machine learning libraries in our study, it is unclear if the results

would hold for other libraries as well or if a larger effectiveness with more feasible combi-
nations would be possible. However, we do not believe that this is likely, because we already
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considered large and mature libraries. Additionally, caret is a meta-framework that means
we actually included many different R libraries in our study.

We also cannot be certain how our results generalize to other types of machine learning,
e.g., clustering or regression. However, we note that these algorithms are similar in their
structure to classification algorithms. For example, we see no reason why there should be
notable differences in the testability between a random forest regression and a random forest
classifier or between a k-Nearest Neighbor classifier and a k-Means clustering. Thus, we
believe that our results provide a strong indication for the expectations beyond classification,
i.e., that exactly the same results usually cannot be expected, but a more coarse comparison
could be possible.

6.4 Reliability

A significant amount of our work was the manual analysis of the APIs of four machine
learning frameworks we studied carried out together by the authors. We cannot rule out
the possibility that we missed algorithms (phase 1) or feasible combinations (phase 2). We
believe that the threat for the first phase is negligible, because all the API documentation
of all frameworks specifically contains categories for supervised and/or classification algo-
rithms. For the second phase, we read all API docs and all parameters as pairs to minimize
the likelihood of missing aspects. Moreover, the results of the second phase were validated
by implementing the feasible combinations later on, which required us to double check all
results. Thus, while we may have missed something, we do not think that it is likely that we
missed so many algorithms or feasible combinations that this would have an effect on our
conclusions.

7 Conclusion

Within this paper, we evaluate the potential, feasibility, and effectiveness of differential test-
ing for classification algorithms beyond deep learning. While we found that there is a huge
potential, especially for popular algorithms, we found that it was already difficult to identify
feasible tests such that the API documentation indicated that the behavior of two implemen-
tations should be the same. When we then executed the feasible tests, we found so many
differences between the results, that we could not find a signal in the noise, i.e., identify true
positive differences that indicate actual bugs in an implementation among all the false pos-
itive tests results with differences due to other reasons. However, our results indicate that
for experts it may still be possible to use a relatively lenient approach based on significant
differences between classification results to determine if there are bugs within a software,
but it is unclear if such an oracle would be sufficiently powerful to detect bugs. However,
the number of false positives seems to be too large to be useful for researchers as automated
pseudo-oracle to evaluate the effectiveness of testing approach for such algorithms.

Appendix: Additional Results
Within this appendix, we report additional results for all phases of the case study. Table 5

shows a complete list of algorithms from all frameworks and how they overlap. Table 6
shows how the hyperparameter must be configured for all feasible combinations we
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Table 6 Feasible combinations with at least three implementations

Group  Scikit-learn Weka Spark MLIlib Caret

GNB GaussianNB NaiveBayes NaiveBayes naive_bayes
modelType=gaussian usekernel=FALSE
adjust=1
laplace=0

nb
usekernel=FALSE
adjust=1
laplace=0

KDENB NaiveBayes naive_bayes

-K usekernel=TRUE

adjust=1
laplace=0

nb
usekernel=TRUE
adjust=1
laplace=0
MNB MultinomialNB NaiveBayesMultinomial NaiveBayes
modelType=multinomial
RF1 RandomForestClassifier RandomForest ranger
n_estimators=x -1 xy num.trees=x
max_features=x; -K xp mtry=xp
max_depth=x3 -depth x3 max.depth=x3
splitrule=gini

min.node.size=1

rborist
nTree=x;

predFixed=x»

nLevel=x3
minNode=1
RF2 RandomForestClassifier RandomForest ranger
n_estimators=x -1 xg num.trees=x
max_features=x, -K x» mtry=xp

splitrule=gini

min.node.size=1

rborist
nTree=x
predFixed=x,
minNode=1

if

ntree=x
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Table6 (continued)
Group Scikit-learn Weka Spark MLIib Caret
mtry=xp
LSVM  SvC SMO LinearSVC svmLinear
C=x; Cx; regParam=x tau=x
kernel=linear -k PolyKernel*
tol=0.001
svmLinear2
cost=x]
svmLinear3
cost=x
epsilon=0.001
Loss=L2
PSVM  SvVC SMO svmPoly
C=x; Cx C=x
degree=x, -E xp degree=x,
kernel=poly -k PolyKernel*
gamma=1 scale=1
tol=0.001
RBFSVM SvC SMO svmRadial
C=x; Cx C=x;
gamma=x, -G xo sigma=x,
kernel=rbf -k RBFKernel*
t01=0.001
MLP MLPClassifier MultilayerPerceptron MultilayerPerceptronClassifier mip*

hidden_layer_sizes=x

learning_rate_init=x;

