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Abstract

Microbenchmarking is a widely used form of performance testing in Java software. A
microbenchmark repeatedly executes a small chunk of code while collecting measurements
related to its performance. Due to Java Virtual Machine optimizations, microbenchmarks
are usually subject to severe performance fluctuations in the first phase of their execution
(also known as warmup). For this reason, software developers typically discard measure-
ments of this phase and focus their analysis when benchmarks reach a steady state of
performance. Developers estimate the end of the warmup phase based on their expertise,
and configure their benchmarks accordingly. Unfortunately, this approach is based on two
strong assumptions: (i) benchmarks always reach a steady state of performance and (ii)
developers accurately estimate warmup. In this paper, we show that Java microbenchmarks
do not always reach a steady state, and often developers fail to accurately estimate the end
of the warmup phase. We found that a considerable portion of studied benchmarks do not
hit the steady state, and warmup estimates provided by software developers are often inac-
curate (with a large error). This has significant implications both in terms of results quality
and time-effort. Furthermore, we found that dynamic reconfiguration significantly improves
warmup estimation accuracy, but still it induces suboptimal warmup estimates and relevant
side-effects. We envision this paper as a starting point for supporting the introduction of
more sophisticated automated techniques that can ensure results quality in a timely fashion.
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1 Introduction

Microbenchmarking is a form of lightweight performance testing, widely used to assess
the execution time of Java software (Leitner and Bezemer 2017). Although less demanding
than other performance testing techniques (e.g., load tests (Jiang and Hassan 2015)), Java
microbenchmarking requires careful design (Costa et al. 2021; Georges et al. 2007; Kalibera
and Jones 2013) to enable a reliable performance assessment. A key challenge is the inher-
ent non-linearity of Java performance: The Java Virtual Machine (JVM) uses just-in-time
compilation to translate “hot” parts of the Java code into efficient machine code at run-
time (Barrett et al. 2017), leading to (often severe) performance fluctuations and potentially
unstable results.

To tackle this problem, practitioners rely on the assumption that microbenchmarking is
characterized by two distinct phases. During an initial warmup phase, the JVM determines
which parts of the software under test would most benefit from dynamic compilation, then,
in a subsequent phase, the benchmark reaches a steady state of performance. Based on that,
benchmarks are typically designed to discard measurements of the warmup phase and focus
on steady state performance (Barrett et al. 2017; Georges et al. 2007; Kalibera and Jones
2013). Java Microbenchmark Harness (JMH), i.e., the most popular Java microbenchmark-
ing framework (Leitner and Bezemer 2017), leverages this concept and enables developers
to manually configure the expected warmup time of a benchmark. Once launched, a JMH
benchmark continuously executes the software under test for the configured warmup time,
and, only after that, starts to collect steady state performance measurements.

Although considered the cornerstone of most of the current Java microbenchmark-
ing practice, the two-phase assumption is not yet confirmed by empirical studies. Quite
the opposite, there are indications that such an assumption oversimplifies the actual
microbenchmarking behavior. In a recent study, Barrett et al. (2017) studied a set of small
and deterministic benchmarks (Bagley et al. 2004; Bolz and Tratt 2015) across different
types of VMs (including the JVM), and found that a relevant portion of benchmarks never
hit the steady state. It is worth to notice that these benchmarks significantly differ from
“software testing oriented” benchmarks (e.g., JMH). Indeed, they are not aimed at assess-
ing specific software, rather, they are typically used as optimization targets by VM authors.
Even more, they are generally more effectively optimized by VMs than average software
(Ratanaworabhan et al. 2009). Despite the peculiarity of these benchmarks, the finding of
Barrett et al. (2017) raises concerns on the current Java microbenchmarking practice, and
calls for further empirical investigation.

Nevertheless, even when benchmarks consistently reach a steady state, performance
assessment remains far from trivial. A key challenge is to effectively estimate warmup time.
An overestimated warmup time may waste too much time, thereby potentially hampering
the adoption of benchmarks in the Continuous Integration (CI) pipeline (Laaber et al. 2020;
Traini 2022). On the other hand, an underestimated warmup time may easily mislead steady
state performance assessment (Georges et al. 2007; Kalibera and Jones 2013).

The current state-of-practice mostly relies on software developers’ knowledge to deter-
mine warmup time. Software developers estimate warmup time based on their expertise,
and statically configure benchmark execution according to this estimation. Unfortunately,
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no empirical studies so far have directly investigated the effectiveness of this practice for
steady state performance assessment.

Recently, an alternative approach to static benchmark configuration has been proposed
by Laaber et al. (2020). This approach, called dynamic reconfiguration, leverages stability
criteria (He et al. 2019; Kalibera and Jones 2013) to automatically determine the end of
the warmup phase at run-time. According to their results, when compared to JMH default
configurations, dynamic reconfiguration can significantly reduce execution time with low
impact on results quality. Despite these promising results, there is still little knowledge on
the effectiveness of dynamic reconfiguration for steady state performance assessment. And
even more, it is yet unclear whether such techniques can improve the effectiveness of the
current practice, i.e., developer static configurations.

In the past years, Java microbenchmarks have been widely studied in the literature. Leit-
ner and Bezemer (2017) found that JMH was one of the predominant microbenchmarking
framework in the Java community. Costa et al. (2021) empirically studied five JMH bad
practices. Laaber et al. (2019) performed an exploratory study on software microbench-
marking in the cloud. Samoaa and Leitner (2021) studied the impact of parameterization in
JMH microbenchmarks.

Despite these efforts, there is still a lack of knowledge on the effectiveness of modern
Java microbenchmarking for steady state performance assessment. In this paper, we aim to
fill this gap by presenting the first comprehensive study that investigates steady state per-
formance assessment in Java microbenchmarking. After an extensive experimentation of
586 JMH benchmarks from 30 Java systems, involving ~9.056 billion benchmark invoca-
tions for an overall execution time of ~93 days, we determined whether and when each
benchmark reaches a steady state using an automated statistical approach by Barrett et al.
(2017) based on changepoint analysis (Killick et al. 2012). At the time of writing, Barrett
et al.’s approach represents one of the most advanced automated technique to determine
steady state execution in Java benchmarks. Besides investigating whether benchmarks ever
reach a steady state or not, we also comprehensively evaluated the effectiveness of the
current state-of-practice and state-of-the-art. In particular, we investigated to what extent
statically-defined developer configurations (i.e., state-of-practice), and dynamic reconfigu-
ration techniques (i.e., state-of-the-art) are effective in ensuring a reliable and time-efficient
assessment of steady state performance in JMH benchmarks. Even more, we quantified the
potential side effects due to inaccurate warmup estimation both in terms of execution time
waste and misleading performance measurements.

Laaber et al. (2020) have already investigated the effectiveness of dynamic recon-
figuration. However, their study was mainly concerned with a particular aspect of Java
microbenchmarking, i.e., reducing execution time. In this paper, instead, we aim to provide
a comprehensive investigation on the effectiveness of dynamic reconfiguration (and devel-
oper static configurations) for steady state performance assessment. Due to our goal, we do
not use JMH defaults as baselines, as done by Laaber et al., since there is no guarantee that
they can effectively capture steady state performance. Indeed, although JMH defaults are a
reasonable baseline for comparison,' their use may have downsides when studying steady
state performance. Several studies have shown that benchmarks often reach their steady

1JMH defaults are configurations defined by JMH developers, which are undoubtedly experts in the field of
Java microbenchmarking.
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states in different numbers of iterations (Georges et al. 2007; Kalibera and Jones 2013),
thus it may be misleading to use a unique (though reasonable) configuration as baseline,
i.e., JMH defaults may be effective for some benchmarks and suboptimal for other ones. In
order to avoid this problem, we leverage a different (and more rigorous) approach to assess
dynamic reconfiguration effectiveness. We first use a state-of-the-art steady state detection
technique to determine if/when a benchmark reaches a steady state of performance, then we
base on its outcome to assess dynamic reconfiguration effectiveness. Besides this evaluation
of dynamic reconfiguration techniques, this paper presents the following novel investiga-
tions. We present the first study that investigates if/when JMH benchmarks reach a steady
state of performance. Second, we perform the first evaluation on the effectiveness of stat-
ically defined developer configurations. Third, we introduce the first comparison between
the effectiveness of developer configurations (i.e., the current state-of-practice) and dynamic
reconfiguration techniques (i.e., the current state-of-the-art).

Our results show that JMH benchmarks do not always reach a steady state of perfor-
mance, thereby demystifying the current cornerstone of Java microbenchmarking, i.e., the
two-phase assumption. This finding implies that practitioners may rely on measurements
that are not representative of “actual” steady state performance. In addition, our results sug-
gest that developer static configurations are often ineffective for warmup estimation, and
may cause either improperly long execution times or misleading performance assessment.
On the other hand, dynamic reconfiguration techniques show significant improvement over
the current state of practice, but they still produce inaccurate estimates of the warmup
time, hence causing time-consuming benchmark executions and distorted results. This find-
ing highlights room for improvement for dynamic reconfiguration, and it calls for further
research on this topic.

The main contributions of this paper are:

— a statistically rigorous investigation of steady state performance in JMH microbench-
marks.

— an empirical evaluation of developer static configurations in JMH microbenchmarks.

— acomprehensive comparison among the effectiveness of developer static configurations
and state-of-the-art dynamic reconfiguration techniques.

— a large dataset of labeled benchmark executions to facilitate future research on
Java steady state performance assessment, and foster further innovations in dynamic
reconfiguration.

The remainder of this paper is organized as follows. Section 2 introduces steady state
performance assessment and JMH microbenchmarks. Section 3 describes our research ques-
tions and Section 4 explains the experimental design. Section 5 reports the results. Section 6
discusses some implications of our findings. Section 7 describes threats to validity. Section 8
presents related work, and Section 9 concludes this paper.

2 Background

2.1 Steady State Performance

At the beginning of its execution, typically, a Java microbenchmark is slowly executed by
the JVM. In a subsequent phase, the JVM detects “hots” (i.e., frequently executed) loops

or methods, and it dynamically compiles them into optimized machine code. As a conse-
quence, subsequent executions of those loops or methods (usually) become faster. Once
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dynamic compilation is completed, the JVM is said to have finished warming up, and the
benchmark is said to be executing at a steady state of performance.

Java microbenchmarking aims at assessing steady state performance (e.g., execution
time) of Java software. The typical approach to collect steady state measurements is straight-
forward: A microbenchmark is executed for a certain number of times, and the first n
benchmark executions are discarded (i.e., those related to the warmup phase) to prevent
potentially misleading results. Unfortunately, the fixed number of n executions does not
guarantee that warmup has ended. In order to investigate this issue, researchers started to
develop data-driven methodologies to identify the end of the warmup phase. Prominent
works in this regard are the methodologies proposed by Georges et al. (2007), and Kalib-
era and Jones (2013). The former uses preset thresholds on the coefficient of variation to
determine whether the warmup phase is finished or not, while the latter leverages data visu-
alization techniques (i.e., auto-correlation function plots, lag plots and run-sequence plots).
Unfortunately, each one of these methodologies has its own drawback. Kalibera and Jones
showed that the Georges et al.’s heuristic (2007) often fails to accurately determine the end
of the warmup phase (Kalibera and Jones 2013). On the other hand, the methodology pro-
posed by Kalibera and Jones (2013) is mostly based on a manual process, which typically
implies some major limitations: (i) humans are prone to error/disagreement, (ii) manual
analysis doesn’t enable automation, and therefore it is not scalable.

To overcome these limitations, Barrett et al. (2017) recently proposed a novel automated
technique based on change point detection (Eckley et al. 2011). The main advantage of this
technique is that it provides a more rigorous approach compared to the Georges et al.’s
simple heuristic, while still enabling a fully automated process (unlike Kalibera and Jones’
approach). The Barrett et al.’s technique leverages a standard change point detection algo-
rithm, namely PELT (Killick et al. 2012), to determine shifts in benchmark execution
time. The identified shifts (i.e., change points) are then post-processed (e.g., by remov-
ing negligible performance shifts) to determine if/when a benchmark reaches a steady
state of performance. To the best of our knowledge, this technique currently represents the
state-of-the-art for steady state detection.

Figure 1a and b show two examples of benchmark executions along with the performance
shifts identified by the PELT algorithm. The former consistently reaches a steady state of
performance, while the latter doesn’t.

2.2 Java Microbenchmark Harness (JMH)

JMH is the de-facto standard framework for writing and executing microbenchmarks for
Java software. It enables software developers to easily develop and execute microbench-
marks that measure fine-grained performance of specific units of Java code (e.g., methods).
JMH supports steady state performance assessment by providing facilities that enable devel-
opers to statically configure the number of times each benchmark execution will be repeated
(without compromising the reliability of results2).

Figure 2 depicts a typical JMH benchmark execution. JMH supports three different lev-
els of repetitions: forks, iterations and invocations. Invocations (i.e., the lower level of
repetition) are nominal benchmark executions that are continuously performed within a pre-
defined amount of time, namely an iteration. In turn, a fork is constituted by a sequence of
iterations performed on a fully clear instantiation of new JVM. Indeed, as suggested by best

2JMH code samples. Pitfalls of using loops in Java microbenchmarking. https://bit.ly/31CqCZ4
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(a) Example of benchmark execution that consistently reaches a steady state
of performance.
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(b) Example of benchmark execution that doesn’t reach a steady state of
performance.

Fig. 1 Two examples of benchmarks executions from our results. The grey line represents the execu-
tion times of each benchmark iteration visualized as a time-series. The x-axis represents the bench-
mark iteration number, while the y-axis represents the mean execution time within the iteration. Shifts
in performance behaviour (i.e., changepoints) are indicated by dashed vertical red lines. The height
of each dashed horizontal red line denotes the mean execution time within the changepoint segment.
The plot titles show: the system that the benchmark belongs to (e.g., h2o-3), the benchmark name
(e.g., water.util.IcedHashMapBench.writeMap), and the JMH fork number

@ Springer



Empir Software Eng (2023) 28:13 Page 7 of 57 13

forks (f)

warmup iterations (wi) measurement iterations (i)

invacation invacation

invocation

invocation

Fig.2 The JMH microbenchmark life cycle

practices (Barrett et al. 2017; Costa et al. 2021; Georges et al. 2007; Kalibera and Jones
2013), iterations should be repeated multiple times on fresh JVM instantiations (i.e., forks)
to mitigate the contextual effects of confounding factors.

Each fork is usually composed by two distinct types of iterations: warmup and measure-
ment iterations. Warmup iterations are intended to bring the fork (i.e., the fresh JVM) into a
steady state of performance, while measurement iterations are the ones where performance
measurements are actually collected. Each measurement iteration typically returns a set of
performance measurements (e.g., a sample of benchmark invocation execution times) or a
performance statistic (e.g., average execution time or throughput).

JMH provides a set of configuration parameters to define the different levels of repe-
titions involved during microbenchmarking. These parameters include: warmup iteration
time w, measurement iteration time », warmup iterations wi, measurement iterations 7, and
forks f. Iteration time parameters (w and r) define the minimum time spent within an
iteration. Given an iteration time w (resp. r), a warmup (resp. measurement) iteration will
continuously perform benchmark invocations until the iteration time will expire. Warmup
and measurement iterations (i.e., wi and i), instead, define the number of iterations per-
formed within each fork. Finally, the fork parameter f defines the number of fresh JVM
instantiation, i.e., the higher level of benchmark repetition.

Typically, Java developers directly set JMH configuration parameters on benchmark
code through Java annotations. Nonetheless, when launching the benchmark, JMH allows
to override developer configurations via Command Line Interface (CLI) arguments.