max_iter=x3
momentum=0.0
solver=sgd
alpha=0.0

activation=logistic

-h x| layers=x
-L x» stepSize=x;
-N x3 maxlIter=x3
-M 0

solver=gd
-I

size=x|
learnFuncParams=c
(x1,0)

maxit=x3

mlpSGD*
size=x
learn_rate=x;
max_-epochs=x3
momentum=0
12reg=0
gamma=0
lambda=0

repeats=1
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Table6 (continued)
Group Scikit-learn Weka Spark MLIib Caret
DUMMY DummyClassifier ZeroR null
strategy=most_frequent
KNN KNeighborsClassifier 1Bk knn
n-neighbors=x; -K x; k=x1
LR LogisticRegression Logistic LogisticRegression regLogistic
-R0O regParam=0 cost=0
max_-iter=10000 -M 10000 maxIter=10000
-S
penalty=none loss=L2_primal
epsilon=0.0001
plr
lambda=0
cp=bic
polr
method=logistic
RIDGE LogisticRegression Logistic LogisticRegression regLogistic
C=1/(2-x1) -R x1 regParam=x cost=x
max_iter=10000 -M 10000 maxIter=10000
-S
penalty=I2 loss=L2_primal
epsilon=0.0001
RidgeClassifier plr
alpha=x lambda=x
max_-iter=10000
cp=bic
LASSO LogisticRegression LogisticRegression regLogistic
C=1/x; regParam=x cost=x
max_iter=10000 maxIter=10000
penalty=I1 elasticNetParam=1 loss=L1

epsilon=0.0001

Algorithm names are italic followed by the required parameters. Parameters in the same row have the same
meaning. If parameters are not specified for an algorithm, this means that the API documentation indi-
cates that the default is the same as what is achieved by using the parameters for the other algorithms. The
parameter values x; indicate that the parameter is configurable with the same meaning in all implementations.

identified. Table 7 provides additional details for the results of the execution of the differ-
ential tests. Figure 3 shows how often we observed differences between implementations
grouped by the framework they were implemented in. Figure 4 shows how often we
observed differences grouped by the data set we used to execute the tests. Figures 5, 6, 7,
8,9,10, 11, 12, 13, 14, 15, 16, 17 and 18 show for each algorithm we tested the values of
A and Agcore, normalized by the number of instances in the data set n. To better show the
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Table 7 Feasible combinations with at least three implementations

Group

Test results

GNB

KDENB

MNB

RF1

RF2

LSVM

The classes of all implementations are equal, except Weka, which yields different classes
on up to 2% of the instances on the RANDOM, WINE, and BC data. These differences
are not significant. The scores of the two pair naive_bayes and nb, as well as the pair
Scikit-learn Spark MLIib are equal. For all other pairs, we often observe large numbers of
deviations between the scores on up to 89% of the instances, both on the test and training
data. However, these differences are also not significant, i.e., we observe the same distribu-
tions when all instances are considered, but the scores of the individual instances depend on
the implementation.

We observe differences between all implementations. The differences between the R pack-
ages naive_bayes and nb are small, with respect to A, i.e, we observe only few differences
in classifications with at most 1%. However, we observe big differences in scores, on both
training and test data. However, none of these differences are significant. The differences to
the Weka implementation are large: we never observed the exact same classification with A
showing differences on between 3% and 27% of the data. These differences are significant in
about half of the time, i.e., on the WINE data and the test date of UNIFORM. We also observe
large differences in the scores, including cases where every single score is different. Similar
to the classifications, the differences in scores are significant one the WINE data, the test data
of UNIFORM, and, in addition, the test data of RANDOM, but only between the nb package
and WEKA.

We did not observe any differences between the Weka and Spark MLIib implementation. We
also did not observe any differences in the scores between all three implementations. However,
the Scikit-learn implementation classifies one instance differently in ten of 21 comparisons.
These differences are in cases where the score is almost exactly 0.5 and for one framework
slightly smaller and for the other framework slightly larger than 0.5, e.g., for Scikit-learn
0.499 and for Weka 0.501. In this case, we do not consider the scores different, but the classes
are different regardless.

The results of the random forests with a fixed depth of five are never exactly the same.
Between 0.7% and 40% of classifications are different. We note that the differences are larger
on the test data than on the training data. The differences between the two R packages and
Scikit-learn are similar to each other. The deviations between these three implementations
and Weka are about twice as large. However, these differences between the classifications
are mostly not significant, with two exceptions on the RANDOM data, where ranger devi-
ates significantly from Scikit-learn and weka. For the scores, we observe that the Weka and
Rborist have deviations on between 28% and 82% of the instances. However, these large dif-
ferences are only significant on the training data of WINE. The scores of Weka imlementation
and Rborist have deviations from Scikit-learn on between 52% and 100% of the instances.
These differences are almost always significant. We note that package ranger does not support
scores.