2.3 Dynamic Reconfiguration

JMH allows to statically define the expected length of the warmup phase using configuration
parameters, such as warmup iteration time w and warmup iterations wi. Such estimation
is typically performed on the basis of developer expertise and/or benchmark nature. Previ-
ous studies have shown that a static definition of the warmup time can be quite detrimental
for steady state performance assessment (Barrett et al. 2017; Georges et al. 2007; Kalib-
era and Jones 2013). An alternative to JMH static configuration can be found in a recent
approach called dynamic reconfiguration (Laaber et al. 2020). This approach is able to deter-
mine, during a JMH benchmark execution, whether the measurements appear to be stable,
and more executions are unlikely to improve their accuracy. The rationale behind dynamic
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reconfiguration is that, by using automated stability criteria to halt the benchmark execu-
tion, developers can save some of the time dedicated to performance testing while keeping
an acceptable level of accuracy. To achieve this, the dynamic reconfiguration approach uses
a sliding window to compare the last iterations to a stability criterion. Laaber et al. (2020)
propose and evaluate three stability criteria to dynamically estimate the end of the warmup
phase:

—  Coefficient of variation (CV)3: CV is the ratio of the standard deviation to the mean,
and it can be used to compare normally distributed data. Even when data is not normally
distributed, as it is often the case for benchmark data, CV can still provide an estimate
of measurement variability. A fork is considered stable when the difference between
the largest and the smallest value of CV computed on the sliding window is within a
fixed threshold.

—  Relative confidence interval width (RCIW): in this case, the variability in measurement
data is estimated using a technique by Kalibera and Jones (2013, 2020) that employs
hierarchical bootstrapping to compute the RCIW for the mean. The hierarchical levels
are invocations, iterations, and forks.

—  Kullback-Leibler divergence (KLD): a technique described by He et al. (2019) to com-
pute the probability that two distributions are similar based on the Kullback-Leibler
divergence (KLD) (Kullback and Leibler 1951). In this case, the first distribution con-
tains all the measurements in the sliding window excluding the last one, while the
second distribution includes also the last measurement. As a consequence, stability
is reached when the mean of the computed similarity probabilities is above some
threshold.

In order to further reduce benchmark execution time, dynamic reconfiguration leverages
the same stability criteria also to dynamically determine whether to execute the next fork or
not.

3 Research Questions

In this work we aim to answer the following Research Questions (RQs):

RQ1 Do Java microbenchmarks reach a steady state of performance?
RQ> How does steady state impact microbenchmark performance?
RQ3 How effective are developer configurations in assessing Java steady state perfor-

mance?

RQ4 How effective is dynamic reconfiguration in assessing Java steady state perfor-
mance?

RQs Does dynamic reconfiguration provide more effective warmup estimates than devel-
opers do?

31t is worth to notice that, although both the approaches of Laaber et al. (2020) and Georges et al. (2007) are
based on coefficient of variation (CV), they have some relevant differences. Indeed, Georges et al.’s heuristic
uses a fixed threshold on CV, while Laaber et al.’s approach computes the difference between the minimum
and the maximum CV in a sliding window of iterations, and it determines whether this difference exceeds
a predefined threshold. Interestingly, Laaber et al. (2020) reported that the usage of the Georges et al.’s
heuristic to dynamically estimate the end of the warmup is unrealistic for JMH microbenchmarks. (Indeed,
in our experimental setup, it stops warmup iterations in only 46.7% of forks, when using a measurements
window of 30, and a CV threshold of 0.02).
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In the following subsections, we discuss in detail the motivation for each of the RQs and
the methodology used to gather the answers. In Section 4, we describe the experimental
setup along with the benchmarks used in our empirical study.

3.1 RQ;—Steady State Assessment

With this research question, we aim to evaluate whether Java microbenchmarks reach a
steady state of performance. We first use a state-of-the-art steady state detection tech-
nique (Barrett et al. 2017) to determine whether and when each fork reaches a steady state
of performance (see Section 4.3 for details). Based on these results, we then classify each
benchmark as either (i) steady state, if all the forks reach a steady state of performance, (ii)
no steady state, if none of the forks reach a steady state or (iii) inconsistent, if the execution
involves both steady state and no steady state forks.

We report the classification shares for both benchmarks and forks. Additionally, we
report the percentages of no steady state forks for each benchmark.

3.2 RQ,—Steady State Impact

With this research question, we want to investigate to what extent the attainment of a steady
state impacts benchmark performance. To do so, we compare the measurements collected
during steady state phases against those collected in non-steady phases of benchmark exe-
cution. We perform two different analyses: the first one investigates the difference between
steady and non-steady performance within the same fork, the second one assesses the same
aspect across different forks. Besides these two analyses, we also investigate two potential
countermeasures to mitigate performance deviations in non-steady phases of benchmark
execution.

All the aforementioned analyses involve a comparison between a set of steady mea-
surements M*/?P'¢ and a set of non-steady measurements M“"$'%b¢ Tn order to assess to
what extent non-steady measurements differ from steady measurements, we use relative
performance deviation (RP D).

In the following, we first explain the process we use to compute R P D. Then, we describe
in the detail the four analyses we use to gather the answer.

3.2.1 Relative Performance Deviation

In order to quantify the relative performance deviation of M**'@ble compared to Ms'eble,
we use the technique proposed by Kalibera and Jones (2013). The main benefit of this tech-
nique is that it provides a clear and rigorous account of the relative performance change and
the uncertainty involved. For example, it can indicate that a set of execution time measure-
ments is higher than another by X %=+Y % with 95% confidence. Following the guidelines of
Kalibera and Jones (2013) and Kalibera and Jones (2020), we build each confidence inter-
val using bootstrapping with random re-sampling and replacement (Davison and Hinkley
1997), with a confidence level of 95%. We run 10,000 bootstrap iterations. At each iteration,
new realizations M“S'able and pfstable (respectively, of MUmstable and pgstable meagure-
ments) are simulated and the relative performance change is computed. The simulation of
the M nstable pew realizations randomly selects a subset of real data from M"“"s'able with
replacement. Similarly, Mstable i simulated by randomly sampling M*'“'¢_ The two means
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(phnst able and ut abley and the relative performance change (p) for simulated measurements

are computed as follows:

n yunstable
Yio M

unstable __
n
m  aystable
’ustable — Zi=1 Mi
m
Munsmble _ Mstable
p= Mstable

where n is the number of measurements in M unstable ., the number of measurements in
Ms1able  After the termination of all iterations, we collect a set of simulated realizations of
the relative performance change P = {p; | 1 < i < 10,000} and estimate the 0.025 and
0.975 quantiles on it, for a 95% confidence interval. We consider a relative performance
change as statistically significant if the confidence interval does not contain 0. For example,
given a confidence interval of (0.05,0.07), we can say that the mean execution time in
MHnstable jq higher than the one in M*'@P!¢ with a relative performance change that ranges
between 5% and 7% with 95% confidence.

We leverage the confidence interval of the mean relative performance change (/b, ub) to
compute the relative performance deviation:

0 ifIb<0<ub

RPD =
| w | otherwise

In other words, we define RP D as the center of the 95% confidence interval of the
mean relative performance change, if the interval doesn’t contain zero. On the other hand,
RPD evaluates to 0 if the confidence interval does not report a statistically significant
performance change, i.e., the interval does contain 0. Higher values of R P D indicate that
Munstable sirongly deviates from MSieble,

3.2.2 Analyses

In order to analyze performance deviation within forks, we consider only forks that have
reached a steady state of performance, and we analyze how performance changes when the
steady state is reached. In particular, we partition the set of measurements of each fork in two
distinct sets, namely M*'@b¢ and pnstable  and we compare them to quantify the relative
performance deviation (R P D). M*'%%!¢ contains the measurements collected during steady
state execution, i.e., those gathered after the steady state starting time st, while M*stable
contains measurements collected before s¢. Figure 3a provides a graphical representation of
this process for a given steady fork.

To investigate performance deviation across forks, instead, we assess how performance
differs between steady and non-steady forks. To do that, we exclusively consider incon-
sistent benchmarks (i.e., the ones that contain both steady and non-steady forks), and we
randomly pick from each benchmark a pair of forks (f, f ): one that has reached a steady
state of performance (f) and one that does not ( f ). We then use each pair to compare
the measurements collected in the steady fork (M*'?b!¢) against those collected in the non-
steady fork (M""s'able) and we quantify RP D. In order to enable a fair comparison, we
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Fig.3 RQ; analyses

use the same measurement window for both steady and non-steady forks. Namely, given a
pair of forks (f, f ), we define punstable (resp., Mstabley g the set of measurements col-
lected in f (resp., f) after st, where st denotes the steady starting time of the steady fork
f. Figure 3b depicts this process for one inconsistent benchmark.
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Besides the aforementioned analyses, we investigate potential countermeasures to mit-
igate performance deviations of non-steady measurements. In particular, we analyze two
specific aspects: number of warmup iterations and number of forks. With our analysis on
warmup iterations, we aim to tackle performance deviations of non-steady forks, i.e., forks
that never reach a steady state of performance. In particular, we want to assess to what
extent an increase in the number of warmup iterations can mitigate performance deviations
of non-steady forks. With our analysis on forks, instead, we aim to tackle deviations of non-
steady measurements in forks that consistently reach a steady state of performance. That
is, we investigate to what extent an increase in the number of forks mitigates performance
deviations of measurements gathered during non-steady phases of benchmark execution.

In order to investigate the impact of warmup iterations, we first randomly sample one
steady fork f and one non-steady fork f from each inconsistent benchmark. Then, for each
pair (f, f ), we use a sliding window of 50 consecutive measurements (M unstabley jp f ,and
we assess the deviation from the set of steady state measurements collected in f, namely
M>table 1 particular, we partition the sequence of measurements gathered from f in 60
segments of equal size (i.e., 50 measurements), and we compute the relative performance
deviation of each segment from M*'*P!¢_ By doing so, we can assess whether increasing
the number of warmup iterations can mitigate performance deviations of non-steady forks.
Figure 3¢ shows the process used to compute the R P D for one specific segment (Msteble)
of f,ie., fora specific number of warmup iterations.

In order to investigate the influence of forks, instead, we assess how performance devi-
ation of non-steady measurements changes when using different numbers of forks. Given
the goal of this analysis, we consider only steady benchmarks, i.e., benchmarks that exclu-
sively involve steady forks. For each benchmark, we progressively increment the number
of considered forks and, at each increment i, we form a set Mﬁ‘"”“ble composed by all
the non-steady measurements gathered from these forks. Then, we compute, for each set
Mynst able the deviation from the entire set of steady measurements gathered from all the
forks (MS7eble) a5 showed in Fig. 3d. In particular, we start by comparing the set of non-
steady measurements collected from the first fork (M’f””“ble) to the whole set of steady
measurements M?*'??¢  Subsequently, we consider the set of non-steady measurements
from the first two forks together (Mg””“ble) and, again, we compare it to M*'%?'¢_ We pro-
ceed in this way for each set of non-steady measurements M}"’”“ble, with i ranging from
1 to 10. At the end of this process, we obtain one result (i.e., relative performance devia-
tion) for each pair (b, i), where b denotes a steady benchmark and i denotes the number of
considered forks. Through this analysis, we can assess if/how the increases in the number
of forks mitigate the inherent deviations of non-steady measurements. It is worth to notice
that we perform this analysis in an extreme situation, i.e., by considering exclusively non-
steady measurements. We decided to do so because, if can we demonstrate that the increases
in the number of forks can mitigate performance deviations in such an extreme case, then
there are strong indications that they can effectively mitigate the impact of non-steady
measurements.

3.3 RQ3;—Developer Configuration Assessment

With this research question, we aim to evaluate the effectiveness of developer configurations
for steady state performance assessment. To do so, we assess how well software developers
capture steady state starting time (st), i.e., the execution time required to reach a steady
state of performance in a fork. Specifically, in each fork, we compare the estimated warmup
time (wt) defined by software developers with the steady state starting time st detected by
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the technique of Barrett et al. (2017). We measure the error of wt using warmup estimation
error (WEE), i.e., how far wt is to the steady state starting time s¢:

WEE = |wt — st|

Additionally, we report the proportion of underestimated and overestimated forks (i.e.,
wt is respectively smaller or larger than st by at least 5 s), and we investigate potential side
effects.

An overestimated warmup phase wastes execution time, since it leads to a surplus of
warmup iterations, which, in turn, delay the beginning of measurement iterations. This
inevitably increases benchmark execution time and causes potentially harmful practical
implications. For example, the “time effort” of a performance test is often considered a
critical factor when selecting the tests to execute before a software release (Traini 2022;
Chen and Shang 2017). In that, an overestimated warmup phase can hamper the adoption of
microbenchmarks for continuous performance assurance, especially when software releases
happen frequently (Rubin and Rinard 2016), and tests are executed as part of a Continuous
Integration (CI) pipeline (Fowler 2006). To investigate side effects of overestimated warmup
time, we use time waste, i.e., the overestimation error induced by developer configurations.
We quantify time waste through the difference (in terms of time) between wt and sz. In other
words, time waste represents the execution time that can be potentially saved in a fork.

On the other hand, an underestimated warmup phase may easily mislead steady state per-
formance assessment. Indeed, unstable measurements (i.e., measurements gathered before
st) may distort performance results, thereby leading to potentially wrong conclusions
(Georges et al. 2007; Kalibera and Jones 2013). We assess the impact of underestimated
warmup time using relative performance deviation (RP D), i.e., the magnitude of perfor-
mance deviation compared to steady state measurements. That is, for each underestimated
fork, we compare performance measurements in the steady state (M*'*?'¢) with those in
the measurement time window defined by software developers (M<"f) using RPD. A
high R P D indicates that performance measurements used by software developers strongly
deviate from those collected in the steady state.

Besides investigating the effectiveness of developer configurations at fork level, we also
analyze their effectiveness at benchmark level, i.e., across multiple forks. Through this
analysis, we aim to evaluate developer configurations not only in terms of warmup and
measurement iterations, but also based on the number of configured forks. To do that,
we consider the entire set of measurements gathered through developer configuration (i.e.,
across the configured forks), and we compare it to the whole set of steady measurements
gathered across all the steady forks of the benchmark. In particular, for each benchmark,
we assess the extent to which the set M/ of developer measurements deviate from the
set Ms1able of steady measurements. In addition, we report the time effort of benchmarks
based on developer configurations by computing their overall execution time.

3.4 RQs—Dynamic Reconfiguration Assessment

With this research question, we aim to evaluate the effectiveness of dynamic reconfiguration
approaches (Laaber et al. 2020) for steady state performance assessment. These approaches
dynamically determine the warmup time during benchmark execution using stability crite-
ria. In our evaluation, we consider three stability criteria proposed by Laaber et al. (2020):
(i) Coefficient of variation (CV), (ii) Relative confidence interval width (RCIW), and (iii)
Kullback-Leibler divergence (KLD).
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In order to assess the effectiveness of each dynamic reconfiguration variant (i.e., stability
criteria), we use the same methodology adopted in RQ3. We first report the warmup estima-
tion error (W E E) of forks, along with the proportion of underestimated and overestimated
warmup time. Then, we consider the potential side effects of wrong warmup estimation
using time waste and relative performance deviation (R P D). Finally, we investigate the
effectiveness of dynamic reconfiguration at benchmark level (i.e., across forks) by assessing
their RPDs and the overall execution time.

3.5 RQs—Dynamic vs Developer Configurations

To answer RQs5, we compare dynamic reconfiguration techniques against developer config-
urations using three evaluation metrics: (i) warmup estimation error, (ii) estimated warmup
time, and (iii) relative performance deviation.

Warmup estimation error (W E E) measures the accuracy of wt, i.e., how close wt is
to the steady state starting time st. Lower values of W E E indicate better estimates of the
warmup time.

Estimated warmup time (wt) measures the time spent to warmup a fork with respect to a
specific configuration. Higher values of wt increase the time effort devoted to performance
testing, and, therefore, can potentially hamper the adoption of benchmarks for continuous
performance assessment.

Relative performance deviation (R P D), instead, measures in each fork the magnitude
of performance deviation of M/ compared to steady state performance measurements
(M?stebley Higher values of RP D indicate that M/ strongly deviates from M**@%¢_ thus
implying that performance measurements determined by the configuration may potentially
mislead steady state performance assessment. As a complementary analysis, we further use
R P D to measure performance deviations at benchmark level. That is, we quantify (for each
benchmark) the magnitude of deviation of the entire set of measurements gathered through
developers/dynamic configurations (M) when compared to the whole set of steady
measurements collected through the entire benchmark execution (M* tabley

The results of WEE, wt, and RPD are compared using the Wilcoxon Rank-Sum
test (Cohen 2013), which is a non-parametric test that makes no assumption about under-
lying data distribution, hence, raises the bar for significance for both normally and
non-normally distributed data. Additionally, a standardized non-parametric effect size mea-
sure, namely the Vargha Delaney’s A 12 statistic (Vargha and Delaney 2000), is used to assess
the effect size. Given a dynamic reconfiguration technique D, A1» measures the probability
of D performing better than developer configurations with reference to a specific evalua-
tion metric. Alz is computed using (1), where R; is the rank sum of the first data group we
are comparing, and m and n are the numbers of observations in the first and second data
sample, respectively.

Ap=-——"- ey

We interpret A using the thresholds provided by Vargha and Delaney (2000). Based on
(1), if dynamic configurations and developer configurations are equally good, Alz = 0.5.
Respectively, A higher than 0.5 means that dynamic reconfiguration is more likely to
produce better results. The effect size is considered small for 0.56 < Alz < 0.64, medium
for 0.64 < Alz < 0.71, and large for Alg > (.71. On the other hand, Alz smaller than
0.5 means that developer configurations provide better results. In this case, the effect size
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is considered small for 0.34 > Alz < 0.44, medium for 0.29 > Alz < 0.34, and large for
A1z <0.29.

In order to avoid misleading interpretations, we perform transformation on the A 12 effect
size (Neumann et al. 2015), since we consider values of W E E smaller than 5 s and RP D
smaller than 5%, as negligible (Maricq et al. 2018), and, therefore, “equally good”. In par-
ticular, we apply Pre-Transforming Data (Neumann et al. 2015) by replacing each value
of WEE < 5sec and RPD < 0.05 with zero. When it comes to estimated warmup time
(wt), no transformation is performed on the Alz effect size, since we are interested in any
improvement (Neumann et al. 2015; Sarro et al. 2016).

4 Experimental Design

In order to answer our research questions, we first collect performance measurements from
the execution of 586 microbenchmarks across 30 systems. Then, we analyze collected mea-
surements to determine whether and when each fork reaches a steady state of performance.
Finally, we perform post-hoc analysis on the collected measurements to assess developers
and dynamic configurations.

In this section, we first describe the microbenchmarking setup we use to collect perfor-
mance measurements and the benchmark subjects. Then, we describe in detail the steady
state detection technique used in our empirical study. Finally, we present the process we use
to extract both developer and dynamic configurations.

4.1 Microbenchmarking Setup

Following the methodology used in the study of Barrett et al. (2017), we execute each bench-
mark for a substantially longer time than “usual” JMH configurations (on average 171 times
longer than developer configurations). We perform 10 JMH forks for each benchmark (as
suggested by Barrett et al. (2017)), where each fork involves an overall execution time of at
least 300 s and 3000 benchmark invocations. To do so, we configure the execution of each
benchmark via JMH CLI arguments. Specifically, we configure 3000 measurement itera-
tions (-1 3000) and O warmup iterations (-wi 0) to collect all the measurements along the
fork. Each iteration continuously executes the benchmark method for 100ms (-r 10 oms).*
The number of fork is configured to 10 (-£ 10). As benchmarking mode, we use sam-
ple (-bm sample), which returns nominal execution times for a sample of benchmark
invocations within the measurement iteration.

The execution environment and external events occurring during the benchmark runs
have a remarkable influence on the accuracy of results. This is especially true when execut-
ing microbenchmarks, as they tend to measure small portions of code that may last less than
a microsecond and are, therefore, more prone to be affected by even small changes in the
environment. Hence, we tried to control as many sources of variability as possible in order
to obtain more reliable measurements.

We disabled Intel Turbo Boost, i.e., a feature that automatically raises the CPU operat-
ing frequency when demanding tasks are running (Suchanek et al. 2017). We also disabled

4We chose 100ms as iteration time because this value enables us to “replicate” every possible configuration
considered in our study (see Section 4.4 for more details on how we obtain the set performance measurements
for a particular JMH configuration).
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hyper-threading, i.e., a feature in modern processors that executes two threads simultane-
ously on the same physical core (Suchanek et al. 2017). This is achieved by replicating
the architectural state but sharing execution resources such as ALUs and caches. For this
reason, hyper-threading may lead to contention patterns that continuously vary during the
execution.

Another potential cause of variability among repeated runs is represented by Address
Space Layout Randomization (ASLR), which is a security technique to randomly arrange
the address space positions at each execution. We disabled ASLR as it may cause variability
in the measurements from one fork to another.

The amount of available memory can also affect execution times. We fixed (through the
-Xmx flag) the total amount of heap memory available to the JVM to 8GB, because this is
the most important factor affecting garbage collection performance. In fact, the throughput
of garbage collections is inversely proportional to the amount of memory available, since
collections occur when memory fills up (Oaks 2014).

A large variety of operating system events may have a noticeable impact on execution
times because they increase context switching in most cases. For this reason, we tried to
keep the events that are not related to the benchmarks to a minimum. We disabled any Unix
daemon that is not strictly necessary. We also disabled SSH logins for the entire duration
of the experiments. To further reduce context switching, we used priority scheduling and
increased the niceness of the JIMH process running the benchmarks and all its children.

Finally, we ensured that the state of the system was consistent at each run by monitoring
the dmesg log and the systemd journal for anomalies, as well as the shell environment of the
process for changes in size (Mytkowicz et al. 2009a).

The benchmarks were executed on a bare metal server running Linux Ubuntu 18.04.2
LTS on a dual Intel Xeon E5-2650v3 CPU at 2.30GHz, with a total of 40 cores and 80GiB
of RAM.

4.2 Subject Benchmarks

Table 1 reports the list of the 30 Java open source systems we use in this study. We selected
such systems because they are relatively popular (i.e., they have more than 100 Github
stars), have non-trivial JMH suites (i.e., have at least 20 benchmarks), and span different
domains (e.g., application servers, logging libraries, databases). Given the large size of the
benchmark suites, we randomly sample 20 benchmarks for each system. 14 out of the 600
sampled benchmarks failed in our experimental setup.

Overall, in our empirical study, we assess the behavior of 586 randomly sampled
benchmarks across 30 Java systems.

In order to investigate the correctness of the benchmarks selected for this study, we ran
the SpotJMHBugs tool by Costa et al. (2021) on the systems. The tool was able to detect
only one potential bad practice, of type LOOP, in the net ty project. Therefore, we consider
our selection of benchmarks suitable for the study.

4.3 Steady State Detection

Detecting the end of the warmup phase, and consequently the start of the steady state, is no
trivial task, as the notion of “steady” resides on how much stability of results one wants to

5The 14 failed benchmarks are distributed as follows: 3 cantaloupe, 1 jetty.project, 4 vert.x,
3 hazelcast and 5 jbdi
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Table 1 This table reports the name of each subject system, the Github organization, the number of Github
stars, and the number of benchmarks in the performance testing suite

Organization Name Stars No. Benchmarks
apache arrow 8,065 46
raphw byte-buddy 4,311 39
apache camel 3,771 35
cantaloupe-project cantaloupe 195 103
prometheus client_java 1,545 33
crate crate 3,109 39
eclipse eclipse-collections 1,711 2,415
h2oai h20-3 5,400 73
hazelcast hazelcast 4,406 144
HdrHistogram HdrHistogram 1,871 75
apache hive 3,781 1,402
imglib imglib2 240 25
JCTools JCTools 2,697 172
jdbi jdbi 1,533 76
eclipse jetty.project 3,147 212
jerapht jgrapht 1,927 91
apache kafka 19,224 3,578
zalando logbook 900 20
apache logging-log4j2 1,207 572
netty netty 26,984 1,746
prestodb presto 12,153 1,534
protostuff protostuff 1,649 31
r2dbc r2dbc-h2 128 20
eclipse rdf4j 251 132
RoaringBitmap RoaringBitmap 2,281 1,620
ReactiveX RxJava 44,802 1,302
yellowstonegames SquidLib 364 334
apache tinkerpop 1,351 57
eclipse-vertx vert.x 12,177 41
openzipkin zipkin 14,468 63

achieve during performance testing or, to put it in another way, how much variability one is
willing to tolerate. Nonetheless, any analyst who wants to study steady state performance
must establish the length of the warmup phase. In our study, we are interested in auto-
matically detecting the length of such phase to determine whether and when a benchmark
reached a steady state.

For this task, we build on the steady state detection approach proposed by Barrett et al.
(2017), which we adapted to the purposes of our study. The approach is fully automated,
and it is based on changepoint analysis (Eckley et al. 2011), which is a statistical technique
to detect shifts in timeseries data. In our experimental setup, each datapoint of the timeseries
represents the average execution time within a JMH iteration, and the whole timeseries
represents a fork.
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Fig.4 Steady state detection process

An overview of the approach can be found in Fig. 4. As a first step of the approach,
we identify and remove potential outliers as we are only interested in detecting shifts in
execution time that appear to stay consistent for a period of time. As done by Barrett et al.
(2017), we use the method by Tukey and et al (1977) to identify as outliers the datapoints

that lie outside the median 3 x (99%ile — 1%ile) in a 200 datapoints window @ Out of
the 1.8 x 107 datapoints in the study, 0.27% are classified as outliers, with the most of any
fork being 1.3%.

After filtering outliers, we apply a changepoint algorithm to detect shifts in execution
time. Changepoint algorithms are designed to divide the entire timeseries into segments,
within which the behavior of the timeseries is considered to remain unchanged. On the basis
of the segmentation of the timeseries we can detect if and when a benchmark execution
reached a steady state.

The specific changepoint algorithm we used is called PELT (Killick et al. 2012). We
applied the algorithm to timeseries data gathered from individual forks in order to detect
changes in both the mean and the variance of execution time. An important parameter of
the PELT algorithm is the penalty, namely an argument designed to avoid under/over-fitting
and, therefore, directly impacting the number of changepoints the algorithm will detect.
The higher the penalty value, the more difficult will be for the algorithm to detect change-
points. Conversely, lower penalty values will result in more changepoints. Barrett et al. set
this parameter to 151log(n), where n is the number of datapoints in the timeseries after dis-
carding the outliers. We concluded that a single penalty value for all the timeseries (i.e.,
all the forks in the experiment) was not suitable for tuning the algorithm to the differences
we found among benchmark execution data. As a consequence, we decided to employ a
method to derive an appropriate penalty value for each timeseries: we used the CROPS
algorithm (Haynes et al. 2014) to efficiently generate, for each timeseries, optimal change-

point segmentations for all penalty values in a continuous range ([4, 1071, in our case) @
The number of changepoints in the alternative segmentations and the corresponding penalty
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Fig.5 Example of the selection procedure of a penalty value from an elbow diagram

values can be used to derive an optimization curve (sometimes referred to as elbow dia-
gram). Figure 5 shows an example of such a curve computed on the timeseries in Fig. 1b.
As suggested by Lavielle (2005), this diagram can be visually inspected to find suitably
parsimonious penalty values in the area of the elbow. A penalty point in the elbow area
can be automatically selected using the Kneedle algorithm (Satopaa et al. 2011), which is a
method to find the point of maximum curvature in the continuous approximation of an opti-

mization curve @ A red x in Fig. 5 marks the point in the curve that was chosen by the
Kneedle algorithm in that case. Using this procedure, we were able to automatically derive
a different penalty value to guide the segmentation of each fork.

Once we obtain a segmentation of the timeseries @, we can proceed to detect a possible
steady state. A steady state should be detected when the execution time is reasonably stable
after the end of the warmup phase. It is a matter of interpretation how much the execution
time is allowed to vary but, following the approach from Barrett et al., we consider a fork to
have reached a steady state if the last 500 measurements are contained in a single segment
(i.e., no changepoint was detected within the last 500 datapoints). In general, to find when
the steady state was first reached we could just take the start of the last segment. However,
this would not consider practical cases in which the smallest variation in mean or variance
would generate different segments, even if, from a performance evaluation point of view,
the benchmark has completed its warmup phase. Therefore, we need to establish a suitable
tolerance to allow the steady state period to span multiple segments whose variation is not
meaningful to determine the execution time of the benchmark. In Barrett et al. the toler-
ance was provided by combining the maximum number of consecutive segments from the
last one, such that a segment s; is equivalent to the final segment s s if mean(s;) is within
(mean(s r) = max(variance(s r), 0.001s)). We did not intend to apply a fixed threshold in
units of time (like 0.001 s) because our benchmarks vary from tens of nanoseconds to few
seconds, nor we wanted to use the variance of the last segment as a threshold because it
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leads to an extremely low tolerance for most of the benchmarks.® Hence, we preferred to
compare the segments by applying a 5% tolerance on the confidence interval for the mean

relative performance change, by using the approach of Kalibera and Jones (2013) @ (see
Section 3.3 for details).

On the basis of this information, we can classify individual forks as steady state if we
were able to detect a steady state, or no steady state when the opposite occurred. Moreover,
we classify a benchmark as steady state if all its forks reached a steady state, no steady
state if all its forks did not reach a steady state, and inconsistent if at least one fork was
classified as steady state while at least another one was classified as no steady state. The
same information is used to derive the steady state starting time (st), which is the beginning
of the first segment s; that is considered to be steady. Consequently, for a given fork, the
set of measurements in the range between st and the end of the timeseries is the set of the
steady state performance measurements (M*/%?¢) of our experiment. Based on that, given
a specific benchmark, we can further define the entire set of steady measurements M?@ble
as the union of the steady measurements sets M*'®?'¢ collected across all the steady forks
of the benchmark.

4.4 Benchmark Configurations

Each benchmark configuration determines for each fork two relevant pieces of information:
the estimated warmup time (wt) and a set of performance measurements M conf

We use this information to (i) compute warmup estimation error (W E E), (ii) determine
whether a configuration underestimates or overestimates the steady state starting time (st),
and (iii) assess potential side effects due to wrong estimation (i.e., time waste or relative
performance deviation).

In the following, we describe the process we use to derive wt and M for each
benchmark fork, for both developer and dynamic configurations.

Data: warmup iteration time w, no. warmup iterations wi, fork measurements M
Result: Overall warmup time wt
wt < 0;
sit <0 > initialize simulated iteration time
sic < 0 > initialize simulated iterations count
for ¢ in M do
ni < [e/100ms] ; > compute no. benchmark invocations
it < ni-e; > estimate time spent in the iteration
add it to sit ;
if sit > w then
add sit to wt ;
sit < 0
increment sic by 1 ;
if sic > wi then
| break ;

return wt ;

Algorithm 1 Estimate overall warmup time.

%Tn 60% of benchmarks forks, the ratio between the variance and mean of last segment is smaller than
0.0000002. Using variance as a threshold in these forks, it would imply that any negligible performance shift
larger than 0.00002% would be considered as a meaningful performance change.
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Data: overall warmup time w?, measurement iteration time », no. measurement iterations i, fork
measurements M
Result: Selected measurements according to configuration M0/

t<0; > initialize simulated time
sit <0 > initialize simulated iteration time
sic < 0 > initialize simulated iterations count
initialize empty list M/ ;
for ¢ in M do
ni < [e/100ms] ; > compute no. benchmark invocations
it < ni-e; > estimate time spent in the iteration

if 1 > wt then
add it to sit ;
append e to M
if sit > r then
sit < 0;
increment sic by 1 ;
if sic > i then
| break;
addetor;

return M

Algorithm 2 Select performance measurements.