The results of the random forest without a fixed depth are also almost never exactly the same,
with two exceptions, once for Scikit-learn and the R package ranger, and once for Scikit-learn
and the R package rf. Otherwise, there are differences for up to 38% of the instances. Same
as for the random forest with fixed depth, the differences are larger on the test data. However,
in most cases, these differences are not significant, except on the WINE data, where ranger is
significantly different from all other implementations. For the scores differences on between
23% and 87% of the instances. However, none of these differences are significant, i.e., while
the scores are different, their distributions are not.

None of the linear SVMs implementations lead to equal results. The svmlinear and svmlinear2
from Caret are almost equal, with only a single instance that is classified differently on the
WINE data. The Scikit-learn and Weka implementations are also almost equal with two single
instance misclassified on the test data of UNIFORM and WINE. The differences between
most other pairs of implementations are similar, with between 1% and 11% of the instances
deviating from each other. The clear outlier is the Spark MLIib implementation, which yields
a different class on 38% to 44% of the instances on the RANDOM data, and also differences
on 12% to 16% of the WINE instances. These outliers of Spark MLIib are the only significant
deviations of the linear SVM.
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Table7 (continued)

Group
PSVM

RBFSVM

MLP

DUMMY

KNN

LR

RIDGE

LASSO

Test results

The Scikit-learn and Weka implementations of the polynomial SVM are equal. The Caret
implementation yields different classifications for 17% to 27% of the instances. However,
this difference is only significant on the UNIFORM data.

The Scikit-learn and Weka implementations of the RBF SVM are equal. The care imple-
mentation yields different classifications for 6% to 52% of the instances. This difference
is always significant, except training data of BC.

All three MLPs lead to the same classifications on the RANDOM data. The Scikit-learn
and Weka implementations are also also equal on the UNIFORM data. The Scikit-learn
and Spark MLIib implementation classify one instance differently on the UNIFORM
data. However, they are equal on the BC and WINE data. The difference of Scikit-learn
and Spark MLIib to Weka is on the BC and WINE data is significant, with differences
on between 34% and 51% of the instances. The scores of all three implementations are
significantly different from each other, with deviations on between 53% and 100% of the
instances.

The trivial classifiers always have the same classes. The scores depend on the implemen-
tation of the trivial model: Caret and Weka have the same approach and always yield
the same results. Scikit-learn uses a different approach and disagrees with the two other
scores. These disagreements are significant.

The nearest neighbor algorithms have the same classes, except on the WINE data, where
about 1% of the instances are classified differently between all combinations of frame-
works. These differences are not significant. The scores of Scikit-learn and Caret are also
equal, except on the WINE data, where 5% of the instances have different scores. This
difference is significant. On WINE, the scores of Caret are equal to those of Weka. On
the other data sets, Weka has significantly different scores from Caret and Scikit-learn,
with 91% to 100% of instances receiving different scores.

The logistic regressions have the same classes, except on the test data of BC, where about
3% of the instances are classified differently. These differences are not significant. Simi-
larly, the scores are always equal for all implementations on the UNIFORM, RANDOM,
and WINE data, as well as for Scikit-learn, Weka, and Spark MLIib on the BC training
data. We observe differences on between 3% and 9% of the instances on the remaining
tests on the BC data. The differences between the scores are significant.

The Weka, the LogisticRegression from Scikit-learn, and the Caret model plr yield iden-
tical for both classifications and scores results. The differences between the classes
predicted by the other pairs of implementations are between 0.3% and 4%, i.e., relatively
small and not statistically significant. The scores are inconsistent and have large and sig-
nificant deviations of on between 65% and 99% of the instances. The RidgeClassifier of
Scikit-learn does not compute scores.

The Caret and Scikit-learn implementation yield almost the same classes, with up to three
instances classified differently. These differences are not significant. The differences to
Spark MLIib are large and between 4% and 43% of instances are classified differently.
However, these differenes are only significant on the RANDOM data. The scores are
different for between 67% and 98% of the instances for Caret and Scikit-learn. However,
the difference is only significant on the training data of BC. The scores of Spark MLIib are
different on at least 99% and 100% of the instance, i.e., almost always. These differences
are significant.

Algorithm names are italic followed by the required parameters. Parameters in the same row have the same
meaning. If parameters are not specified for an algorithm, this means that the API documentation indi-
cates that the default is the same as what is achieved by using the parameters for the other algorithms. The
parameter values x; indicate that the parameter is configurable with the same meaning in all implementations
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range of differences we observed, the Figures also contain violin plots that show the dis-
tribution of the deviations. Figures 19 and 20 show the relationship of the accuracy of the
predictions and the values of A and Ao to provide further insights into both the perfor-
mance that we observed during our experiments, as well as the (lack of) a relationship of
this with our data and algorithms.
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RF2
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