4.4.1 Software Developer Configurations

Software developers define JMH configurations in benchmark code through Java annota-
tions. When a benchmark is launched, JMH executes the benchmark according to developer
configurations (e.g., no. measurements and warmup iterations). A trivial approach to obtain
both wt and the set of performance measurements M/ for each fork would be to sim-
ply run the benchmark, and extract this information from the execution logs and JSON
result files produced by JMH. Unfortunately, this approach would be extremely expensive
in terms of time, and would not fit our own needs. Instead, we use post-hoc analysis: We
first obtain the JMH configurations as defined by developers, then we use this information
to compute both wr and M¢°*/ based on the performance measurements collected in our
microbenchmarking setup (see Section 4.1).

In order to obtain developer configurations, we leverage a JMH feature that allows to
overwrite configurations on-the-fly via CLI arguments.” We exploit this capability to reduce
benchmark execution time and speed-up developer configurations retrieval. We first exe-
cute each benchmark twice while reducing execution time through JMH CLI arguments.
Then, we retrieve developer configurations in the JSON result files of each individual exe-
cution. Specifically, we first obtain the number of measurement and warmup iterations (i.e.,
wi and ), and the number of forks f by executing each benchmark while setting the mea-
surement and warmup time of each iteration to 1 nanoseconds (-w 1lns-r 1ns). Then,
we retrieve the measurement and warmup time (i.e., w and r) of each iteration by running

7We use dynamic analysis (i.e., running benchmarks by overwriting CLI arguments) instead of static analysis
because this methodology ensures a better coverage and lower margin of errors. Indeed, developers may
rely on other mechanisms than JMH annotations to configure benchmarks, (e.g., see OptionsBuilder at
https://bit.ly/30kxzJS). Our approach allows to safely retrieve configurations also in these cases, while this
would have been impractical through static analysis.
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each benchmark while setting the number of forks, warmup and measurement iterations to 1
(-£ 1 -wi 1 -i 1). Atthe end of this process, we obtain a tuple (w, wi, r, i, f), where
w denotes the time of a warmup iteration, wi denotes the number of warmup iterations, r
denotes the time of a measurement iteration, i the number of measurement iterations and f
the number of forks. We exploit w, wi, r and i along with the fork measurements M (as col-
lected in our microbenchmarking setup) to compute, for each fork, the estimated warmup
time (wt) and the set of performance measurements M . Specifically, we estimate the
time spent in each warmup/measurement iteration using the average execution time of each
iteration as observed in our microbenchmarking setup; then, we derive wr and M°"/ based
on the JMH configuration. We report the detailed process to obtain both wr and M"/ in
Algorithm 1 and Algorithm 2, respectively.

Based on the above, we can exploit the number of configured forks f defined by software
developers to obtain the whole set of performance measurements gathered from the entire
benchmark execution, namely M/ . In other words, we derive M¢°*/ by joining all the
sets of measurements M/ gathered from the first f forks of the benchmark.

4.4.2 Dynamic Configurations

In order to obtain (w, wi, r, i, f) for each dynamic reconfiguration variant, we leverage
the replication package provided by Laaber et al. (2020). Specifically, we use the scripts
provided for post-hoc analysis, which take as input JMH result JSON files, and return, for
each fork, the number of warmup iterations (wi) according to stability criteria. The warmup
iteration time w, the measurement time r, and the number of measurement iterations i are
fixed to w = 1s, r = ls and i = 10, respectively, according to the experimental setup
defined in Laaber et al. (2020).

We then obtain wr and M/ using the same approach adopted for developer configu-
rations.

5 Results

This section presents the results of the experiments and provides answers to the RQs
formulated in Section 3.

5.1 RQ;—Steady State Assessment

As described in Section 4.3, we classify the benchmarks in our study on the basis of their
ability to eventually reach a steady state. Such classification is first performed at fork level,
and then at benchmark level by combining results from the steady state detection on forks.

In order to provide an overview of how many forks reached a steady state, Fig. 6a reports
the percentage of forks classified as steady state or otherwise, as grouped by systems. The
percentage of forks that reached steady state varies between 69% (JCTools) and 98.9%
(cantaloupe). Even if there is some variability among systems, 28 of them, out of the
30 in our study, show a percentage of steady state forks above 80%, with 18 of them above
90%. Globally, in most cases (89.1% in the last row of Fig. 6a), individual forks were able
to reach a steady state according to our detection technique.

When we examine how the classified forks are distributed among the benchmarks, we
get a less obvious outlook. In Fig. 6b, we report the percentage of benchmarks classified as
steady state, or inconsistent in the respective systems (note we do not report percentages for
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arrow 6.0% arrow
byte-buddy 7.5% byte-buddy
camel 9.5% camel
cantaloupe 1.1% cantaloupe
client_java 11.0% client_java
crate 14.5% crate
eclipse-collections 14.0% eclipse-collections 50.0% 50.0%
h20-3 6.5% h20-3
hazelcast 7.1% hazelcast
HdrHistogram 19.5% HdrHistogram
hive 2.0% hive
imglib2 6.0% imglib2
JCTools 31.0% JCTools
jdbi 19.3% jdbi
jetty.project 11.6% jetty.project 52.6% 47.4%
jgrapht 18.5% jgrapht
kafka 23.5% kafka
logbook 8.5% logbook
logging-log4j2 15.5% logging-log4j2
netty 8.0% netty
presto 9.0% presto
protostuff 8.0% protostuff
r2dbc-h2 3.5% r2dbc-h2
rdf4j 3.5% rdf4j
RoaringBitmap 5.0% RoaringBitmap
RxJava 10.0% RxJava
SquidLib 14.0% SquidLib
tinkerpop 8.0% tinkerpop 50.0% 50.0%
vert.x 10.0% vert.x
zipkin 17.5% zipkin
Total 10.9% Total 43.5%
no steady state steady state inconsistent steady state
(a) Forks classification. (b) Benchmarks classification.

Fig.6 RQj. Steady state classification

“no steady state” classification, since we didn’t find any benchmark classified as such). The
first clear result is that there are no cases in which all the forks of a benchmark did not reach
a steady state, since the totality of benchmarks is always distributed among the steady state
and inconsistent columns. On the one hand, this might encourage the assumption that, in
the vast majority of cases, benchmarks reach and measure steady state performance. On the
other hand, we can assess that the percentage of benchmarks in which all the forks reached
a steady state is subject to large variability depending on the specific system. In fact, the
percentage of steady state benchmarks varies between 20% (JCTools) and 95%(rd£4 7).
Only 5 systems overcome a 80% percentage and, as opposed to what one would expect, no
steady state forks are unevenly distributed among benchmarks, thus causing most systems
to have a low percentage of steady state benchmarks even though the percentage of steady
state forks was higher. Since there are no benchmarks in which all the forks did not reach
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Fig.7 RQj. Percentages of no steady state forks within each benchmark, grouped by subject system

a steady state, all the remaining benchmarks are classified as inconsistent (43.5%), which
means that their forks showed mixed behavior.

Another viewpoint on the classification of benchmarks is provided in Fig. 7, where we
report the distribution of the percentages of no steady state forks in benchmarks, as grouped
by systems, which further clarifies what contributes to the percentages of inconsistent
benchmarks. We can notice that, in most cases (with very few exceptions like JCTools),
the systems tend to exhibit inconsistent benchmarks with small percentages of no steady
state forks. It is worth recalling that a single fork (i.e., 10% in a benchmark) is enough to
flip the classification from steady state to inconsistent. This is, in fact, the most common
case, as we can see in the distribution computed over all the systems (i.e., Total in Fig. 7)
that shows a mean around 10%.

From a practical perspective, it is also important to estimate how long it takes to reach a
steady state, in the cases in which it is reached. This provides a better view on how the time
budget could be spent when executing the benchmarks. Figure 8 shows the distributions of
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the time to reach a steady state, as grouped by system and in total. We can observe that
the time spent considerably varies, even within a single system, therefore it can hardly be
generalized. This result is not surprising, because the attainment of a steady state inherently
depends on the nature of the benchmark. As most of the instability during the warmup is
due to the JIT activity, we can imagine that, beside the size of the benchmark method itself,
also the number of loaded classes plays a crucial role, since it will induce a different amount
of compilation.

Figure 8 also shows how the time spent to reach a steady state compares to the JMH
default setting of 50 s for the warmup phase (dashed horizontal line in the figure). We
can observe that the difference between the detected end of the warmup phase and the
JMH defaults largely differs from one system to the other, by extreme values for eclipse-
collections and jgrapht. The clear picture that emerges from this is that, in most cases, by
using the JMH defaults we would overestimate the time needed to warm the benchmark up,
therefore wasting a considerable amount of time dedicated to performance testing. While
the amount of time that would be wasted considerably varies from one system to another,
the percentage of overestimated forks is quite consistent across all the systems. This leads to
the conclusion that, more often than not, the JMH defaults for the warmup time should not
be used, rather one should rely on techniques to assess the actual amount of time a specific
benchmark requires to reach a steady state.

RQ; summary - When we only look at individual forks, measurements appear
to reach a steady state in the majority of cases. However, when combining forks
at the benchmark level, we obtain mixed results. These results provide evidence
that benchmarks do not always reach a steady state of performance, thus showing,
on a large corpus of JIMH benchmarks, that the “two-phase assumption™ does not
always hold. Moreover, in most cases, the JMH defaults for the warmup time tend
to overestimate the time needed to reach a steady state.

5.2 RQ,—Steady State Impact

In this subsection, we present results of our analysis on the impact of steady state on
performance.

Figure 9 and Table 2 report results of the analysis that investigates how performance
changes (within each fork) when the steady state is reached. In particular, Fig. 9 depicts the
distribution of the relative performance deviation (RPD) across all the steady forks of our
study. The figure highlights strong performance deviations when the steady state is reached,
with an average RPD of 123,937% and a median of 41% (IQR 14-195%).

By looking at the detailed results reported in Table 2, we can observe that the large mean
is highly influenced by some specific projects (e.g., camel, crate, h2o-3 and presto),
which report extremely high RPD (up to 3.5 billion %). Nonetheless, even when considering
projects with smaller RPD (e.g., jgrapht, RoaringBitmap and SquidLib), we can
observe considerable performance deviations between steady and non-steady measurements
(respectively, 36%, 40% and 57% on average). Besides the diversity across projects, Table 2
also highlights a substantial diversity within each project. Indeed, performance deviations
substantially differ across benchmarks of the same projects, as they report extremely high
standard deviations (maximum standard deviation of ~16 billion (presto), and minimum
of 56 (RoaringBitmap)).
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Fig.9 RQ,. Steady state impact within forks. The box plot reports the distribution of RPD between steady
and non-steady phases of the execution across all the steady forks. The y-axis is in logarithmic scale

The above results suggest that performance substantially changes when forks reach
a steady state of performance, and provide empirical evidence on the danger of using
non-steady measurements during performance assessment. Indeed, given these large magni-
tudes, even a tiny portion of non-steady measurements can substantially distort performance
indices, with significant implications on performance assessment.

Figure 10 and Table 3 report the results of our second analysis, which investigates perfor-
mance deviations between steady and non-steady forks. By observing Fig. 10, we can notice
that the reported performance deviations are significantly smaller than those within forks
(see Fig. 9). The average RPD between steady and non-steady forks is 5%, while the median
RPD is 2% (IQR 0-5%). Although these deviations may appear negligible at a first glance,
they are still significant if placed in the context of Java microbenchmarking. Indeed, in these
contexts, even relatively small performance regressions (e.g., 5%) may lead to rejections of
code revisions,® as they can have significant impact at system level. Moreover, if we look at
some specific projects, such as byte-buddy, JCTools and RxJava, the reported devi-
ations are even more conspicuous (average RPDs of respectively 14%, 19% and 13%, see
Table 3). Still, the deviations between steady and non-steady forks are substantially smaller
than those within forks. In that, it is worth to remark that we compare steady and non-steady
forks using on purpose the same measurement window (i.e., we discard all measurements
collected before sz, where st denotes the steady starting time of the paired steady fork).
Indeed, this methodology may potentially discard measurements that are related to the most
unstable phases of the (non-steady) fork execution, and it can consequently smooth devia-
tions from steady measurements. Nonetheless, this fact may also suggest that performance
deviations tend to improve over time during benchmark execution, even in forks that do not
reach a steady state of performance.

8 As an example, see netty pull request 8614 at https://bit.ly/33MqIMZ.
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Table 2 RQ;. Steady state impact within forks grouped by project. The first and second columns report,
respectively, the name of the project and number of steady forks per project. The last three columns report
RPD statistics (i.e., mean, standard deviation and median)

System n Mean Std. Dev. Median
arrow 188 599.6 1,814.9 72.1
byte-buddy 185 276.1 469.1 113.4
camel 181 10,277.3 51,821.1 49.7
cantaloupe 188 2,237.9 3,534.1 506.4
client_java 178 270.8 3232 274.2
crate 171 20,919.6 125,119.1 26.5
eclipse-collections 172 70.4 185.0 17.4
h20-3 187 42,129.6 342,798.8 18.9
hazelcast 158 279.1 966.1 30.0
HdrHistogram 161 74.3 143.7 25.9
hive 196 386.4 325.0 344.1
imglib2 188 103.1 187.1 68.2
JCTools 138 69.3 67.0 61.7
jdbi 121 2,305.6 14,856.2 40.2
jetty.project 168 387.0 649.1 106.8
jerapht 163 359 65.0 16.3
katka 153 196.9 2,063.9 16.0
logbook 183 169.0 304.6 424
logging-log4j2 169 181.6 356.6 72.8
netty 184 3,457.2 36,818.1 204.7
presto 182 3,439,550.1 16,220,992.1 27.6
protostuff 184 170.6 237.2 415
r2dbc-h2 193 3,460.6 10,268.1 303.7
rdf4j 193 97.7 211.6 35.2
RoaringBitmap 190 39.6 56.4 21.0
RxJava 180 113.9 278.0 359
SquidLib 172 57.1 118.8 8.2
tinkerpop 184 1,330.7 7,177.5 249
vert.x 144 654.1 951.8 207.0
zipkin 165 28,604.1 152,763.8 21.6
Total 5,219 123,972.4 3,087,067.7 41.8

To further investigate this aspect, we assess how warmup iterations impact performance
deviation. In particular, we investigate to what extent warmup iterations mitigate perfor-
mance deviations (RPD) of non-steady forks. Figure 11 reports the results of our analysis.
As it can be seen from the figure, RPDs seem to be considerably influenced by the number
of warmup iterations, especially at the early stages of benchmark execution. Indeed, we can
see a substantial drop in the first 50 iterations, where the mean RPD decreases from 578%
to 17% and the median from 30% to 12%. Moreover, we found a clear trend toward RPD
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Fig. 11 RQ;. The impact of warmup iterations on RPD. In each plot the x-axis denotes the number of
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report the median RPD. Plots in the first row present the overall results, while those in the second row zoom
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Table 3 RQ;. Steady state impact across forks grouped by project. The first and second columns report,
respectively, the name of the project and the number of inconsistent benchmarks per project. The last three
columns report RPD statistics for each project (i.e., mean, standard deviation and median)

System n Mean Std. Dev. Median
arrow 6 8.2 10.2 3.5
byte-buddy 8 14.5 27.0 0.0
camel 9 2.7 3.9 1.2
client_java 11 34 4.0 2.8
crate 12 33 39 2.4
eclipse-collections 10 2.5 43 0.2
h20-3 8 3.7 4.9 1.7
hazelcast 7 6.3 15.1 0.0
HdrHistogram 13 7.3 19.8 0.0
JCTools 16 19.2 17.7 13.3
jdbi 9 7.4 7.1 6.0
jetty.project 10 6.3 5.8 54
jerapht 9 6.6 5.7 4.2
kafka 15 1.8 4.2 0.0
logbook 9 32 4.8 0.7
logging-log4j2 12 4.4 3.8 39
protostuff 8 0.6 12 0.0
r2dbc-h2 6 1.7 1.4 2.1
RxJava 8 13.2 35.7 0.2
SquidLib 14 2.1 2.7 1.4
tinkerpop 10 1.6 14 1.6
vert.x 9 1.8 2.9 0.0
zipkin 12 55 55 3.7
others 24 33 5.0 1.0
Total 255 5.5 11.6 1.6
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Fig. 12 RQ;. The impact of forks on RPD. In each plot the x-axis denotes the number of non-steady forks
considered in the comparison, while the y-axis report RPD statistics. The dark shadow around the line repre-
sents the 95% confidence interval. The left plot reports the mean RPD, while the right plot reports the median
RPD
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reduction in the first 300 iterations. After this point, the decreasing trend seems to disap-
pear, and RPDs begin to show fluctuations with means ranging from a minimum of 6% to a
maximum of 9%, and medians ranging from 1% to 3%.

The above results suggest that performance deviations of non-steady forks may be sub-
stantially mitigated through a reasonable amount of warmup iterations. In particular, a
significant reduction of performance deviations can be obtained (i.e., —561% on average
and —18% on median) by using at least 50 warmup iterations, which correspond to 5 s of
continuous benchmark execution and no less than 50 invocations. These deviations can be
further reduced by using a higher number of warmup iterations up to 300 (i.e., 30 s of con-
tinuous execution and at least 300 invocations). After this point, increasing the number of
warmup iterations barely affect RPDs.

Besides investigating the impact of warmup iterations, we also analyze the impact of
forks. Specifically, we study whether using a higher number of forks reduces performance
deviations of non-steady measurements. As it can be observed in Fig. 12, the analysis shows
an overall trend toward RPD reduction when increasing the number of forks. The average
RPD is reduced by each additional fork, while the median shows a swinging trend only in
the first two forks, and then it constantly decreases. If we compare RPDs of individual forks
to those of 5 forks, we observe a significant RPD reduction, i.e., —244,237% on the mean
and —21% on the median. This trend leads to an RPD reduction of —307,555% (mean) and
—31% (median) when using 10 forks. Still, the reported RPDs remain extremely high, i.e.,
mean of 35,797% and median of 40%. The latter results are not surprising if we consider
that our analysis deliberately targets non-steady measurements, which are typically subject
to severe performance deviations (as we have shown in the first analysis of this RQ, see
Fig. 9). In fact, in this analysis we were not particularly interested on the absolute RPD,
rather we wanted to assess how RPDs change with respect to the number of forks. In this
regard, our results suggest that increasing the number of forks can effectively mitigate the
impact of non-steady measurements.

RQ, summary - The attainment of steady state has relevant effects on software
performance. Performance substantially changes within forks when their execution
reaches steady state. This difference in performance is less pronounced when com-
paring forks that never reach steady state against those that consistently reach it.
Nonetheless, the reported performance deviations are still considerable and poten-
tially harmful for performance assessment. The use of an appropriate number of
warmup iterations can significantly mitigate performance deviations induced by
non-steady forks. In addition, the use of an adequate number of forks can alleviate
deviations that are induced by unstable measurements, which are collected before
steady state execution occurs.

5.3 RQ3;—Developer Configuration Assessment

In this subsection, we first present results of the assessment of developer static configura-
tions, thereafter we provide answer to RQs3.
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Fig. 13 RQj3. Developer configurations—Warmup estimation accuracy. The left plot reports the percentages
of overestimated, underestimated, and correctly estimated forks. The right plot depicts the distribution of
W EE across all benchmark forks. n is the total amount of data points, and the number on the top of the plot
is the amount of outliers not drawn in the figure

5.3.1 Warmup Estimation Accuracy

In the first part of this subsection, we investigate to what extent developers accurately
estimate steady state starting time (st), i.e., the end of the warmup phase.

Figure 13b depicts the distribution of warmup estimation error (W E E) across all bench-
mark forks. Developers configurations lead to a W E E that ranges between 9 and 50 s in half
of the cases (i.e., the interquartile range (IQR)), and they lead to a median and mean WEE
of 28 and 90 s, respectively. Interestingly, we found that the estimation error is approxi-
mately as large as the steady state starting time (or more) in half of the forks, i.e., the median
of the ratios between W E E and st is 0.997 (IQR: 0.79-43.5).

It might be easier for some systems to assess the time required to reach a steady state
than for other ones. With respect to the steady state we detected, most systems (27 out of
30) show an estimation error of less than 100 s. However, the developer configurations in
eclipse-collections, presto, and RxJava seem to be less effective in estimating
the warmup phase. The most evident case is represented by eclipse-collections
with an error, on average, of around 5 minutes.

Overall, these results suggest that, in most of the cases, software developers fail to
accurately estimate the end of the warmup phase, and often with a non-trivial estimation
error.

Besides investigating the estimation accuracy of developers, we also check whether they
provide more accurate estimates than JMH defaults® (i.e., the default configuration provided
by JMH developers). To do so, we compare the W E E's provided by developer configura-
tions against those provided by JMH defaults using the Wilcoxon Rank-Sum test (Cohen
2013), and the Vargha Delaney’s effect size measure (Vargha and Delaney 2000). We

9n our evaluation, we use the default configuration defined for JMH versions > 1.21, i.e., 5 warmup and
measurements iterations (wi = 5 and i = 5), and iteration time of 10 s for both measurement and warmup
(w = 10s and r = 10s).

@ Springer



13 Page 32 of 57 Empir Software Eng (2023) 28:13

100
50
o~
n
A
40 38.37 80
)
830 29.64 ")
c Y 60
] o
5 @
e 20 16.63 8
2 40
] o
10 S Q
2.06 " U{'\‘:
0 : 20 £
N Q) ) D
02 2 J &
Q v QO
TP @ S
0

Time waste (sec)

(a) (®)

Fig. 14 RQ3. Developer configurations—Overestimation side effects (Time waste). The left plot reports the
percentages of overestimated forks where Time waste (sec) € {[10, 25), [25, 50), [50, 100), [100, inf)}. The
right plot depicts the distribution of Time waste across all overestimated forks. n is the total amount of data
points, and the number on the top of the plot is the amount of outliers not drawn in the figure

found that developer configurations outperform JMH defaults with statistical significance
(p < 0.001) and small effect size (A 12 = 0.64). The median and the mean W E E provided
by JMH defaults are larger than those provided by developer configurations, i.e., mean of
97 s and median of 50 s (IQR: 36-50 s). These results suggest that the estimates provided
by developers are more accurate than those provided by JMH defaults.

Figure 13a reports the percentages of overestimated, underestimated, and correctly esti-
mated forks across all forks (i.e., the estimated warmup time wt is respectively smaller or
larger than st by at least 5s). The bar chart shows that overestimation is more common than
underestimation. Developers overestimate the end of the warmup phase in 48% of the forks
(median WEE: 33 s, IQR: 19-50 s), whereas underestimation is reported in 32% of the cases
(median WEE: 150 s, IQR: 36240 s). Developers accurately estimate it in only 19% of the
cases.

In the following subsections, we investigate side effects in both overestimated and
underestimated forks.

5.3.2 Overestimation Side Effects

Figure 14 shows the time waste due to overestimation. 87% of the overestimated forks waste
more than 10 s (i.e., 37% of all the forks). As can be observed by Fig. 14a, overestimation
leads to a time waste between 10 and 25 s in 30% of the cases, between 25 and 50 s in 38%
of the cases, and it leads to a time waste higher than 50 s in 19% of the cases. Figure 14b
depicts the distribution of time waste across overestimated forks. The box plot shows that
the average time waste is 37 s, and the median is 33 s (IQR: 1949 s).

The amount of time wasted on warmup, after reaching a steady state, considerably varies
from one system to another. In most systems, by using the developers configurations, each
fork wastes, on average, more than 20 s. More extremes behaviors can be found, for instance,
in jdbi, netty, and rdf4j, with an average wasted time of more than 50 s per fork.
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On the contrary, cantaloupe, JCTools, r2dbc-h2, and zipkin might waste just a
few s, and probably their configurations do not need any adjustment.

Such absolute time wastes, when contextualized within concrete performance assurance
processes (that involve multiple benchmarks), can have substantial effects on the overall
execution time and, as consequence, can hamper microbenchmarks adoption for continuous
performance assessment. For example, a time waste of 33 s in a relatively small performance
testing suite (e.g., r2dbc-h2), which involves a typical number of 5 forks,'? could lead to
an overall time waste of approximately one hour.!! In larger testing suites, such as RxJava,
the same time waste could lead to an overall waste of about 2 days and a half. Besides this,
wt is mostly composed by time waste in a large number of cases. In fact, we have measured
that the median of the ratios between the time waste and the estimated warmup time wt is
approximately 0.97 (IQR: 0.77-0.99), i.e., in half of overestimated forks, at least 97% of
the estimated warmup time wt consists of time waste.

The reported results highlight a substantial portion of time wasted during microbench-
marking, and stress the need for better microbenchmark configuration approaches that
reduce their execution time. These findings further motivate prior efforts in reducing exe-
cution time through dynamic reconfiguration (Laaber et al. 2020), and highlight huge
opportunities for execution time reduction in microbenchmarks.

5.3.3 Underestimation Side Effects

Although less frequent than overestimation, underestimation can have relevant side effects
on microbenchmarking. Indeed, it can lead to consider performance measurements that sig-
nificantly differ from steady state performance, as in practice they fall within the warmup
phase.

Figure 15 reports the distribution of the relative performance deviation (R P D) across
underestimated forks. Underestimation leads to an R P D of at least 5% in 57% of cases (i.e.,
22% of all the forks). Figure 15a depicts that underestimation induces an R P D between 5%
and 10% in 15% of the cases, between 10% and 25% in 20% of the cases, and it induces an
R P D greater than 50% in 9% of the cases. The box plot (Fig. 15b) shows a mean R P D of
17%, and a median of 7% (IQR: 1-21%).

Some systems show a large performance deviation when underestimating the warmup
time. In nine systems, developers will observe measurements that deviate at least by 20%
from the performance reached in the steady state. Such large deviations prevent the bench-
marks to spot smaller performance changes, in fact defeating their purpose in practical
performance testing scenarios.

These results highlight significant performance deviations due to underestimation. In
Java systems, even relatively small performance regressions (e.g., 5%) may lead to rejec-
tions of code revisions. In fact, a microbenchmark regression, for example due to software
refactoring (Traini et al. 2021), can have huge impact at system level, as microbenchmarks
measure performance at fine-grained level (Laaber and Leitner 2018; Leitner and Bezemer
2017). For this reason, the reported R P Ds can have severe consequences on steady state
performance assessment, as they can easily lead to faulty judgments of code revisions.
According to our results, developers may rely on measurements that significantly differ

10The default number of forks in JMH is 5 (see https://bit.ly/3mOBvHy)
o compute the overall time waste, we multiplied the time waste (33 s) by the number of forks (5) and the
number of benchmarks in the testing suite (20 for r2dbc-h2 and 1,302 for RxJava).
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Fig. 15 RQs. Developer configurations—Underestimation side effects (performance change). The
left plot reports the percentages of underestimated forks where performance change (%) €
{[5, 10), [10, 25), [25, 50), [50, inf)}. The right plot depicts the distribution of performance change across
all underestimated forks. n is the total amount of data points, and the number on the top of the plot is the
amount of outliers not drawn in the figure

from those collected during steady state execution. This finding sheds a light on the per-
ils of underestimation, and on how such inaccuracy can disrupt performance assessment.
Indeed, the reported results show that underestimation is not rare in the current devel-
oper practice (32% of forks), and it often leads to potentially misleading results (57% of
underestimated forks lead to a performance deviation >5%).
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Fig. 16 RQ3. Developer configurations: Benchmark level assessment. The left plot depicts the RPD
distribution across all benchmarks. The right plot depicts the execution time distribution
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5.3.4 Benchmark Level Assessment

Here, we discuss the results of the analysis of developer configurations at benchmark level.
The left plot of Fig. 16 reports the distribution of performance deviations of measurements
gathered by software developers when compared to steady state measurements. The first
aspect that we can notice by observing the plot is that the impact of underestimation seems
to be considerably mitigated when considering aggregated measurements. This finding is in
line with our previous analysis on forks (see RQy), in which we have shown that the number
of forks can substantially mitigate deviations of non-steady measurements. Performance
deviations are not statistically significant in about half of the benchmarks (i.e., 53% of the
cases), the median RPD is 0% and the IQR is 0-6%. Nonetheless, 47% of benchmarks report
statistically significant performance deviations (i.e., the confidence interval does not contain
zero), the mean RPD is 8%, and a quarter of benchmarks report a deviation higher 6%.
As we have already discussed in our prior analysis on underestimation, these magnitudes
of deviation can be harmful in Java microbenchmarking, as they can mislead performance
assessment and lead to wrong judgements of software revisions.

The right plot of Fig. 16 reports the distribution of benchmark execution times based on
developer configurations. Developer configurations lead to extremely different execution
times, with durations ranging from a minimum of 1 second to a maximum of 893 s. The aver-
age execution time is 210 s, and the median is 100 s (IQR 30—403 s). Our previous analysis
on overestimation has already highlighted large opportunities for execution time reduction.
In the light of the above results, these opportunities appear even more significant. For exam-
ple, our prior analysis has reported a median time waste of 33 s in overestimated forks.
If we compare this result with the median execution time of a benchmark, i.e., 100 s, the
time waste appears extremely relevant, i.e., approximately one third of the entire benchmark
execution. In that, it is worth to remark that time wastes are measured on individual forks,
while the execution times (reported in Fig. 16) measure the entire duration of a benchmark,
which typically involves multiple forks (3 on average in the case of developer configura-
tions). This finding further remarks on the need for better techniques to reduce benchmark
execution time without affecting result quality.

RQ3; summary - Developer configurations have limited effectiveness for steady
state performance assessment. Developers fail to accurately estimate the end of
the warmup phase, often with a non-trivial estimation error. In a large number of
cases, this error leads to a substantial increase in the execution time (i.e., overesti-
mation). Nevertheless, underestimation is not rare in the current developer practice,
and when this happens it significantly distorts performance assessment.

5.4 RQs—Dynamic Reconfiguration Assessment

In this subsection, we first present results of the assessment of dynamic reconfiguration
techniques, then we answer to RQ4.
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Fig. 17 RQ4. Dynamic reconfiguration—Warmup estimation accuracy. The left plot reports the percentages
of overestimated, underestimated, and correctly estimated forks per dynamic reconfiguration technique. The
right plot depicts the distribution of W E E across all benchmark forks per dynamic reconfiguration technique.
n is the total amount of data points, and the number on the top of the plot is the amount of outliers not drawn
in the figure

5.4.1 Warmup Estimation Accuracy

Figure 17b depicts the distributions of warmup estimation errors (W EE) per dynamic
reconfiguration technique across all benchmark forks. As it can be seen from the figure,
RCIW leads to higher W EE (median: 48 s, IQR: 30-50 s) when compared to other tech-
niques, whereas C'V and K L D report similar distributions. CV leads to a median W EE of
19 s IQR: 10-41 s), while KLD reports a median of 17 s (IQR: 9-47 s). Also, we have mea-
sured that, in half of the forks, all dynamic techniques report a W E E approximately as large
as the steady state starting time s¢ (or more), i.e., the medians of the ratios between WE E
and st for CV, RCIW and KLD are respectively 0.97 (IQR: 0.79-45.7), 2.04 (IQR: 0.78-75)
and 0.97 (IQR: 0.79-36.1). These results indicate that all dynamic reconfiguration tech-
niques lead to a substantial error in the estimate of steady state starting time. Nevertheless,
CV and KLD clearly provide more accurate estimates than RCIW.

The bar chart in Fig. 17a confirms the specificity of RCIW. As it can be observed from
the bar chart, RCIW reports a strong tendency toward overestimation, while CV and KLD
show similar frequencies both in terms of underestimation and overestimation. RCIW over-
estimates 72% of forks (median WEE: 46 s, IQR: 31-50 s), and it underestimates only 25%
forks (median WEE: 181 s, IQR: 86-236 s). On the other hand, CV reports 50% of overes-
timations (median WEE: 17 s, IQR: 12-24 s) and 39% of underestimations (median WEE:
131 s, IQR: 29-249 s). Similarly, KLD reports 55% overestimated forks (median WEE: 13 s,
IQR: 9-21 s) and 37% underestimated forks (median WEE: 145 s, IQR: 29-255 s).

5.4.2 Overestimation Side Effects
Besides the large number of overestimated forks, RCIW also causes higher time wastes

when compared to other techniques. As it can be observed in Fig. 18, RCIW reports a mean
time waste of 45 s and a median of 46 s (IQR: 31-55 s). 95% of overestimated forks lead to

@ Springer



Empir Software Eng (2023) 28:13 Page 37 of 57 13

: 100
Time waste (sec)
[10,25) == [50,100) © R =
[25,50) = [100,inf) g0 A A
100 'g
O 8 o
80 —— 9
3
& — 2 40 °©
© 60 )
e n ©o
c I =) I o
Q = R 3 q
g 40 20 [Tl & [
20
0
0
cv RCIW KLD cv RCIW KLD

(a) (b)

Fig. 18 RQy. Dynamic reconfiguration—Overestimation side effects (time waste). The left plot reports the
percentages of overestimated forks where time waste (sec) € {[10, 25), [25, 50), [50, 100), [100, inf)}. The
right plot depicts the distribution of fime waste across all overestimated forks per dynamic reconfiguration
technique. 7 is the total amount of data points, and the number on the top of the plot is the amount of outliers
not drawn in the figure)

a time waste of at least 10 s, 81% lead to a time waste of at least 25 s, and 13% to a time
waste of at least 50 s. On the other hand, CV and KLD report a median time waste of 17 s
(IQR: 12-24 s) and 14 s (IQR: 9-21 s), respectively (see Fig. 18b). Nonetheless, we have
measured that in half of the overestimated forks, all techniques lead to an estimated warmup
time that mostly consists of time waste, i.e., the medians of the ratios between the time waste
and wt for CV, RCIW, and KLD are respectively 0.98 (IQR: 0.88-0.99), 0.96 (IQR: 0.7-
0.99), and 0.97 (IQR: 0.88-0.99). Overall, these results indicate that different techniques
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Fig. 19 RQ4. Dynamic reconfiguration—Underestimation side effects (performance change). The
left plot reports the percentages of underestimated forks where performance change (%) €
{[5, 10), [10, 25), [25, 50), [50, inf)}. The right plot depicts the distribution of performance change across
all underestimated forks per dynamic reconfiguration technique. n is the total amount of data points, and the
number on the top of the plot is the amount of outliers not drawn in the figure)
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lead to diverse outcomes in terms of overestimation. For example, RCIW induces more
frequent overestimations and higher time wastes when compared to other techniques (see
Fig. 18a). Despite this diversity, overestimation is frequent across all dynamic reconfigura-
tion techniques, and it often leads to a non-trivial time waste, which can hamper continuous
performance assessment.

5.4.3 Underestimation Side Effects

RCIW is less prone to underestimation than other techniques, and it also has less marked side
effects due to underestimation. As it can be observed in Fig. 19, CV and KLD lead to higher
performance changes when compared to RCIW. RCIW reports a median R P D of 3% (IQR:
0-11%), whereas CV and KLD report medians of 10% (IQR: 5-20%) and 9% (IQR: 3%-
17%), respectively (see Fig. 19b). Additionally, CV and KLD cause performance changes of
at least 5%, respectively, in 76% and 69% of the cases, while RCIW achieves a similar devi-
ation in only 43% of forks (see Fig. 19a). These results suggest that underestimation side
effect varies depending on the dynamic reconfiguration technique. Some dynamic reconfig-
uration techniques (i.e., CV and KLD) are more prone to induce underestimation, and they
often lead to a non-trivial performance deviation which can potentially mislead steady state
performance assessment. Other techniques, such as RCIW, are instead “safer” in terms of
underestimation, and ensure higher results quality in terms of performance assessment.

5.4.4 Benchmark Level Assessment

The analysis at benchmark level confirms the trend observed in our prior analysis. Figure 20
reports the deviations (R P D) of measurements gathered through dynamic reconfiguration
techniques when compared to steady measurements (left plot), along with the distributions
of benchmark execution times (right plot). As it can be observed, RCIW is by far the most
reliable technique in terms of performance deviation. It reports an average RP D of 2%, a
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Fig. 20 RQ4. Dynamic reconfiguration: Benchmark level assessment. The left plot depicts the RPD
distribution across all benchmarks. The right plot depicts the execution time distribution

@ Springer



Empir Software Eng (2023) 28:13 Page 39 of 57 13

median of 0% and an IQR of 0-0%. About 91% of the benchmarks report an R P D smaller
than 5%. On the other hand, RCIW provides also the most time consuming process with a
mean execution time of 283 s and a median of 300 s (IQR 265-300 s). This is not surprising,
as our prior analysis has highlighted a large overestimation rate (72%) and relevant time
wastes (45 s on average) in RCIW.

Contrariwise, CV and KLD are less reliable in terms of results quality, by reporting a
mean R P D of respectively 8% (median: 1%, IQR: 0-10%) and 7% (median: 0.5%, IQR
0-8%), but they are also less demanding in terms of execution time. CV reports a mean
execution time of 93 s (median: 75 s, IQR: 51-113 s), while KLD reports a mean of 154 s
(median: 121 s, IQR: 94-156s). CV and KLD show similar behaviors in terms of execution
times and performance deviations, however, as it emerges by the box plots in Fig. 20, they
show two opposite tendencies. In particular, CV shows a slight tendency towards faster
execution times and less reliable results, while KLD shows the opposite behavior, i.e., better
results quality and more time-consuming executions.

RQ4 summary - Dynamic reconfiguration techniques provide far from optimal
estimates of the warmup phase, often with a non-trivial error. The side effects vary
depending on the technique. RCIW is more prone to overestimation than other tech-
niques, and it induces more time-consuming benchmark executions (i.e., higher
time waste). On the other hand, CV and KLD often lead to performance measure-
ments that differ from those collected during the steady state, while RCIW provides
a “safer” assessment of steady state performance.

5.5 RQs—Dynamic Reconfiguration vs Developer Configuration

In this subsection, we first present results of the comparison between dynamic reconfigura-
tion techniques and developer static configurations for each considered metric: (i) warmup
estimation error (W EE), (ii) estimated warmup time (wt), and (iii) relative performance
deviation (R P D). Then, we provide answer to RQs.

5.5.1 Warmup Estimation Error

We performed the Wilcoxon test to check the significance of the difference between W EE
of dynamic reconfiguration techniques and developer static configurations. The detailed
results of the comparison within and across systems are reported in Table 4. As it can be
observed by the last row of the table, the differences are statistically significant for all
dynamic reconfiguration techniques (p < 0.05), with two techniques reporting extremely
small p-values (p < 0.001). The comparison leads to a medium effect size in RCIW (Ajp >
0.64), and to a large effect size in CV and KL D (Alz > (0.71). These results indicate that,
when compared to developer static configurations, dynamic reconfigurations techniques
overall provide more accurate estimates of the end of the warmup phase.

Nevertheless, Table 4 also shows that the difference between W E E of dynamic reconfig-
uration techniques and developer configurations varies across systems. Figure 21 shows a
summary of these results, where each cell reports the number of projects whose comparison
leads to a statically significant difference (p<0.05) within a specific Alz effect size range.

As it can be observed by the figure, C'V provides better warmup estimates than devel-
opers in 15 of the 30 systems (13 with large effect sizes, and 2 with medium effect sizes).
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Table4 RQs. WEE comparison. Results of the Wilcoxon test (with A]z effect sizes in brackets) that com-
pare WEE of dynamic reconfiguration techniques to the ones obtained using developer configurations.
Systems where dynamic configurations perform better than developer configurations (p < 0.05 and Ap
> 0.5) are highlighted in bold. Asterisks denote interpretation of the A 12 effect size: small (*), medium (**),

large (***)

System CvV RCIW KLD

arrow <0.001(0.95)™" 0.003(0.86) " <0.001(0.92)™
byte-buddy 0.321(—) <0.001(0.64)° 0.01(0.8)""
camel 0.25(—) 0.264(—) <0.001(0.86)"
cantaloupe <0.001(0.46) <0.001(0.36)" <0.001(0.36)"
client_java 0.019(0.88)™" 0.01(0.66)" 0.154(—)

crate 0.405(—) 0.097(—) 0.063(—)
eclipse-collections 0.007(0.85)"" 0.163(—) 0.43(—)

h20-3 0.025(0.86)"" 0.321(—) 0.003(0.79)™
hazelcast 0.014(0.73)™" 0.147(—) 0.527(—)
HdrHistogram 0.023(0.65)" 0.282(—) 0.346(—)

hive <0.001(0.38)" <0.001(0.36)" <0.001(0.33)”
imglib2 0.094(—) 0.279(—) 0.225(—)
JCTools <0.001(0.7)" 0.719(—) <0.001(0.65)"
jdbi 0.091(—) 0.136(—) 0.052(—)
jetty.project 0.867(—) 0.265(—) 0.357(—)
jgrapht 0.261(—) 0.492(—) <0.001(0.77)"
kafka 0.019(0.82)™" 0.655(—) 0.225(—)
logbook 0.002(0.89)"" <0.001(0.67)"" 0.001(0.84)™"
logging-log4j2 <0.001(0.89)™" 0.304(—) <0.001(0.86)™"
netty <0.001(0.86)™" <0.001(0.77)"" <0.001(0.84)™"
presto 0.181(—) <0.001(0.59)" <0.001(0.56)
protostuff 0.14(—) 0.645(—) 0.294(—)
r2dbe-h2 <0.001(0.72)"" <0.001(0.63) 0.988(—)

rdf4j 0.361(—) 0.076(—) 0.534(—)
RoaringBitmap <0.001(0.93)"" 0.204(—) <0.001(0.88)""
RxJava 0.034(0.91)™" 0.002(0.87)"" <0.001(0.86)""
SquidLib 0.001(0.79)™" 0.009(0.74)"" 0.01(0.77)"™
tinkerpop 0.215(-) 0.131(-) 0.803(—)

vert.x 0.7(—) <0.001(0.57)" 0.355(—)
zipkin 0.53(-) 0.064(—) 0.372(-)

Total 0.047(0.79)™" <0.001(0.68)" <0.001(0.74)™

Conversely, developer configurations provide lowers estimation errors than CV in only 2
systems (respectively, negligible and small effect size).

K LD shows a similar trend to that observed for CV. K LD provides better warmup
estimates than developers in 13 out of the 30 systems (11 with large effect sizes, 1 with
medium effect size, and 1 with negligible effect size), whereas developers outperform K LD
in only 2 systems (respectively, small and medium effect size).
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Fig.21 RQs. W E E comparison summary. Each cell reports the number of systems whose comparison leads
to a statistically significant change (p < 0.05) within a specific A, effect size range: negligible (N),

small (S), medium (M) and large (L). Alz > 0.5 indicates that dynamic configurations perform better than
developer configurations

RCIW also shows improvement over static configurations in a considerable number of
systems (10 out of 30), though with lower effect sizes (4 large, 2 medium, and 4 small).
Again, developer configurations provide better estimations in only 2 systems. 2

Overall, we can observe that dynamic reconfiguration techniques provide more accurate
warmup estimates than software developer ones. In particular, CV and K LD outperform
developer configurations in terms of W E E on a considerable number of projects with high
effect sizes.

5.5.2 Estimated Warmup Time

In this subsection, we investigate the difference between the estimated warmup time
(wt) provided by dynamic reconfiguration techniques and developer static configurations.
Table 5 reports results of Wilcoxon tests for each system, and across all systems.

As it can be observed by the last row of the table, CV and K L D report a statistically sig-
nificant difference (p < 0.001) with tendency toward improvement (i.e., smaller wt values)
but with negligible effect size. RCIW also reports statistically significant difference (p <
0.001), but with the opposite tendency, i.e., larger wt (/ilz < 0.5), and a small effect size.

If we look at project-level results, we can observe a remarkable diversity among projects
for CV and KLD. As it can be seen in Fig. 22, CV leads to higher wt than those defined
by developers (Alz < 0.5) in 10 of the 30 systems, and it reports lower wt (Alz >0.5)in 17
systems, thus not showing a clear trend. A similar behavior can be observed for K LD: 10
of the 28 systems that report a statically significant difference (p < 0.05) have Alg < 0.5,
while 17 of them have A1 > 0.5.

On the other hand, RCIW performs worse than developer configurations in most of the
systems. RCIW leads to higher wt than developers in 22 of the 30 systems: 12 with large
effect sizes, 4 with medium effect sizes, and 4 with small effect sizes, 2 with negligible
effect sizes. It leads to shorter wt in only 5 projects (1 negligible, 3 small, and 1 medium
effect sizes).

Furthermore, if we compare overestimation frequency/side effect of RCIW (see
Figs. 17a and 18) and developer configurations (see Figs. 13 and 14), we can observe that

21nterestingly, cantaloupe and hive are the same two systems where developers provide better warmup
estimations than whatever dynamic reconfiguration technique.
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Table 5 RQs. Estimated warmup time (w?) comparison. Results of the Wilcoxon test (with A 12 effect sizes
in brackets) that compare the wt of dynamic reconfiguration techniques to the ones obtained using developers
configurations. Systems where dynamic configurations report shorter wt than developer configurations (p <
0.05 and Alz > 0.5) are highlighted in bold. Asterisks denote interpretation of the Alz effect size: small (*),
medium (**), large (***)

System Cv RCIW KLD

arrow <0.001(0.87)™" <0.001(0.63)" <0.001(0.87)™"
byte-buddy 0.002(0.56) <0.001¢0.21)™ <0.001(0.59)°
camel <0.001(0.75)"™" 0.002(0.49) <0.001(0.77)"
cantaloupe <0.001(0.22)™ <0.001(0.05)"™" <0.001(0.06)"™"
client_java <0.001(0.66)" <0.001(0.21)" <0.001(0.66)”
crate <0.001(0.62)" <0.001(0.41)" <0.001(0.65)"
eclipse-collections <0.001(0.59)" <0.001(0.42)" <0.001(0.58)"
h20-3 <0.001(0.62)" <0.001(0.44)" 0.005(0.57)"
hazelcast <0.001(0.39)" <0.001(0.32)" 0.078(—)
HdrHistogram <0.001(0.34)" <0.001(0.25)™ <0.001(0.33)™
hive <0.001(0.06)™ <0.001(0.06)™" <0.001(0.06)™
imglib2 <0.001(0.4)" <0.001(0.34)" <0.001(0.39)"
JCTools <0.001(0.36)" <0.001(0.27)" 0.002(0.42)"
jdbi <0.001(0.65)" 0.004(0.47) 0.002(0.63)°
jetty.project <0.001(0.37)" <0.001(0.28)™ <0.001(0.42)"
jgrapht <0.001(0.67)" <0.001(0.37)" 0.363(—)

kafka <0.001(0.65)" 0.18(—) <0.001(0.64)
logbook <0.001(0.76)™" <0.001(0.33)" <0.001(0.75)™
logging-log4j2 <0.001(0.75)"" 0.525(—) <0.001(0.75)™"
netty <0.001(0.69)” <0.001(0.58)" <0.001(0.74)""
presto 0.075(—) <0.001(0.15)™ <0.001(0.3)"
protostuff <0.001(0.34)” <0.001(0.23)"™ <0.001(0.35)"
r2dbe-h2 <0.001(0.2)™ <0.001(0.05)™ <0.001(0.35)"
rdf4j <0.001(0.7)" 0.383(—) 0.25(—)
RoaringBitmap <0.001(0.83)"" <0.001(0.71)" <0.001(0.8)"
RxJava <0.001(0.72)"" 0.021(0.6)" <0.001(0.72)™
SquidLib <0.001(0.67)" <0.001(0.53) <0.001(0.64)”
tinkerpop 0.33(—) <0.001(0.32)™" 0.008(0.52)
vert.x 0.958(—) <0.001(0.13)™ 0.03(0.62)"
zipkin <0.001(0.31)" <0.001(0.2)"™ <0.001(0.41)"
Total <0.001(0.55) <0.001(0.36)" <0.001(0.55)

RCIW reports more frequent overestimations, namely 72% vs 48%, and higher time wastes,
namely median of 46 s (IQR: 31-55 s) vs median of 33 s (IQR: 19-49 s).

Overall, our results indicate that CV and K L D can lead to different behaviors based on
the context, that is they can provide either higher or lower wt than developers depending
on the system. On the other hand, RCIW induces higher estimates of the warmup time
wt when compared to developer configurations, thus increasing microbenchmark execution
time.
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Fig. 22 RQs. Summary wt comparison. Each cell reports the number of systems whose comparison leads
to a statistically significant change (p < 0.05) within a specific A1y effect size range: negligible (N), small
(S), medium (M) and large (L). A]Q > 0.5 indicates that dynamic configurations lead to shorter wt than
developer configurations

5.5.3 Relative Performance Deviation

In this subsection, we assess the difference between RP D of dynamic reconfiguration
techniques and developer static configurations. Overall, we can observe that dynamic recon-
figuration techniques slightly improve developer configurations, as shown in the last row of
Table 6. The comparisons report statistically significant differences for all techniques (p <
0.001), respectively with small (CV and RCIW) and negligible (K L D) effect sizes.

If we look at project-level results (see Table 6 and Fig. 23), we can observe that RCIW
leads to statistically significant improvements over developer configurations in a large num-
ber of projects. In particular, RCIW improves developer configurations in 18 of the 30
systems (5 with large, 3 with medium, 5 with small, and 5 with negligible effect sizes),
while it degrades RP D in only 2 systems (both with negligible effect sizes). By compar-
ing the R P D distributions of RCIW (Fig. 19) and developer configurations (Fig. 15), we
can observe that the former produces lower deviations with respect to steady state mea-
surements. For example, using developer configurations, about 57% of the forks lead to an
RPD of at least 5%, while the same performance deviation is achieved in 43% of forks
when using RCIW. Even more, RCIW provides a median RP D of 3% (IQR: 0-11%),
whereas developer configurations lead to a deviation of 7% (IQR: 1-21%).

These results demonstrate that performance measurements gathered through RCIW
deviate less from steady state measurements than those collected through developer static
configurations, thereby ensuring better results quality.

CV and K LD also report statistically significant improvements over static configura-
tions in 16 and 17 systems, respectively. Nonetheless, developer configurations perform
better than CV and K LD in, respectively, 10 and 12 systems. Despite this, by looking at
Fig. 23, we can observe that systems where developer configurations perform better than
CV and K LD, tend to have lower effect sizes than those where they provide improvement.
For example, if we exclude negligible effect sizes, we can observe that CV still leads to
improvement (A 12 > 0.56) in 7 systems (5 large and 2 medium), while it performs worse
than developer configurations (Alz < 0.44) in only one case with small effect size. Simi-
larly, K L D leads to an effect size Alz > (.56 in 10 systems (5 large, 2 medium, 3 small),
while it reports a small effect size Ajp <044in5 systems.

These results suggest that the comparison between RPD of CV/KLD and devel-
oper configurations lead to different outcomes depending on the system, though with a
slight overall tendency towards improvement. The results across benchmarks of all systems
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Table 6 RQs. RP D fork level comparison. Results of the Wilcoxon test (with Ay effect sizes in brackets)
that compare the R P D of dynamic reconfiguration techniques to the ones obtained using developer configu-
rations. Projects where dynamic configurations perform better than developer configurations (p < 0.05 and
Alz > 0.5) are highlighted in bold. Asterisks denote interpretation of the Alz effect size: small (*), medium
(**)’ large (***)

System Cv RCIW KLD

arrow <0.001(0.48) 0.145(—) <0.001(0.46)
byte-buddy <0.001(0.53) 0.005(0.6)" <0.001(0.53)
camel <0.001(0.44) <0.001(0.5) <0.001(0.4)"
cantaloupe <0.001(0.66) " <0.001(0.67)" <0.001(0.67)"
client_java 0.001(0.54) 0.048(0.55) <0.001(0.53)
crate <0.001(0.48) 0.346(—) <0.001(0.46)
eclipse-collections <0.001(0.53) 0.295(-) <0.001(0.5)
h20-3 <0.001(0.5) 0.019(0.56) <0.001(0.5)
hazelcast <0.001(0.76)"" <0.001(0.77)"" 0.008(0.76) "
HdrHistogram 0.296(—) 0.007(0.61)° 0.012(0.6)"
hive <0.001(0.52) <0.001(0.52) 0.002(0.52)
imglib2 <0.001(0.8)" <0.001(0.78)"" <0.001(0.76)""
JCTools 0.739(—) 0.031(0.59)° 0.042(0.57)°
jdbi <0.001(0.54) 0.282(—) <0.001(0.54)
jetty.project 0.006(0.69)" <0.001(0.69)" 0.019(0.66)"
jerapht 0.002(0.52) 0.114(=) 0.179(-)
kafka <0.001(0.44) 0.076(—) <0.001(0.41)"
logbook <0.001(0.44) 0.004(0.51) <0.001(0.39)"
logging-log4j2 0.079(—) 0.334(—) 0.007(0.51)
netty <0.001(0.48) 0.059(—) <0.001(0.44)
presto 0.753(—) <0.001(0.66)" 0.021(0.63)"
protostuff <0.001(0.79)™" <0.001(0.82)"" <0.001(0.78)™"
r2dbe-h2 <0.001(0.84)™" <0.001(0.87)"" <0.001(0.82)™"
rdf4] <0.001(0.45) 0.827(-) 0.007(0.47)
RoaringBitmap <0.001(0.51) <0.001(0.53) <0.001(0.48)
RxJava 0.003(0.49) 0.35(—) 0.003(0.5)
SquidLib <0.001(0.41)" 0.003(0.45) <0.001(0.42)"
tinkerpop <0.001(0.51) 0.044(0.6)" <0.001(0.47)
vert.x 0.039(0.54) 0.001(0.57)" <0.001(0.5)
zipkin <0.001(0.78)™" <0.001(0.8)™" <0.001(0.75)™"
Total <0.001(0.57)" <0.001(0.6)" <0.001(0.55)

confirm this tendency. As shown in the last row of Table 6, CV and K LD report statisti-
cally significant improvements (p < 0.001), respectively with small and negligible effect
sizes. Given these results, we can safely state that CV and K LD only provide marginal
improvements over developer static configurations in terms of performance deviation.
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Fig.23 RQs. Summary R P D fork level comparison. Each cell reports the number of systems whose compar-
ison leads to a statistically significant change (p < 0.05) within a specific A1y effect size range: negligible
(N), small (S), medium (M) and large (L). A]Q > 0.5 indicates that dynamic configurations perform better
than developer configurations

5.5.4 Benchmark Level Assessment

Interestingly, when we look at benchmark level results, we can observe significant differ-
ences (see Fig. 24 and Table 7). CV notably shifts from a tendency towards improvement
to a tendency towards regression (p < 0.001 and Alz = 0.45). KLD, which reported sta-
tistically significant differences and tendency towards improvement at fork level, reports
neither improvement nor regression (p > 0.05) at benchmark level. By analyzing project
level results, we can further appreciate this shift. At fork level, CV reports worse RPDs than
developers in only one project (with non-negligible effect size). At benchmark level instead,
if we exclude negligible effect sizes, it reports worse performance deviations than developer
configurations in 11 projects (3 with small effect sizes, 2 with medium, and 6 with large).
Likewise, KLD reports worse RPDs in 9 projects at benchmark level (2 small, 2 medium and
5 large effect sizes), while, at fork level, it reports worse RPDs in only 5 project with small
effect sizes. The only technique that seems to provide improvement over developer config-
urations both at benchmark and fork level is RCIW, which reports statistically significant
improvement (p < 0.001) and small effect size (Alz = 0.64). RCIW outperforms devel-
oper configurations in 17 projects (10 with large effect sizes, 5 with medium and 2 with
small), and the effect sizes provided at benchmark level are even better than those provided
at fork level (i.e., higher A12) in 15 out of the 30 projects. These results may suggest that
the capability of RCIW to dynamically stop forks at run-time may further improve perfor-
mance deviations when compared to those of developers. To further investigate this aspect,
we analyzed the results of these 15 projects, and we found that, in 80% of the benchmarks,

L. M s N N S M L
>
e 2 3 1 | o 1 o s
z
2 0o o 1 0o | 0o 2 5
o
3l s 2 2 o | o 3 2 2

0.29 0.34 0.44 0.5 0.56 0.64 0.71
Vargha-Delanay's A,

Fig.24 RQs. Summary R P D benchmark level comparison. Each cell reports the number of systems whose
comparison leads to a statistically significant change (p < 0.05) within a specific A1y effect size range: neg-
ligible (N), small (S), medium (M) and large (L). Alz > 0.5 indicates that dynamic configurations perform
better than developer configurations
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Table 7 RQs. RP D benchmark level comparison. Results of the Wilcoxon test (with A]z effect sizes in
brackets) that compare R P D of dynamic reconfiguration techniques to the ones obtained using developer
configurations. Systems where dynamic configurations perform better than developer configurations (p <
0.05 and Alz > 0.5) are highlighted in bold. Asterisks denote interpretation of the Alz effect size: small (*),
medium (**), large (***)

System Cv RCIW KLD

arrow 0.015(0.29)" 0.285(—) 0.046(0.37)"
byte-buddy 0.084(—) 0.015(0.73)™" 0.196(—)
camel 0.001(0.19)™ 0.18(—) <0.001¢0.11)™
cantaloupe 0.001(0.79)™" 0.001(0.83)"" 0.002(0.81)""
client_java 0.008(0.4)" 0.043(0.57)" <0.001(0.29)”
crate 0.131(—) 0.735(—) 0.114(—)
eclipse-collections 0.002(0.2)™ 0.347(—) 0.005(0.29)™
h20-3 0.002(0.25)™ 0.069(—) 0.05(0.39)"
hazelcast 0.004(0.76)™" 0.004(0.8)™" 0.009(0.71)”"
HdrHistogram 0.776(—) 0.074(—) 0.028(0.61)
hive 0.03(0.72)™" 0.031(0.73)™" 0.056(—)
imglib2 0.035(0.59)" 0.068(—) 0.015(0.59)°
JCTools 0.144(—) 0.655(—) 0.317(—)
jdbi 0.055(—) 0.025(0.71)"" 0.087(—)
jetty.project 0.064(—) 0.003(0.76)"" 0.099(—)
jgrapht 0.756(—) 0.311(—) 0.51(—)
kafka <0.001(0.15)™ 0.018(0.68)" 0.002(0.24)™
logbook 0.046(0.36)" 0.037(0.66)" 0.019(0.26)™
logging-log4j2 0.463(—) 0.18(—) 0.31(—)

netty 0.091(—) 0.028(0.65)" 0.055(—)
presto 0.861(—) 0.026(0.67)" 0.041(0.61)"
protostuff <0.001(0.73)™" <0.001(0.88)"" 0.001(0.74)™"
r2dbe-h2 0.006(0.76)™" <0.001(0.88)"" 0.013(0.68)"
rdf4j 0.015(0.38)" 0.48(—) 0.551(—)
RoaringBitmap 0.001(0.24)™ 0.009(0.4)" 0.028(0.34)™
RxJava 0.463(—) 0.005(0.71)" 0.959(—)
SquidLib 0.011(0.31)" 0.861(—) 0.079(—)
tinkerpop <0.001(0.12)™ 0.155(—) <0.001(0.14)™
vert.x 0.114(—) 0.005(0.79)"" 0.286(—)
zipkin 0.148(—) 0.005(0.73)"" 0.14(—)

Total <0.001(0.45) <0.001(0.64)" 0.186(—)

RCIW involves 5 fork executions, i.e., the maximum number of forks for dynamic reconfig-
uration techniques (based on the original parameterization provided in Laaber et al. (2020)).
That is, forks are not halted by stability criteria, rather they are stopped because the tech-
nique has reached the maximum number of allowed forks. This is somehow equivalent to
statically fix the number of forks to 5.

Our analysis at fork level has shown that dynamic reconfiguration outperforms developer
configurations in terms of performance deviation due to its capability to dynamically stop
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warmup iterations. The same cannot be said when stability criteria are applied to halt forks.
Indeed, the analysis at benchmark level has shown that this capability of dynamic recon-
figuration has only neutral or negative effects on performance deviations, and it is hard to
perceive any improvement brought by this specific feature.

RQs5 summary - When compared to developer configurations, dynamic reconfig-
uration techniques provide more accurate estimates of the warmup time and better
results quality (in most of the cases). CV and K L D show the largest improvement
in terms of estimation accuracy, but only provide slight improvement in terms of
results quality. On the other hand, RCIW outperforms developer configurations
both in terms of estimation accuracy and results quality, but this improvement often
comes at the expense of an increased warmup time. When time doesn’t not represent
a key concern, RC I W should be the primary choice.

6 Discussion

Overall, we can observe that Java microbenchmarking is still subject to some flaws. The
results for RQ; provide evidence that benchmarks do not always reach a steady state of
performance. About 11% of benchmark forks never reach a steady state of performance,
and 43% of benchmark executions involve at least one fork that doesn’t hit the steady state.
These results are consistent with the seminal study on VM microbenchmarking of Bar-
rett et al. (2017), thus showing, on a larger corpus of benchmarks and in the more defined
scope of “testing-oriented” Java microbenchmarks, that the “two-phase assumption” does
not always hold. With this finding, we aim to raise awareness among developers (and
researchers) that deal with Java microbenchmarking. An important lesson here is that some
benchmark forks (mean ~10%) may not be representative of “actual” steady state perfor-
mance, since their performance may continuously fluctuate over time, with a non-negligible
deviation from steady state performance. Unfortunately, the only way to avoid this issue is
to execute each fork for a large number of iterations, and then run the Barrett et al. (2017)
technique to determine if the steady state of performance is reached or not. While this
methodology may be appropriate in a research context (like ours), it may be impractical
in real-word performance assurance processes, where benchmarks are repeatedly executed
against software evolution, and time/resources are subject to constraints (Traini 2022).
Nonetheless, there are certain measures that can be put in place to (partially) mitigate this
problem. For example, the analyses performed for RQ, showed that performance devia-
tions of non-steady forks can be significantly reduced by using a minimum of 50 warmup
iterations that, based on our microbenchmarking setup, correspond to 5 s of continuous
benchmark execution and no less than 50 invocations. The performance deviations can be
further mitigated by increasing the number of warmup iterations up to 300 (i.e., 30 s of con-
tinuous benchmark execution and no less than 300 invocations). It is worth to notice that
these values are considerably different than those provided by JMH defaults, which define
50 s of continuous benchmark execution and no less than 5 invocations for warmup. On the
basis of our results, our practical suggestion is to never execute a benchmark for less than
5 s (and less than 50 invocations) before starting to collect measurements. When time does
not represent a major concern, warmup should last for at least 30 s of continuous benchmark
execution, and no less than 300 invocations.
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Microbenchmarking is far from trivial even when benchmarks consistently reach a
steady state of performance. The results of RQ; sheds a light on the potential pitfalls of
using non-steady measurements. Performance measurements gathered in non-steady phases
of benchmark execution substantially deviate from those collected during steady phases
(~124k% on average). Hence, relying on them can significantly mislead performance
assessment. To deal with this problem, the current practice mostly rely on developers’
guesses to estimate the end of the warmup phase and discard measurements subject to per-
formance fluctuations. Based on the results for RQj3, this approach seems to drastically
mitigate these large deviations, i.e., developer configurations lead to an average deviation
from steady measurements of 8%. Nonetheless, warmup estimation remains challenging
and subject to (large) errors. The results for RQ3 show that developer static configurations
fail to accurately estimate the end of the warmup phase, often with a non-trivial estimation
error (median: 28 s). Developers tend to overestimate warmup time more frequently than
underestimating it (48% vs 32%). Nonetheless, both of these kinds of estimation errors pro-
duce relevant (though diverse) side effects. For example, we showed that overestimation
produces severe time wastes (median: 33 s), thereby hampering the adoption of benchmarks
for continuous performance assessment. On the other hand, underestimation often leads to
performance measurements that significantly deviate from those collected in the steady state
(median 7%), thus leading to poor results quality and potentially wrong judgements. The
latter side effect can be partially mitigated by running an adequate number of forks (e.g.,
5). Indeed, as we have shown in RQ, forks play a significant role in reducing performance
deviations of non-steady measurements. Unfortunately, they also largely increase bench-
mark execution time, and this may be impractical in real-word contexts. Another option is
to leverage automated techniques that can effectively estimate the end of the warmup time
at run-time. Prior work tried to address this challenge through dynamic reconfiguration
(Laaber et al. 2020).

Based on the results for RQs, dynamic reconfiguration techniques significantly improve
the effectiveness of the state-of-practice. The achieved results show that dynamic reconfigu-
ration techniques outperform developer static configurations in terms of warmup estimation
error with statical significance (p < 0.05) and large/medium effect sizes (see Section 5.5.1).
Nevertheless, this improvement may come at the expense of an increased microbenchmark
execution time. For example, RCIW produces higher estimates of the warmup time with
non-negligible effect size in 20 out of the 30 systems (see Section 5.5.2). On the other hand,
CV and K LD have more heterogeneous behaviors depending on the system, but they still
report higher warmup estimates than those of developers in 10 systems. Further empirical
studies are needed to assess whether such time increase is acceptable for practitioners.

The results for RQq4 also highlight a substantial diversity among different dynamic recon-
figuration techniques. One peculiar example is RCIW that, on one hand, induces the
highest increase in microbenchmark execution time, but on the other hand, it provides the
most reliable set of performance measurements. Microbenchmark practitioners that do not
have specific concerns on time (e.g., small benchmarks suites) should adopt RCIW for a
reliable steady state performance assessment. In the other cases, K LD and CV represent
the best alternatives.

Despite the promising results highlighted in RQs, our findings suggest room for
improvement for dynamic reconfiguration. As shown for RQy4, all dynamic reconfiguration
techniques lead to a substantial estimation error, with RCIW providing by far the largest
error (median: 48 s), and, CV and K LD producing smaller, but still relevant, estimation
errors (median of 19 and 17 s, respectively). These errors induce significant, though diverse,
side effects depending on the technique. For example, RCIW induces substantial side
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effects in terms of time waste (median: 46 s), while K LD and CV induce more frequent
and impactful side effects on the reliability of performance measurements (median perfor-
mance deviation of 10% and 9%, respectively). Nonetheless, half of the warmup estimates
of dynamic reconfiguration techniques can be reduced by at least 96%, when only consider-
ing overestimated forks. These results highlight a large space for improvement in dynamic
reconfiguration techniques, and call for further research on designing and developing more
effective dynamic reconfiguration techniques. For example, future research may explore the
use of other stability metrics (e.g., autocorrelation metrics, other confidence interval met-
rics (Fieller 1954)), or combinations of them to more effectively determine the end of the
warmup phase. Another suggestion is to focus more on improving warmup estimation accu-
racy, rather than finding stability criteria that are suitable to both stop forks and warmup
iterations. Indeed, based on our results, dynamically stopping forks does not produce any
tangible improvement over developer static configurations. In this regard, our suggestion is
to allow practitioners manually configuring forks based on their own needs and time con-
straints. Nonetheless, we always recommend to run at least 5 forks (i.e., the default in JMH)
to mitigate the impact of non-steady measurements. Practitioners may decide to run less
forks when time represents a major concern, however they should be aware of potential
implications on results quality.

7 Threats to Validity

Our study may be affected by different threats that span from how we collected performance
data to the subject project domains, and we describe them in the following.

Construct Validity We assume that the benchmarks that reach a steady state will be able to
do it within the execution time we defined. There may be benchmarks that need more time
to show some stability. However, we chose the execution time to be considerably longer
than the time we found in developer configurations (171 times longer on average). Also, as
done in other studies (Laaber et al. 2020), measurement time, the number of iterations, and
the number of forks are fixed for every benchmark. The consequence is that the number of
invocations varies from one benchmark to another. Nonetheless, no benchmark is invoked
less than 3000 times per fork, that is 1000 times more than in Barrett et al. (2017). The
number of forks is fixed at 10, as recommended in Barrett et al. (2017).

Our experiment was performed in an environment where we tried our best to reduce the
measurement noise and external influencing factors (Papadopoulos et al. 2021; Mytkow-
icz et al. 2009b). Such settings are effective in improving the accuracy of results, but may
not represent the more common environment in which developers execute the benchmarks.
However, general reference environments can hardly exist for benchmarks. In fact, different
developers can potentially execute the same microbenchmark on a wide range of differ-
ent machines/environments, given the inherently distributed nature of open-source software
development. On top of that, there is an increasing interest in promoting the adoption of
microbenchmarks in CI (Laaber and Leitner 2018; Laaber et al. 2019, 2020, 2021), which
are most likely uncontrolled/noisy environments. All these aspects make it impractical to
identify a reference environment for each benchmark/system. For this reason, we have delib-
erately chosen to execute benchmarks on the same bare-metal server, using precautionary
measures to mitigate measurement noise and external influencing factors (see Section 4.1
for details). In this respect, we preferred to control the confounding variables rather than los-
ing accuracy in more noisy and unreproducible settings. This consideration was especially

@ Springer



13 Page 50 of 57 Empir Software Eng (2023) 28:13

motivated by the first goal of our study (RQy), i.e., checking whether benchmarks reach a
steady state of performance. Indeed, we prefer to run benchmarks on an environment that
is considerably less subject to noise than those of developers, rather than possibly causing
non-steady executions due to the noise that is specific to our environment. Nonetheless, we
do believe that future research should further strengthen our investigation beyond controlled
environments, i.e., by studying steady state performance even in uncontrolled and noisy
environments. For example, future studies may replicate our experiments in cloud contexts
to assess how these virtualized environments affect steady state performance. We envision
that this latter step is crucial to foster the adoption of Java microbenchmarking in CI.

Developer configurations for warmup iterations wi and measurement iterations i are
derived from the JSON reports generated by JMH (details in Section 4.4). We do not con-
sider other ways in which benchmarks might be executed by developers, by using, for
example, different command line arguments at launch time or by configuring additional
parameters in build automation pipelines. Nonetheless, to the best of our knowledge, no
study so far showed evidence of microbenchmarks being used as part of build automation
pipelines (Beller et al. 2017; Rausch et al. 2017; Vassallo et al. 2017).

Following the methodology of Laaber et al. (2020), we performed post-hoc analysis to
derive measurements for developers and dynamic configurations. Indeed, a comprehensive
execution of all benchmarks across all developer static configurations and dynamic recon-
figuration alternatives would have made our experimental evaluation impractical due to
extremely long execution times (the execution of all 586 benchmarks using our single setup
took about 93 days). In order to mitigate the impact of post-hoc analysis on the validity of
our study, we employed a carefully defined process to derive measurements. We first esti-
mated the time spent in each warmup/measurement iteration using the average execution
time of each iteration as observed in our microbenchmarking setup. Then, we derived the
estimated warmup time wt and the set of measurements M/ based on the JIMH configura-
tions provided by software developers or dynamic reconfiguration techniques. The detailed
process to estimate wr and derive M/ can be found in Section 4.4. Nevertheless, our
results may be marginally affected by approximations in converting measurement samples
from our configuration to the others.

Internal Validity The steady state is detected on the basis of execution time measurements.
We do not consider other event-based stability criteria, such as JIT activity, as these are not
part of any JMH report and, therefore, are not something we can compare against when
examining developer configurations. However, considering such additional criteria may lead
to a different steady state classification.

Before performing the change point detection, we filtered the outliers using Tukey’s
fences on a sliding window, as described in Section 4.3. The parametrization of this proce-
dure might affect the detection of the steady state. However, we tried to select parameters
that would result in a very conservative outliers filtering. In fact, we only filter 0.27% of
the datapoints. Nonetheless, the outliers filtering is a necessary procedure when employing
change point detection algorithms, as the vast majority of such algorithms cannot distin-
guish between actual changes and outliers (Fearnhead and Rigaill 2019), thus leading to an
overestimation of changes.

External Validity We only focused on GitHub repositories. Therefore, it is unclear if the
findings are valid for other open-source hosting platforms or industrial software. Nonethe-
less, we conducted our experiment on 30 systems, a number larger than most recent
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empirical studies on performance (e.g., see Laaber and Leitner 2018; Laaber et al. 2020;
Ding et al. 2020; Reichelt et al., 2019).

We chose to limit the scope of the experiment to JMH microbenchmarks, because JMH
is a mature and widely adopted Java microbenchmark harness. We ran the benchmarks on
JVM 8 (JDK 1.8.0 update 241) or 11 (JDK 11.0.6), depending on the requirements of the
specific system. Using other JVM versions or JVMs from other vendors may change the
results. All the benchmarks were executed on the same bare-metal server running Linux.
Nothing can be said about other hardware characteristics or other operating systems.

Conclusion Validity The changepoint detection method we used assumes independence in
the time series. Even when the data contain some dependence, changepoint methods can still
be used, provided that larger penalty values are used (Antoch et al. 1997; Barrett et al. 2017).
The penalty values we dynamically compute for each fork, as explained in Section 4.3, tend
to be larger (the average penalty is 504.54) than the value used, for example, in Barrett et al.
(2017). Also, we manually inspected some of the time series to ensure that the segmentation
was reasonable given the goal of the experiment.

Wherever possible, we used appropriate statistical procedures with p-value and effect
size measures to test the significance of the differences and their magnitude.

8 Related Work

There are different perspectives of tackling performance analysis of software systems,
through models at runtime (Cortellessa et al. 2022; Giese et al. 2020), or by means of bench-
marking. Recently, benchmarking technique has played a key role to discover potential
performance flaws (Stefan et al. 2017).

One of the main problems with benchmarking results is the reliability of the data.
Recently, different approaches have defined rigorous processes to interpret those data. For
example, some approaches rely on statistical inference for identifying and measuring the
reliability of benchmarking results (Kalibera and Jones 2013, 2020). Other approaches,
instead, have presented performance analysis methodologies to extract data in a more reli-
able way (Georges et al. 2007). Barrett et al. (2017) introduced a fully automated statistical
approach based on changepoint analysis. In their work, Barrett et al. (2017) studied a set of
small and deterministic VM benchmarks across different types of VMs, including the JVM.
They found that VM microbenchmarks may not always reach a steady state of performance.

On the other hand, performance benchmarking is a time-demanding process. Recently,
some approaches investigated solutions to reduce the time for performance analysis while
preserving reliable results (AlGhamdi et al. 2020; Mostafa et al. 2017; He et al. 2019). He
et al. (2019) have studied the reduction of performance testing in the cloud. They introduced
a statistical tool, namely PT4Cloud, that provides stop conditions in order to obtain reliable
performance indices. Another way to reduce testing time is, for example, by reusing the
“functional” unit tests, which are likely available and maintained. For example, Bulej et al.
(2017) extended “functional” unit tests with performance knowledge by equipping them
with stochastic performance logic.

Java Microbenchmark Harness (JMH) is a popular benchmarking framework for Java
software. JMH allows defining performance testing to reduce variability in the measure-
ments as well as external factor contributions during the microbenchmark testing phase.
Hence, different studies spanned over different JMH aspects (Costa et al. 2021; Samoaa
and Leitner 2021; Laaber and Leitner 2018; Laaber et al. 2019). A JMH microbenchmark
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might be affected by bad practices that could degrade performance results. Costa et al.
(2021) studied those bad practices by analyzing a corpus of 123 OSS, and they extracted
those bad practices that more likely lead to bad performance indicators. Laaber et al. (2020)
focused their study on reducing the required execution time of microbenchmarking tests
through dynamic reconfiguration. They have defined three stability criteria to dynamically
estimate the end of the warmup phase and halt warmup iterations accordingly. Samoaa and
Leitner (2021) studied, instead, the impact of benchmark parameters and how they affect
performance results.

In this work, we studied the effectiveness of modern Java microbenchmarking for steady
state performance assessment. Similarly to Barrett et al. (2017), we investigated whether
microbenchmarks reach a steady state of performance. However, unlike them, we stud-
ied this aspect in the more defined scope of “testing-oriented” Java benchmarks, i.e., JMH
benchmarks specifically designed to assess performance of a particular software. Our results
are consistent with those gathered by Barrett et al. (2017), thus confirming that, even in a
different context, Java benchmarks may not always reach a steady state of performance.

Costa et al. (2021) broadly studied bad practices in JMH benchmarks, instead we specifically
investigated the effectiveness of developer configurations for steady state performance assessment.
Laaber et al. (2020) presented dynamic reconfiguration as a viable alternative to developer
static configurations. In their study, they compared dynamic reconfiguration to JMH default
configurations, and they observed a significant reduction in execution time with a negligi-
ble loss of result quality. In our study, instead, we evaluated the effectiveness of dynamic
reconfiguration for steady state performance assessment. Furthermore, we showed, through
a rigorous comparison, that dynamic reconfiguration is significantly more effective than
developer configurations and, as such, it produces less pronounced side effects.

9 Conclusion

This paper presents a comprehensive investigation on Java steady state performance assess-
ment. Through a rigorous assessment, we showed that Java microbenchmarks do not always
reach a steady state of performance, thus confirming the finding of Barrett et al. (2017) in
the more defined scope of “testing-oriented” Java microbenchmarks.

Even when microbenchmarks consistently reach a steady state of performance, a reliable
assessment remains far from trivial. According to our results, the current state-of-practice,
which mostly relies on developer static configurations, show poor effectiveness for steady
state performance assessment. Developers often fail to accurately estimate the end of the
warmup phase, thereby causing either large time wastes or poor results quality. Dynamic
reconfiguration provides a significant leap forward over developer static configurations
by providing more accurate warmup estimates and less pronounced side effects. Still, the
achieved results highlight non-trivial estimation errors, large time wastes, and distorted
performance measurements.

The findings of our work have implications for both practitioners and researchers.

For the former, it is important to be aware that benchmark forks may not always reach a
steady state of performance. The recommendation here is to perform an adequate number
of forks (e.g., 10) to mitigate the noise introduced by “non-steady” forks. Another impor-
tant lesson for practitioners is to favor dynamic reconfiguration over static configuration
when possible. Indeed, when compared to developer configurations, dynamic reconfigura-
tion techniques provide more accurate estimates of warmup time, though this improvement
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may (sometimes) come at the expense of a more time-consuming performance assessment
process. Further empirical studies are needed to assess whether this “cost” is acceptable
for practitioners. Nonetheless, the achieved results are also helpful for suggesting which
technique to use depending on the practitioner’s need.

On the researchers’ side, given the promising results of dynamic reconfiguration and the
large room for improvement suggested by our investigation, we envision research aimed
at designing novel and more effective dynamic reconfiguration techniques to (i) reduce
the time effort devoted to performance assessment and (ii) strengthen the reliability of
performance measurements. This is a direction we aim to investigate in future work.

We have made the code and the data used in our study publicly available to encourage
further research on this topic.
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